UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ESTRUTURAS E CONSTRUÇÃO CIVIL CURSO DE ENGENHARIA CIVIL

ANDREUS DA SILVA BORBA

ANÁLISE DAS PERDAS PROGRESSIVAS EM UMA VIGA DE CONCRETO PROTENDIDO PÓS-TRACIONADA

Santa Maria, RS 2021

Andreus da Silva Borba

ANÁLISE DAS PERDAS PROGRESSIVAS EM UMA VIGA DE CONCRETO PROTENDIDO PÓS-TRACIONADA

Trabalho de conclusão de curso apresentado ao curso de Engenharia Civil, da Universidade Federal de Santa Maria (UFSM, RS), como requisito para a obtenção do título de **Bacharel em Engenharia Civil.**

Orientador: Profº. Dr. Almir Barros da Silva Santos Neto

Santa Maria, RS

2021

Andreus da Silva Borba

ANÁLISE DAS PERDAS PROGRESSIVAS EM UMA VIGA DE CONCRETO PROTENDIDO PÓS-TRACIONADA

Trabalho de conclusão de curso apresentado ao curso de Engenharia Civil, da Universidade Federal de Santa Maria (UFSM, RS), como requisito para a obtenção do título de **Bacharel em Engenharia Civil.**

Aprovado em 09 de fevereiro de 2021:

Almir Barros da Silva Santos Neto, Dr. (UFSM) (Presidente/Orientador)

André Lübeck, Dr. (UFSM)

Alisson Simonetti Milani, Dr. (UNIPAMPA)

Santa Maria, RS 2021 DEDICATÓRIA

Dedico este trabalho a minha família.

AGRADECIMENTOS

Agradeço ao professor Dr. Almir Barros da Silva Santos Neto que aceitou meu convite de ser meu orientador, por dispor do seu tempo me ajudando, aconselhando e me conduzindo neste trabalho.

À minha família por estar todo esse tempo me apoiando, acreditando juntamente comigo no meu sonho. Minha mãe Salete S. da Silva que esteve do meu lado, me dando força para que nunca desistisse dos meus objetivos, torcendo sempre por mim e fazendo de tudo para me ver feliz. Ao meu pai Carlos R.R. Borba que acreditou no meu potencial. Agradeço as minhas irmãs Andressa da S. Borba e Samara da S. Borba, pelo amor e carinho que sempre tiveram por mim. Agradeço a minha avó Cleci R. Borba por ser o meu exemplo de vida.

Agradeço as minhas amigas Claudete, Gabriela, Noeli, Tatiele e Tamires, que sempre me trouxeram dias felizes, além do companheirismo, me escutando e me dando todo apoio que um amigo poderia dar.

Agradeço às minhas tias Simone Borba e Daniela Santos por serem pessoas incríveis comigo, onde sempre estiveram do meu lado, me dando força, se preocupando e agradeço a todos que de alguma forma contribuíram para meu crescimento pessoal para que hoje eu pudesse estar aqui.

ANÁLISE DAS PERDAS PROGRESSIVAS EM UMA VIGA DE CONCRETO PROTENDIDO PÓS-TRACIONADA

AUTOR: Andreus da Silva Borba ORIENTADOR: Almir Barros da Silva Santos Neto

O concreto protendido vem ganhando espaco no mercado da construção civil, assim como em projetos de obras de arte especiais, devido a necessidade de estruturas mais leves, esbeltas e de grandes vãos. A ABNT NBR 6118:2014 indica que as perdas da força de protensão em relação ao valor da tensão inicial aplicada pelo aparelho tensor devem ser previstas em projeto. Este trabalho tem como objetivo estudar as metodologias de cálculo para perdas progressivas conforme a ABNT NBR 6118:2014, simplificado do Eurocode 2 (2004) adaptado por Bastos (2019), Método Alternativo adaptado por Bastos (2019) e o Método de Vasconcelos (1980), considerando variações na umidade, tempo de início da força de protensão e propriedades da tensão do aço com o intuito de fazer uma análise e comparar estes resultados. Os valores obtidos pelos métodos de cálculo das perdas progressivas no geral, mostraram-se com grandes variações, onde o método alternativo adaptado por Bastos (2019) e o método de Vasconcelos (1980), possuem de maneira geral, uma sensibilidade para as variações de retração, fluência e relaxação do aço em função do tempo de início de protensão, além de que, os resultados obtidos das perdas progressivas são mais onerosos, em comparação as outras metodologias de cáculo da perda progressiva. O método simplificado da ABNT NBR 6118:2014, mostrou-se menos sensível as variações de fluência e retração e relaxação do aço comparado as outras metodologias de calculo de perdas progressivas. O método aproximado da ABNT NBR 6118:2014, mostrou-se conservador nos resultados das perdas progressivas, pois o método não leva em consideção alguns fatores e coeficientes de redução como as outras metodologias de cálculo. O método simplificado do Eurocode 2 adaptado por Bastos (2019), no geral foi o método que mais aproximou-se dos resultados das perdas progressivas pelas metodologias indicadas na ABNT NBR 6118:2014 para o cálculo das de perdas progressiva.

Palavras-chave: Concreto protendido. Perdas de protensão. Perdas progressivas. Processo simplificado. Processo aproximado. Método Alternativo.

ABSTRACT

ANALYSIS OF THE PROGRESSIVE LOSSES IN A POST-TENSIONED CONCRETE BEAM

AUTHOR: Andreus da Silva Borba GUIDE: Almir Barros da Silva Santos Neto

The prestressed concrete has been gaining space in the civil construction market, as well as in projects of special art works, due to the need for lighter, slimmer structures and large spans. To ABNT NBR 6118:2014 indicates that the losses of the protrusion force in relation to the initial tension value applied by the tensioning device should be foreseen in the project. This work aims to study the calculation methodologies for progressive losses according to ABNT NBR 6118:2014, Eurocode 2 (2004) adapted by Bastos (2019), alternative method adapted by Bastos (2019) and the method of Vasconcelos (1980), considering variations in humidity, fictitious thickness, starting time of the protection force and tension properties of steel in order to make an analysis and compare these results. The values obtained by the progressive loss calculation methods, in general, showed great variations, where the alternative method adapted by Bastos (2019) and the vasconcelos method (1980), in general have a sensitivity for variations of retraction, fluency and steel relaxation as a function of the prestressing start time, in addition to that, the results obtained from progressive losses are more costly compared to other methodologies for calculating progressive loss. The simplified method of ABNT NBR 6118:2014, was less susceptible to variations in the results obtained from progressive losses, as well as the approximate method of ABNT NBR 6118:2014, where it remained with little variation in progressive losses, showing itself conservative in the results of progressive losses. The simplified Eurocode 2 method adapted by Bastos (2019), in general, was the method that came closest to the results of progressive losses by the methodologies indicated in ABNT NBR 6118: 2014 for the calculation of progressive losses.

Keywords: Concrete protended. Protension losses. Progressive losses. Simplified

process. Approximate process. Alternative method.

LISTAS DE FIGURAS

Figura 1 - Ponte Luzancy na França	17 19
Figura 2 - Ponte do Galeão-Rio	10 18
Figura 4 - Etapas de execução de vigas calhas e detalhe da ancoragem da arm	nadura
rigura 4 - Etapas de execução de vigas camas e detame da ancoragem da am	20
Figura 5 - Pista de Protensão	20
Figura 6 – Viga armada e disposição da bainha dos cabos de protensão	21
Figura 7 –Viga protendida pós-tracionada	22
Figura 8 – Laie macica protendida pós-tracionada	20
Figura 9 – Laje maciça protonatad poo tracionada	25
Figura 10 – Diagrama tensão-deformação para acos de armaduras ativas	26
Figura 11 – Bainhas metálicas	27
Figura 12 – Cunha e porta-cunha para ancoragem.	
Figura 13 – Dispositivos de ancoragem	
Figura 14 – Ancoragem passiva de cordoalhas engraxadas	28
Figura 15 - Diagrama forca de protensão x tempo para peca protendida pré-traci	onada
	29
Figura 16 - Diagrama forca de protensão x tempo para peca protendida pós-traci	onada
	30
Figura 17 -Peça pré-moldada de concreto protendida, após a liberação dos	cabos
protendidos	31
Figura 18 - Perda por atrito ao longo da bainha no estiramento da armadura	32
Figura 19 - Perda por atrito nos cabos	32
Figura 20 – Perda de tensão por atrito e por escorregamento na ancoragem	33
Figura 21 - Comportamento da retração do concreto ao longo do tempo	35
Figura 22 – Ilustração da relaxação do aço e da fluência do aço	37
Figura 23 – Seção da viga e suas dimensões	46
Figura 24 - Sistema estático da viga e seu comprimento	46
Figura 25 - Posição dos cabos de protensão no meio da viga	48
Figura 26 - Exentricidade dos cabos de protensão	49
Figura 27 - Excentricidade do cabo equivalente	49
Figura 28 - Perímetro da peça em contato com o ar	50
Figura 29 - Perdas progressivas para umidade de 40%	54
Figura 30 - Perdas progressivas para umidade de 70 %	57
Figura 31 - Perdas progressivas para umidade de 75%	59
Figura 32 - Perdas progressivas para umidade de 90%	59
Figura 33 - Perdas progressivas devido à tensão de 0,5 fptk e propriedades do a	aço de
protensão	62
Figura 34-Perdas progressivas devido à tensão de 0,6 fptk e propriedades do a	aço de
protensão	64
Figura 35-Perdas progressivas devido à tensão de 0,7 fptk e propriedades do a	aço de
protensão	65
Figura 36-Perdas progressivas devido à tensão de 0,8 fptk e propriedades do a	aço de
protensão	67
Figura 37-Perdas progressivas devido à tensão de 0,8 fptk e propriedades do a	aço de
protensão	67

LISTAS DE TABELAS

Tabela 1 – Valores característicos superiores da deformação especifica de	e retração
ε _{cs} (t∞,t₀) e do coeficiente de fluência φ(t∞, t₀).	36
Tabela 2 – Valores de Ψ_{1000} , em porcentagem	38
Tabela 3 – Propriedade geométricas	47
Tabela 4 – Momento fletor máximo (meio do vão)	48
Tabela 5 – Excentricidade dos cabos em relação ao topo da viga	49
Tabela 6 - Excentricidade do cabo equivalente em relação ao cabo médio	50
Tabela 7 –Valores calculados por Duarte et al. (2005)	51
Tabela 8 – Resumos de tensão devido as perdas imediatas e progressivas e	e totais.51
Tabela 9 – Resultados das perdas progressivas para umidade de 40% de u h _{fic} 28,447 cm	umidade e 54
Tabela 10 – Resultados das perdas progressivas para umidade de 55% de u híjic 30.64 cm	umidade e 55
Tabela 11 – Resultados das perdas progressivas para umidade de 70% de u	umidade e
Tabela 12 – Resultados das perdas progressivas para umidade de 75% de u h _{fic} 48.49 cm	umidade e 58
Tabela 13 – Resultados das perdas progressivas para umidade de 90% de u h _{fic} 120,33 cm	umidade e 60
Tabela 14 – Resultados das perdas progressivas para uma tensão de 0,5fptl	62
Tabela 15 – Resultados das perdas progressivas para uma tensão de 0,6 t =1,3 RB e Ψ_{1000} = 3,5 RN	f _{ptk} e Ψ ₁₀₀₀ 63
Tabela 16 – Resultados das perdas progressivas para uma tensão de 0,7 f =2,5, RB e Ψ_{1000} = 7,0 RN	_{ptk} e Ψ ₁₀₀₀
Tabela 17 –Resultados das perdas progressivas para uma tensão de 0,8 f =3,5 RB e Ψ ₁₀₀₀ = 12,0 RN	_{ptk} e Ψ ₁₀₀₀ 66

LISTAS DE SÍMBOLOS

- A_c Área da seção bruta do concreto
- A_p Área do aço protendido
- μ Coeficiente de atrito aparente entre o cabo e a bainha
- k Coeficiente de perda por metro provocada por curvaturas não intencionais do cabo
- ε_{1s} Coeficiente que depende da umidade relativa do ambiente e da consistência do concreto
- ε_{2s} Coeficiente que depende da espessura fictícia da peça
- γ Coeficiente dependente da umidade relativa do ambiente
- α Coeficiente que depende da velocidade de endurecimento do cimento
- $\beta_s(t;t_0)$ Coeficiente relativo à retração ao instante de tempo t,t_0
- $\varphi(t,t_0)$ Coeficiente de fluência
- φ_a Coeficiente de deformação rápida
- ψ (*t*,*t*₀) Coeficiente de relaxação do aço
- χ (*t*,*t*₀) Coeficiente de fluência do aço
- ψ_{1000} Coeficiente de relaxação que ocorre após 1.000 horas a 20º C
- χ (*t*,*t*₀) Coeficiente de fluência do aço
- $\varphi_{f^{\infty}}$ Coeficiente de deformação lenta irreversível
- β_f(t,t₀) Coeficiente relativo à fluência irreversível
- β_d Coeficiente relativo à fluência reversível
- $\varepsilon a co$ Deformação do aço, por ocasião do estiramento
- *ε*_{cs} Deformação específica de retração do concreto ao nível da armadura, no tempo considerado
- ε_{cca} Deformação rápida irreversível, primeiras 24 horas
- *d* Deslocamento do ponto de ancoragem/acomodação

Eccf	Deformação lenta irreversível (umidade, consistência, espessura, idade)
Eccd	Deformação lenta reversível, depende apenas da duração do carregamento
Ecc,tot	Deformação total do concreto
δ	Escorregamento/acomodação na ancoragem
h_{fic}	Espessura fictícia
ep	Excentricidade da força de protensão <i>P</i> ₀ em relação ao centro de gravidade da seção homogeneizada
Pi	Força máxima aplicada à armadura de protensão pelo equipamento de tração
to	Idade fictícia do concreto no instante em que o efeito de retração e fluência começa a ser considerado
t	Idade fictícia do concreto no instante considerado
Ec	Módulo de elasticidade do concreto
Ep	Módulo de elasticidade do aço
Ι	Momento de inércia
Ec,28	Módulo de elasticidade tangente inicial, para 28 dias
μar	Parte do perímetro externo da seção transversal da peça em contato com o ar
$\Delta\sigma_{Pr}(t;t_0)$	Perda de tensão por relaxação pura desde o instante t_0 do estiramento da armadura até o instante t considerado
$lpha_p$	Razão modular
f_{ptk}	Resistência característica à tração do aço de protensão
σ Pi	Tensão na armadura de protensão aplicada pelo equipamento de tração
σΡο	Tensão na armadura de protensão ($t=t_0$)
σ_p	Tensão atuante no concreto devido à protensão
$\sigma_{c,p0g}$	Tensão no concreto adjacente ao cabo resultante
$ ho_p$	Taxa geométrica da armadura de protensão

- σ_{cp} Tensão no concreto no nível da resultante de protensão, devida à protensão simultânea de todos os cabos
- $\Delta \sigma_{\rm p}$ Variação da tensão da armadura de protensão

SUMÁRIO

1 INTRODUÇÃO	14
1.1 CONSIDERAÇÕES INICIAIS	14
1.2 OBJETIVO	15
1.3 OBJETIVOS ESPECÍFICOS	15
1.4 JUSTIFICATIVA	15
1.5 ESTRUTURA DO TRABALHO	15
2 REVISÃO BIBLIOGRÁFICA	17
2.1 BREVE HISTÓRICO	17
2.2 CONCRETO PROTENDIDO	19
2.3 TIPOS DE PROTENSÃO	19
2.3.1 Protensão com pré-tração (aderência inicial)	19
2.3.2 Protensão com pós-tração com e sem aderência	21
2.4 AÇOS DE PROTENSAO	25
2.5 BAINHAS E ANCORAGEM	27
3 PERDAS DE PROTENSAO	29
3.1 PERDAS IMEDIATAS	
3.1.1 Perdas por deformação imediata do concreto	
3.1.2 Perdas por acomodação da ancoragem	
3.2 PERDAS PROGRESSIVAS	
3.2.1 Retração do concreto	
3.2.2 Fluencia do concreto	35
3.3 PROCESSO SIMPLIFICADO DA NBR 6118:2014	
	41
A METODO DE VASCONCELOS (1960)	40
	40 52
5 RESULTADOS	
5.1 PERDAS PROGRESSIVAS DEVIDO A RETRAÇÃO E FLUENCIA DO	52
5 2 PERDAS PROGRESSIVAS DEVIDO A RELAXAÇÃO DO ACO	55 61
6 CONSIDERAÇÕES FINAIS	0
	03 60
6.2 SUGESTÕES PARA TRABALHOS FUTUROS	03
REFERÊNCIAS	71
ANEXO A - Novos valores de deformação específica para retração e coeficier	ntes de
fluência do concreto	
ANEXO B - Tabelas de cálculos para cada metodologia de perda progressiva	S.
considerando umidade relativa do ar e tempo de início de protensão	
ANEXO C- Tabelas de cálculos para cada método de perda progressivas.	
considerando tensões variando de 0.5 fotk a 0.8 fotk, coeficiente relaxacâ	ăo de
ψ1000 para aços de relaxação baixa (RB) e Relaxação normal (RN)	116

1 INTRODUÇÃO

1.1 CONSIDERAÇÕES INICIAIS

O concreto é um material que possui uma boa resistência mecânica à compressão e por outro lado baixa resistência à tração. O aço, por sua vez, tem uma boa resistência à tração e, a combinação desses dois materiais, dá-se o concreto armado. O concreto protendido tem em sua composição o concreto e o aço, porém se diferencia apenas no aspecto construtivo do concreto armado, ambos possuem os mesmos materiais e compartilham das mesmas propriedades.

A peça de concreto protendido aliada ao aço de elevada resistência possibilita reduzir ou eliminar tensões de tração e a fissuração, resultando em estruturas mais rígidas e com flechas menores, o que visa importantes vantagens técnicas e econômicas para vão maiores de 10 metros, além de obter estruturas mais leves, com maior desempenho dos materiais, resultando em estruturas mais duráveis.

Ao se protender uma estrutura são consideradas as propriedades de fluência e a retração do concreto, em que está relacionada a perda de água adsorvida na estrutura e, com isso, ocasiona uma perda de volume, o qual está diretamente ligada a perda do tensionamento da protensão, da mesma maneira que o aço, pelas suas propriedades, que ao ser alongado e muito tempo tracionado, acaba perdendo parte do tensionamento do fio, o que ocasiona a perda de protensão devido a relaxação do aço. Sendo o tempo uma variável ligada a este processo, pois existem perdas do tipo imediatas que acontecem durante e após concluir-se a protensão e, perdas progressivas, que acontecem ao longo da vida útil da estrutura.

De fato, é de grande importância que se tenha esses valores das perdas de tensão, para que se possa calcular uma sobrecarga a fim de minimizar as perdas.

Este trabalho tem como objetivo estudar, a partir de uma viga isostática biapoiada, diferentes metodologias de cálculos de perdas progressivas para que se possam fazer interações desses resultados e compará-los de forma a se obter o comportamento das perdas conforme cada método.

1.2 OBJETIVO

Este trabalho tem como objetivo geral analisar diferentes metodologias para o cálculo das perdas progressivas em uma viga isostática protendida.

1.3 OBJETIVOS ESPECÍFICOS

a) Calcular as perdas progressivas em uma viga de concreto protendido, considerando o Processo Aproximado e o Simplificado da ABNT NBR 6118:2014, considerando o Processo Simplificado do Eurocode 2 adaptado por Bastos (2019), o Processo Simplificado Alternativo adaptado por Bastos (2019) e o Método de Vasconcelos (1980).

b) Comparar os valores obtidos das perdas progressivas pelas diferentes metodologias, analisando diferentes umidades relativas do ar, tempo de início de protensão, diferentes tensões iniciais de protensão e coeficiente de relaxação.

1.4 JUSTIFICATIVA

As perdas de protensão do tipo progressivas estão referenciadas na NBR 6118:2014. Além dessas metodologias de cálculos para perdas progressivas que a norma indica, existem outros métodos referenciados em bibliografias que analisam essas perdas.

Justifica-se que este trabalho contribui para o estudo desses métodos de perdas progressivas, com intuito de obter resultados e comparar com as metodologias de perdas normatizados.

1.5 ESTRUTURA DO TRABALHO

Este trabalho está separado em ordem cronológica, relacionando os assuntos de acordo com os temas de protensão, estando apresentados da seguinte forma:

No capítulo 1 será apresentado a introdução do trabalho, objetivos, objetivos específicos, justificativa e a estrutura do trabalho.

No capítulo 2 será apresentado a revisão bibliográfica, breve histórico, concreto protendido, tipos de protensão e, no capítulo 3, perdas de protensão imediatas, perdas de protensão progressivas, segundo a norma NBR 6118:2014, Método simplificado do Eurocode 2 adaptado por Bastos (2019), processo simplificado alternativo adaptado por Bastos (2019) e Método de Vasconcelos (1980).

No capítulo 4 é apresentada a metodologia, o modelo de viga, considerando os dados utilizados e os cálculos das perdas progressivas conforme os métodos abordados neste trabalho, e, no capítulo 5, serão apresentados os resultados obtidos conforme os cálculos do capítulo anterior.

Por fim, no capítulo 6, será apresentada a conclusão deste trabalho e também sugestões de ideias propostas.

2 REVISÃO BIBLIOGRÁFICA

2.1 BREVE HISTÓRICO

O concreto protendido surgiu entre o final de 1800 e início de 1900, contudo, não se obteve resultados significativos na sua utilização, pois muitas propriedades importantes dos materiais, não haviam sido compreendidos na época. Um dos percussores desses estudos foi o engenheiro francês Eugene Freyssinet (DOLAN; HAMILTON, 2019).

Ele entendeu a importância das perdas de pré-tensão do aço e, a partir de conhecimentos prévios sobre o assunto, propôs soluções. O que antes não era levado em consideração, como por exemplo, as características do concreto, a fluência e retração, esses fenômenos passaram a ser estudada e a ser considerada nas estruturas protendidas, gerando bons resultados. No ano de 1940, Freyssinet inovou seu método de protensão com cabos e cordoalhas ancoradas em cunhas e, assim, empregandas esse método nos projetos, passou-se a projetar várias pontes, como a ponte de Luzancy na França no ano 1941 (Figura 1). Além de ganhar espaço nas literaturas da época. Esse método foi um marco para a inovação das construções e é utilizado até os dias de hoje.

Então, esse método de Freyssinet ganhou espaço em vários países, do mesmo jeito que, muitos pesquisadores começaram a estudar o seu método, inovando a sua utilização (NAAMAM, 2004).

Figura 1 - Ponte Luzancy na França

Fonte: Structurae (2021).

No Brasil, segundo Veríssimo e Cezar (1998), a primeira obra feita em concreto protendido foi a ponte do Galeão, no ano de 1948, no Rio de Janeiro (Figuras 2 e 3).

Todo material e projetos foram trazidos da França, utilizando o método de Freyssinet e, a segunda obra com este método foi a ponte de Juazeiro, com materiais já brasileiros, pois a partir do ano de 1952 a Siderúrgica Belgo-Mineira passou a produzir aço para protensão no Brasil. Então, o concreto protendido ganhou espaço nas obras civis, sendo normatizado, passando-se assim, dez décadas com a aplicação do método de Freyssinet.

Figura 2 - Ponte do Galeão-Rio Janeiro de 1948

Fonte: Mondorf (2006).

Figura 3 – Ponte do Galeão-Rio

Fonte: Notibras (2015).

2.2 CONCRETO PROTENDIDO

Conforme Carvalho (2017), nos dias atuais, tanto o concreto armado quanto o concreto protendido são especificados pela ABNT NBR 6118:2014 como sendo do mesmo tipo, ou seja, contento na sua composição os mesmos materiais, sendo estes os agregados (graúdo e miúdo), cimento, água e o aço, diferenciando-se apenas no método construtivo. Ambos são projetados para resistir os esforços de flexão na armadura longitudinal, havendo diferenciação do concreto armado para o concreto protendido em que, no concreto armado (armadura passiva), a armadura passa a resistir aos esforços após a deformação das fibras do concreto. Diferentemente do concreto protendido (armadura ativa), onde é introduzido, no elemento, forças externas, advindas de macacos hidráulicos, antes mesmo da deformação.

A ABNT NBR 6118:2014 ilustra a protensão do concreto da seguinte forma

Aqueles nos quais parte das armaduras é previamente alongada por equipamentos especiais de protensão, com a finalidade de, em condições de serviço, impedir ou limitar a fissuração e os deslocamentos da estrutura, bem como propiciar o melhor aproveitamento de aços de alta resistência no estado-limite último (ELU). (ABNT NBR 6118:2014)

Para se protender utiliza-se um cilindro hidráulico, onde traciona-se o cabo ou cordoalha de aço. Essa aplicação de protensão pode ser realizada em peças préfabricada ou antes mesmo da fabricação da peça. A ABNT NBR 6118:2014 indica três formas de aplicação de protensão, a primeira é o concreto com armadura ativa prétracionada com aderência inicial, a segunda é o concreto com armadura ativa póstracionada com aderência posterior e, por fim, armadura ativa pós-tracionada sem aderência.

2.3 TIPOS DE PROTENSÃO

2.3.1 Protensão com pré-tração (aderência inicial)

Nesse caso, a protensão com pré-tração (ABNT NBR 6118:2014) ou prétensão, ocorre quando a peça é pré-moldada em pistas de protensão e é feito o estiramento da armadura antes da concretagem. Esse tipo de peça é fabricada com dimensões e características em formas pré-definidas, a fim de que se possa ter uma produção rápida e de grande escala. A ancoragem é fixada nas extremidades por blocos de concretos e possui uma fundação para garantir que haja uma resistência necessária ao tracionamento da cordoalha. O estiramento é feito com um macaco hidráulico que fica apoiado nesse bloco. Após feito o tensionamento das cordoalhas ou fios, a peça é concretada na forma e assim que ganha a resistência necessária, são soltas as cordoalhas e, como a tendência do aço é de voltar ao seu estado natural de deformação, acaba por gerar na peça uma força de compressão, chamada também de protensão com pré-tração inicial (BASTOS, 2019).

A NBR 6118:2014 destaca a pré-tração da seguinte forma:

Concreto protendido em que o pré-alongamento da armadura ativa é feito utilizando-se apoios independentes do elemento estrutural, antes do lançamento do concreto, sendo a ligação da armadura de protensão com os referidos apoios desfeita após o endurecimento do concreto; a ancoragem no concreto realiza-se somente por aderência (ABNT NBR 6118:2014).

Na Figura 4, no item a, mostra-se a colocação da armadura ativa presa às extremidades dos blocos; o item b demonstra o local que é feito o estiramento da armadura, onde é preso nas extremidades por cunhas; no item c é onde é feito a concretagem da peça, após o concreto ganhar resistência necessária é solto os cabos e, no item e, mostra-se o detalhamento da ancoragem dos fios.

Figura 4 – Etapas de execução de vigas calhas e detalhe da ancoragem da armadura

Fonte: (CARVALHO, 2017, p.4).

A Figura 5 mostra uma pista de protensão para uma laje protendida e também uma viga protendida, pré-moldada.

Figura 5 - Pista de Protensão

Fonte: WCH equipamentos para pré-moldados (2021)

Pode-se observar na Figura 5 a pista de protensão, na sequência o estiramento dos cabos de aço na pista, com ajuda do aparelho tensor e, após feito o tensionamento dos cabos, estes estão pronto para receber o concreto.

2.3.2 Protensão com pós-tração com e sem aderência

A NBR 6118:2014 destaca a pós-tração com aderência posterior da seguinte forma

Concreto protendido em que o pré-alongamento da armadura ativa é realizado após o endurecimento do concreto, sendo utilizadas, como apoios, partes do próprio elemento estrutural, criando posteriormente aderência com o concreto, de modo permanente, através da injeção das bainhas. (ABNT NBR 6118:2014, p.4).

Na pós-tração é feito o sentido inverso da pré-tração, primeiramente é fabricada a peça de concreto. Faz-se às formas da viga e nela é introduzida um tubo chamado de bainha, que é normalmente de metal e corrugado, e estes tubos servem de passagem para armadura ativa (cordoalhas e fios), e também é incluída a armadura passiva e então faz-se a concretagem. Após a peça de concreto adquirir a resistência necessária para suportar às forças de compressão, é inserido as cordoalhas, onde um lado da peça é fixa e chamada de lado passivo e do outro lado faz-se o tracionamento da armadura ativa com ajuda de um cilindro hidráulico, chamado de lado ativo.

Conclui-se o estiramento dos fios ou das cordoalhas onde são ancorados na peça por cunhas e porta-cunhas, ou seja, é fixada na peça. Como a tendência do fio de aço é voltar a seu estado inicial de deformação, a peça de concreto é submetida a uma tensão de compressão pelo aço.

Para aderir os cabos e cordoalhas à peça de concreto utiliza-se uma nata de cimento para fazer o preenchimento da bainha, a fim de que se possa unir ambos a peça, chamando então de pós-tensão com aderência (BASTOS, 2019).

A Figura 6 mostra um exemplo de uma viga com pós-tração com a armadura passiva e a disposição da bainha por onde passará os cabos de protensão.

Figura 6 - Viga armada e disposição da bainha dos cabos de protensão

Fonte: EVEHX (2020)1

¹ Disponível em: https://evehx.com/servicos/protensao-aderente/

A Figura 7 mostra uma viga pós-tracionada, já concretada e com a protensão das cordoalhas já realizada.

Figura 7 – Viga protendida pós-tracionada

Fonte: EVEHX (2020)².

Há também outra tipologia de pós-tração, onde ao invés de utilizar a nata de cimento para consolidar às cordoalhas nas estruturas de concreto, faz-se a utilização de cordoalhas do tipo engraxada.

A NBR 6118:2014 destaca a pós-tração sem aderência da seguinte forma

Concreto protendido em que o pré-alongamento da armadura ativa é realizado após o endurecimento do concreto, sendo utilizadas, como apoios, partes do próprio elemento estrutural, mas não sendo criada aderência com o concreto, ficando a armadura ligada ao concreto apenas em pontos localizados (ABNT NBR 6118, 2014, p.4).

A pós-tração sem aderência possui o mesmo método construtivo da protensão pós-tração com aderência, a diferença está apenas a não utilização da nata de

² Diposnível em: https://evehx.com/servicos/protensao-aderente/

cimento, ou seja, não faz-se a aderência entre os materiais, ficando estes fixos apenas nas extremidades por cunhas e porta-cunha. Tem-se aumentado o uso desse tipo de protensão, utilizando-a em lajes e reforços estruturais. Nesse caso, emprega-se a bainha com um material de polietileno e a cordoalha é envolto por graxa para melhorar a movimentação dos fios no ato do estiramento, bem como para a proteção da armadura contra a corrosão (BASTOS, 2019).

A Figura 8 mostra um exemplo de uma laje maciça com as disposições das bainhas de polietileno e também a sua armadura passiva, pronta para a concretagem.

Figura 8 – Laje maciça protendida pós-tracionada

Fonte: EVEHX (2020)³

A Figura 9 mostra uma laje nervurada com a disposição das bainhas de polietileno entre as nervuras para a concretagem e, após receber os cabos de protensão e fazer o seu estiramento.

³ Disponível em: https://evehx.com/servicos/protensao-nao-aderente/

Figura 9 – Laje nervurada protendida pós-tracionada

Fonte: EVEHX (2020)⁴

Como pode-se observar, a protensão com pós-tração com aderência ou sem aderência, possuem as mesmas configurações construtivas, se diferenciando apenas em utilizar ou não da nata de cimento. O emprego de cada uma varia, por exemplo, a pós-tração com aderência é aplicada em peças pré-moldadas no canteiro de obras e que tenha uma repetitividade menor, como vigas de pontes e viadutos, passarelas e também em pisos e lajes estruturais. A pós-tração sem aderência tem sido empregada em lajes maciças, lajes nervuradas, pisos industriais, vigas e reforço estrutural.

2.4 AÇOS DE PROTENSÃO

Segundo Carvalho (2017), os aços são identificados com a sigla CP (concreto protendido) e adiciona-se às categorias RB para baixa relaxação e RN para relaxação normal e são classificados em barras, fios, cordões e cordoalhas.

A norma vigente para fios de aço de estruturas de concreto protendido é a ABNT NBR 7482:2020. Para cordoalhas de aço para concreto protendido é a NBR 7483:2020. Para as barras, cordoalhas e fios de aço destinados a armaduras de protensão é a ABNT NBR 7484:2020 e, para as barras, cordoalhas e fios de aço para armaduras de protensão é a ABNT NBR 6349:2008.

⁴ Disponível em: https://evehx.com/servicos/protensao-nao-aderente/

A ABNT NBR 7482:2020 define as características relacionadas ao grau de relaxação do aço e indica a utilização da categoria RB, pois essa é reduzida cerca de 25% da relaxação em relação ao aço tipo RN. Outras características importantes destacadas pela norma são as propriedades dos fios, onde estes são classificados conforme a resistência à tração em CP-145, CP-170, CP-175 e CP-190 e, também, conforme o acabamento superficial do fio, em liso ou entalhado.

As cordoalhas seguem as características e propriedades da ABNT NBR 7483:2020, onde estão classificadas conforme os números de fios em cordoalhas, de sete fios ou de três fios, bem como a resistência à tração com as categorias CP-190, CP-210, CP-220, CP-230, CP-240, além de classificar estas conforme o tipo de superfície, como cordoalhas nua lisa, nua entalhada e, quanto ao revestimento, em engraxada e plastificada ou também encerada e plastificada, além de serem sempre produzidas nas condições de baixa relaxação.

A Figura 10 representa o diagrama de tensão-deformação do aço para amadura ativa utilizado em concreto protendido.

Figura 10 - Diagrama tensão-deformação para aços de armaduras ativas

Fonte: (ABNT NBR 6118:2014).

2.5 BAINHAS E ANCORAGEM

Para introduzir a armadura ativa na viga ou laje, utiliza-se bainhas, que são tubos de passagem de metal ou plástico. Essa é utilizada tanto em protensão póstração com aderência ou sem aderência, tendo como objetivo a proteção das cordoalhas e também fazer o isolamento das cordoalhas ou fios. Utiliza-se na póstração com aderência uma calda de cimento para fazer o preenchimento da bainha com a cordoalha ou fios (BASTOS, 2018).

A Figura 11 mostra uma bainha metálica e corrugada, utilizada para a passagem de fios e cordoalhas em vigas protendidas.

Figura 11 – Bainhas metálicas

Fonte: Protenfor (2021)⁵.

Para fazer a fixação dos cabos na estrutura, é utilizado a cunha e porta-cunha com objetivo de fixar a cordoalha ou fios na estrutura de concreto, esses dispositivos fazem a ancoragem da armadura na peça após feito o estiramento dos fios de aço.

A Figura 12 mostra um modelo de cunha e porta-cunha utilizados para a ancoragem de cabos em vigas protendidas.

⁵ https://www.protenfor.com.br/blog/Bainha-Met%C3%A1lica-Galvanizada/62

Figura 12 – Cunha e porta-cunha para ancoragem

Fonte: Bianchim formas (2021)⁶

A Figura 13 e a Figura 14 mostram dispositivos de ancoragem para cordoalhas engraxadas, utilizadas para lajes.

Figura 13 – Dispositivos de ancoragem

Fonte: Macprotensão (2021)⁷

Figura 14 – Ancoragem passiva de cordoalhas engraxadas

Fonte: Macprotensão (2021)8

⁶ Disponível em: http://www.bianchiformas.com.br/produtos/27

⁷ Disponível em: https://macprotensao.com.br/produtos/ancoragem-ativa-engraxada-mac-s/

⁸ Disponível em: https://macprotensao.com.br/produtos/ancoragem-ativa-engraxada-mac-s/

3 PERDAS DE PROTENSÃO

Ao protender uma estrutura provocamos uma tensão na armadura, onde essa tensão decresce mais rápido no início e, com o passar do tempo, torna-se mais lenta e isso está ligado as propriedades do aço e também do concreto. Esse fato é de grande importância, pois a soma total das diferentes perdas nos dá uma estimativa de força de protensão efetiva, ou seja, uma sobretensão que será necessária para minimizar as perdas totais (BASTOS, 2019).

Segundo a ABNT NBR 6118:2014, há três tipos de perdas de protensão: a primeira é a perda inicial e ocorre na pré-tração, a segunda é a perda imediata e a terceira é a perda do tipo progressiva, essas duas últimas ocorrem em ambos tipos de protensão.

A Figura 15 mostra as perdas sofridas em função do tempo na pré-tração com intuito representativo da força de protensão.

Figura 15 - Diagrama força de protensão x tempo para peça protendida pré-tracionada

Fonte: (BASTOS, 2018).

A Figura 16 mostra as perdas sofridas em função do tempo na pós-tração com intuito representativo da força de protensão.

Figura 16 - Diagrama força de protensão x tempo para peça protendida pós-tracionada

Fonte: (BASTOS, 2018).

3.1 PERDAS IMEDIATAS

3.1.1 Perdas por deformação imediata do concreto

A peça de concreto após receber a força de compressão devido a protensão, sofre uma deformação elástica de forma imediata, gerando assim um encurtamento da estrutura. Além de gerar um encurtamento do cabo de protensão isso gera um alívio de tensões nos cabos e, assim, consequentemente, perdas de tensão (VERÍSSIMO; CÉSAR, 1998).

A Figura 17 mostra uma viga protendida após a liberação dos cabos de aço sofrendo um encurtamento devido a compressão.

Figura 17 - Peça pré-moldada de concreto protendida, após a liberação dos cabos protendidos

Fonte: (VERISSIMO; CESAR, 1998).

3.1.2 Perdas por atrito nos cabos

Nas peças pós-tracionadas com cabos curvilíneos, devido ao atrito entre a cordoalha e a bainha, assim como, em trechos retos, em que ocorre atrito com os cabos e as ondulações do duto, ocasiona-se perdas de tensão do aço. Esse fato se dá dependendo do traçado do cabo, bem como as características de rugosidade dos materiais que estarão em contato, ao se fazer o estiramento do cabo, gera-se um atrito com a bainha que acarreta, assim, em perdas de protensão do tipo imediata (BASTOS, 2019).

As perdas de protensão são significativas devido ao atrito, quanto maior for o comprimento da peça de concreto e, também quando o cabo for curvilíneo, pois, nessas condições, devido a trajetória do cabo, gera-se um atrito interno, surgindo assim, altas pressões de contato, que acarreta nas perdas de protensão (VERÍSSIMO; CÉSAR, 1998).

A perda, devido ao atrito dentro da bainha, de consequência à sinuosidade do duto, chama-se de ondulação parasitária e ocorre em qualquer tipo de traçado de cabo, seja retilíneo ou o curvo.

Uma forma de atenuar essas perdas é aplicando às forças de protensão nas duas extremidades da estrutura.

A Figura 18 mostra a perda protensão devido a força de atrito no ato do tensionamento da armadura.

Figura 18 - Perda por atrito ao longo da bainha no estiramento da armadura

Fonte: (BASTOS, 2018, P.40).

A Figura 19 mostra um esquema da perda de protensão devido ao atrito da bainha com o cabo curvo e também devido as perdas parasitárias.

ATRITO NOS TRECHOS RETUS, DEVIDO A ONDULAÇÕES PARASITAS

Fonte: (HANAI (2005, p. 70).

3.1.2 Perdas por acomodação da ancoragem

Existem vários tipos de dispositivos de ancoragem e isso influencia na perda por acomodação da ancoragem. Após fazer a liberação das cordoalhas ou fios do dispositivo de tração, há uma transferência de esforços para a peça de concreto, há um deslocamento do fio até sua acomodação na ancoragem, esse tipo de perda é mais significativa com a utilização de cunhas e porta-cunhas, também chamado de encunhamento. A norma destaca que deve-se determinar as perdas por acomodação da ancoragem experimentalmente ou utilizar valores indicados pelos fabricantes dos dispositivos (VERÍSSIMO; CÉSAR, 1998).

A Figura 20 ilustra a perda de tensão devido ao atrito entre a bainha e o cabo e também por escorregamento na aconragem.

Fonte: (BASTOS, 2018, p. 44).

3.2 PERDAS PROGRESSIVAS

Segundo Schmid (1998), as perdas progressivas são decorrentes das propriedades naturais dos materiais do concreto e também do aço. A diminuição do volume do concreto é devido à retração e sua deformação lenta e, no aço, por sua vez, pela relaxação, o que resulta em perdas de tensão.

3.2.1 Retração do concreto

O concreto é um material formado basicamente de cimento, agregados e água e que está sujeito a deformações intrínsecas, isto é, que são decorrentes da natureza da sua estrutura interna, da sua reologia (HANAI, 2005).

Possui características importantes de resistência, que é fundamental para uma estrutura. Por dispor na sua composição água, tem-se um efeito chamado de retração por secagem, onde parte dessa água tende a ser eliminada pela porosidade do concreto em condições como temperatura, umidade relativa do ar, pressão do vento, entre outras características. Este efeito, também chamado de higrotérmico, é a tendência de haver um equilíbrio entre o ambiente e a peça. Essa perda produz uma diminuição de volume e, consequentemente, o encurtamento da peça de concreto com o passar do tempo.

Após o concreto adquirir resistência necessária para suportar as tensões de protensão, ao aplicar essa força, parte da retração já ocorreu, porém, essas perdas continuam acontecendo nas primeiras idades do concreto (VERISSÍMO; CÉSAR, 1998).

A Figura 21 mostra a deformação especifica de retração do concreto em função do tempo, ou seja, quando é aplicada a protensão, a fluência tende a um valor constante.

Figura 21 - Comportamento da retração do concreto ao longo do tempo

Fonte: (VERISSIMO; CESAR, 1998, p.16).

3.2.2 Fluência do concreto

Segundo a ABNT NBR 6118:2014, a fluência do concreto (ϵ_{cc}), por sua vez, é composta por duas formas de deformação, a deformação do tipo rápida, que acontece durante as primeiras 24 horas após o carregamento e é irreversível (ϵ_{cca}) e varia linearmente. E a lenta, que é dividida em mais duas parcelas, que com o passar do tempo e com as cargas permanentes aplicadas, surge a deformação lenta reversível (ϵ_{ccd}) e a deformação lenta irreversível (ϵ_{ccf}).

A Tabela 1 fornece o valor da deformação específica de retração do concreto e o coeficiente de fluência, em função da umidade relativa do ar média, a espessura fictícia e o tempo de início de protensão em que t₀ é em dias.

Umidade média ambiente % Espessura fictícia 2A _c /u cm			40		55		75		90	
			20	60	20	60	20	60	20	60
φ (t,t ₀)		5	4,6	3,8	3,9	3,3	2,8	2,4	2,0	1,9
Concreto		30	3,4	3,0	2,9	2,6	2,2	2,0	1,6	1,5
C20 a C45		60	2,9	2,7	2,5	2,3	1,9	1,8	1,4	1,4
φ (t,t0)		5	2,7	2,4	2,4	2,1	1,9	1,8	1,6	1,5
Concreto	40 clias	30	2,0	1,8	1,7	1,6	1,4	1,3	1,1	1,1
C50 a C90	GIAS	60	1,7	1,6	1,5	1,4	1,2	1,2	1,0	1,0
		5	- 0,53	- 0,47	- 0,48	- 0,43	- 0,36	6 - 0,32	- 0,18	- 0,15
$\varepsilon_{cs}(t_{\omega},t_0)$ ‰		30	- 0,44	- 0,45	- 0,41	- 0,41	- 0,33	- 0,31	- 0,17	- 0,15
		60	- 0,39	- 0,43	- 0,36	- 0,40	- 0,30) - 0,31	- 0,17	- 0,15

Tabela 1 – Valores característicos superiores da deformação especifica de retração ϵ_{cs} (t_w,t₀) e do coeficiente de fluência ϕ (t_w,t₀).

Fonte: (ABNT NBR 6118:2014, p.28).

A Equação (1) é indicada para o cálculo da espessura fictícia utilizada na interpolação linear na Tabela 1, sendo:

$$h_{fic} = \frac{2A_c}{u} \tag{1}$$

3.2.3 Relaxação do aço

O aço ao ser submetido a uma tensão de compressão por longos períodos de tempo, sofre uma perda de deformação elástica o que ocasiona perda de tensão, denominada relaxação e com o aumento da temperatura há também um aumento de tensão no aço e aumentando assim a relaxação. Em projetos, a fim de minimizar ao máximo a relaxação, tem-se utilizado em substituição dos aços de relaxação normal, o aço de relaxação baixa (RB), esta possui cerca de apenas 25% da relaxação do aço de relaxação normal (RN) (BASTOS, 2019).

Segundo Hanai (2005), a fluência e relaxação do aço de protensão são fenômenos diferentes e que causam perdas do tipo progressivas, ou seja, a relaxação do aço representa a diminuição da tensão no aço, quando essa se mantém longos períodos de tempo tracionados, ocorrendo um alívio de tensões devido ao seu
comprimento ou também deformação constantes. A fluência acontece quando há um aumento da deformação do aço enquanto a tensão é mantida constante.

A Figura 22 mostra uma ilustração da fluência e a relaxação do aço em função do tempo.

Figura 22 – Ilustração da relaxação do aço e da fluência do aço

Fonte: (HANAI, 2005, p. 39).

O cálculo da intensidade da relaxação do aço poderá ser obtido de acordo com a ABNT NBR 6118:2014 pelo coeficiente

$$\psi(t,t_0) = \frac{\Delta \sigma_{pr}(t,t_0)}{\Delta p_i} \tag{2}$$

Onde:

 $\Delta \sigma_{pr}$ (t,t₀) = é a perda de tensão por relaxação pura do instante t₀ da armadura até o instante t.

 σ_{pi} = é a tensão imposta na armadura no ato de protensão após as perdas.

Para efeito de cálculos, a ABNT NBR 6118:2014 considera uma temperatura constante de 20°C e a tensão inicial variando de 50% a 80% da resistência característica do f_{ptk} , após 1000 horas, pode-se obter o valor do coeficiente de relaxação (ψ_{1000}) a partir da Tabela 2.

-	Cordo	alhas	Fi	Porroo			
оро	RN	RB	RN	RB	Darras		
0,5 <i>f</i> _{ptk}	0	0	0	0	0		
0,6 <i>f</i> _{ptk}	3,5	1,3	2,5	1,0	1,5		
0,7 <i>f</i> _{ptk}	7,0	2,5	5,0	2,0	4,0		
0,8 <i>f</i> _{ptk}	12,0	3,5	8,5	3,0	7,0		
Onde							
RN é a relaxação normal;							
RB é a relaxação baixa.							

Fonte: (ABNT NBR 6118:2014).

A equação (3) considera o tempo em dias, se torna a seguinte:

$$\psi(t, t_0) = \psi_{1000}(\frac{t-t_0}{41,67})^{0,15}$$
 (t em dias) (3)

E para tempo em horas,

$$\psi(t, t_0) = \psi_{1000}(\frac{t-t_0}{1000})^{0,15}$$
 (t em horas) (4)

Para valores menores que 0,5f_{ptk}, considera-se que não há perdas devido à relaxação do aço e, para valores intermediários da tabela 2, far-se-á a interpolação linear.

Considera-se a fórmula $\Psi(t_{\infty},t_0) \approx 2,5 \ \Psi_{1000}$, para valores de tempo infinitos de $\Psi(t,t_0)$.

Segundo Bastos (2019), o Eurocode 2 especifica equações para a perda devido à relaxação do aço, tanto para cordoalhas e também para fios. Para a classe 2 com baixa relaxação, é dado pela equação (5):

$$\frac{\Delta\sigma_{pr}}{\sigma_{pi}} = 0.66 \,\psi_{1000} \,e^{9.1\mu} (\frac{t}{1000})^{0.75(1-\mu)} 10^{-5} \tag{5}$$

Onde,

 $\Delta \sigma_{pr}$ = valor absoluto das perdas de protensão devidas à relaxação;

 σ_{pi} = para a pós-tensão, é o valor absoluto da tensão inicial de protensão σ_{pi} = σ_{po} ; e, para pré-tensão, é a tensão de tração máxima aplicada nos cabos deduzidas as perdas instantâneas que ocorrem durante as operações de protensão, portanto, σ_{pi} = σ_{pa} ;

t = tempo depois da aplicação da protensão (em horas);

 $\mu = \sigma_{pi}/f_{ptk}$, em que f_{ptk} é o valor característico da resistência à tração do aço de protensão;

 Ψ_{1000} = valor da perda devida à relaxação (%), às 1.000 horas depois da aplicação da protensão e a uma temperatura média de 20 °C.

3.3 PROCESSO SIMPLIFICADO DA NBR 6118:2014

Para esse processo, a norma ABNT NBR 6118:2014 considera as perdas progressivas devido à fluência do concreto, retração do concreto e a relaxação do aço e, para utilizar esse processo, devem-se ser satisfeitas a seguintes condições:

a) a concretagem do elemento estrutural, bem como a protensão, são executadas, cada uma delas, em fases suficientemente próximas para que se desprezem os efeitos recíprocos de uma fase sobre a outra; b) os cabos possuem entre si afastamentos suficientemente pequenos em relação à altura da seção do elemento estrutural, de modo que seus efeitos possam ser supostos equivalentes ao de um único cabo, com seção transversal de área igual à soma das áreas das seções dos cabos componentes, situado na posição da resultante dos esforços neles atuantes (cabo resultante) (ABNT NBR 6118, 2014, p.51). O cálculo das perdas progressiva se dá pela Equação (6):

$$\Delta \sigma_p(t, t_0) = \frac{\varepsilon_{cs}(t, t_0) E_p - \alpha_p \sigma_{c, p 0 g} \varphi(t, t_0) - \sigma_{p 0} \chi(t, t_0)}{\chi_p + \chi_c \alpha_p \eta \rho_p} \tag{6}$$

Para o cálculo da perda de deformação no cabo resultante, utiliza-se a Equação (7)

$$\Delta \varepsilon_{pt} = \frac{\sigma_{p0}}{E_p} \chi(t, t_0) + \frac{\Delta \sigma_p(t, t_0)}{E_p} \chi_p \tag{7}$$

A perda de deformação do concreto ao nível do cabo resultante é dado pela Equação (8)

$$\Delta \varepsilon_{ct} = \frac{\sigma_{c,p0g}}{E_{ci28}} \varphi(t,t_0) + \chi_c \frac{\Delta \sigma_c(t,t_0)}{E_{ci28}} + \varepsilon_{cs}(t,t_0)$$
(8)

Sendo,

 $\sigma_{c,pog}$ = tensão no concreto adjacente ao cabo resultante, provocada pela protensão e pela carga permanente mobilizada no instante t_o, sendo positiva se for de compressão; $\epsilon_{cs}(t,t_o)$ = retração no instante t, descontada a retração ocorrida até o instante t_o; $\Delta\sigma_c(t,t_o)$ = variação da tensão do concreto adjacente ao cabo resultante entre t_o e t; $\Delta\sigma_p(t,t_o)$ = variação da tensão no aço de protensão entre t_o e t; $\phi(t,t_o)$ = coeficiente de fluência do concreto no instante t para protensão e carga permanente, aplicadas no instante t_o;

$$\chi_c = 1 + 0.5\varphi(t, t_0)$$
(9)

 α_p = razão modular relativo à armadura ativa, com o módulo de elasticidade inicial do concreto tomado aos 28 dias:

$$\alpha_p = \frac{E_p}{E_{ci28}} \tag{10}$$

 ρ_p = taxa geométrica da armadura de protensão;

$$\rho_{\rho} = \frac{A_p}{A_c} \tag{11}$$

 $\chi(t,t_o)$ = coeficiente de fluência do aço;

 $\psi(t,t_0)$ = coeficiente de relaxação do aço no instante t para protensão e carga permanente mobilizada no instante t₀;

$$\chi(t, t_0) = -\ln[1 - \psi(t, t_0)]$$
(12)

$$\chi_p = 1 + \chi(t, to) \tag{13}$$

e_p = excentricidade do cabo resultante em relação ao baricentro da seção do concreto;
A_p = área da seção transversal do cabo resultante;
A_c = área da seção transversal do concreto;
I_c = momento central de inércia na seção do concreto.

$$\eta = 1 + e_p^2 \frac{A_c}{I_c} \tag{14}$$

3.4 PROCESSO APROXIMADO DA NBR 6118:2014

Segundo a ABNT NBR 6118:2014, "esse processo pode substituir o estabelecido em 9.6.3.4.2, desde que satisfeitas as mesmas condições de aplicação e que a retração não difira em mais de 25 % do valor [-8.10⁻⁵ $\phi(\infty, t_0)$]"

a) Para aços de relaxação Normal (RN) (valor em porcentagem)

$$\frac{\Delta\sigma_p(t_{\infty},to)}{\sigma_{p0}} = 18,1 + \frac{\alpha_p}{47} [\varphi(t_{\infty},to)]^{1,57} (3 + \sigma_{c,p0g})$$
(15)

b) Para aços de relaxação Baixa (RB) (valor em porcentagem)

$$\frac{\Delta\sigma_p(t_{\infty},t_0)}{\sigma_{p_0}} = 7,4 + \frac{\alpha_p}{18,7} [\varphi(t_{\infty},t_0)]^{1,57} (3 + \sigma_{c,p_0g})$$
(16)

Onde:

 σ_{po} é a tensão na armadura em MPa de protensão devida, exclusivamente, a força de protensão, no instante t_o.

t∞ = tempo da vida útil da peça.

3.5 MÉTODO SIMPLIFICADO DO EUROCODE 29

Esse método foi adaptado por Bastos (2019) do Eurocode 2 e apresenta um processo muito semelhante ao Método simplificado da NBR 6118:2014 para calcular as perdas progressivas, onde as variáveis são a retração, fluência e relaxação do aço em qualquer posição da peça, utiliza-se a equação (17).

$$\Delta \sigma_{\mathrm{p,cc+cs+r}} = \frac{\varepsilon_{\mathrm{cs}} \, \mathrm{E_{p}} + \alpha_{\mathrm{p}} \, \sigma_{\mathrm{c,QP}} \, \varphi(\mathrm{t,t_0}) + 0.8 \, \Delta \sigma_{\mathrm{pr}}}{1 + \alpha_{\mathrm{p}} \, \frac{A_p}{A_c} \left(1 + \frac{A_c}{I_c} \, e_p^2\right) [1 + 0.8 \, \varphi(\mathrm{t,t_0})]} \tag{17}$$

$$\Delta P_{p,cc+cs+r} = A_p \Delta \sigma_{p,cc+cs+r} \tag{18}$$

Onde:

 $\Delta \sigma_{p,cc+cs+r}$ = valor absoluto da variação de tensão na armadura devido à fluência, retração e relaxação, na posição x no tempo t;

 ϵ_{cs} (t;t_o) = deformação por retração estimada, no tempo sob consideração;

α_p = razão modular;

 $\Delta \sigma_{pr}$ = valor absoluto da variação de tensão na armadura de protensão na seção x, no instante t, devida à relaxação, determinada para uma tensão $\sigma_p = \sigma_p (P_0 + G + \Psi_2 Q)$, isto é, devida à ação conjunta da força de protensão P₀ e da combinação quase permanente;

 $\varphi(t;t_0)$ = coeficiente de fluência do concreto no tempo t para cargas aplicadas em t₀;

⁹ Adaptação feita por Bastos (2019) para a notação conforme NBR 6118:2014.

 $\sigma_{c,QP}$ = tensão no concreto ao nível do CG da armadura de protensão, devida ao peso próprio e a força de protensão inicial (P₀) e, sempre que for relevante, a outras ações quase permanentes. O valor de $\sigma_{c,QP}$ pode resultar de parte do peso próprio e da força de protensão inicial ou da combinação de ações quase permanente considerada na sua totalidade (σ_c (P₀ + G + ψ_2 Q), consoante a fase de construção considerada, sendo positiva se de compressão;

e_p = excentricidade do cabo resultante em relação ao baricentro da seção do concreto.

3.6 MÉTODO SIMPLIFICADO ALTERNATIVO¹⁰

Este método simplificado alternativo é apresentado por Gilbert et al. e adaptado por Bastos (2019) conforme a NBR 6118:2014, considera que, uma seção de concreto, contendo armaduras passivas e ativas aderentes, a retração no concreto, que causa deformação na posição do centro de gravidade da armadura ativa, é determinada pela seguinte equação (19):

$$\Delta \varepsilon_{p,cs} = \frac{\varepsilon_{cs}}{1 + \bar{\alpha}_{ep,k} \,\rho_{\rho s} \left[1 + \frac{A_c \, e_p e_s}{I_c} \right]} \tag{19}$$

ε_{cs} = deformação por retração do concreto;

es = excentricidade das armaduras aderentes (passivas e ativas) relativamente ao CG da seção transversal;

 $\rho_{ps} = \frac{A_s + A_p}{A_c} =$ taxa relativa às armaduras aderentes (A_s + A_p); $\bar{\alpha} = -\frac{E_p}{A_c}$ reación modular sinstado com o idado do concreto condo

 $\bar{\alpha}_{ep,k} = \frac{E_p}{\bar{E}_{c,ef}}$ razão modular ajustada com a idade do concreto, sendo $\bar{E}_{c,ef}$ (t;to) o

módulo de elasticidade efetivo do concreto ajustado com a idade.

¹⁰ Adaptação feita por Bastos (2019) para a notação conforme NBR 6118:2014.

A perda de tensão na armadura ativa devido à retração do concreto é dada pela Equação (20):

$$\Delta \sigma_{p,cs} = \frac{\varepsilon_{cs} + E_p}{1 + \bar{\alpha}_{ep,k} \,\rho_{\rho s} \left[1 + \frac{A_c \,e_p \,e_s}{I_c}\right]} \tag{20}$$

A deformação do concreto, devido a fluência do concreto, depende da tensão aplicada ao nível do centro de gravidade da armadura de protensão e deve ser feito experimentalmente, porém, é um método conservador e aproximado para a estimativa das perdas por fluência onde a tensão do concreto ao nível do CG da armadura ativa permanece constante e igual a $\sigma_{c,p0g}$, então considera-se que, a deformação por fluência é dada por $\left[\frac{\sigma_{c,p0g}}{E_c}\varphi(t,t_0)\right]$, logo, a equação aproximada para a fluência do concreto se dá pela Equação (21):

$$\Delta\sigma_{p,cc} = \frac{E_p + \varphi(t,t_0) \frac{\sigma_{c,p0g}}{E_c}}{1 + \bar{\alpha}_{ep,k} \rho_{\rho s} \left[1 + \frac{A_c \, e_p \, e_s}{I_c}\right]} \tag{21}$$

A relaxação do aço depende da tensão que atura na armadura no tempo útil da estrutura, contudo, a retração e a fluência do concreto diminuem a tensão de protensão, devido à perda de volume da peça e a diminuição com o tempo da tensão, isto é, de maneira mais rápida ao ser comparado com a relaxação do aço, logo a relaxação do aço se dá pela equação (22):

$$\Delta \sigma_{p,r} = -\left(1 - \frac{|\Delta \sigma_{p,cs} + \Delta \sigma_{p,cc}|}{\sigma_{po}}\right) \varphi_p(t, t_0) \sigma_{po}$$
(22)

Sendo:

$$\sigma_{po} = \frac{P_0}{A_p} \tag{23}$$

$$\varphi_p(t,\sigma_{pi}) = \frac{-\Delta\sigma_{pr}}{\sigma_{pi}} \tag{24}$$

 $\varphi_p(t;\sigma_{pi})$ é o coeficiente de fluência do aço de protensão.

3.7 MÉTODO DE VASCONCELOS (1980)

O método Vasconcelos (1980) considera as perdas devido a retração e fluência do concreto e a relaxação do aço de modo iterativo. As variáveis que influem no cálculo são a umidade do ambiente, consistência do concreto, maturidade do concreto, considerando o dia de protensão, espessura fictícia da peça, tipo de cimento e o tempo. A perda por retração e fluência do concreto se dá pela Equação (25):

$$\Delta \sigma_{p,c,s,r} \cong \Delta \sigma_{p,c+s} = \frac{\varepsilon_{cs,\infty} E_p + n \,\varphi_{\infty} \sigma_{c,p0g}}{1 - n \frac{\sigma_{c,p0}}{\sigma_{p0}} \left(1 + \frac{\varphi_{\infty}}{2}\right)}$$
(25)

Onde:

 $\Delta \sigma_{p,c+s}$ são as perdas progressivas causadas pela retração e fluência do concreto.

Sendo:

$$n = \frac{E_p}{E_c} \tag{26}$$

As perdas progressivas, considerando a relaxação do aço, fluência e retração é dada pela Equação (27):

$$\Delta \sigma_{p,c,s,r} \cong \Delta \sigma_{p,c+s} = \frac{\varepsilon_{cs,\infty} E_p + n \,\varphi_{\infty} \sigma_{c,p0g} + \Delta \sigma_{pr}}{1 - n \frac{\sigma_{c,p0}}{\sigma_{p0}} (1 + \frac{\varphi_{\infty}}{2})}$$
(27)

Onde,

$$\Delta \sigma_{pr} = \psi_{\infty} \sigma_{pi} \tag{28}$$

4 METODOLOGIA

Foi utilizada a viga isostática de Duarte et al. (2015) para obtenção dos resultados como condição inicial, com o intuito de se obter dados necessários para fazer o estudo das perdas progressivas conforme os métodos:

-Método do processo simplificado da NBR 6118:2014;

-Método do processo aproximado da NBR 6118:2014;

-Método simplificado do Eurocode 2 adaptado por Bastos (2019);

-Método simplificado alternativo adaptado por Bastos (2019);

-Método de Vasconcelos (1980).

Duarte et al. (2015) calcularam uma viga de seção I com as dimensões conforme a Figura 23 e de vão conforme a Figura 24. A viga está submetida a um carregamento permanente de 8 kN/m e uma sobrecarga acidental de 20 kN/m. O concreto utilizado é de f_{ck} de 30 MPa, E_{ci} =27775 MPa e foi adotada uma classe de agressividade ambiental II.

Figura 23 – Seção da viga e suas dimensões

Fonte: Elaborada pelo autor (2021)

Fonte: Elaborada pelo autor (2021).

Tabela 3 – Propriedades geométricas

Ac	0,61	m²
Yi	0,66	m
Ys	0,59	m
lc	0,12	m ⁴
Wi	0,18	m ³
Ws	0,21	m ³

Fonte: Elaborada pelo autor adaptado de Duarte et al. (2015)

Sendo:

- Ac= Área da seção
- Ic= Momento de inércia da seção transversal
- Ys= Distância linha neutra até o bordo superior
- Yi= Distância linha neutra até o bordo inferior
- Wi= Módulo resistente até o bordo inferior
- W_s= Módulo resistente até o bordo Superior

Como base nos carregamentos informados, calcularam-se os momentos fletores máximos no meio do vão, obtendo os valores da Tabela 4.

Tabela 4 – Momento fletor máximo (meio do vão)

рр	1293 kN.m
sp	676 kN.m
sa	1690 kN.m

Fonte: Elaborada pelo autor adaptado de Duarte et al. (2015)

Sendo:

pp= Momento fletor devido ao peso próprio

sp= Momento fletor devido a carga permanente

sa= Momento fletor devido a carga acidental

Segundo Duarte et al. (2005), após obter os valores da Tabela 4, chegou-se que o número de cordoalhas foi de 35, então adotou-se 5 cabos 7Ø 12,5 mm, totalizando uma área de aço de protensão de 35 cm². Foi utilizado um aço CP 190 RB, com módulo de elasticidade do aço de E_a = 200 GPa e f_{ptk} =1900 MPa.

A Figura 25 é apresentada a posição dos cabos de protensão no meio vão, bem como na Figura 26, mostra as exentricidades dos cabos de protensão ao longo do viga.

Figura 25 - Posição dos cabos de protensão no meio da viga

Fonte: Elaborada pelo autor (2021)

Fonte: Elaborada pelo autor (2021)

A Tabela 5 contêm os valores das exentricidades dos 5 cabos de protensão separados por seção.

	S1(m)	S2(m)	S3(m)	S4(m)	S5(m)	S6(m)
C1	0,14	0,34	0,56	0,76	0,98	1,11
C2	0,34	0,52	0,70	0,87	1,06	1,11
C3	0,59	0,73	0,86	1,01	1,14	1,17
C4	0,84	0,92	1,02	1,10	1,17	1,17
C5	1,04	1,08	1,15	1,15	1,17	1,17

Tabela 5 – Excentricidade dos cabos em relação ao topo da viga

Fonte: Elaborada pelo autor.

Para o cálculo admitiu-se que os 5 cabos tornam-se um único cabo equivalente, a Figura 27 mostra a configuração da excentricidade do cabo equivalente ao longo da viga, bem como, a Tabela 6 está descrito o valore da excentricidade do cabo equivalente em relação ao cabo médio.

Figura 27 - Excentricidade do cabo equivalente

	S1(m)	S2(m)	S3(m)	S4(m)	S5(m)	S6(m)
C.E	0,59	0,72	0,86	0,98	1,10	1,15

Tabela 6 - Excentricidade do cabo equivalente em relação ao cabo médio

Fonte: Elaborada pelo autor

Sendo:

C.E = Cabo equivalente

Duarte et al. (2015) consideraram para o cálculo das perdas progressivas o Método simplificado da NBR 6118:2014, uma umidade relativa do ar de 70, um abatimento do concreto de 10-15 cm e utilizando a tabela indicada pela ABNT NBR 6118:2014 para resultados com maior precisão do coeficiente de fluência do concreto e deformação específica de retração do concreto (Tabela A.1, ABNT NBR 6118: 2014), chegou-se a uma espessura fictícia de 40 cm. A Figura 28 mostra o perímetro da peça em contato com o ar utilizado para o cálculo da espessura fictícia.

Figura 28 - Perímetro da peça em contato com o ar

Fonte: Elaborada pelo autor (2021)

A Tabela 7 mostra os valores obtidos por Duarte et al. (2015) e utilizados para o cálculo das perdas progressivas.

$\epsilon_{cs}(t,t_0)$	-0,0481%
Ε _ρ	2000000 MPa
αρ	6,52
φ(t,t ₀)	3,21
ρρ	0,574%
X(t,t ₀)	0,065
Хр	1,065
Xc	2,605

Tabela 7 – Valores calculados por Duarte et al. (2005)

Fonte: Elaborada pelo autor

Logo, os valores obtidos das tensões após as perdas imediatas e a perdas progressivas bem como, a perda total, estão na Tabela 8, separados por seção.

	Seção 1 (MPa)	Seção 2 (MPa)	Seção 3 (MPa)	Seção 4 (MPa)	Seção 5 (MPa)	Seção 6 (MPa)
Após perdas imediatas	1265	1272	1278	1282	1285	1297
Perda por fluência	152	150	151	161	190	212
Perda por retração	-96	-96	-96	-96	-96	-96
Perda por Relaxação	88	88	88	88	88	88
Fluên. +retr. +Relax.	-336	-334	-335	-335	-374	-396
Total perda progressiva	-291	-288	-282	-281	-292	-303
Perda imediata + Perda progressiva	974	984	996	1001	993	994

Fonte: Elaborada pelo autor

Este trabalho foi separado em duas vertentes de cálculos, a primeira considerando diferentes valores de coeficiente de fluência e deformação específica de retração, fazendo-se a interpolação linear da Tabela 1, fixando o valor de tensão no aço de 1394 MPa e um Ψ_{1000} = 6,5% e a segunda vertente considerando apenas variações de tensões no aço e coeficiente de relaxação do aço (Ψ_{1000}) contido na Tabela 2 e fixando um coeficiente de fluência do concreto [ϕ (t,t0)] de 3,21 e uma deformação especifica de retração (ϵ_{cs}) de 0,48.

Considerando alguns valores obtidos por Duarte et al. (2015), recalculou-se novos valores de perdas progressivas a partir de outras variáveis, como a umidade relativa do ar média de 40, 55, 70, 75 e 90 e tempo de início de protensão para 5, 7, 30 e 60 dias. Foi utilizada a Equação (1) para obter a espessura fictícia de 27,85 cm, esta fixada para obter os novos coeficiente de fluência do concreto e deformação especifica do concreto.

Obtidos novos valores de coeficientes de fluência do concreto e deformação específica de retração do concreto e com dados de Duarte et al. (2015), utilizaram-se as metodologias de cálculos de perdas progressivas, assim novos valores de perdas progressivas foram encotradas para cada uma dessas variáveis.

Para a segunda vertente de cálculo foram consideradas novas tensões de protensão pós-perdas iniciais e novos coeficientes de relaxação do aço descritos na Tabela 2. A partir desses novos coerficientes de relaxação recalculou-se as perdas progressivas considerando os dados já existentes de Duarte et al. (2015), a fim de se obter novas valores de perdas progressivas.

As equações utilizadas para os diferentes métodos de cálculo foram apresentados nos itens 3.3, 3.4, 3.5, 3.6 e 3.7.

Os cálculos foram feitos em tabelas de Excel®, pelo autor, com o propósito de calcular as perdas progressivas para as diferentes metodologias.

Devido ao grande volume de tabelas obtidas, essas planilhas foram colocadas no Anexo A, Anexo B e Anexo C deste trabalho, sendo apresentado no Capítulo 5 apenas os resultados dessas planilhas.

5 RESULTADOS

Este capítulo está dividido em dois itens, o primeiro de acordo com as variações do coeficiente de fluência e deformação especifica do concreto, fixando o valor de coeficiente de relaxação do aço e também a tensão no aço de protensão. O segundo item, faz-se variações para o coeficiente de relaxação do aço e novas tensões no aço de protensão, fixando os valores de coeficientes de fluência e deformação especifica do concreto para obter novos resultados das perdas progressivas.

5.1 PERDAS PROGRESSIVAS DEVIDO A RETRAÇÃO E FLUÊNCIA DO CONCRETO

Como explicado anteriormente, foram consideradas variações de umidade média relativa do ar, tempo de início de protensão para uma espessura fictícia de 27,85 cm e utilizando a Tabela 1 obteve-se novos valores de coeficiente de fluência e deformação específica de retração, os novos valores encontra-se todos no Anexo A deste trabalho. Assim, calculou-se novos resultados de perdas progressivas de protensão considerando as diferentes metodologias.

Os valores obtidos das perdas progressivas, bem como todas as tabelas podem ser encontrados, de forma mais detalhado, no Anexo B deste trabalho.

A Figura 29 e a Tabela 9 representam os valores das perdas progressivas, considerando uma umidade relativa do ar de 40.

Aplicando esses novos valores para cada metodologia, encontrou-se os resultados das perdas progressivas que está descrita na Tabela 10 e os cálculos, encontra-se no anexo B, nas Tabelas B1, B2, B3 e B4. Para o tempo de início de protensão ao 5º dia, a média das perdas progressivas ficam em 23,5% e um desvio padrão de 2,5%, bem como, para o início de protensão aos 60 dias em que a média das perdas progressivas foi de 17,9% e um desvio padrão de 1,7.

Dias	5 Dias	7 Dias	30 Dias	60 Dias
Método simplificado NBR 6118:2014 (%)	24,2	22,9	20,5	18,8
Método aproximado NBR 6118:2014(%)	26,4	24,2	21,3	19,3
Eurocode 2 simplificado adaptado por Bastos (2019) (%)	19,7	19,9	19,5	19,2
Método alternativo adaptado por Bastos (2019)(%)	24,3	22,3	18,8	16,3
Método do Vasconcelos (1980) (%)	23	21,2	18	15,8
Média (%)	23,5	22,1	19,6	17,9
Desvio padrão(%)	2,5	1,6	1,3	1,7

Tabela 9 – Resultados das perdas progressivas para uma umidade de 40.

Fonte: elaborada pelo autor

Fonte: elaborado pelo autor

Observa-se na Figura 29 que há uma redução nos resultados das perdas progressivas ao se fazer a protensão no 5º dia comparado aos 60 dias, esse fato está relacionado a retração e fluência do concreto em que nas idades iniciais esses valores são mais expressivos. Em todos os métodos houve uma redução das perdas progressivas em função dos dias de inicio de protensão, com excessão do método simplificado do Eurocode 2 adaptado por Bastos (2019), em que as perdas progressivas se mantiveram constantes para todos os tempos de início de protensão,

esse fato está relacionado a metodologia de cálculo, que considera o valor da relaxação pura do aço, ou seja, sob comprimento constante.

A Tabela 10 apresenta os valores das perdas progressivas, considerando uma umidade relativa do ar de 55. Os cálculos encontram-se no Anexo B, nas Tabelas B5, B6, B7 e B8. Ao aumentar a umidade relativa do ar de 40 para 55, os valores das perdas progressivas, reduziram para a média de 21,2% no 5º dia e um desvio padrão de 1,6, reduzindo consideravelmente em compados aos valores da Tabela 9. Tabela 10 – Resultados das perdas progressivas para uma umidade de 55.

Dias	5 Dias	7 Dias	30 Dias	60 Dias
Método simplificado NBR 6118:2014 (%)	22,0	21,8	18,9	17,5
Método aproximado NBR 6118:2014(%)	23,4	23,1	19,2	17,5
Eurocode 2 simplificado adaptado por Bastos (2019) (%)	19,5	19,5	19,3	19,1
Método alternativo adaptado por Bastos (2019)(%)	21,1	20,8	16,5	14,3
Método do Vasconcelos (1980) (%)	20	19,7	15,9	13,9
Média (%)	21,2	21,0	18,0	16,5
Desvio padrão(%)	1,6	1,5	1,6	2,3

Fonte: elaborada pelo autor

A Figura 30 mostra esses valores das perdas progressivas, observa-se novamente que, o método simplificado do Eurocode 2 adaptado por Basto (2019), manteve-se constante para os valores das perdas progressiva, compada as outras metodologias. Esse método considera apenas uma única etapa de cálculo assim como, o método simplificado da NBR 6118:2014, porém a difença está que no método simplificado da NBR 6118: 2014, considera-se o produto da tensão do aço pelo coeficiente de fluência do aço, já no método simplificado do Eurocode 2 adaptado por Bastos (2019), considera a relaxação pura do aço, além de que fixa um coeficiente de redução de 0,8. O método simplificado alternativo adaptado por Bastos (2019), assim como o método de Vasconcelos (1980) tem uma convergência para menores valores de perdas progressivas em comparada aos outros métodos de 5 aos 60 dias.

No método simplificado alternativo adaptado por Bastos (2019), a perda de tensão do aço de protensão com o decorrer do tempo acontece de maneira mais rápida, do que considerar a relaxação do aço, ou seja, a relaxação do aço dá-se pelo alivio de tensão da armadura, devido a retração e fluência do concreto. O método de Vascocelos (1980) também considera o valor da relaxação pura do aço sob comprimento constante, assim como no método simplificado do Eurocode 2 adaptado

por Bastos (2019), a diferença está que no primeiro método não considera o fator de redução, logo o valor da perda por relaxação é considerada integralmente.

Além de que o método de Vasconcelos (1980) é iterativo o que implica em uma convergência para valores menores das perdas progressivas, além de obter-se resultados mais onerosos em comparado as outras metodologias.

Os resultados mostram que os métodos simplificado alternativo adaptado por Bastos (2019) e o método de Vasconcelos (1980), são mais sensíveis para os valores obtidos das perdas progressivas em função do tempo de inicio de protensão e também para as variáveis de retração e fluência do concreto e relaxação do aço.

Fonte: elaborado pelo autor

A Tabela 11 apresenta os valores das perdas progressivas considerando uma umidade relativa do ar de 70. Aplicando novos valores (Anexo A, Tabela A3) de deformação específica de retração e coeficiente de fluência do concreto, para cada metodologia, encontrou-se os valores das perdas progressivas.

Observa-se que, ao aumentar a umidade relativa do ar em 20% em comparado a Tabela 9, às perdas progressivas reduziram para o valor em média de 19,7% para

todos os métodos cálculo de perdas progressivas, além de que possui um desvio padrão de 0,5%, no 5º dia para início de protensão, logo não há dispersão dos resultados das perdas progressivas, assim como, para os 7 dias de início de protensão em que a média ficou de 20,3% de perdas progressivas e um desvio padrão de 0,8%, ou seja, bons resultados obidos pelas diferentes metodologias de perdas progressivas para essa umidade.

Tabela 1 – Resultados das perdas progressivas para uma umidade de 70.

Dias	5 Dias	7 Dias	30 Dias	60 Dias
Método simplificado NBR 6118:2014 (%)	20	20,7	20	18,2
Método aproximado NBR 6118:2014(%)	19,5	20,8	17,1	16,3
Eurocode 2 simplificado adaptado por Bastos (2019) (%)	20,4	20	20,7	20,8
Método alternativo adaptado por Bastos (2019)(%)	19,4	19	16,6	15,7
Método do Vasconcelos (1980) (%)	19,3	20,9	17,4	16,8
Média (%)	19,7	20,3	18,4	17,6
Desvio padrão(%)	0,5	0,8	1,9	2,0

Fonte: Elaborada pelo autor

Figura 31 – Perdas progressivas de protensão para uma umidade de 70.

A Figura 31 mostra que, ao se aumentar a umidade relativa do ar para 70, o método do Eurocode 2 simplificado adaptado por Bastos (2019) e o método

Fonte: Elaborado pelo autor

simplificado da NBR 6118:2014 obtiveram valores das perdas progressivas próximos, devido a redução da fluência do concreto, em que ambas metodologias foram iguais.

De fato, os valores mostram novamente que nas idades iniciais de protensão os valores de fluência do concreto são mais expressivos, porém, ao passar o tempo, a fluência do concreto e retração se reduzem, diminuindo assim os valores das perdas progressivas.

A Tabela 12 apresenta os valores das perdas progressivas considerando uma umidade relativa do ar de 75 em que aplicando esse novos valores (Anexo A, Tabela A4) de deformação específica de retração e coeficiente de fluência para cada metodologia, e os cálculos encontra-se no Anexo B, nas Tabelas B13, B14, B15 e B16.

Observa-se que para os 60 dias de inicio de protensão, obteve-se um o desvio padrão elevado de 2,7%, de fato, isso acontece pois o valor da perda progressiva do Eurocode 2 simplificado adaptado por Bastos (2019) foi de 18,7%.

Dias	5 Dias	7 Dias	30 Dias	60 Dias
Método simplificado NBR 6118:2014 (%)	17,9	17,2	16,1	15,2
Método aproximado NBR 6118:2014(%)	18,6	17,4	16,2	14,9
Eurocode 2 simplificado adaptado por Bastos (2019) (%)	18,7	18,9	18,7	18,7
Método alternativo adaptado por Bastos (2019)(%)	16	14,6	12,9	11,4
Método do Vasconcelos (1980) (%)	16,6	15,6	14,3	13,1
Média (%)	17,6	16,7	15,6	14,7
Desvio padrão (%)	1,2	1,7	2,2	2,7

Tabela 12 – Resultados das perdas progressivas para uma umidade de 75.

Fonte: Elaborada pelo autor

Para uma umidade relativa de 75 os valores das perdas progressivas reduziram consideravelmente na média de 17,6%, assim como, um desvio padrão de 1,2% ao 5º dia de início de protensão. Esses resultados mostram uma redução dos valores das perdas progressivas no método simplificado alternativo adaptado por Bastos (2019) e método de Vasconcelos (1980).

Observa-se na Figura 32 que no método simplificado do Eurocode 2 adaptado por Bastos (2019), manteve-se constante para os valores das perdas progressivas, como explicado anteriormente. No método de Vasconcelos (1980) e no método simplificado Alternativo adaptado por Bastos (2019), os valores das perdas progressivas reduziram próximos de 13,1% e 11,4%, para o início de protensão aos 60 dias, novamente, há uma convergência desses valores das perdas progressivas para valores menores, devido a retração e fluência do concreto.

A Tabela 13 apresenta os valores das perdas progressivas considerando uma umidade média relativa do ar de 90. Em geral, os resultados obtido para essa umidade relativa do ar, mostraram-se com o valor do desvio padrão alto para todos os métodos, como visto na Tabela 13, que há uma grande dispersão dos resultados das perdas progressivas para os métodos de cálculo.

Os métodos simplificado alternativo adaptado por Bastos (2019) e o metodos de Vasconcelos, mostraram-se novamente sensíveis para umidade relativa do ar alta.

Dias	5 Dias	7 Dias	30 Dias	60 Dias
Método simplificado NBR 6118:2014 (%)	13,8	13,7	12,6	11,21
Método aproximado NBR 6118:2014(%)	15,4	15,3	13,7	11,68
Eurocode 2 simplificado adaptado por Bastos (2019) (%)	17	17	17	17,3
Método alternativo adaptado por Bastos (2019)(%)	9,4	9,3	7,73	5,8
Método do Vasconcelos (1980) (%)	9,5	9,4	8,03	6,4
Média (%)	13,0	12,9	11,8	10,5
Desvio padrão(%)	3,4	3,4	3,9	4,7

Tabela 13 – Resultados das perdas progressivas para uma umidade de 90.

Fonte: elaborada pelo autor

Fonte: elaborado pelo autor

Observa-se na Figura 33 que as perdas progressivas estão na média de 13% para o início de protensão aos 5 dias e um desvio padrão de 3,4%, assim como, aos 60 dias de início de protensão o valor em média das metodologia foi de 10,5% de perdas progressivas e um desvio padrão de 4,7%, de fato, essa redução é devida a diminuição da fluência e a retração do concreto, o que implica em uma redução do volume da peça de concreto, gerando assim, um alivio de tensão no aço de protensão.

Essa dispersão dos valores das perdas progressivas, aconteceu devido ao método simplificado do Eurocode 2 adaptado por Bastos (2019), em que o valor do coeficiente de relaxação do aço está fixa em 6,5% e para uma tensão no aço elevado, o que implica em um aumento da perda progressiva.

5.2 PERDAS PROGRESSIVAS DEVIDO A RELAXAÇÃO DO AÇO

Para os cálculos, utilizou-se a Tabela 2 (Valores de Ψ_{1000} , em porcentagem) para os aços de baixa relaxação (RB) e relaxação normal (RN) com variações de tensões do aço e fixando-se um f_{ptk} de 1900 MPa e um coeficiente de fluência do concreto de 6,52 e deformação especifica de retração de 0,481%.

Os valores obtidos de todas as tabelas podem ser encontrados, de forma mais detalhada, no Anexo C deste trabalho.

A Tabela 14 apresenta os valores das perdas progressivas considerando uma tensão 0,5f_{ptk}, nessas condições de tensão a NBR 6118: 2014 indica que não há perdas devida à relaxação do aço, tanto para aços RB quanto RN. Nessa circunstância, a tensão na armadura (σ_{po}) é de 950 MPa. Os cálculos encontra-se no Anexo C, na Tabela C1 e C2.

Para uma tensão de 950 MPa, a média das perdas progressivas para aços do tipo RB foi de 21,6% e um desvio padrão de 7,7% e para aços do tipo RN a média de 22,3% e um desvio padrão de 8%. Essa dispersão dos valores das perdas progressivas, acontece devido o método simplificado do Eurocode 2 adaptado por Bastos (2019), em que como não há perda por relaxação do aço para uma tensão de 0,5 da resistência mínima à tração, logo apenas estarão atuando a fluência e retração na peça de concreto o que reduzirá as perdas perdas progressivas.

0,5fptk	RB	RN
Método simplificado NBR 6118:2014 (%)	22,6	21,7
Método aproximado NBR 6118:2014(%)	20,8	27,6
Eurocode 2 simplificado adaptado por Bastos (2019)(%)	9,2	8,9
Método alternativo adaptado por Bastos (2019)(%)	25,2	24,1
Método do Vasconcelos (1980)(%)	29,9	28,6
Média(%)	21,6	22,3
Desvio padrão(%)	7,7	8,0

Tabela 24 - Resultados das perdas progressivas para uma tensão de 0,5fptk

Fonte: elaborada pelo autor

Fonte: elaborado pelo autor

Observa-se na Figura 34 que para o método aproximado da NBR 6118:2014 os valores obtidos das perdas progressivas para todas as variações feitas se mantiveram constante de 20,8% para aços tipo relaxação baixa e 27,6% relaxação normal, de fato isso acontece, pois, os valores do coeficiente de fluência e a tensão no concreto

adjacente ao cabo resultante provocada pela protensão e pela carga permanente não estão sofrendo variações.

O método simplificado alternativo adaptado por Bastos (2019), depende exclusivamente da retração e fluência do concreto, logo não sofreu grande variações nos valores das perdas progressivas, devida à relaxação do aço para aços tipo RB e RN.

A Tabela 15 apresenta os valores das perdas progressivas, considerando uma tensão 0,6f_{ptk}, e utilizando os valores de Ψ_{1000} =1,3% para aços RB e Ψ_{1000} = 3,5% para aços RN, conforme a Tabela 2. Nessa condição, a tensão na armadura (σ_{po}) é de 1140 MPa. Os cálculos,encontram-se no Anexo C, na Tabela C3 e C4.

Tabela 15 – Resultados das perdas progressivas para uma tensão de 0,6 f_{ptk} e Ψ_{1000} =1,3 RB e Ψ_{1000} = 3,5 RN

0,6fptk	RB	RN
Método simplificado NBR 6118:2014 (%)	21,5	26,0
Método aproximado NBR 6118:2014(%)	20,8	27,6
Eurocode 2 simplificado adaptado por Bastos (2019)(%)	16,1	30,3
Método alternativo adaptado por Bastos (2019)(%)	22,4	24,8
Método do Vasconcelos (1980)(%)	25,2	25,9
Média(%)	21,3	27,0
Desvio padrão(%)	3,3	2,2

Fonte: elaborada pelo autor

Figura 35 - Perdas progressivas devido a uma tensão de 0,6f_{ptk} para aços RB e RN.

Fonte: elaborado pelo autor

A Figura 35 mostra que para o método simplificado da NBR 6118:2014 e o método aproximado da NBR 6118:2014, não obteve-se grandes variações de perdas progressivas para aços do tipo RB.

O método do Eurocode 2 simplificado adaptado por Bastos (2019), para aços de relaxação baixa, vê-se um aumento nos valores das perdas progressivas de 16,1% e para aços de relaxação normal para 30,3% de perda progressiva, reforça, mais uma vez, a propriedade discutida anteriormente sobre o método, com o aumento da tensão no aço de protensão, o valor da relaxação pura também aumenta, porém, o valor do coeficiente de relaxação é reduzido, logo a tendência é obter perda progressiva maior devido a relaxação do aço.

O método simplificado alternativo adaptado por Bastos (2019), manteve-se com poucas variações nos valores das perdas progressivas, isso se justifica por estar relacionado diretamente à retração e fluência do concreto, além de que, ao aumentar a tensão aplicada na peça de concreto, essa é comprimida e se deforma, o que leva a um encurtanto da peça, logo a armadura de protensão também se encurta gerando um alivio de tensões do aço de protensão. A Tabela 16 apresenta os valores das perdas progressivas, considerando uma tensão 0,7f_{ptk}, e utilizando os valores de Ψ_{1000} =2,5 para aços RB e Ψ_{1000} = 7,0 para aços RN, conforme a Tabela 2. Nessa condição, a tensão na armadura (σ_{po}) é de 1330 MPa.

0,7fptk	RB	RN
Método simplificado NBR 6118:2014 (%)	21,4	17,6
Método aproximado NBR 6118:2014(%)	20,8	27,6
Eurocode 2 simplificado adaptado por Bastos (2019)(%)	20,8	10,5
Método alternativo adaptado por Bastos (2019)(%)	20,0	18,5
Método do Vasconcelos (1980)(%)	21,9	21,5
Média(%)	21,0	19,2
Desvio padrão(%)	0,7	6,2

Tabela 36 - Resultados das perdas progressivas para uma tensão de 0,7 f_{ptk} e Ψ_{1000} =2,5% , ~RB e Ψ_{1000} = 7,0% RN

Fonte: elaborada pelo autor

Para a tensão aplicada no aço de protensão de 1330 MPa, aços do tipo RB, a média obtida das perdas progressivas foi de 21% e um desvio padrão de 0,7%, e mostra que os valores das perdas progressivas foram próximos, ou seja, não uma uma dispersão dos resultados. Para aços do tipo RN, a média das perdas progressivas foi de 19,2% e um desvio padrão de 6,2, e mostra que há uma grande dispersão dos resultados, de fato, isso acontece devida a perda progressiva obtida pelo método do simplificado do Eurocode 2.

Figura 36 - Perdas progressivas devido a uma tensão de 0,7f_{ptk} para aços RN e RB.

Fonte: elaborado pelo autor

A Figura 36 mostra que para todos os métodos de cálculo das perdas progressivas, os valores ficam na média de 21%, assim como o desvio padrão de 0,7%, mostrando que não há uma dispersão entre os resultados das perdas progressivas para uma tensão de 1330 MPa e um coeficiente de relaxaão de 2,5%.

Porém, para o aços tipo relaxação normal, os valores tiveram uma dispersão dos resultados de 6,2%, devido o método aproximado da NBR 6118: 2014 possuir uma perda progressiva alta de 27,6%, como explicado anteriormente, o valor do coeficiente de fluência do concreto é constante.

A Tabela 17 apresenta os valores das perdas progressivas, considerando uma tensão 0,8f_{ptk}, e utilizando os valores de Ψ_{1000} =3,5% para aços RB e Ψ_{1000} = 12,0% para aços RN, conforme a Tabela 2.

Tabela 17 – Resultados das perdas progressivas para uma tensão de 0,8 f_{ptk} e Ψ_{1000} =3,5 $\,$ RB e Ψ_{1000} = 12,0 RN

0,8fptk	RB	RN
Método simplificado NBR 6118:2014 (%)	21,3	16,6
Método aproximado NBR 6118:2014(%)	20,8	27,6
Eurocode 2 simplificado adaptado por Bastos (2019)(%)	22,7	11,6
Método alternativo adaptado por Bastos (2019)(%)	17,7	16,4
Método do Vasconcelos (1980)(%)	19,4	18,9
Média(%)	20,4	18,3
Desvio padrão(%)	1,9	5,9

Fonte: Elaborada pelo autor

Figura 37 - Perdas progressivas devido a uma tensão de 0,8fptk para aços de RB e RN.

A Figura 37 mostra os valores das perdas progressivas em que, para os métodos simplificado e aproximado da NBR 6118:2014 e aço tipo RB, não sofreram variações nos resultados das perdas progressivas, ou seja, ficaram muito próximos.

O método simplificado da NBR 6118:2014, como visto em todas as tabelas, ao ser transferido para o concreto o valor inicial da força de protensão, ela dependente exclusivamente do coeficiente de fluência do aço e a tensão inicial utilizada, ou seja, conforme a tensão aplicada no aço é maior, maior será a perda progressiva porém o coeficiente de fluência do aço depende do coeficiente de relaxação e este sendo maior, haverá uma redução na parcela de relaxação.

No método aproximado da NBR 6118:2014 os valores das perdas progressivas não sofreram variações novamente. No método do Eurocode 2 simplificado adaptado por Bastos (2019), os valores das perdas progressivas reduzidos para aços do tipo relaxação normal, de forma que, o valor do coeficiente de relaxação do aço é maior para aços do tipo RN, logo o valor da perda por relaxação pura do aço é menor.

No método Simplificado alternativo adaptado por Bastos (2019), como a tensão no cabo de protensão é maior, há um encurtamento da peça de concreto devida a

Fonte: elaborado pelo autor

compressão do cabo de protensão na peça, logo reduz-se as perdas progressivas pelo alivio de tensão na armadura.

E, o método de Vasconcelos (1980), os valores das perdas progressivas ficaram em torno de 19%, isso acontece pelo fato de que o método não considera o coeficiente de relaxação do aço, logo não há variações para essa metodologia nos resultados obtidos das perdas progressivas.

6 CONSIDERAÇÕES FINAIS

6.1 CONCLUSÃO

Conforme os objetivos propostos, foram calculadas as perdas progressivas a partir de uma viga isostática, fazendo diversas variações de umidade relativa média do ar, tempo de inicio de protensão, variação de tensão e coeficiente de relaxação do aço.

As perdas progressivas foram calculadas por diferentes metodologias, no geral, observa-se que, independentemente do método de cálculo utilizado, os valores das perdas progressivas tiveram um aumento devido a fluência e retração do concreto nas idades iniciais de protensão. Porém, o método aproximado da NBR 6118:2014 é mais conservador, se mantendo sempre constante nas perdas progressivas, comparado aos outros métodos. Já o método do Eurocode 2 simplificado adaptado por Bastos (2019) se manteve próximos aos valores das perdas progressivas para diferentes tempos de início de protensão, pois, mesmo diminuindo a fluência e a retração do concreto, ele depende da perda de tensão por relaxação pura do aço e, na fórmula de cálculo da perda progressiva, fixa o valor um coeficiente de redução de 0,8 da perda devido a relaxação do aço, logo, não varia muito os valores das perdas progressivas. Porém, o método de Vasconcelos (1980) também depende da perda de tensão por relaxação pura do aço, mas o método considera 100% da relaxação e isso implica na redução dos valores das perdas em conjunto com as perdas por retração e fluência do concreto, além de que o método é iterativo e mostrou-se nos resultados a tendência de convergir rapidamente para menor valor de perda progressiva em função de tempo de início de protensão acima de 30 dias e comparado aos outros métodos não iterativos os valores obtidos são bem onerosos.

Já no método simplificado alternativo adaptado por Bastos (2019), depende exclusivamente da retração e da fluência do concreto, logo se diminui ambos valores, isso implica na redução rápida das perdas progressivas. Já o Método simplificado da NBR 6118:2014 a lógica é parecida com o Eurocode 2 simplificado adaptado por Bastos (2019), ambos possuem uma única operação de cálculo, no entanto, ele só se diferencia porquê não considera a relaxação pura do aço e sim, o coeficiente de fluência do aço e a força máxima aplicada à armadura de protensão pelo equipamento de tração.

Para os cálculos que foram modificado as tensões e o coeficiente de relaxação do aço, pôde-se observar que, no método do Eurocode 2 simplificado adaptado por Bastos (2019), os valores das perdas progressivas são reduzidas de forma que, quanto maior for o coeficiente de relaxação do aço, menor será o valor da perda progressiva. Para o método aproximado da NBR 6118:2014, os valores para aço de relaxação baixa mantiveram valores constantes de 20,8% de perdas progressivas e para aços de relaxação normal 27,6% de perdas progressivas, ou seja, novamente se mostra que o método é conservador e não considera variações como as outras metodologias de cálculos para perdas progressivas e também quanto maior a tensão de compressão na peça maior será o valor da perda progressiva. Já o método simplificado da NBR 6118:2014, por depender exclusivamente da força aplicada pelo aparelho de tração e o valor do coeficiente de fluência do aço, quanto maior for o valor do coeficiente de relaxação do aço menor é o valor obtido pelo método.

O método simplificado alternativo adaptado por Bastos (2019), como depende da retração e também da fluência do concreto, não houve grandes variações das perdas progressivas, mas ao aumentar os valores das tensões, reduziram-se as perdas progressivas devido à redução de volume da peça de concreto, logo gera um alivio de tensão no aço de protensão. O método de Vasconcelos (1980) não obtevese grande variações nas perdas progressivas para aços do tipo RN e RB pois o método não considera o coeficiente de relaxação.

Conclui-se que o trabalho cumpriu com os objetivos propostos, mostrando que as metodologias de cálculos para as perdas progressivas dependem exclusivamente das variações utilizadas e que, a relaxação do aço,a fluência e a retração do concreto são fatores importantes para os cálculos, independentemente do tipo de metodologia utilizada.

6.2 SUGESTÕES PARA TRABALHOS FUTUROS

Sugere-se as seguintes atividades para dar continuidade ou melhorar a acurácia dos valores encontrados neste trabalho:

a) Existem outras metodologias de cálculos para perda progressiva como a norma
 Americana ACI e o Método dos prismas equivalentes, calcular e comparar esses
 valores.

b) Considerar novos valores para o módulo de elasticidade do concreto e também do aço ou alterar novas configurações de vigas e calcular as perdas progressivas entre várias metodologias.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 6118 – Projeto de estruturas de concreto – procedimento. Rio de Janeiro, 2014.

_____ NBR 7482 – Fios de aço de estruturas de concreto protendido – especificação. Rio de Janeiro, 2020.

_____. NBR 7483 – Cordoalhas de aço para concreto protendido – especificação. Rio de Janeiro, 2020.

_____. NBR 7484 – Barras, cordoalhas e fios de aço destinados a armaduras de protensão – método de ensaio de relaxação isotérmica. Rio de Janeiro, 2020.

DUARTE, E. P. et al. Projeto e cálculo de uma viga isostática de concreto protendido. **IBRACON CONCRETO & CONSTRUÇÕES**, São Paulo-SP, 79. ed., p. (92 a 101), ABR-JUN, 2015.

DUARTE, E. P. et al. Projeto e cálculo de uma viga isostática de concreto protendido – Parte II. **IBRACON CONCRETO & CONSTRUÇÕES**, São Paulo-SP, 80. ed., p. (143 a 162), OUT-DEZ, 2015.

DOLAN, C. W; HAMILTON, R.H (TREY). **Prestressed concrete:** Building, Design, and costruction. Suiça:Springer, 2019. p. 1-3.

NAAMAM, E. A. **Prestressed concrete analysis and design**. 2. ed. Michigan: TECHNOPRESS 3000, 2004.

VERÍSSIMO, G. S. CÉSAR JR., K. M. L. **Concreto protendido:** fundamentos básicos. Notas de aula, 4. ed. Universidade Federal de Viçosa, Departamento de Engenharia Civil. 1998. Disponível em:

http://wwwp.feb.unesp.br/lutt/Concreto%20Protendido/CP-vol1.pdf>. Acesso em: 20 out. 2020.

BASTOS, P. S. S. **Concreto protendido**. Notas de aula. Universidade Estadual Paulista, Departamento de Engenharia Civil, 2019. Disponível em: < https://wwwp.feb.unesp.br/pbastos/Protendido/Ap.%20Protendido.pdf>. Acesso em: 15 out. 2020.

CARVALHO, R.C. **Estruturas de Concreto Protendido: cálculo e detalhamento**. São Paulo: Ed. Pini. 2012.

SCHMID, M. T. Perdas da Força de Protensão. Rudloff industrial Ltda. São Paulo-SP, 2 ed., REV. 01, 1998.

VASCONCELOS, A. C. Manual Prático para a correta utilização dos Aços no concreto Protendido em Obediência às Normas Atualizadas. Livro Técnico e científico Editora S.A. São Paulo, 1980.
HANAI, J. B. **Fundamentos do concreto protendido**. Escola de Engenharia de São Carlos. São Carlos, 2005. Disponivel em: <http://www.set.eesc.usp.br/mdidatico/protendido/arquivos/cp_ebook_2005.pdf> Acesso em: 11 de nov.2020.

GILBERT, R.I. et al. **Design of prestressed concrete to Eurocode** 2. New York, Ed. CRC Press, 2a ed., 2017, p.183.

ANEXO

ANEXO A - Novos valores de deformação específica para retração e coeficientes de fluência do concreto.

Umidade de 40%							
tempo (dias)	ε _{cs} (t∞,t₀)	φ (t∞,t₀)					
5	0,518	4,44					
7	0,512	3,94					
30	0,441	3,32					
60	0,397	2,86					

Tabela 1A- Coeficientes de fluência e deformação específica para umidade relativa do ar de 40%

Tabela 2A- Coeficientes de fluência e deformação específica para umidade relativa do ar de 55%

Umidade de 55%							
Tempo (dias)	ε _{cs} (t∞,t₀)	φ (t∞,t₀)					
5	0,470	3,78					
7	0,466	3,71					
30	0,410	2,84					
60	0,367	2,46					

Tabela 3A- Coeficientes de fluência e deformação específica para umidade relativa do ar de 70%

Umidade de 70%							
Tempo (dias)	ε _{cs} (t∞,t₀)	φ (t∞,t₀)					
5	0,483	2,90					
7	0,481	3,21					
30	0,450	2,36					
60	0,364	2,18					

Umidade de 75%							
Tempo (dias)	ε _{cs} (t∞,t₀)	φ (t∞,t₀)					
5	0,352	2,72					
7	0,350	2,43					
30	0,326	2,16					
60	0,312	1,88					

Tabela 4A- Coeficientes de fluência e deformação específica para umidade relativa do ar de 75%

Tabela 5A- Coeficientes de fluência e deformação específica para umidade relativa do ar de 90%

Umidade de 90%							
Tempo (dias)	ε _{cs} (t∞,t₀)	φ (t∞,t₀)					
5	0,174	1,98					
7	0,173	1,95					
30	0,166	1,58					
60	0,166	1,10					

ANEXO B - Tabelas de cálculos para cada metodologia de perda progressivas, considerando umidade relativa do ar e tempo de início de protensão.

Dados							Perdas
F _{ck}	30	Мра					Progressivas
Ac	0,61	m²		6100	Cm ²		(%)
I _c	0,12	m^4					
As	20						
Ap	35	Cm ²					
f _{ptk}	190						
$\rho_{\rm p}$	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
		Me	étodo Simplificad	do da NBR 6118	:2014		
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t₀)	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,0005182	-0,0005182	-0,0005182	-0,0005182	-0,0005182	-0,0005182	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	4,443	4,443	4,443	4,443	4,443	4,443	
Xp	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	3,2215	3,2215	3,2215	3,2215	3,2215	3,2215	
η	1	1,085908333	1,370575	1,773175	2,322175	2,594133333	
ρ _ρ	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	
$\Delta \sigma_{\rm pr}(t,t_0)$	-341,252557	-335,8757731	-327,9218453	-325,6735439	-340,2382542	-353,8020956	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	24,48009734	24,09438832	23,52380526	23,36252108	24,40733531	25,38035119	24,2
· · ·		Me	étodo Aproximad	do da NBR 6118	:2014		
			aço tipo Re	elaxação Baixa			
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	4,443	4,443	4,443	4,443	4,443	4,443	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{pr}(t,t_0)$	25,04277945	24,87082254	24,97399669	25,7478028	28,18959099	29,96074721	26,5
		Método simpli	ficado do Euroco	ode 2 adaptado	por Bastos (201	9)	
seção	1	2	3	4	5	6	
ε _{cs}	0,0005182	0,0005182	0,0005182	0,0005182	0,0005182	0,0005182	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	4,443	4,443	4,443	4,443	4,443	4,443	
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	
Ap	35	35	35	35	35	35	
A _c	6100	6100	6100	6100	6100	6100	
lc	12000000	12000000	12000000	12000000	12000000	12000000	
ep	0	13	27	39	51	56	
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
$\Delta \sigma_{\text{p,cc+cs+r}}$							
$\Delta\sigma_{p,cc+cs+r}/$	307,3697871	302,026407	286,5581802	268,5146321	248,3049715	239,600661	
$\Delta \sigma p,cc+cs+r/$	22,04948257	21,6661698	20,5565409	19,26216873	17,81240829	17,18799577	19,8

Tabela 1B- Umidade de 40% para um tempo de protensão de 5 dias

Método alternativo adaptado por Bastos (2019)								
seção	1	2	3	4	5	6		
ε _{cs}	0,0005182	0,0005182	0,0005182	0,0005182	0,0005182	0,0005182		
Ep	200000	200000	200000	200000	200000	200000		
∆σpr(MPa)	4,443	4,443	4,443	4,443	4,443	4,443		
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12		
E _c (MPa)	30000	30000	30000	30000	30000	30000		
$\bar{\alpha}_{ep,k}$	8,591966667	8,591966667	8,591966667	8,591966667	8,591966667	8,591966667		
ρ _{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393		
es	66	66	66	66	66	66		
$\Delta \epsilon_{p,cs}$	96,18842222	93,26379972	90,30679427	87,91751115	85,65139772	84,74129562		
$\Delta_{\mathrm{ep,cc}}$	199,5800245	190,8463145	186,3439398	192,7207153	222,5133066	245,0943287		
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394		
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435		
$\phi(t,\sigma_{\rm pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775		
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598		
$\Delta \sigma_{pr}(MPa)$	35,0449395	34,72467509	38,27952165	43,54074629	52,85424036	58,5874077		
$\Delta \sigma_{p,cs+cc+r}$	330,8133862	318,8347893	314,9302557	324,1789728	361,0189447	388,423032		
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	23,73123287	22,8719361	22,59184044	23,25530651	25,89805916	27,86391908	24,4	
		1	Vétodo de Vasc	oncelos (1980)				
Ep	200000							
Y	55	U<90%						
hfic	0,8500035							
EC	30000							
εcs,∞	0,0005182							
0,8(1-f _{cj} /fc∞)	0,498395722							
фıс	3,39872							
ф 2с	0,674514991							
φ∞	4,443							
n	6,666666667							
€ _{1s}	-0,000477056							
seção	1	2	3	4	5	6		
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286		
Po	1265	1272	1278	1282	1285	1297		
η	1	1,086	1,371	1,773	2,322	2,594		
Ac	6100	6100	6100	6100	6100	6100		
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934		
σ_{p0}	1406	1406	1406	1406	1406	1406		
$\Delta \sigma_{\rm p,c+s}$	319,3645478	319,4276405	319,6288574	319,9121747	320,3000098	320,5082806		
$\Delta \sigma_{p,c+s+r}$	321,0379512	321,0516856	321,0650879	321,075686	321,0855934	321,1103797		
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	23,02998215	23,0309674	23,03192883	23,0326891	23,03339981	23,03517789	23,0	

Tabela 2B- Umidade de 40 % com um tempo de protensão de 7 dias

Dados						Perdas	
F _{ck}	30	Мра					Progressivas
A _c	0,61	m²		6100	CM ²		(%)
I _c	0,12	m^4					
As	20						
An	35	cm ²					
f _{ptk}	190						
ρ	0.00574						
en	0	0,13	0,27	0,39	0,51	0,56	
Pi(kN)	4879	4879	4879	4879	4879	4879	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ _{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
000							
		N	létodo Simplifica	ado da NBR6118	8:2014		
secão	1	2	3	4	5	6	
$\sigma_{c,p0q}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10.12	<u> </u>
χ(t.t _n)	0,065	0,065	0,065	0,065	0,065	0,065	<u> </u>
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394	<u> </u>
ε _{cs}	-0.0005121	-0.0005121	-0.0005121	-0.0005121	-0.0005121	-0.0005121	
E _n	200000	200000	200000	200000	200000	200000	
α	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t t _o)	3 9457	3 9457	3 9457	3 9457	3 9457	3 9457	
Ψ(t,t_0) V	1.065	1 065	1.065	1 065	1.065	1 065	
χ	2 97285	2 97285	2 97285	2 97285	2 97285	2 97285	
<u>^</u>	1	1 085908333	1 370575	1 773175	2 322175	2 594133333	
0-	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	
$\Delta \sigma_{re}(t, t_0)$	-322 9008949	-318 1295953	-311 1246032	-309 2597478	-322 5969688	-334 9653351	
$\Delta \sigma_{\rm er}(t,t_0)/\sigma_{\rm e0}$	23 1636223	22 8213483	22 3188381	22 18506082	23 14181986	24 02907713	22.9
	20,1000220	, <u>0210100</u> M	étodo Aproxima	do da NBR 6118	3 · 2014	21,02001110	22,0
	nara	acos de relaxac	ao baixa (RB) (alor em porcent	tagem):		
	puid	uşoo uo rolanaş					
secão	1	2	3	4	5	6	
	6.52	6.52	6.52	6.52	6.52	6.52	
$\frac{dp}{d(t,t_{o})}$	3 9457	3 9457	3 9457	3 9457	3 9457	3 9457	
σ	7 26	7 16	7 22	7 67	9.09	10 12	
$\Delta \sigma_{\rm ref}(t,t_0)$	22 93839281	22 78694648	22 87781428	23 55932273	25 70986053	27 26975766	24.2
	22,00000201	Método Simpl	lificado do Euroc	code 2 adaptado	por Bastos (20)	19)	21,2
secão	1	2	3	4	5	6	
	0.0005121	0.0005121	0.0005121	0.0005121	0.0005121	0.0005121	
F.	200000	200000	200000	200000	200000	200000	
p	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t t _o)	3 9457	3 9457	3 9457	3 9457	3 9457	3 9457	
$\Delta \sigma_{\rm er}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	
A ₂	35	35	35	35	35	35	
A _o	6100	6100	6100	6100	6100	6100	
	12000000	12000000	12000000	12000000	12000000	12000000	
^{+с} е-	0	13	27	39	51	56	
σ _{- P0} (MPa)	0 799836066	0 736559469	0.583577014	0 45107565	0.344434018	0.308324964	
	308.0285854	303,1155475	288.8111767	271.9665131	252,8931592	244.6107066	
$\Delta \sigma_{p,cc+cs+r}$	22.09674214	21,74430039	20.71816189	19.50979291	18,14154657	17.54739646	20.0
	,0001 +1+	,		.0,00010201			-0,0

	Método Alternativo adaptado por Bastos (2019)								
seção	1	2	3	4	5	6			
ε _{cs}	0,0005121	0,0005121	0,0005121	0,0005121	0,0005121	0,0005121			
Ep	200000	200000	200000	200000	200000	200000			
φ(t,t0)	3,9457	3,9457	3,9457	3,9457	3,9457	3,9457			
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12			
E _c (MPa)	30000	30000	30000	30000	30000	30000			
$\bar{\alpha}_{ep,k}$	8,37647	8,37647	8,37647	8,37647	8,37647	8,37647			
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393			
es	66	66	66	66	66	66			
$\Delta \epsilon_{p,cs}$	95,22786333	92,39796113	89,532639	87,21442982	85,01323847	84,12852733			
$\Delta_{\text{ep,cc}}$	177,5614537	169,9117613	166,022372	171,8033948	198,4716476	218,661252			
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394			
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435			
$\phi(t,\sigma_{pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775			
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598			
$\Delta \sigma_{pr}(MPa)$	30,24534038	30,1712763	33,87330545	39,02494159	47,69942223	52,93840291			
$\Delta \sigma_{p,cs+cc+r}$	303,0346574	292,4809987	289,4283165	298,0427662	331,1843082	355,7281822			
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	21,73849766	20,98142028	20,76243303	21,3803993	23,75784134	25,51852096	22,4		
			Método do v	asconcelos (19	980)				
Ep	200000								
γ	55								
hfic	0,8500035								
EC	30000								
εcs,∞	0,0005121								
0,8(1-f _{cj} /fc∞)	0,447401485								
ф _{1с}	3,39872								
ф 2с	0,674514991								
φ∞	3,9457								
n	6,66666667								
٤ _{1s}	-0,000477056								
seção	1	2	3	4	5	6			
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286			
Po	1265	1272	1278	1282	1285	1297			
η	1	1,086	1,371	1,773	2,322	2,594			
Ac	6100	6100	6100	6100	6100	6100			
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934			
σ_{p0}	1406	1406	1406	1406	1406	1406			
$\Delta \sigma_{p,c+s}$	293,9517638	294,0034434	294,1682456	294,40025	294,7177659	294,8882383			
$\Delta \sigma_{\rm p,c+s+r}$	295,7480533	295,7617306	295,7749574	295,7853085	295,7948771	295,8194677			
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	21,21578574	21,2167669	21,21771574	21,21845829	21,2191447	21,22090873	21,2		

Tabela 3B- Umidade de 40 % com um tempo de protensão de 30 dias

Dados							
Fck	30	MPA					Progressivas
Ac	0.61	m²		6100	cm ²		(%)
	0.12	m^4			-		
A	20						
An	35	cm ²					
f _{etk}	190	0					
	0.00574						
<u></u> е,	0	0.13	0.27	0.39	0.51	0.56	
P.(kNI)	4879	4879	4879	4879	4879	4879	
	4470 4000	4470 4000	4470 4000	4470 4000	4470 4000	4470 4000	
Fo	127 08214	117 9591/22	02 27015828	72 17728802	55 11247767	4479,4099	
Ucpo	127,90314	117,0001400	93,37913030	72,17730002	55,11547707	49,33300390	
			látodo oimplifico	do do NPR 611	9.2014		
	1	<u>الا</u>			5.2014	G	
Seçao	7.00	2	3	4	5	0	
	7,26	7,16	7,22	7,67	9,09	10,12	
<u>χ(t,t₀)</u>	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,0004419	-0,0004419	-0,0004419	-0,0004419	-0,0004419	-0,0004419	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,3215	3,3215	3,3215	3,3215	3,3215	3,3215	
Xp	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,66075	2,66075	2,66075	2,66075	2,66075	2,66075	
η	1	1,085908333	1,370575	1,773175	2,322175	2,594133333	
ρ _p	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	
$\Delta \sigma_{pr}(t,t_0)$	-288,7100317	-284,7594168	-279,1249823	-277,9647732	-289,9711276	-300,8962382	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	20,71090615	20,42750479	20,02331294	19,94008416	20,80137214	21,585096	20,6
	•	N	létodo aproxima	do da NBR 611	8:2014		
		para aços d	le relaxação bai	xa (RB) (valor ei	m porcentagem)	:	
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,3215	3,3215	3,3215	3,3215	3,3215	3,3215	
$\sigma_{c,p0q}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{\rm pr}(t,t_0)$	20.32352552	20.19756523	20.2731414	20.8399627	22.62859878	23.92598975	21.4
P.(/ 4)	,	Método simpl	ificado do Euroc	ode 2 adaptado	por Bastos (201	19)	,
secão	1	2	3	4	5	6	
£	0.0004419	0.0004419	0.0004419	0.0004419	0.0004419	0.0004419	
F.	200000	200000	200000	200000	200000	200000	
<u>p</u>	6.52	6.52	6.52	6.52	6.52	6.52	
$\frac{d_{p}}{d(t,t_{o})}$	3 3215	3 3215	3 3215	3 3215	3 3215	3 3215	
φ(t,t) Δσ. (MPa)	291 1616435	291 1616435	291 1616435	201 1616435	291 1616435	291 1616435	
	251,1010433	251,1010433	231,1010433	251,1010433	231,1010433	251,1010433	
Ap A	6100	6100	6100	6100	6100	6100	
	12000000	12000000	12000000	12000000	12000000	12000000	
I _c	1200000	12000000	12000000	12000000	1200000	1200000	
	0 700000000	13		39	10	00000000	
U _{c,PQ} (IVIPa)	0,799836066	0,730559469	0,583577014	0,45107565	0,344434018	0,308324964	
Δ0 _{p,cc+cs+r}	007 0700 100	000 00500 (=	004.0454.405	000 4/01055	040 5000445	040.0740546	
$\Delta \sigma_{p,cc+cs+r}$	297,8766408	293,6353247	281,2151466	200,4401955	249,5000415	242,0712516	40 -
$\Delta \sigma n cc+cs+r/$	21.36848212	21.06422702	20.17325299	19.11335692	17.89813784	17.36522608	19.5

	Método alternativo adaptado por Bastos (2019)								
seção	1	2	3	4	5	6			
ε _{cs}	0,0004419	0,0004419	0,0004419	0,0004419	0,0004419	0,0004419			
Ep	200000	200000	200000	200000	200000	200000			
∆σpr(MPa)	3,3215	3,3215	3,3215	3,3215	3,3215	3,3215			
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12			
E _c (MPa)	30000	30000	30000	30000	30000	30000			
$\bar{\alpha}_{ep,k}$	8,105983333	8,105983333	8,105983333	8,105983333	8,105983333	8,105983333			
$ ho_{ps}$	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393			
es	66	66	66	66	66	66			
$\Delta \epsilon_{p,cs}$	82,36053724	79,98454143	77,57446954	75,62138178	73,76422434	73,01705816			
$\Delta_{\text{ep,cc}}$	149,8113757	143,485522	140,3282188	145,3211992	167,9958926	185,1372653			
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394			
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435			
$\phi(t,\sigma_{pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775			
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598			
$\Delta \sigma_{pr}(MPa)$	21,76167458	22,05892412	26,00894952	31,07225114	38,9844636	43,61549568			
$\Delta \sigma_{p,cs+cc+r}$	253,9335875	245,5289876	243,9116378	252,0148322	280,7445806	301,7698191			
$\Delta\sigma_{\text{p,cs+cc+r}}/\sigma_{\text{p0}}$	18,21618275	17,61327027	17,49724805	18,07853889	20,13949645	21,64776321	18,9		
			Método de \	asconcelos (19	980)				
Ep	200000								
Y	55	U<90%							
hfic	0,8500035								
EC	30000								
εcs,∞	0,0004419								
0,8(1-f _{cj} /fc∞)	0,248706133								
ф _{1с}	3,39872								
ф _{2с}	0,674514991								
φ∞	3,3215								
n	6,666666667								
٤ _{1s}	-0,000477056								
seção	1	2	3	4	5	6			
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286			
Po	1265	1272	1278	1282	1285	1297			
η	1	1,086	1,371	1,773	2,322	2,594			
A _c	6100	6100	6100	6100	6100	6100			
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934			
σ_{p0}	1406	1406	1406	1406	1406	1406			
$\Delta \sigma_{p,c+s}$	249,5623019	249,6012136	249,7252854	249,8999124	250,1388309	250,2670704			
$\Delta \sigma_{p,c+s+r}$	251,4960483	251,5096542	251,5226607	251,5327025	251,5418469	251,5661925			
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	18,04132341	18,04229944	18,04323248	18,04395284	18,04460882	18,04635527	18,0		

Tabela 4B- Umidade de 40 % com um tempo de protensão de 60 dias

	Dados						
F _{ck}	30	MPA					Progressivas
A _c	0,61	m²		6100	Cm ²		(%)
I _c	0,12	m^4					
As	20						
Ap	35	Cm ²					
f _{ptk}	190						
ρ _ρ	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
· ·	•	N	létodo simplifica	do da NBR6118	3:2014	•	
seção	1	2	3	4	5	6	
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,0003978	-0,0003978	-0,0003978	-0,0003978	-0,0003978	-0,0003978	
Ep	200000	200000	200000	200000	200000	200000	
αρ	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	2,861	2,861	2,861	2,861	2,861	2,861	
Xp	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,4305	2,4305	2,4305	2,4305	2,4305	2,4305	
n	1	1.085908333	1.370575	1.773175	2.322175	2.594133333	
ρ	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	
$\Delta \sigma_{\rm pr}(t,t_0)$	-264.3736499	-260.9962144	-256.2583989	-255.4539104	-266.2180925	-275.9272594	
$\Delta \sigma_{\rm pr}(t,t_0)/\sigma_{\rm p0}$	18.96511118	18.72282743	18.38295545	18.32524465	19.09742414	19.79392105	18.9
p:(1) 07 p0	-,	N	létodo aproxima	do da NBR6118	3:2014	-,	- / -
		para acos o	le relaxação bai	xa (RB) (valor ei	m porcentagem)	:	
secão	1	2	3	4	5	6	
α _p	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t.t ₀)	2.861	2.861	2.861	2.861	2.861	2.861	
$\sigma_{c,p0q}$ (MPa)	7.26	7.16	7.22	7.67	9.09	10.12	
$\Delta \sigma_{\rm pr}(t,t_0)$	18.41608955	18.30872026	18.37314184	18.85630366	20.38094763	21.48685136	19.3
pi(1) by	-,	Metodo simpl	ificado do Euroc	ode 2 adaptado	por Bastos (201	19)	- , -
secão	1	2	3	4	5	6	
ξ _{CS}	0.0003978	0.0003978	0.0003978	0.0003978	0.0003978	0.0003978	
E _n	200000	200000	200000	200000	200000	200000	
α	6.52	6.52	6.52	6.52	6.52	6.52	
$\phi(t,t_0)$	2,861	2,861	2,861	2,861	2,861	2,861	
$\Delta \sigma_{\rm pr}$ (MPa)	291.1616435	291.1616435	291.1616435	291.1616435	291.1616435	291.1616435	
An	35	35	35	35	35	35	
Ac	6100	6100	6100	6100	6100	6100	
	12000000	12000000	12000000	12000000	12000000	12000000	
en e	0	13	27	39	51	56	
σ _{c.PQ} (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
$\Delta \sigma_{\rm p, control tr}$	291,5400492	287,7805272	276,7138776	263,4330364	248,0461923	241,2440207	
Δ _{σp.cc+cs+r} /	20,91392032	20,6442272	19,8503499	18,89763532	17,7938445	17,30588384	19,2

	Método Alternativo Adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,0003978	0,0003978	0,0003978	0,0003978	0,0003978	0,0003978				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	2,861	2,861	2,861	2,861	2,861	2,861				
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
āα _{ep,k}	7,906433333	7,906433333	7,906433333	7,906433333	7,906433333	7,906433333				
$ ho_{ps}$	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	74,26577738	72,17114929	70,04363945	68,3174331	66,6742641	66,01270751				
$\Delta_{\text{ep,cc}}$	129,257924	123,8820741	121,2377103	125,6199825	145,2960937	160,1547716				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
$\phi(t,\sigma_{pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	15,77798708	16,33243043	20,44861043	25,431743	32,76234363	36,93447547				
$\Delta \sigma_{p,cs+cc+r}$	219,3016884	212,3856538	211,7299602	219,3691586	244,7327014	263,1019546				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	15,73182844	15,2356997	15,18866285	15,73666848	17,55614788	18,87388484	16,4			
Método de Vasconcelos (1980)										
ε _{cs}	200000									
Ep	55	U<90%								
∆εp,cs	0,8500035									
$\sigma_{c,p0g}$ (MPa)	30000									
E _c (MPa)	0,0003978									
$\bar{\alpha}_{ep,k}$	0,172128812									
$ ho_{ps}$	3,39872									
es	0,674514991									
$\Delta \epsilon_{p,cs}$	2,861									
$\Delta_{\mathrm{\epsilon p, cc}}$	6,666666667									
σ _{pi} (MPa)	-0,000477056									
$\Delta \sigma_{pr}(MPa)$	1	2	3	4	5	6				
$\phi(t,\sigma_{pi})$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
σ_{cpo}	1265	1272	1278	1282	1285	1297				
$\Delta \sigma_{pr}(MPa)$	1	1,086	1,371	1,773	2,322	2,594				
$\Delta \sigma_{p,cs+cc+r}$	6100	6100	6100	6100	6100	6100				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σp0	1406	1406	1406	1406	1406	1406				
∆σp,c+s	218,364128	218,39473	218,4922972	218,6295978	218,8174058	218,9181918				
∆σp,c+s+r	220,3873137	220,4008669	220,4137112	220,4235252	220,4323573	220,4565226				
$\Delta \sigma p,c+s+r/\sigma p0$	15,80970687	15,81067912	15,81160052	15,81230453	15,81293812	15,81467163	15,8			

Tabela 5B- Umidade de 55 % com um tempo de protensão de 5 dias

Dados								
F _{ck}	30	MPA					Perdas	
Ac	0,61	m²		6100	Cm ²		Progressivas (%)	
l _c	0,12	m^4						
As	20							
An	35	cm ²						
fotk	190							
ρικ	0.00574							
e _p	0	0.13	0.27	0.39	0.51	0.56		
P _i (kN)	4879	4879	4879	4879	4879	4879		
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099		
σ	127,98314	117,8581433	93.37915838	72,17738802	55.11347767	49.33560598		
- сро	,000	,00000	Vétodo simplifica	ado da NBR 611	8:2014	10,0000000		
secão	1	2	3	4	5	6		
$\sigma_{a,a,b,a}$ (MPa)	7.26	7.16	7.22	7.67	9.09	10.12		
$v(t t_0)$	0.065	0.065	0.065	0.065	0.065	0.065		
σ_{-0} (MPa)	1394	1394	1394	1394	1394	1394		
s c	-0.0004702	-0.0004702	-0.0004702	-0.0004702	-0.0004702	-0.0004702		
E	200000	200000	200000	200000	200000	200000		
	6.52	6.52	6.52	6.52	6.52	6.52		
u_p	0,02	2,32	2,32	2,32	2,32	2,32		
φ(ι,ι ₀)	3,7022	3,7022	3,7022	3,7022	3,7022	3,7022		
Xp X	1,005	1,000	1,000	1,000	1,000			
Xc D	2,8911	2,8911	2,8911	2,8911	2,8911	2,8911		
11	1	1,085908333	1,370575	1,773175	2,322175	2,594133333		
ρ_p	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705		
$\Delta \sigma_{\rm pr}(t,t_0)$	-310,002527	-305,4810796	-298,9484288	-297,4205014	-310,6081923	-322,6949451		
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	22,23834483	21,91399423	21,44536792	21,3357605	22,28179285	23,14884829	22,1	
			Metodo aproxima	ado da NBR 611	8:2014			
	para	aços de relaxaç	ção baixa (RB) (valor em porcen	tagem):			
seção	1	2	3	4	5	6		
α _p	6,52	6,52	6,52	6,52	6,52	6,52		
φ(t,t ₀)	3,7822	3,7822	3,7822	3,7822	3,7822	3,7822		
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12		
$\Delta \sigma_{pr}(t,t_0)$	22,25046165	22,10572031	22,19256511	22,84390115	24,8992282	26,39006402	23,4	
		Método simp	lificado do Euro	code 2 adaptado	p por Bastos (20	19)	1	
seção	1	2	3	4	5	6		
ε _{cs}	0,0004702	0,0004702	0,0004702	0,0004702	0,0004702	0,0004702		
Ep	200000	200000	200000	200000	200000	200000		
α _p	6,52	6,52	6,52	6,52	6,52	6,52		
φ (t,t ₀)	3,7822	3,7822	3,7822	3,7822	3,7822	3,7822		
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435		
Ap	35	35	35	35	35	35		
Ac	6100	6100	6100	6100	6100	6100		
Ι _c	12000000	12000000	12000000	12000000	12000000	12000000		
ep	0	13	27	39	51	56		
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964		
$\Delta \sigma_{p,cc+cs+r}$	301,3143724	296,6228156	282,9548139	266,8355727	248,541479	240,581264		
$\Delta \sigma_{p,cc+cs+r}$	21,61509128	21,2785377	20,29804978	19,14171971	17,82937439	17,25834031	19,6	

	Método Alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,0004702	0,0004702	0,0004702	0,0004702	0,0004702	0,0004702				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	3,7822	3,7822	3,7822	3,7822	3,7822	3,7822				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	8,30562	8,30562	8,30562	8,30562	8,30562	8,30562				
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	87,48828756	84,90823878	82,29466733	80,1792325	78,16982916	77,36199605				
$\Delta_{\epsilon p, cc}$	170,3049015	163,0059532	159,3123714	164,8913484	190,5213529	209,9175698				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
φ(t,σ _{pi})	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	27,11313288	27,16451425	30,96002386	36,11181218	44,60949457	49,69881952				
$\Delta \sigma_{p,cs+cc+r}$	284,9063219	275,0787062	272,5670626	281,1823931	313,3006766	336,9783854				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	20,43804318	19,73304923	19,55287393	20,17090338	22,47494093	24,17348532	21,1			
Método do vasconcelos (1980)										
Ep	200000									
Y	55	U<90%								
hfic	0,8500035									
EC	30000									
εcs,∞	0,0004702									
0,8(1-f _{cj} /fc∞)	0,498395722									
ф _{1с}	3,3982675									
ф _{2с}	0,674514991									
φ∞	3,7822									
n	6,666666667									
ε _{1s}	-0,000477073									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
Po	1265	1272	1278	1282	1285	1297				
η	1	1,086	1,371	1,773	2,322	2,594				
A _c	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σ _{p0}	1406	1406	1406	1406	1406	1406				
$\Delta \sigma_{p,c+s}$	277,6203634	277,6685311	277,8221295	278,0383491	278,3342391	278,4930894				
$\Delta \sigma_{p,c+s+r}$	279,4544633	279,468122	279,481291	279,4915611	279,5010185	279,5255448				
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	20,04694859	20,0479284	20,0488731	20,04960983	20,05028827	20,05204769	20,0			

Tabela 6B- Umidade de 55 % com um tempo de protensão de 7 dias

F _{ck}	30	Мра					Perdas
Ac	0,61	m²		6100	cm ²		Progressivas (%)
l _c	0,12	m^4					
As	20						
An	35	cm ²					
fotk	190						
ρικ	0.00574						
e _p	0	0.13	0.27	0.39	0.51	0.56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
. υ σ _{eno}	127,98314	117,8581433	93.37915838	72,17738802	55.11347767	49.33560598	
- 000	,	Ν	létodo simplifica	ado da NBR 611	8 :2014	,	
secão	1	2	3	4	5	6	
$\sigma_{a,a,b,a}$ (MPa)	7.26	7.16	7.22	7.67	9.09	10.12	
$v(t t_0)$	0.065	0.065	0.065	0.065	0.065	0.065	
$\sigma_{-0}(MPa)$	1394	1394	1394	1394	1394	1394	
ε	-0.000466	-0.000466	-0.000466	-0.000466	-0.000466	-0.000466	
E-	200000	200000	200000	200000	200000	200000	
Ξp α	6.52	6.52	6.52	6.52	6.52	6.52	
$\frac{\alpha_p}{\phi(t, t_o)}$	3 7192	3 7192	3 7192	3 7192	3 7192	3 7192	
ψ(ι,ι ₀)	1.065	1.065	1.065	1.065	1.065	1.065	
AP V	2,8596	2 8596	2,8596	2 8596	2,8596	2 8596	
	2,000	1 085008333	1 370575	1 773175	2,0000	2,0000	
	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	2,094100000	
P_p	307 052075	302 6100230	206 2050202	204 7252256	207 7720607	310 7076006	
$\Delta O_{pr}(t,t_0)$	-307,032973	-302,0109239	-290,2009092	-294,7333230	-307,7729097	-319,7070900	21.0
$\Delta O_{\rm pr}(l,l_0)/O_{\rm p0}$	22,02075574	21,70010071	21,24003200 Iótodo Aprovim	21,1431307	22,07040529	22,93455450	21,9
	noro	acos do rolavas	netodo Aproxim		10.2014		
	paia				ayem).	6	
seçao	6.52	6.52	5	6 5 2	5	6.52	
u_p	0,32	0,32	0,32	0,32	0,32	0,32	
$\psi(l,l_0)$	3,7192	3,7192	3,7192	3,7 192	3,7192	3,7 192	
$O_{c,p0g}$ (IVIPa)	7,20	7,10	7,22	7,07	9,09	10,12	22.2
$\Delta O_{\rm pr}(l,l_0)$	21,96593757	21,64377444 Mátodo sim	21,92907232	22,30000042	24,36732293	20,05160321	23,2
	1				por Bastos (201)	9)	
seçao	1	2	3	4	C	0	
	0,000466	0,000466	0,000466	0,000466	0,000466	0,000466	
Ep	200000	200000	200000	200000	200000	200000	
α_p	6,52	6,52	6,52	6,52	6,52	6,52	
$\phi(t,t_0)$	3,7192	3,7192	3,7192	3,7192	3,7192	3,7192	
Δσ _{pr} (MPa)	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	
Ap	35	35	35	35	35	35	
Ac	6100	6100	6100	6100	6100	6100	
I _c	12000000	12000000	12000000	12000000	12000000	12000000	
e _p	0	13	27	39	51	56	
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
$\Delta \sigma_{p,cc+cs+r}$	300,7916802	296,1620002	282,6653125	266,7301779	248,6208071	240,7328487	
$\Delta \sigma_{p,cc+cs+r}$	21,57759542	21,24548065	20,2772821	19,1341591	17,83506507	17,2692144	19,6

	Método simplificado Alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,000466	0,000466	0,000466	0,000466	0,000466	0,000466				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	3,7192	3,7192	3,7192	3,7192	3,7192	3,7192				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	8,27832	8,27832	8,27832	8,27832	8,27832	8,27832				
$ ho_{ps}$	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	86,72667016	84,17667436	81,59307726	79,50155796	77,51458486	76,71569059				
$\Delta_{\text{ep,cc}}$	167,5064963	160,3419451	156,723049	162,2233498	187,4518239	206,5413794				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
$\phi(t,\sigma_{pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	26,36955896	26,45528867	30,27265836	35,41300898	43,83150955	48,85864987				
$\Delta \sigma_{p,cs+cc+r}$	280,6027254	270,9739082	268,5887846	277,1379168	308,7979183	332,1157199				
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	20,12932033	19,43858739	19,26748813	19,88076878	22,15193101	23,82465709	20,8			
Método do vasconcelos (1980)										
Ep	200000									
Y	55	U<90%								
hfic	27,85388128	cm								
EC	30000									
εcs,∞	0,000466									
0,8(1-f _{cj} /fc∞)	0,447401485									
ф _{1с}	3,3982675									
ф _{2с}	0,674514991									
φ∞	3,7192									
n	6,666666667									
٤ _{1s}	-0,000477073									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
Po	1265	1272	1278	1282	1285	1297				
η	1	1,086	1,371	1,773	2,322	2,594				
A _c	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σ_{p0}	1406	1406	1406	1406	1406	1406				
$\Delta \sigma_{p,c+s}$	273,7168631	273,7637094	273,9130922	274,1233728	274,4111267	274,5656049				
$\Delta \sigma_{p,c+s+r}$	275,5651901	275,5788416	275,5919884	275,6022272	275,6116418	275,6361433				
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	19,76794764	19,76892694	19,76987004	19,77060453	19,7712799	19,77303754	19,8			

Tabela 7B- Umidade de 55 % com um tempo de protensão de 30 dias

Dados								
F _{ck}	30	MPA					progressivas	
A _c	0,61	m²		6100	Cm ²		(%)	
I _c	0,12	m^4						
As	20							
Ap	35	Cm ²						
f _{ptk}	190							
ρ	0,00574							
ep	0	0,13	0,27	0,39	0,51	0,56		
P _i (kN)	4879	4879	4879	4879	4879	4879		
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099		
σ _{сро}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598		
		N	létodo simplifica	do da NBR 611	8:2014			
seção	1	2	3	4	5	6		
$\sigma_{c,p0q}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12		
$\chi(t,t_0)$	0,065	0,065	0,065	0,065	0,065	0,065		
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394		
E _{CS}	-0.00041	-0.00041	-0.00041	-0.00041	-0.00041	-0.00041		
E.	200000	200000	200000	200000	200000	200000		
α	6.52	6.52	6.52	6.52	6.52	6.52		
φ(t.t ₀)	2.8411	2.8411	2.8411	2.8411	2.8411	2.8411		
Y ₀	1.065	1.065	1.065	1.065	1.065	1.065		
Xp Xc	2,42055	2,42055	2,42055	2,42055	2,42055	2,42055		
n	1	1.085908333	1.370575	1.773175	2.322175	2.594133333		
0 ₀	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705		
$\Delta \sigma_{\rm pr}(t,t_0)$	-265.7551855	-262.3857584	-257.6324984	-256.7703959	-267.3870166	-276.9991747		
$\Delta \sigma_{\rm pr}(t,t_0)/\sigma_{\rm p0}$	19.06421704	18.82250777	18.48152786	18.41968407	19.1812781	19.87081597	19.0	
p.(1).07. p0		N	létodo aproxima	do da NBR 611	8:2014	-,	- , -	
		para acos d	le relaxação bai	xa (RB) (valor e	m porcentagem)	:		
seção	1	2	3	4	5	6		
α	6,52	6,52	6,52	6,52	6,52	6,52		
$\phi(t,t_0)$	2,8411	2,8411	2,8411	2,8411	2,8411	2,8411		
$\sigma_{c,p0q}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12		
$\Delta \sigma_{\rm pr}(t,t_0)$	18,33412228	18,22755189	18,29149412	18,77106089	20,28436047	21,38203551	19,2	
p.(· ·	Método simpli	ficado do Euroc	ode 2 adapatad	por Bastos(20	19)	· · ·	
seção	1	2	3	4	5	6		
ε _{cs}	0,00041	0,00041	0,00041	0,00041	0,00041	0,00041		
Εp	200000	200000	200000	200000	200000	200000		
α _p	6,52	6,52	6,52	6,52	6,52	6,52		
φ(t,t ₀)	2,8411	2,8411	2,8411	2,8411	2,8411	2,8411		
$\Delta \sigma_{\rm pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435		
Ap	35	35	35	35	35	35		
A _c	6100	6100	6100	6100	6100	6100		
I _c	12000000	12000000	12000000	12000000	12000000	12000000		
ep	0	13	27	39	51	56		
σ _{c,PQ} (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964		
$\Delta \sigma_{p,cc+cs+r}$	293,7761229	290,0141074	278,9318355	265,6182811	250,1783359	243,3483533		
$\Delta \sigma_{p,cc+cs+r}$	21,07432732	20,80445533	20,00945735	19,05439606	17,94679598	17,45684027	19,4	

	Método alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,00041	0,00041	0,00041	0,00041	0,00041	0,00041				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	2,8411	2,8411	2,8411	2,8411	2,8411	2,8411				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	7,89781	7,89781	7,89781	7,89781	7,89781	7,89781				
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	76,54896631	74,39207836	72,20120448	70,42349227	68,73121685	68,049868				
$\Delta_{\text{ep,cc}}$	128,3681729	123,032861	120,4101365	124,765448	144,310963	159,0703396				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
$\phi(t,\sigma_{pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
∆σ _{pr} (MPa)	16,06903132	16,61893766	20,72640272	25,69314614	32,98621269	37,13346973				
$\Delta \sigma_{p,cs+cc+r}$	220,9861705	214,043877	213,3377437	220,8820864	246,0283926	264,2536773				
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	15,85266647	15,35465402	15,30399883	15,84519989	17,64909559	18,95650483	16,5			
Método de Vasconcelos (1980)										
Ep	200000									
Y	55	U<90%								
hfic	0,8500035									
EC	30000									
εcs,∞	0,00041									
0,8(1-f _{cj} /fc∞)	0,248706133									
ф 1с	3,3982675									
ф _{2с}	0,674514991									
φ∞	2,8411									
n	6,66666667									
٤ _{1s}	-0,000477073									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
Po	1265	1272	1278	1282	1285	1297				
η	1	1,086	1,371	1,773	2,322	2,594				
Ac	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σ _{p0}	1406	1406	1406	1406	1406	1406				
$\Delta \sigma_{p,c+s}$	219,8373088	219,8675729	219,9640625	220,0998456	220,2855763	220,3852466				
$\Delta \sigma_{p,c+s+r}$	221,8641306	221,8776816	221,8905189	221,900323	221,9091416	221,9332991				
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	15,91564782	15,91661991	15,91754081	15,91824412	15,91887673	15,92060969	15,9			

Tabela 8B- Umidade de 55 % com um tempo de protensão de 60 dias

F _{ck}	30	MPA					Perdas
A _c	0,61	m²		6100	Cm ²		Floglessivas (%)
I _c	0,12	m^4					
As	20						
Ap	35	Cm ²					
f _{ptk}	190						
ρ _ρ	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
		N	létodo Simplific	ado da NBR 611	8:2014		
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,0003678	-0,0003678	-0,0003678	-0,0003678	-0,0003678	-0,0003678	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	2,461	2,461	2,461	2,461	2,461	2	
Хp	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,2305	2,2305	2,2305	2,2305	2,2305	2,2305	
η	1	1,085908333	1,370575	1,773175	2,322175	2,594133333	
ρ _ρ	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	
$\Delta \sigma_{pr}(t,t_0)$	-244,3848022	-241,4803436	-237,433061	-236,8099944	-246,2927986	-254,8283574	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	17,53119097	17,3228367	17,03250079	16,98780448	17,66806303	18,28036997	17,5
		N	létodo Aproxima	ado da NBR 611	8:2014		
		para aços c	le relaxação ba	ixa (RB) (valor e	m porcentagem):	
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	2,461	2,461	2,461	2,461	2,461	2,461	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{pr}(t,t_0)$	16,77654358	16,68515427	16,73998786	17,15123977	18,44896802	19,39027795	17,5
		Método simpl	ificado do Euro	code 2 adaptado	por Bastos (20	19)	
seção	1	2	3	4	5	6	
ε _{cs}	0,0003678	0,0003678	0,0003678	0,0003678	0,0003678	0,0003678	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	2,461	2,461	2,461	2,461	2,461	2,461	
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	
Ap	35	35	35	35	35	35	
Ac	6100	6100	6100	6100	6100	6100	
I _c	12000000	12000000	12000000	12000000	12000000	12000000	
ep	0	13	27	39	51	56	
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
$\Delta\sigma_{\rm p,cc+cs+r}$	287,4035544	284,0504619	274,1259796	262,1092127	248,043948	241,777874	
$\Delta \sigma_{p,cc+cs+r}$	20,61718468	20,37664719	19,66470442	18,80266949	17,7936835	17,34418034	19,1

	Método alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,0003678	0,0003678	0,0003678	0,0003678	0,0003678	0,0003678				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	2,461	2,461	2,461	2,461	2,461	2,461				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	7,7331	7,7331	7,7331	7,7331	7,7331	7,7331				
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	68,76535796	66,86451583	64,93158191	63,36157883	61,8657066	61,26306929				
$\Delta_{\text{ep,cc}}$	111,3486518	106,7793716	104,5615025	108,3926885	125,4274217	138,279531				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
$\phi(t,\sigma_{pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	10,88845747	11,65184285	15,89774447	20,79839873	27,60806622	31,37339693				
$\Delta \sigma_{p,cs+cc+r}$	191,0024672	185,2957303	185,3908289	192,5526661	214,9011945	230,9159972				
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	13,70175518	13,29237663	13,29919863	13,81296026	15,41615456	16,56499263	14,3			
Método de Vasconcelos (1980)										
Ep	200000									
Y	55	U<90%								
hfic	0,8500035									
EC	30000									
εcs,∞	0,0003678									
0,8(1-f _{cj} /fc∞)	0,172128812									
ф _{1с}	3,3982675									
ф _{2с}	0,674514991									
φ∞	2,461									
n	6,66666667									
ε _{1s}	-0,000477073									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
Po	1265	1272	1278	1282	1285	1297				
η	1	1,086	1,371	1,773	2,322	2,594				
Ac	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σ_{p0}	1406	1406	1406	1406	1406	1406				
$\Delta \sigma_{p,c+s}$	192,9342164	192,9583638	193,0353463	193,1436642	193,2917992	193,3712814				
$\Delta \sigma_{p,c+s+r}$	195,0268496	195,0403571	195,0530606	195,0626769	195,0712383	195,0952472				
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	13,99044832	13,99141729	13,9923286	13,99301843	13,99363259	13,99535489	14,0			

Tabela 9B- Umidade de 70 % com um tempo de protensão de 5 dias

Dados							
F _{ck}	30	MPA					Progressivas
A _c	0,61	m²		6100	Cm ²		(%)
I _c	0,12	m^4					
A _s	9						
Ap	35	Cm ²					
f _{ptk}	190						
ρ _p	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
	•	Mé	todo Simplificad	o da NBR 6118	2014	•	
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,0004835	-0,0004835	-0,0004835	-0,0004835	-0,0004835	-0,0004835	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	2,903	2,903	2,903	2,903	2,903	2,903	
Хp	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,4515	2,4515	2,4515	2,4515	2,4515	2,4515	
η	1	1,085908333	1,370575	1,773175	2,322175	2,594133333	
ρ	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	
$\Delta \sigma_{\rm pr}(t,t_0)$	-280,7307154	-277,2062604	-272,0820914	-270,8369505	-281,1977729	-290,777826	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	20,13850182	19,88567148	19,51808403	19,42876259	20,17200666	20,85924147	20,0
	L	Mé	todo aproximad	o da NBR 6118:	2014		
		para aços de	relaxação baixa	a (RB) (valor em	porcentagem):		
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	2,903	2,903	2,903	2,903	2,903	2,903	
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{\rm pr}(t,t_0)$	18,58921653	18,48015984	18,54559385	19,03634897	20,58495398	21,7082379	19,5
	•	Método Simplif	icado do Euroco	de 2 adaptado p	oor Bastos (2019	9)	
seção	1	2	3	4	5	6	
α _p	0,0004835	0,0004835	0,0004835	0,0004835	0,0004835	0,0004835	
φ (t,t ₀)	200000	200000	200000	200000	200000	200000	
$\sigma_{c,p0g}$ (MPa)	6,52	6,52	6,52	6,52	6,52	6,52	
$\Delta \sigma_{pr}(t,t_0)$	2,903	2,903	2,903	2,903	2,903	2,903	
α _p	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	
φ (t,t ₀)	35	35	35	35	35	35	
$\sigma_{c,p0g}$ (MPa)	6100	6100	6100	6100	6100	6100	
$\Delta \sigma_{pr}(t,t_0)$	12000000	12000000	12000000	12000000	12000000	12000000	
α _p	0	13	27	39	51	56	
φ (t,t ₀)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
$\sigma_{c,p0g}$ (MPa)							
$\Delta \sigma_{pr}(t,t_0)$	306,6540885	302,7138925	291,0882962	277,0978429	260,8585367	253,6740515	
$\Delta \sigma p,cc+cs+r/$	21,99814121	21,71548727	20,88151336	19,87789404	18,71295098	18,19756467	20,2

	Método alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,0004835	0,0004835	0,0004835	0,0004835	0,0004835	0,0004835				
Ep	200000	200000	200000	200000	200000	200000				
αρ	2,903	2,903	2,903	2,903	2,903	2,903				
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
ā _{ep,k}	7,924633333	7,924633333	7,924633333	7,924633333	7,924633333	7,924633333				
ρ _{ps}	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	91,47137807	89,36392042	87,20032321	85,42750129	83,7253276	83,03594383				
$\Delta_{\epsilon p, cc}$	132,9080069	128,0573582	126,0040763	131,1361322	152,3175836	168,1806171				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
Δσ _{pr} (MPa)	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
φ(t,σ _{pi})	0,2903	0,2903	0,2903	0,2903	0,2903	0,2903				
σ _{сро}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
Δσ _{pr} (MPa)	27,98382992	28,90317817	34,78526749	41,91532707	52,52381456	58,60604121				
$\Delta \sigma_{p,cs+cc+r}$	252,3632149	246,3244568	247,989667	258,4789606	288,5667258	309,8226021				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	18,10353048	17,67033406	17,7897896	18,54224968	20,70062595	22,22543774	19,2			
Método do Vasconcelos (1980)										
ε _{cs}	200000									
Ep	75	U<90%								
∆εp,cs	0,80149551									
σ _{c,p0g} (MPa)	30000									
E _c (MPa)	0,0004835									
āα _{ep,k}	0,498395722									
ρ _{ps}	3,39783									
es	0,583732003									
$\Delta \epsilon_{p,cs}$	2,903									
$\Delta_{\epsilon p, cc}$	6,666666667									
σ _{pi} (MPa)	-0,000477088									
$\Delta \sigma_{pr}(MPa)$	1	2	3	4	5	6				
$\phi(t,\sigma_{pi})$	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435				
σ_{cpo}	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
$\Delta \sigma_{pr}(MPa)$	1	1,086	1,371	1,773	2,322	2,594				
$\Delta \sigma_{p,cs+cc+r}$	6100	6100	6100	6100	6100	6100				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702				
σp0	1406	1406	1406	1406	1406	1406				
∆σp,c+s	238,4148554	238,5198591	238,8689517	239,3642878	240,0463565	240,3867068				
∆σp,c+s+r	266,572035	266,5937943	266,666135	266,7687809	266,9101225	266,9806515				
∆σp,c+s+r/σp0	19,12281456	19,12437549	19,12956492	19,13692833	19,14706761	19,15212708	19,1			

Tabela 10B - Umidade de 70 % com um tempo de protensão de 7 dias

			Dados				Perdas
F _{ck}	30	MPa					progressivas (%)
Ac	0.61	m²		6100	Cm ²		
	0,12	m ⁴					
As	20						
Ap	35	cm ²					
fotk	190						
ρ	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ _{сро}	127,98314	117,85814	93,379158	72,177388	55,11347767	49,335606	
		Mé	todo simplifio	cado da NBR	6118:2014	,	
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (Mpa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	
Ep	200000	200000	200000	200000	200000	200000	
αρ	6,52	6,52	6,52	6,52	6,52	6,52	
$\phi(t,t_0)$	3,21	3,21	3,21	3,21	3,21	3,21	
Xp	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,605	2,605	2,605	2,605	2,605	2,605	
n	1	1,0859083	1,370575	1,773175	2,322175	2,5941333	
ρ	0,0057377	0,0057377	0,0057377	0,0057377	0,005737705	0,0057377	
$\Delta \sigma_{\rm pr}(t,t_0)$	-291,41488	-287,54355	-281,9359	-280,60818	-291,9970812	-302,4829	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	20,904941	20,627228	20,224957	20,129712	20,94670597	21,698917	20,8
		Mét	todo Aproxir	nado da NBR	6118:2014		· · ·
	para aços	de relaxação	baixa (RB)	(valor em por	centagem):		
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{\rm pr}(t,t_0)$	19,859876	19,738435	19,8113	20,357786	22,08225203	23,333097	20,9
	M	étodo simplifi	cado do Euro	code 2 adap	tado por Bastos	(2019)	
seção	1	2	3	4	5	6	
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481	
Ep	200000	200000	200000	200000	200000	200000	
αρ	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
$\Delta \sigma_{\rm pr}(MPa)$	291,16164	291,16164	291,16164	291,16164	291,1616435	291,16164	
Âp	35	35	35	35	35	35	
Ac	6100	6100	6100	6100	6100	6100	
I _c	12000000	12000000	12000000	12000000	12000000	12000000	
ep	0	13	27	39	51	56	
σ _{c,PQ} (MPa)	0,7998361	0,7365595	0,583577	0,4510756	0,344434018	0,308325	
$\Delta \sigma_{p,cc+cs+r}$	305,13971	300,92699	288,55439	273,77322	256,7544456	249,26997	
$\Delta \sigma_{p,cc+cs+r}/$	21,889506	21,587302	20,699741	19,639399	18,41853986	17,881633	20,0

		Métod	o Alternativo	adaptado po	or Bastos (2019))	
secão	1	2	3	4	5	6	
E _{CS}	0.000481	0.000481	0.000481	0.000481	0.000481	0.000481	
Ep	200000	200000	200000	200000	200000	200000	
φ(t,t0)	3,21	3,21	3,21	3,21	3,21	3,21	
σ _{c.p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
E _c (MPa)	30000	30000	30000	30000	30000	30000	
α _{ep,k}	8,0576667	8,0576667	8,0576667	8,0576667	8,057666667	8,0576667	
ρ _{ps}	0,0090164	0,0090164	0,0090164	0,0090164	0,009016393	0,0090164	
es	66	66	66	66	66	66	
Δ ε _{p,cs}	89,684335	87,111022	84,499959	82,383369	80,3702213	79,560155	
Δερ,cc	144,84113	138,74739	135,71642	140,56384	162,5166078	179,10794	
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394	
$\Delta \sigma_{pr}(MPa)$	291,16164	291,16164	291,16164	291,16164	291,1616435	291,16164	
φ (t,σ _{pi})	0,2088678	0,2088678	0,2088678	0,2088678	0,20886775	0,2088678	
σ _{сро}	127,98314	117,85814	93,379158	72,177388	55,11347767	49,335606	
$\Delta \sigma_{\rm pr}(MPa)$	22,253256	22,557774	26,492205	31,490953	39,21979742	43,722806	
$\Delta \sigma_{p,cs+cc+r}$	256,77872	248,41619	246,70859	254,43816	282,1066265	302,3909	
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	18,420282	17,820387	17,69789	18,252379	20,2372042	21,692317	19,0
			Método de	Vasconcelo	s (1980)		
Ep	200000						
Y	30						
Ec	30672						
ε _{cs,∞}	0,000481						
0,8(1-f _{cj} /f _{c∞})	0,144						
ф 1с	2,5						
\$ 2c	1,37						
φ∞	3,969						
n	6,5206051						
seção	1	2	3	4	5	6	
∆σ _{pr} (MPa)	8,3189041	8,3189041	8,3189041	8,3189041	8,3189041	8,3189041	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
η	6,5206051	6,5206051	6,5206051	6,5206051	6,520605112	6,5206051	
Ac	6100	6100	6100	6100	6100	6100	
σ_{cp0}	4,7882726	4,7882726	4,7882726	4,7882726	4,788272638	4,7882726	
σ _{p0}	1406	1406	1406	1406	1406	1406	
$\Delta \sigma_{p,c+s}$	297,42728	297,42728	297,42728	297,42728	297,4272846	297,42728	
$\Delta \sigma_{p,c+s+r}$	293,00022	293,00022	293,00022	293,00022	293,0002227	293,00022	
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	21,018667	21,018667	21,018667	21,018667	21,01866734	21,018667	21,0

Tabela 11B- Umidade de 70 % com um tempo de protensão de 30 dias

			Dados				Perdas
F _{ck}	30	MPa					progressivas
A _c	0,61	m²		6100	Cm ²		(%)
I _c	0,12	m^4					
A _s	9						
Ap	35	Cm ²					
f _{ptk}	190						
ρ _ρ	0,00574						
e _p	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,85814	93,379158	72,177388	55,11347767	49,335606	
		M	étodo simplificad	do da NBR 61	18:2014		
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,0004507	-0,0004507	-0,0004507	-0,0004507	-0,0004507	-0,0004507	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ (t,t ₀)	2,366	2,366	2,366	2,366	2,366	2,366	
Хр	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,183	2,183	2,183	2,183	2,183	2,183	
η	1	1,0859083	1,370575	1,773175	2,322175	2,5941333	
ρ _p	0,005737705	0,0057377	0,0057377	0,0057377	0,005737705	0,0057377	
$\Delta \sigma_{pr}(t,t_0)$	-255,3011661	-252,41149	-248,21213	-247,20451	-255,8301518	-263,8242	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	18,31428738	18,106994	17,805748	17,733465	18,35223471	18,925696	18,2
		M	étodo aproximad	do da NBR 61	18:2014		
		para aços de	e relaxação baix	a (RB) (valor e	em porcentagem):	
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ (t,t ₀)	2,366	2,366	2,366	2,366	2,366	2,366	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{pr}(t,t_0)$	16,38978121	16,302162	16,354733	16,749022	17,99322172	18,895705	17,1
		Método simpli	ficado do Euroc	ode 2 adaptad	o por Bastos (20	19)	
seção	1	2	3	4	5	6	
α _p	0,0004507	0,0004507	0,0004507	0,0004507	0,0004507	0,0004507	
φ (t,t ₀)	200000	200000	200000	200000	200000	200000	
$\sigma_{c,p0g}$ (MPa)	6,52	6,52	6,52	6,52	6,52	6,52	
$\Delta \sigma_{pr}(t,t_0)$	2,366	2,366	2,366	2,366	2,366	2,366	
α _p	291,1616435	291,16164	291,16164	291,16164	291,1616435	291,16164	
φ (t,t ₀)	35	35	35	35	35	35	
$\sigma_{c,p0g}$ (MPa)	6100	6100	6100	6100	6100	6100	
$\Delta \sigma_{\rm pr}(t,t_0)$	12000000	12000000	12000000	12000000	12000000	12000000	
α _p	0	13	27	39	51	56	
φ (t,t ₀)	0,799836066	0,7365595	0,583577	0,4510756	0,344434018	0,308325	
$\Delta \sigma_{pr}(t,t_0)$	302,6547905	299,26344	289,17988	276,89412	262,4323913	255,9668	
$\Delta \sigma p, cc+cs+r/$	21,71124753	21,467966	20,744611	19,863279	18,82585303	18,362037	20,2

	Método alternativo adaptado por Bastos (2019)											
seção	1	2	3	4	5	6						
ε _{cs}	0,0004507	0,0004507	0,0004507	0,0004507	0,0004507	0,0004507						
Ep	200000	200000	200000	200000	200000	200000						
αρ	2,366	2,366	2,366	2,366	2,366	2,366						
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12						
E _c (MPa)	30000	30000	30000	30000	30000	30000						
$\bar{\alpha}_{ep,k}$	7,691933333	7,6919333	7,6919333	7,6919333	7,691933333	7,6919333						
$ ho_{ps}$	0,007213115	0,0072131	0,0072131	0,0072131	0,007213115	0,0072131						
es	66	66	66	66	66	66						
$\Delta \epsilon_{p,cs}$	85,40167607	83,487575	81,519929	79,905733	78,35422137	77,725398						
$\Delta_{\text{ep,cc}}$	108,4948047	104,60219	102,99281	107,24554	124,6327592	137,6415						
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394						
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,16164	291,16164	291,16164	291,1616435	291,16164						
$\phi(t,\sigma_{pi})$	0,2366	0,2366	0,2366	0,2366	0,2366	0,2366						
σ_{cpo}	127,98314	117,85814	93,379158	72,177388	55,11347767	49,335606						
$\Delta \sigma_{pr}(MPa)$	15,59509642	16,616803	21,562206	27,20282	34,9868708	39,283004						
$\Delta \sigma_{p,cs+cc+r}$	209,4915772	204,70657	206,07495	214,35409	237,9738514	254,6499						
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	15,02809019	14,684833	14,782995	15,376907	17,07129494	18,267568	15,9					
			Método de Va	asconcelos (19	980)							
ε _{cs}	200000											
Ep	75	U<90%										
∆εp,cs	0,8500035											
$\sigma_{c,p0g}$ (MPa)	30000											
E _c (MPa)	0,0004507											
$\bar{\alpha}_{ep,k}$	0,248706133											
$ ho_{ps}$	3,39783											
es	0,674514991											
$\Delta \epsilon_{p,cs}$	2,366											
$\Delta_{\mathrm{ep,cc}}$	6,666666667											
σ _{pi} (MPa)	-0,000477088											
$\Delta \sigma_{pr}(MPa)$	1	2	3	4	5	6						
$\phi(t,\sigma_{\rm pi})$	29,11616435	29,116164	29,116164	29,116164	29,11616435	29,116164						
σ_{cpo}	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099						
$\Delta \sigma_{pr}(MPa)$	1	1,086	1,371	1,773	2,322	2,594						
$\Delta \sigma_{p,cs+cc+r}$	6100	6100	6100	6100	6100	6100						
$\Delta\sigma_{\text{p,cs+cc+r}}/\sigma_{\text{p0}}$	0,734329492	0,7974818	1,0067657	1,3019662	1,70511308	1,9048507						
σ_{p0}	1406	1406	1406	1406	1406	1406						
$\Delta \sigma_{p,c+s}$	205,5314854	205,60754	205,86031	206,21873	206,7118246	206,95768						
$\Delta \sigma_{p,c+s+r}$	233,99357	234,01291	234,07718	234,16831	234,2936803	234,35619						
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	16,78576543	16,787153	16,791763	16,7983	16,80729414	16,811778	16,8					

Tabela 12B- Umidade de 70 % com um tempo de protensão de 60 dias

			Dados							
F _{ck}	30	MPA								
Ac	0,61	m²		6100	cm ²		Perdas			
l _c	0,12	m^4					progressivas (%)			
As	9									
Ap	35	Cm ²								
f _{ptk}	190									
ρ	0,00574									
ep	0	0,13	0,27	0,39	0,51	0,56				
P _i (kN)	4879	4879	4879	4879	4879	4879				
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
Método simplficado da NBR 6118:2014										
seção	1	2	3	4	5	6				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065				
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394				
ε _{cs}	-0,0003648	-0,0003648	-0,0003648	-0,0003648	-0,0003648	-0,0003648				
Ep	200000	200000	200000	200000	200000	200000				
α _p	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	2,1846	2,1846	2,1846	2,1846	2,1846	2,1846				
Xp	1,065	1,065	1,065	1,065	1,065	1,065				
Xc	2,0923	2,0923	2,0923	2,0923	2,0923	2,0923				
η	1	1,085908333	1,370575	1,773175	2,322175	2,594133333				
ρ	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705				
$\Delta \sigma_{pr}(t,t_0)$	-233,5212774	-230,9172537	-227,2572101	-226,6326519	-235,0441324	-242,668079				
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	16,75188503	16,56508277	16,30252583	16,25772252	16,86112858	17,4080401	16,7			
		N	létodo aproxima	do da NBR 6118	8:2014					
		para aços d	le relaxação bai:	xa (RB) (valor er	m porcentagem)	:				
seção	1	2	3	4	5	6				
α _p	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	2,1846	2,1846	2,1846	2,1846	2,1846	2,1846				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
$\Delta \sigma_{\rm pr}(t,t_0)$	15,65432025	15,57386878	15,62213966	15,98417125	17,12658204	17,95523213	16,3			
	•	Método simpl	ificado do Euroc	ode 2 adaptado	por Bastos (201	19)				
seção	1	2	3	4	5	6				
αρ	0,0003648	0,0003648	0,0003648	0,0003648	0,0003648	0,0003648				
φ(t,t ₀)	200000	200000	200000	200000	200000	200000				
$\sigma_{c,p0g}$ (MPa)	6,52	6,52	6,52	6,52	6,52	6,52				
$\Delta \sigma_{\rm pr}(t,t_0)$	2,1846	2,1846	2,1846	2,1846	2,1846	2,1846				
α _p	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
φ(t,t ₀)	35	35	35	35	35	35				
$\sigma_{c,p0g}$ (MPa)	6100	6100	6100	6100	6100	6100				
$\Delta \sigma_{pr}(t,t_0)$	12000000	12000000	12000000	12000000	12000000	12000000				
α _p	0	13	27	39	51	56				
φ (t,t ₀)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964				
$\Delta \sigma_{pr}(t,t_0)$	287,7082482	284,6119539	275,4023766	264,1660047	250,9050239	244,9615672				
$\Delta_{\sigma p, cc+cs+r}/$	20,6390422	20,41692639	19,75626805	18,95021555	17,99892567	17,5725658	19,2			

	Método alternativo adaptado por Bastos (2019)										
seção	1	2	3	4	5	6					
ε _{cs}	0,0003648	0,0003648	0,0003648	0,0003648	0,0003648	0,0003648					
Ep	200000	200000	200000	200000	200000	200000					
∆σpr(t,t0)	2,1846	2,1846	2,1846	2,1846	2,1846	2,1846					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
E _c (MPa)	30000	30000	30000	30000	30000	30000					
$\bar{\alpha}_{ep,k}$	7,613326667	7,613326667	7,613326667	7,613326667	7,613326667	7,613326667					
$ ho_{ps}$	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115					
es	66	66	66	66	66	66					
$\Delta \epsilon_{p,cs}$	69,16191802	67,62648042	66,04739537	64,7514361	63,50535586	63,00019781					
$\Delta_{\text{ep,cc}}$	100,2304071	96,65529544	95,18943259	99,13810514	115,2311993	127,267722					
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394					
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435					
$\phi(t,\sigma_{pi})$	0,21846	0,21846	0,21846	0,21846	0,21846	0,21846					
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598					
$\Delta \sigma_{pr}(MPa)$	9,046250585	10,14170676	14,82418649	20,03543699	27,00669752	30,78807327					
$\Delta \sigma_{p,cs+cc+r}$	178,4385757	174,4234826	176,0610144	183,9249782	205,7432527	221,055993					
$\Delta\sigma_{\text{p,cs+cc+r}}/\sigma_{\text{p0}}$	12,80047172	12,51244495	12,62991495	13,19404435	14,75920034	15,85767525	13,6				
			Método de \	asconcelos (19	980)						
ε _{cs}	200000										
Ep	75	U<90%									
∆εp,cs	0,8500035										
$\sigma_{c,p0g}$ (MPa)	30000										
E _c (MPa)	0,0003648										
$\bar{\alpha}_{ep,k}$	0,172128812										
$ ho_{ps}$	3,39783										
es	0,674514991										
$\Delta \epsilon_{p,cs}$	2,1846										
$\Delta_{\mathrm{ep,cc}}$	6,666666667										
σ _{pi} (MPa)	-0,000477088										
$\Delta \sigma_{pr}(MPa)$	1	2	3	4	5	6					
$\phi(t,\sigma_{pi})$	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435					
σ_{cpo}	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
$\Delta \sigma_{pr}(MPa)$	1	1,086	1,371	1,773	2,322	2,594					
$\Delta \sigma_{\rm p,cs+cc+r}$	6100	6100	6100	6100	6100	6100					
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702					
σ_{p0}	1406	1406	1406	1406	1406	1406					
$\Delta \sigma_{p,c+s}$	179,4705853	179,5378488	179,7613653	180,0782399	180,5140362	180,7312661					
$\Delta \sigma_{p,c+s+r}$	208,0244765	208,0429989	208,1045487	208,1918065	208,3118118	208,3716304					
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	14,92284624	14,92417496	14,92859029	14,93484982	14,94345852	14,94774967	14,9				

Tabela 13B- Umidade de 75 % com um tempo de protensão de 5 dias

(continua)

			Dados				Perdas
Fck	30	MPA					Progressivas
Ac	0.61	m²		6100	cm ²		(%)
	0.12	m^4		0100	onn		
10	0,12						
<u>^</u>	0						
AS	3	om2					
Ap	35	CIII-					
тртк	190						
ρρ	0,00574						
ер	0	0,13	0,27	0,39	0,51	0,56	
Pi(KN)	4879	4879	4879	4879	4879	4879	
P0	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σcpo	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,3356059	
		Métod	o simplificado d	a NBR 6118:20′	14		
seção	1	2	3	4	5	6	
σc,p0g (Mpa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t0)	0,065	0,065	0,065	0,065	0,065	0,065	
σp0(Mpa)	1394	1394	1394	1394	1394	1394	
εcs	-0,00035215	-0,00035215	-0,00035215	-0,00035215	-0,00035215	- 0.00035215	
Ep	200000	200000	200000	200000	200000	200000	
αρ	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t0)	2,7215	2,7215	2,7215	2,7215	2,7215	2,7215	
Хр	1,065	1,065	1,065	1,065	1,065	1,065	
χc	2,36075	2,36075	2,36075	2,36075	2,36075	2,36075	
n	1	1,085908333	1,370575	1,773175	2,322175	2,59413333	
ρρ	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,00573770	
∆σpr(t,t0)	- 251.3300172	- 248.1589809	- 243.7964326	- 243.2369372	- 253.7900798	- 263.202754	
Δσpr(t,t0)/σp0	18,029413	17,8019355	17,48898369	17,44884772	18,20588808	18,8811157	18,0
		Metod	o aproximado d	a NBR 6118:20	4		
	para aço	s de relaxação	baixa (RB) (valo	r em porcentage	em):		
seção	1	2	3	4	5	6	
αρ	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t t0)	2,7215	2,7215	2,7215	2,7215	2,7215	2,7215	
	7 26	7 16	7 22	7.67	9.09	10.12	
	17 84235064	17 74057335	17 80163973	18 25963756	19 70487517	20 7531813	18.7
	17,04233004 Mi	todo simplificad	lo do Eurocodo	2 adaptado por	19,70407517 Bactos (2010)	20,7551015	10,7
socão	1				5 Eastos (2019)	6	
Seçao	0.00025215	0.00025215	0.00025215	4	0.00025215	0 00025215	
En	200000	200000	200000	200000	200000	200000	
	200000	200000	200000	200000	200000	200000	
up	0,52	0,32	0,32	0,32	0,32	0,32	
$\psi(t,t0)$	2,7215	2,7213	2,7213	2,7213	2,7213	2,7215	
	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,161643	
Ap	35	35	35	35	35	30	
AC	12000000	12000000	12000000	12000000	12000000	12000000	
IC	1200000	1200000	1200000	1200000	1200000	12000000	
ep	0	13	27	39	51	56	
σc,PQ (Mpa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,30832496	
∆σp,cc+cs+r	283,8176061	280,2564122	269,7679835	257,1641448	242,5301831	236,043495	
∆σp,cc+cs+r/	20,35994305	20,1044772	19,35207916	18,44793005	17,398148	16,9331671	18,8

Método Alternativo adaptado por Bastos (2019)											
seção	1	2	3	4	5	6					
εcs	0,00035215	0,00035215	0,00035215	0,00035215	0,00035215	0,00035215					
Ep	200000	200000	200000	200000	200000	200000					
φ(t,t0)	2,7215	2,7215	2,7215	2,7215	2,7215	2,7215					
σc,p0g (Mpa)	7,26	7,16	7,22	7,67	9,09	10,12					
Ec(Mpa)	30000	30000	30000	30000	30000	30000					
āep,k	7,845983333	7,845983333	7,845983333	7,845983333	7,845983333	7,84598333					
ρps	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115	0,00721311					
es	66	66	66	66	66	66					
∆εp,cs	66,65758225	65,13591913	63,57303569	62,29191242	61,06140354	60,5629224					
∆εp,cc	124,665295	120,1414749	118,2413933	123,0796973	142,9848609	157,887129					
σpi(Mpa)	1394	1394	1394	1394	1394	1394					
∆σpr(Mpa)	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,161643					
φ(t,σpi)	0,27215	0,27215	0,27215	0,27215	0,27215	0,27215					
σp0(Mpa)	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,3356059					
∆σpr(Mpa)	17,2379095	18,34814909	24,06765891	30,80580743	40,53205791	46,0244963					
∆σp,cs+cc+r	208,5607868	203,6255432	205,8820879	216,1774171	244,5783223	264,474547					
Δσp,cs+cc+r/σp 0	14,96131899	14,6072843	14,76915982	15,50770568	17,54507334	18,9723492	16,1				
		M	étodo do vascor	ncelos (1980)							
Ep	200000										
Y	75	U<90%									
ε2s	0,8500035										
EC	30000										
εcs,∞	0,00035215										
0,8(1-fcj/fc∞)	0,498395722										
φ1c	3,3976875										
ф2с	0,674514991										
φ∞	2,7215										
n	6,666666667										
ε1s	- 0,000477092										
seção	1	2	3	4	5	6					
∆σpr(Mpa)	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435	29,1161643					
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
η	1	1,086	1,371	1,773	2,322	2,594					
Ac	6100	6100	6100	6100	6100	6100					
σcp0	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,90485070 2					
σр0	1406	1406	1406	1406	1406	1406					
∆σp,c+s	203,2422984	203,3370301	203,6519349	204,0986618	204,7136059	205,020378					
∆σp,c+s+r	231,5080787	231,5290187	231,5986267	231,6973734	231,8333037	231,901114					
∆σp,c+s+r/σp0	16,60746619	16,60896834	16,61396175	16,62104544	16,63079653	16,6356609	16,6				

Tabela 14B- Umidade de 75 % com um tempo de protensão de 7 dias

F _{ck}	30	Мра					Perdas Progressivas
A _c	0,61	m²		6100	CM ²		(%)
I _c	0,12	m ⁴					
A _s	9						
Ap	35	Cm ²					
f _{ptk}	190						
ρ	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,41	4479,41	4479,41	4479,4099	4479,41	
σ_{cpo}	127,98314	117,8581	93,37916	72,17739	55,11347767	49,33561	
	•	•	Método sim	olificado da N	NBR 6118:2014		
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065	
σ _{p0} (Mpa)	1394	1394	1394	1394	1394	1394	
ε _{cs}	-0,000353	-0,00035	-0,00035	-0,00035	-0,000353	-0,00035	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ (t,t ₀)	2,43	2,43	2,43	2,43	2,43	2,43	
Хр	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,215	2,215	2,215	2,215	2,215	2,215	
η	1	1,085908	1,370575	1,773175	2,322175	2,594133	
$\rho_{\rm p}$	0,005737705	0,005738	0,005738	0,005738	0,005737705	0,005738	
$\Delta \sigma_{pr}(t,t_0)$	-240,651182	-237,796	-233,843	-233,289	-242,7413789	-251,217	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	17,26335593	17,05855	16,775	16,73525	17,41329835	18,02132	17,2
			Método Apro	oximado da N	NBR 6118:2014		
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ (t,t ₀)	2,43	2,43	2,43	2,43	2,43	2,43	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{pr}(t,t_0)$	16,65022002	16,56006	16,61416	17,01987	18,30011306	19,22874	17,3
		Método simp	lificado do E	urocode 2 ad	daptado por BAS	TOS (2019)	1
seção	1	2	3	4	5	6	
ε _{cs}	0,000353	0,000353	0,000353	0,000353	0,000353	0,000353	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	2,43	2,43	2,43	2,43	2,43	2,43	
$\Delta \sigma_{\rm pr}({\rm MPa})$	291,1616435	291,1616	291,1616	291,1616	291,1616435	291,1616	
Ар	35	35	35	35	35	35	
Ac	6100	6100	6100	6100	6100	6100	
lc	12000000	12000000	12000000	12000000	12000000	12000000	
e _p	0	13	27	39	51	56	
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559	0,583577	0,451076	0,344434018	0,308325	
$\Delta \sigma_{p,cc+cs+r}$	284,8317759	281,5293	271,7546	259,9173	246,0569121	239,8798	
$\Delta \sigma_{p,cc+cs+r}$	20,43269555	20,19579	19,49459	18,64543	17,65114147	17,20802	18,9

	Método simplificado Alternativo adaptado por Bastos (2019)										
seção	1	2	3	4	5	6					
ε _{cs}	0,000353	0,000353	0,000353	0,000353	0,000353	0,000353					
Ep	200000	200000	200000	200000	200000	200000					
φ(t,t0)	2,43	2,43	2,43	2,43	2,43	2,43					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
E _c (MPa)	30000	30000	30000	30000	30000	30000					
$\bar{\alpha}_{ep,k}$	7,719666667	7,719667	7,719667	7,719667	7,719666667	7,719667					
ρ _{ps}	0,007213115	0,007213	0,007213	0,007213	0,007213115	0,007213					
es	66	66	66	66	66	66					
$\Delta \epsilon_{p,cs}$	66,87614615	65,37225	63,82653	62,55865	61,34015373	60,84635					
$\Delta_{\text{ep,cc}}$	111,4084604	107,4031	105,7423	110,1014	127,9437444	141,2945					
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394					
$\Delta \sigma_{pr}$ (MPa)	291,1616435	291,1616	291,1616	291,1616	291,1616435	291,1616					
$\phi(t,\sigma_{pi})$	0,243	0,243	0,243	0,243	0,243	0,243					
σ_{cpo}	127,98314	117,8581	93,37916	72,17739	55,11347767	49,33561					
$\Delta \sigma_{pr}$ (MPa)	12,22325636	13,34488	18,51409	24,4173	32,60341218	37,13168					
$\Delta \sigma_{p,cs+cc+r}$	190,5078629	186,1202	188,0829	197,0774	221,8873103	239,2725					
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	13,66627424	13,35152	13,49232	14,13755	15,91731064	17,16446	14,6				
			método	do Vasconce	elos(1980)						
Ep	200000										
Ep	75										
Y	0,278538813										
	30000										
Ec	0,000353										
ε _{cs,∞}	0,447401485										
$0,8(1-f_{cj}/f_{c^{\infty}})$	3,3976875										
ф _{1с}	0,674514991										
\$ 2c	2,43										
φ∞	6,666666667										
n	-0,00047709										
seção	1	2	3	4	5	6					
$\Delta \sigma_{pr}(MPa)$	29,11616435	29,11616	29,11616	29,11616	29,11616435	29,11616					
Po	4479,4099	4479,41	4479,41	4479,41	4479,4099	4479,41					
η	1	1,086	1,371	1,773	2,322	2,594					
Ac	6100	6100	6100	6100	6100	6100					
σ_{cp0}	0,734329492	0,797482	1,006766	1,301966	1,70511308	1,904851					
σ_{p0}	1406	1406	1406	1406	1406	1406					
$\Delta \sigma_{p,c+s}$	189,1261178	189,2054	189,4689	189,8425	190,3566176	190,613					
$\Delta \sigma_{p,c+s+r}$	217,5544644	217,5741	217,6393	217,7318	217,8590884	217,9226					
$\Delta \sigma_{\text{p,c+s+r}} / \sigma_{\text{p0}}$	15,60648956	15,6079	15,61258	15,61921	15,62834206	15,63289	15,6				

Tabela 15B-Umidade de 75 % com um tempo de protensão de 30 dias

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dados											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F _{ck}	30	Мра					Progressivas				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A _c	0,61	m²		6100	Cm ²		(%)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _c	0,12	m^4									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A _s	9										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ap	35	Cm ²									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	f _{ptk}	190										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ρ	0,00574										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ep	0	0,13	0,27	0,39	0,51	0,56					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P _i (kN)	4879	4879	4879	4879	4879	4879					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
Método simplificado da NBR 6118:2014 seção 1 2 3 4 5 6 $\sigma_{c,b0}$ (MPa) 7,26 7,16 7,22 7,67 9,09 10,12 X(t.b) 0.065 0.065 0.065 0.065 0.065 0.065 σ_{p0} (MPa) 1394 1394 1394 1394 1394 1394 ϵ_{ca} -0.000326075 -0.000326075 -0.000326075 -0.000326075 -0.000326075 σ_p 6,52 6,52 6,52 6,52 6,52 6,52 $\phi(t, t_0)$ 2,161 2,161 2,161 2,161 2,161 2,161 χ_o 1,065 1,065 1,065 1,065 1,065 1,065 χ_o 1,065 1,065 1,065 1,065 1,065 1,065 χ_o 1,065 1,065 1,065 1,065 1,065 1,065 χ_o 1,065 1,065 1,065 1,065 1,065 <td< td=""><td>σ_{сро}</td><td>127,98314</td><td>117,8581433</td><td>93,37915838</td><td>72,17738802</td><td>55,11347767</td><td>49,33560598</td><td></td></td<>	σ _{сро}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Método simplificado da NBR 6118:2014											
$\begin{array}{c cccc} \sigma_{\rm gas}(MPa) & 7,26 & 7,16 & 7,22 & 7,67 & 9,09 & 10,12 \\ \chi(t,b) & 0.065 & 0.065 & 0.065 & 0.065 & 0.065 & 0.065 \\ \sigma_{\rm ga}(MPa) & 1394 & 1394 & 1394 & 1394 & 1394 & 1394 & 1394 \\ \varepsilon_{\rm cs} & -0.000326075 & -0.000326075 & -0.000326075 & -0.000326075 & -0.000326075 \\ \hline E_{\rm p} & 200000 & 200000 & 200000 & 200000 & 200000 & 200000 \\ \sigma_{\rm p} & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 \\ \phi(t,b) & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 \\ \chi_{\rm p} & 1.065 & 1.065 & 1.065 & 1.065 & 1.065 & 1.065 \\ \chi_{\rm c} & 2,0805 & 2,0805 & 2,0805 & 2,0805 & 2,0805 & 2,0805 \\ \hline \Pi & 1 & 1.08590833 & 1,370575 & 1,773175 & 2,322175 & 2,094133333 \\ \rho_{\rm p} & 0.005737705 & 0.005737705 & 0.005737705 & 0.005737705 & 0.005737705 \\ \Delta \sigma_{\rm p}(t,b) & -225,858954 & -223,3175163 & -219,3610452 & -227,8975594 & -235,5449728 \\ \hline \Delta \sigma_{\rm p}(t,b)\sigma_{\rm p0} & 16,20207714 & 16,01990791 & 15,76873683 & 15,73608646 & 16,34846193 & 16,89705687 & 16,1 \\ \hline Metodo aproximado da NBR 6118.2014 \\ \hline Tara aços de relaxação baixa (RB) (valor em porcentagem): \\ \hline seção & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \sigma_{\rm p} & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 \\ \phi(t,b) & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 \\ \sigma_{\rm cpo}(MPa) & 7,26 & 7,16 & 7,22 & 7,67 & 9.09 & 10,12 \\ \hline \Delta \sigma_{\rm p}(t,b) & 15,5584397 & 15,4794221 & 15,52713522 & 15,8849864 & 17,01419421 & 17,83326948 & 16,2 \\ \hline Metodo simplificado do Eurocode 2 adaptado por Bastos (2019) \\ seção & 1 & 2 & 3 & 4 & 5 & 6 \\ \varepsilon_{\rm s} & 0.000326075 & 0.000326075 & 0.000326075 & 0.000326075 & 0.000326075 \\ \hline E_{\rm p} & 200000 & 200000 & 200000 & 200000 & 200000 & 200000 & 200000 \\ \sigma_{\rm g} & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 \\ \phi(t,b) & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 \\ \Delta \sigma_{\rm cM}(Pa) & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 \\ \sigma_{\rm s,m}(MPa) & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & $	seção	1	2	3	4	5	6					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	σ _{c.p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\chi(t,t_0)$	0,065	0,065	0,065	0,065	0,065	0,065					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε _{cs}	-0,000326075	-0,000326075	-0,000326075	-0,000326075	-0,000326075	-0,000326075					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E	200000	200000	200000	200000	200000	200000					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	α	6,52	6,52	6,52	6,52	6,52	6,52					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	φ(t.t ₀)	2.161	2.161	2.161	2.161	2.161	2.161					
χ_c 2,08052,08052,08052,08052,08052,08052,0805Π11,0859083331,3705751,7731752,3221752,594133333 ρ_p 0,0057377050,0057377050,0057377050,0057377050,005737705 $\Delta \sigma_{\rm pr}(t,b_i)$ -225,8569554-223,3175163-219,8161774-219,3610452-227,8875594-235,5449728 $\Delta \sigma_{\rm pr}(t,b_i)\sigma_{p0}$ 16,2020771416,0199079115,7687358315,7360864616,3484619316,8970568716,1Método aproximado da NBR 6118:2014método aproximado da NBR 6118:2014seção123456 α_p 6,526,526,526,526,526,52 $\phi(t,b_i)$ 2,1612,1612,1612,1612,1612,161Método simplificado do Eurocode 2 adaptado por Bastos (2019)Seção123456Método simplificado do Eurocode 26,526,526,52 (t,t_0) <	X _n	1.065	1.065	1.065	1.065	1.065	1.065					
Π11,0859083331,3705751,7731752,3221752,594133333 ρ_p 0,0057377050,0057377050,0057377050,0057377050,0057377050,005737705 $\Delta \sigma_{pr}(t,t_0)$ -225,8569554-223,3175163-219,8161774-219,3610452-227,8975594-235,5449728 $\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$ 16,2020771416,0199079115,7867358315,7360864616,3484619316,8970568716,1Método aproximado da NBR 6118:2014Método aproximado da NBR 6118:2014método aproximado da NBR 6118:2014Seção123456 α_p 6,526,526,526,526,526,52 $\phi(t,t_0)$ 2,1612,1612,1612,1612,1612,161 $\Delta \sigma_{p}(t,t_0)$ 15,5589439715,479422115,5271352215,849836417,0141942117,832694816,2Método simplificado do Eurocode 2 adaptado por Bastos (2019)seção123456Método simplificado do Eurocode 2 adaptado por Bastos (2019)seção123456Método simplificado do Eurocode 2 adaptado por Bastos (2019)seção123456Método simplificado do Eurocode 2 adaptado por Bastos (2019)seção123456 <th cols<="" td=""><td>Xc</td><td>2.0805</td><td>2.0805</td><td>2.0805</td><td>2.0805</td><td>2.0805</td><td>2.0805</td><td></td></th>	<td>Xc</td> <td>2.0805</td> <td>2.0805</td> <td>2.0805</td> <td>2.0805</td> <td>2.0805</td> <td>2.0805</td> <td></td>	Xc	2.0805	2.0805	2.0805	2.0805	2.0805	2.0805				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n	1	1.085908333	1.370575	1.773175	2.322175	2.594133333					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ρ _p	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta \sigma_{\rm pr}(t,t_0)$	-225.8569554	-223.3175163	-219.8161774	-219.3610452	-227.8975594	-235.5449728					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\Delta \sigma_{\rm pr}(t,t_0)/\sigma_{\rm p0}$	16.20207714	16.01990791	15.76873583	15.73608646	16.34846193	16.89705687	16.1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pr(1,10), - po		N	létodo aproxima	do da NBR 611	8:2014		,.				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			para acos o	le relaxação bai	xa (RB) (valor ei	m porcentagem)	:					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	secão	1	2	3	4	5	6					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a.	6.52	6.52	6.52	6.52	6.52	6.52					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	φ(t t _o)	2,161	2,161	2,161	2,161	2,161	2,161					
$\begin{array}{c c} \Delta \sigma_{\rm pr}({\rm t,t_0}) & 15,55894397 & 15,4794221 & 15,52713522 & 15,88498364 & 17,01419421 & 17,83326948 & 16,2 \\ \hline Método simplificado do Eurocode 2 adaptado por Bastos (2019) \\ \hline Seção & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \varepsilon_{\rm cs} & 0,000326075 & 0,000326075 & 0,000326075 & 0,000326075 & 0,000326075 \\ \hline E_{\rm p} & 200000 & 200000 & 200000 & 200000 & 200000 & 200000 \\ \hline \alpha_{\rm p} & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 & 6,52 \\ \hline \phi({\rm t,t_0}) & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 & 2,161 \\ \Delta \sigma_{\rm pr}({\rm MPa}) & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 & 291,1616435 \\ \hline A_{\rm p} & 35 & 35 & 35 & 35 & 35 & 35 \\ \hline A_{\rm c} & 6100 & 6100 & 6100 & 6100 & 6100 & 6100 \\ \hline I_{\rm c} & 12000000 & 1200000 & 1200000 & 1200000 & 1200000 & 1200000 \\ \hline e_{\rm p} & 0 & 13 & 27 & 39 & 51 & 56 \\ \hline \sigma_{\rm c,PQ}({\rm MPa}) & 0,799836066 & 0,736559469 & 0,583577014 & 0,45107565 & 0,344434018 & 0,308324964 \\ \hline \Delta \sigma_{\rm p,cortester} & 280,7533655 & 277,7343202 & 268,7631046 & 257,8294352 & 244,9340147 & 239,1555079 \\ \hline \Delta \sigma_{\rm p,cortester} & 20,14012665 & 19,92355238 & 19,27999316 & 18,49565533 & 17,57058929 & 17,15606226 & 18,7 \\ \hline \end{array}$	$\sigma_{c,p0q}$ (MPa)	7.26	7.16	7.22	7.67	9.09	10.12					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta \sigma_{\rm er}(t,t_0)$	15.55894397	15.4794221	15.52713522	15.88498364	17.01419421	17.83326948	16.2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10,0000 1001	Método simpl	ificado do Euroc	code 2 adaptado	por Bastos (201	19)	,_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	secão	1	2	3	4	5	6					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ere	0.000326075	0.000326075	0.000326075	0.000326075	0.000326075	0.000326075					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E _n	200000	200000	200000	200000	200000	200000					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	α,	6.52	6,52	6.52	6,52	6.52	6.52					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\phi(t,t_0)$	2.161	2.161	2.161	2.161	2.161	2.161					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta \sigma_{\rm er}({\rm MPa})$	291,1616435	291,1616435	291,1616435	291,1616435	291.1616435	291,1616435					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	An	35	35	35	35	35	35					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ac	6100	6100	6100	6100	6100	6100					
e_p 0 13 27 39 51 56 $\sigma_{c,PQ}$ (MPa) 0,799836066 0,736559469 0,583577014 0,45107565 0,344434018 0,308324964 $\Delta\sigma_{p,cc+cs+r}$ 280,7533655 277,7343202 268,7631046 257,8294352 244,9340147 239,1555079 $\Delta\sigma_{p,cc+cs+r}$ 20,14012665 19,92355238 19,27999316 18,495655333 17,57058929 17,15606226 18,7		12000000	12000000	12000000	12000000	12000000	12000000					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	e,	0	13	27	39	51	56					
$\frac{\Delta \sigma_{p,cc+cs+r}}{\Delta \sigma_{p,cc+cs+r}} = 280,7533655 = 277,7343202 = 268,7631046 = 257,8294352 = 244,9340147 = 239,1555079 = 239,1555079 = 239,1525238 = 19,27999316 = 18,49565533 = 17,57058929 = 17,15606226 = 18,7000000000000000000000000000000000000$	σ_{ePO} (MPa)	0.799836066	0.736559469	0.583577014	0.45107565	0.344434018	0.308324964					
$\Delta \sigma_{\rm p, construct}$ 20.14012665 19.92355238 19.27999316 18.49565533 17.57058929 17.15606226 18.7	Δσ	280,7533655	277,7343202	268,7631046	257.8294352	244,9340147	239,1555079					
	$\Delta \sigma_{\rm p,cc+cs+r}$	20.14012665	19.92355238	19.27999316	18.49565533	17.57058929	17.15606226	18.7				

Método simplificado Alternativo adaptado por Bastos (2019)							
seção	1	2	3	4	5	6	
ε _{cs}	0,000326075	0,000326075	0,000326075	0,000326075	0,000326075	0,000326075	
Ep	200000	200000	200000	200000	200000	200000	
φ(t,t0)	2,161	2,161	2,161	2,161	2,161	2,161	
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
E _c (MPa)	30000	30000	30000	30000	30000	30000	
α _{ep,k}	7,6031	7,6031	7,6031	7,6031	7,6031	7,6031	
ρ _{ps}	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115	
es	66	66	66	66	66	66	
$\Delta \epsilon_{p,cs}$	61,82442297	60,45359139	59,04371072	57,88655668	56,77388723	56,32279906	
$\Delta_{\epsilon p, cc}$	99,15456225	95,62052807	94,17309648	98,08194963	114,0062139	125,9159514	
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394	
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	
$\phi(t,\sigma_{pi})$	0,2161	0,2161	0,2161	0,2161	0,2161	0,2161	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
$\Delta \sigma_{pr}(MPa)$	7,130402151	8,258472441	12,93091591	18,10726066	24,99555733	28,72036953	
$\Delta \sigma_{p,cs+cc+r}$	168,1093874	164,3325919	166,1477231	174,075767	195,7756585	210,95912	
$\Delta\sigma_{p,cs+cc+r}/\sigma_{p0}$	12,05949694	11,7885647	11,91877497	12,48750122	14,04416488	15,13336586	12,9
			Método de V	asconcelos (19	980)		-
Ep	200000						
Y	75	U<90%					
hfic	0,8500035						
EC	30000						
εcs,∞	0,000326075						
0,8(1-f _{cj} /fc∞)	0,248706133						
ф _{1с}	3,3976875						
ф _{2с}	0,674514991						
φ∞	2,161						
n	6,666666667						
£ 1s	-0,000477092						
seção	1	2	3	4	5	6	
$\Delta \sigma_{pr}(MPa)$	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
η	1	1,086	1,371	1,773	2,322	2,594	
Ac	6100	6100	6100	6100	6100	6100	
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702	
σ_{p0}	1406	1406	1406	1406	1406	1406	
$\Delta \sigma_{p,c+s}$	170,5706024	170,6367583	170,8565909	171,1682337	171,5968177	171,8104451	
$\Delta \sigma_{p,c+s+r}$	199,1360227	199,154439	199,2156354	199,3023898	199,4216979	199,4811669	
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	14,28522401	14,28654512	14,29093511	14,29715852	14,30571721	14,30998328	14,2

Tabela 16B- Umidade de 75 % com um tempo de protensão de 60 dias

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \Delta \sigma_{pr}(t,t_0) = -212,7333658 = -210,5021288 = -207,3990368 = -206,943293 = -214,369449 = -221,0673167 \\ \Delta \sigma_{pr}(t,t_0)/\sigma_{p0} = 15,26064317 = 15,10058313 = 14,87797969 = 14,84528644 = 15,37800926 = 15,85848757 = 15,2 \\ Método aproximado da NBR 6118-2014 = -2014,2014 = -2014,2014 = -2014,2014 = -2014,2014 = -2014,2014 = -2014,2014,2014 = -2014,2014,2014 = -2014,2014,2014,2014,2014,2014,2014,2014,$							
$\Delta \sigma_{\rm pr}({\rm t},{\rm t}_{\rm 0})/\sigma_{\rm p0} = 15,26064317 = 15,10058313 = 14,87/97969 = 14,84528644 = 15,37800926 = 15,85848757 = 15,258757 = 15,25757 = 15,257577 = 15,2575777 = 15,2575777 = 15,257577 = 15,257777 = 15,25777 = 15,$							
para acos de relaxação baixa (RB) (valor em porcentagem):							
a 652 652 652 652 652							
dp 0,02 0,02 0,02 0,02 0,02 0,02 d/t t_) 1.88 1.88 1.88 1.88 1.88 1.88							
(q_{1},q_{2}) 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0							
$\frac{\sigma_{c,p00}}{\Lambda \sigma_{c}(t_{L})} = \frac{14.4291409}{14.36063075} = \frac{14.40173684}{14.71003249} = \frac{15.68287655}{15.68287655} = \frac{16.38853105}{15.0} = \frac{15.0}{15.0}$							
$\Delta v_{pr}(1,10) = 14,4231403 = 14,50005075 = 14,40175004 = 14,71005243 = 15,00207055 = 10,50055105 = 15,0$							
secão 1 2 3 4 5 6							
E 200000 200000 200000 200000 200000 200000 200000							
Cp 200000 200000 200000 200000 200000 200000							
dp 0,02 0,02 0,02 0,02 0,02 0,02 d/t t_) 1.88 1.88 1.88 1.88 1.88 1.88							
ψ(τ,t) 1,00 1,00 1,00 1,00 1,00 1,00 1,00							
Δ. 35 35 35 35 35 35 35 35 35							
Δ 6100 6100 6100 6100 6100 6100							
L 12000000 12000000 12000000 12000000 12000000							
σ _p 0 13 27 33 31 30 σ _{c cc} (MPa) 0.700836066 0.736559469 0.583577014 0.45107565 0.344434018 0.308324064							
Δσ ₂ σ ₂							

Método Alternativo Adaptado por Bastos (2019)							
seção	1	2	3	4	5	6	
ε _{cs}	0,000312	0,000312	0,000312	0,000312	0,000312	0,000312	
Ep	200000	200000	200000	200000	200000	200000	
φ(t,t0)	1,88	1,88	1,88	1,88	1,88	1,88	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
E _c (MPa)	30000	30000	30000	30000	30000	30000	
$\bar{\alpha}_{ep,k}$	7,481333333	7,481333333	7,481333333	7,481333333	7,481333333	7,481333333	
ρ _{ps}	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115	0,007213115	
es	66	66	66	66	66	66	
$\Delta \epsilon_{p,cs}$	59,2050742	57,91183346	56,58084419	55,48775005	54,43609073	54,00957264	
$\Delta_{\text{ep,cc}}$	86,33314281	83,28414613	82,05189601	85,4819616	99,3877395	109,7825348	
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394	
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	
$\phi(t,\sigma_{pi})$	0,188	0,188	0,188	0,188	0,188	0,188	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
$\Delta \sigma_{pr}(MPa)$	3,300354478	4,387513215	8,50767338	12,93295684	18,55754628	21,51782227	
$\Delta \sigma_{p,cs+cc+r}$	148,8385715	145,5834928	147,1404136	153,9026685	172,3813765	185,3099297	
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	10,67708547	10,44357911	10,5552664	11,04036359	12,3659524	13,29339524	11,4
			método do V	asconcelos (19	980)		
Ep	200000						
Y	75	U<90%					
hfic	0,8500035						
EC	30000						
εcs,∞	0,000312						
0,8(1-f _{cj} /fc∞)	0,172128812						
ф _{1с}	3,3976875						
\$ 2c	0,674514991						
φ∞	1,88						
n	6,66666667						
٤ _{1s}	-0,000477092						
seção	1	2	3	4	5	6	
$\Delta \sigma_{pr}(MPa)$	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435	29,11616435	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
η	1	1,086	1,371	1,773	2,322	2,594	
Ac	6100	6100	6100	6100	6100	6100	
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702	
σ _{p0}	1406	1406	1406	1406	1406	1406	
$\Delta \sigma_{p,c+s}$	154,0108179	154,0644295	154,2425454	154,4949625	154,841931	155,0148057	
$\Delta \sigma_{p,c+s+r}$	182,7061774	182,7233324	182,7803269	182,8610969	182,972122	183,0274394	
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	13,10661244	13,10784307	13,11193163	13,11772574	13,12569024	13,12965849	13,1

Tabela 17B- Umidade de 90 % com um tempo de protensão de 5 dias

(continu	a)
۰.	00110110	~,

Dados							Dardaa			
F _{ck}	30	MPA					Progressivas			
Ac	0,61	m²		6100	cm ²		(%)			
I _c	0,12	m^4								
A _s	20									
Ap	35	Cm ²								
f _{ptk}	190									
ρ	0,00574									
ep	0	0,13	0,27	0,39	0,51	0,56				
P _i (kN)	4879	4879	4879	4879	4879	4879				
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
Método simplificado da NBR 6118:2014										
seção	1	2	3	4	5	6				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065				
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394				
ε _{cs}	-0,000174	-0,000174	-0,000174	-0,000174	-0,000174	-0,000174				
Ep	200000	200000	200000	200000	200000	200000				
αρ	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	1,98	1,98	1,98	1,98	1,98	1,98				
Xp	1,065	1,065	1,065	1,065	1,065	1,065				
Xc	1,99	1,99	1,99	1,99	1,99	1,99				
<u> </u>	1	1,085908333	1,370575	1,773175	2,322175	2,594133333				
	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705				
$\Delta \sigma_{\rm pr}(t,t_0)$	-192,3160711	-190,1160134	-187,3274077	-187,4901327	-196,1087642	-203,5217602				
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	13,79598789	13,63816452	13,43812107	13,44979431	14,06806056	14,59983933	13,8			
	•	N	létodo aproxima	do da NBR 611	8:2014					
		para aços d	le relaxação bai	xa (RB) (valor ei	m porcentagem)	:				
seção	1	2	3	4	5	6				
αρ	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	1,98	1,98	1,98	1,98	1,98	1,98				
σ _{c.p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
$\Delta \sigma_{\rm pr}(t,t_0)$	14,82993653	14,75751999	14,80096991	15,12684432	16,15515912	16,90104944	15,4			
Método simplificado do Eurocode 2 adaptado por Bastos (2019)										
seção	1	2	3	4	5	6				
ε _{cs}	0,000174	0,000174	0,000174	0,000174	0,000174	0,000174				
Ep	200000	200000	200000	200000	200000	200000				
αρ	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	1,98	1,98	1,98	1,98	1,98	1,98				
$\Delta \sigma_{\rm pr}({\rm MPa})$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
Ap	35	35	35	35	35	35				
A _c	6100	6100	6100	6100	6100	6100				
I _c	12000000	12000000	12000000	12000000	12000000	12000000				
ep	0	13	27	39	51	56				
σ _{c,PQ} (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964				
$\Delta \sigma_{p,cc+cs+r}$	253,545401	250,9005872	243,060166	233,524638	222,2791103	217,2344159				
Δ _{σp,cc+cs+r} /	18,1883358	17,99860741	17,43616686	16,75212611	15,94541681	15,58353055	17,0			
	Método alternativo adaptado por bastos (2019)									
---	---	--------------	-------------	-------------	-------------	-------------	-----	--	--	--
seção	1	2	3	4	5	6				
ε _{cs}	0,000174	0,000174	0,000174	0,000174	0,000174	0,000174				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	1,98	1,98	1,98	1,98	1,98	1,98				
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E₀(MPa)	30000	30000	30000	30000	30000	30000				
āα _{ep,k}	7,524666667	7,524666667	7,524666667	7,524666667	7,524666667	7,524666667				
ρ _{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	32,5889885	31,71027432	30,81546568	30,08773141	29,39357631	29,11370823				
$\Delta_{\text{sp,cc}}$	89,74333178	86,12073123	84,39187187	87,53454824	101,347024	111,7564828				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
φ(t,σ _{pi})	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	-1,180274001	-0,005668208	4,559202669	9,491972265	15,79606694	19,11862282				
$\Delta \sigma_{p,cs+cc+r}$	121,1520463	117,8253373	119,7665402	127,1142519	146,5366672	159,9888138				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	8,690964582	8,452319752	8,591573904	9,118669435	10,51195604	11,47695939	9,5			
Método de vasconcelos (1980)										
ε _{cs}	200000									
Ep	55	U<90%								
∆εp,cs	0,8500035									
$\sigma_{c,p0g}$ (MPa)	30000									
E _c (MPa)	0,000174									
$\bar{\alpha}_{ep,k}$	0,498395722									
$ ho_{ps}$	3,39727									
es	0,674514991									
$\Delta \epsilon_{p,cs}$	1,98									
$\Delta_{\text{ep,cc}}$	6,666666667									
σ _{pi} (MPa)	-0,000477104									
$\Delta \sigma_{pr}(MPa)$	1	2	3	4	5	6				
$\phi(t,\sigma_{pi})$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
σ_{cpo}	1265	1272	1278	1282	1285	1297				
$\Delta \sigma_{pr}(MPa)$	1	1,086	1,371	1,773	2,322	2,594				
$\Delta \sigma_{p,cs+cc+r}$	6100	6100	6100	6100	6100	6100				
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σр0	1406	1406	1406	1406	1406	1406				
Δσp,c+s	130,8198877	130,8372122	130,8924379	130,9701299	131,0763566	131,133341				
∆σp,c+s+r	132,9858917	132,9993443	133,0118787	133,0212577	133,029494	133,0533154				
$\Delta \sigma p,c+s+r/\sigma p0$	9,539877454	9,540842486	9,541741659	9,542414467	9,543005311	9,544714159	9,5			

Tabela 18B-Umidade de 90 % com um tempo de protensão de 7 dias

(continu	ia)

Dados										
F _{ck}	30	MPA					Progressivas			
Ac	0,61	m²		6100	Cm ²		(%)			
I _c	0,12	m^4								
As	20									
Ap	35	Cm ²								
f _{ptk}	190									
ρ	0,00574									
ep	0	0,13	0,27	0,39	0,51	0,56				
P _i (kN)	4879	4879	4879	4879	4879	4879				
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
Método simplificado da NBR6118:2014										
seção	1	2	3	4	5	6				
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065				
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394				
ε _{cs}	-0,0001734	-0,0001734	-0,0001734	-0,0001734	-0,0001734	-0,0001734				
Ep	200000	200000	200000	200000	200000	200000				
α _p	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	1,95	1,95	1,95	1,95	1,95	1,95				
Xp	1,065	1,065	1,065	1,065	1,065	1,065				
Xc	1,975	1,975	1,975	1,975	1,975	1,975				
η	1	1,085908333	1,370575	1,773175	2,322175	2,594133333				
ρ	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705				
$\Delta \sigma_{pr}(t,t_0)$	-191,0585789	-188,8894949	-186,1371461	-186,2913995	-194,7805299	-202,0868467				
$\Delta \sigma_{\rm pr}(t,t_0)/\sigma_{\rm p0}$	13,70578041	13,55017897	13,35273645	13,36380197	13,97277833	14,49690436	13,7			
	•	N	létodo aproxima	do da NBR 6118	8:2014					
seção	1	2	3	4	5	6				
α _p	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	1,95	1,95	1,95	1,95	1,95	1,95				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
$\Delta \sigma_{pr}(t,t_0)$	14,70954567	14,63830254	14,68104842	15,00164253	16,01329505	16,74709934	15,3			
	•	Método simpl	ificado do Euroc	ode 2 adaptado	por Bastos (201	19)				
seção	1	2	3	4	5	6				
ε _{cs}	0,0001734	0,0001734	0,0001734	0,0001734	0,0001734	0,0001734				
Ep	200000	200000	200000	200000	200000	200000				
α _p	6,52	6,52	6,52	6,52	6,52	6,52				
φ(t,t ₀)	1,95	1,95	1,95	1,95	1,95	1,95				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
Ap	35	35	35	35	35	35				
A _c	6100	6100	6100	6100	6100	6100				
I _c	12000000	12000000	12000000	12000000	12000000	12000000				
e _p	0	13	27	39	51	56				
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964				
$\Delta \sigma_{p,cc+cs+r}$	253,5008609	250,8829685	243,1175803	233,6644426	222,5049507	217,4952648				
$\Delta \sigma_{p,cc+cs+r}$	18,18514067	17,99734351	17,44028553	16,76215514	15,9616177	15,60224281	17,0			

	Método Alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,0001734	0,0001734	0,0001734	0,0001734	0,0001734	0,0001734				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	1,95	1,95	1,95	1,95	1,95	1,95				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	7,511666667	7,511666667	7,511666667	7,511666667	7,511666667	7,511666667				
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	32,4801779	31,60577656	30,71528133	29,99099674	29,30008337	29,02150882				
$\Delta_{\text{ep,cc}}$	88,39328691	84,82888356	83,12965125	86,2284396	99,83825986	110,094282				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
$\phi(t,\sigma_{pi})$	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	-1,484981862	-0,297319738	4,274640209	9,19896354	15,46140711	18,7521852				
$\Delta \sigma_{p,cs+cc+r}$	119,3884829	116,1373404	118,1195728	125,4183999	144,5997503	157,867976				
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	8,564453583	8,331229582	8,473427029	8,997015774	10,37300935	11,32481894	9,3			
Método de Vasconcelos (1980)										
Ep	200000									
Y	55	U<90%								
hfic	0,8500035									
EC	30000									
εcs,∞	0,0001734									
0,8(1-f _{cj} /fc∞)	0,447401485									
ф _{1с}	3,39727									
\$ 2c	0,674514991									
φ∞	1,95									
n	6,66666667									
٤ _{1s}	-0,000477104									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(MPa)$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
Po	1265	1272	1278	1282	1285	1297				
η	1	1,086	1,371	1,773	2,322	2,594				
Ac	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σ _{p0}	1406	1406	1406	1406	1406	1406				
$\Delta \sigma_{p,c+s}$	129,2436434	129,2605763	129,3145533	129,3904879	129,4943101	129,5500039				
$\Delta \sigma_{p,c+s+r}$	131,4138569	131,427306	131,43983	131,4491941	131,4574102	131,4812199				
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	9,427105949	9,428070735	9,428969151	9,429640899	9,43023029	9,4319383	9,43			

Tabela 19B- Umidade de 90 % com um tempo de protensão de 30 dias

			Dadas								
E	30	MPA	Dudoo				Perdas				
	0.61	m ²		6100	cm ²		progressivas (%)				
	0,01	m^4		0100	Cill						
	20										
Δ A	35	cm ²									
τ _p f	100	CITI									
Iptk	0.00574										
ρ	0,00374	0.12	0.27	0.20	0.51	0.56					
	4970	0,13	0,27	0,39	0,31	0,50					
	4679	4679	4679	4679	4679	4079					
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
σ _{сро}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598					
seçao	1	2	3	4	5	6					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
χ(t,t _o)	0,065	0,065	0,065	0,065	0,065	0,065					
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394					
ε _{cs}	-0,000166	-0,000166	-0,000166	-0,000166	-0,000166	-0,000166					
Ep	200000	200000	200000	200000	200000	200000					
α _p	6,52	6,52	6,52	6,52	6,52	6,52					
φ (t,t ₀)	1,58	1,58	1,58	1,58	1,58	1,58					
Xp	1,065	1,065	1,065	1,065	1,065	1,065					
Xc	1,79	1,79	1,79	1,79	1,79	1,79					
η	1	1,085908333	1,370575	1,773175	2,322175	2,594133333					
ρ_{p}	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705					
$\Delta \sigma_{pr}(t,t_0)$	-175,4469975	-173,6544069	-171,3271185	-171,3413263	-178,1657746	-184,112284					
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	12,58586782	12,45727453	12,29032414	12,29134335	12,78090205	13,20748092	12,6				
	•	M	létodo Aproxima	do da NBR 611	8:2014	•					
		para aços d	le relaxação bai:	xa (RB) (valor er	m porcentagem)	:					
seção	1	2	3	4	5	6					
α _p	6,52	6,52	6,52	6,52	6,52	6,52					
φ (t,t ₀)	1,58	1,58	1,58	1,58	1,58	1,58					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
$\Delta \sigma_{pr}(t,t_0)$	13,23601545	13,17913421	13,21326295	13,46922854	14,27694218	14,86281898	13,7				
	•	Método simpl	ificado do Euroc	ode 2 adaptado	por Bastos (201	19)					
seção	1	2	3	4	5	6					
ε _{cs}	0,000166	0,000166	0,000166	0,000166	0,000166	0,000166					
Ep	200000	200000	200000	200000	200000	200000					
αρ	6,52	6,52	6,52	6,52	6,52	6,52					
φ(t,t ₀)	1,58	1,58	1,58	1,58	1,58	1,58					
$\Delta \sigma_{\rm pr}$ (MPa)	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435					
A _n	35	35	35	35	35	35					
A _c	6100	6100	6100	6100	6100	6100					
l.	12000000	12000000	12000000	12000000	12000000	12000000					
e,	0	13	27	39	51	56					
σ _{c PO} (MPa)	0.799836066	0.736559469	0.583577014	0.45107565	0.344434018	0.308324964					
$\Lambda \sigma_{\rm D} = 100000000000000000000000000000000000$	252,9454697	250.6630833	243.8360998	235.4205212	225.3550199	220.7943122					
Δσn cc+cs+r/	18.14529912	17.98156982	17.49182925	16.88812921	16.16607029	15.83890331	17.1				

Método alternativo adaptado por Bastos (2019)										
seção	1	2	3	4	5	6				
ε _{cs}	0,000166	0,000166	0,000166	0,000166	0,000166	0,000166				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t0)	1,58	1,58	1,58	1,58	1,58	1,58				
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
α _{ep,k}	7,351333333	7,351333333	7,351333333	7,351333333	7,351333333	7,351333333				
ρ _{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	31,1362135	30,3143295	29,4764068	28,79420281	28,14286246	27,8800864				
$\Delta_{\epsilon p, cc}$	71,71832889	68,86344313	67,52109604	70,06936269	81,16333719	89,5163513				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{\rm pr}$ (MPa)	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
φ(t,σ _{pi})	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{\rm pr}$ (MPa)	-5,248553644	-3,901726998	0,755755465	5,573881846	11,31911191	14,21571278				
$\Delta \sigma_{p,cs+cc+r}$	97,60598875	95,27604563	97,7532583	104,4374473	120,6253116	131,6121505				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	7,001864329	6,834723503	7,01242886	7,491925921	8,653178734	9,441330737	7,7			
Método de vasconcelos (1980)										
ε _{cs}	200000									
Ep	55	U<90%								
∆εp,cs	0,8500035									
$\sigma_{c,p0g}$ (MPa)	30000									
E _c (MPa)	0,000166									
ᾱ _{ep,k}	0,248706133									
$ ho_{ps}$	3,39727									
es	0,674514991									
$\Delta \epsilon_{p,cs}$	1,58									
$\Delta_{\epsilon p, cc}$	6,666666667									
σ _{pi} (MPa)	-0,000477104									
$\Delta \sigma_{pr}(MPa)$	1	2	3	4	5	6				
$\phi(t,\sigma_{pi})$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
σ_{cpo}	1265	1272	1278	1282	1285	1297				
$\Delta \sigma_{pr}(MPa)$	1	1,086	1,371	1,773	2,322	2,594				
$\Delta\sigma_{p,cs+cc+r}$	6100	6100	6100	6100	6100	6100				
$\Delta \sigma_{\text{p,cs+cc+r}} / \sigma_{\text{p0}}$	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σp0	1406	1406	1406	1406	1406	1406				
∆σp,c+s	109,8068356	109,8192657	109,8588863	109,9146172	109,9908021	110,0316639				
∆σp,c+s+r	112,025428	112,0388349	112,0512289	112,0604107	112,0683773	112,092043				
$\Delta \sigma p,c+s+r/\sigma p0$	8,036257387	8,037219145	8,038108241	8,038766909	8,0393384	8,041036081	8,0			

Tabela 20B- Umidade de 90 % com um tempo de protensão de 60 dias

(n)	ntir	nia)
(00)	iiui	iuuj

			Dadaa							
	20	MDA	Dados				Perdas			
F _{ck}	30	MPA		0100			Progressivas			
Ac	0,61	m²		6100	CM ²		(70)			
I _c	0,12	m′4								
A _s	20				-					
Ap	35	Cm ²								
f _{ptk}	190									
ρ _p	0,00574									
ep	0	0,13	0,27	0,39	0,51	0,56				
P _i (kN)	4879	4879	4879	4879	4879	4879				
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
Método simplificado da NBR 6118:2014										
seção	1	2	3	4	5	6				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
χ(t,t ₀)	0,065	0,065	0,065	0,065	0,065	0,065				
σ _{p0} (MPa)	1394	1394	1394	1394	1394	1394				
ε _{cs}	-0,000166	-0,000166	-0,000166	-0,000166	-0,000166	-0,000166				
Ep	200000	200000	200000	200000	200000	200000				
α	6.52	6.52	6.52	6.52	6.52	6.52				
φ(t t _o)	1.1	1.1	1.1	1.1	1.1	1.1				
Y ₂	1.065	1.065	1.065	1 065	1.065	1 065				
Xp X	1,55	1.55	1.55	1.55	1,55	1.55				
n n	1	1 085908333	1 370575	1 773175	2 322175	2 594133333				
	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705				
Δσ. (t.t.)	-156 6171244	-155 2896251	-153 /259177	-153 1225257	-157 5486037	-161 5823371				
$\Delta \sigma_{pr}(t,t_0)$	11 22509794	11 12095922	11 00616330	10.08430026	11 20100845	11 50127220	11.2			
$\Delta O_{\rm pr}(t,t_0)/O_{\rm p0}$	11,23300704	11,13903033	lótodo aprovima	10,90439920	9.2014	11,53121253	11,2			
				va (PR) (valor o	m porcontagom)					
	4									
seçao	6.50	2 6.50	5	4	5	6.50				
	0,52	0,52	0,52	0,52	0,52	0,52				
φ(t,t ₀)	1,1	1,1	1,1	1,1	1,1	1,1				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
$\Delta \sigma_{\rm pr}(t,t_0)$	11,3613528	11,322/4313	11,34590893	11,51965248	12,06790988	12,46558955	11,7			
~		Método simpl	ificado do Euroc	ode 2 adaptado	por Bastos (20	19)				
seção	1	2	3	4	5	6				
α _p	0,000166	0,000166	0,000166	0,000166	0,000166	0,000166				
φ(t,t ₀)	200000	200000	200000	200000	200000	200000				
$\sigma_{c,p0g}$ (MPa)	6,52	6,52	6,52	6,52	6,52	6,52				
$\Delta \sigma_{pr}(t,t_0)$	1,1	1,1	1,1	1,1	1,1	1,1				
α _p	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
φ (t,t ₀)	35	35	35	35	35	35				
$\sigma_{c,p0g}$ (MPa)	6100	6100	6100	6100	6100	6100				
$\Delta \sigma_{pr}(t,t_0)$	12000000	12000000	12000000	12000000	12000000	12000000				
α _p	0	13	27	39	51	56				
φ (t,t ₀)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964				
σ _{c,p0g} (MPa)	254,0016763	252,1542752	246,5490718	239,4971537	230,8906084	226,9367639				
$\Delta \sigma_{\rm pr}(t,t_0)$	18,22106716	18,08854198	17,68644704	17,18057057	16,56317134	16,2795383	17,3			

	Método Alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,000166	0,000166	0,000166	0,000166	0,000166	0,000166				
Ep	200000	200000	200000	200000	200000	200000				
Δσpr(t,t0)	1,1	1,1	1,1	1,1	1,1	1,1				
σ _{c,p0g} (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
āα _{ep,k}	7,143333333	7,143333333	7,143333333	7,143333333	7,143333333	7,143333333				
ρ _{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	31,1910733	30,38906436	29,57024427	28,90272597	28,26467948	28,00706523				
$\Delta_{\text{ep,cc}}$	50,0184561	48,06109857	47,15800803	48,96632511	56,75070885	62,60535143				
σ _{pi} (MPa)	1394	1394	1394	1394	1394	1394				
$\Delta \sigma_{pr}(MPa)$	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435	291,1616435				
φ(t,σ _{pi})	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775	0,20886775				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	-9,769498804	-8,2310562	-3,477837288	1,188804857	6,245544801	8,621394572				
$\Delta \sigma_{p,cs+cc+r}$	71,4400306	70,21910673	73,25041501	79,05785594	91,26093313	99,23381122				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	5,124822855	5,037238646	5,254692612	5,671295261	6,546695347	7,118637821	5,8			
Método de Vasconcelos (1980)										
ε _{cs}	200000									
Ep	55	U<90%								
∆ερ,cc	0,8500035									
$\sigma_{c,p0g}$ (MPa)	30000									
E _c (MPa)	0,000166									
ᾱ _{ep,k}	0,172128812									
$ ho_{ps}$	3,39727									
es	0,674514991									
$\Delta \epsilon_{p,cs}$	1,1									
$\Delta_{\text{ep,cc}}$	6,666666667									
σ _{pi} (MPa)	-0,000477104									
$\Delta \sigma_{pr}(MPa)$	1	2	3	4	5	6				
$\phi(t,\sigma_{pi})$	2,349285714	2,362285714	2,373428571	2,380857143	2,386428571	2,408714286				
σ_{cpo}	1265	1272	1278	1282	1285	1297				
$\Delta \sigma_{pr}(MPa)$	1	1,086	1,371	1,773	2,322	2,594				
$\Delta \sigma_{p,cs+cc+r}$	6100	6100	6100	6100	6100	6100				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	0,207377049	0,226457705	0,287235738	0,372620656	0,489142623	0,551543934				
σр0	1406	1406	1406	1406	1406	1406				
Δσp,c+s	86,52126738	86,52875722	86,55262879	86,58620124	86,63208469	86,65668921				
∆σp,c+s+r	88,79287175	88,80622392	88,81844954	88,82739516	88,83503857	88,85851786				
Δσp,c+s+r/σp0	6,369646467	6,370604298	6,371481316	6,372123039	6,372671347	6,374355657	6,4			

ANEXO C- Tabelas de cálculos para cada método de perda progressivas, considerando tensões variando de 0,5 f_{ptk} a 0,8 f_{ptk}, coeficiente relaxação de ψ_{1000} para aços de relaxação baixa (RB) e Relaxação normal (RN).

		Perdas							
F _{ck}	30	MPA					Progressivas		
Ac	0,61	m²		6100	cm ²		(%)		
I _c	0,12	m^4							
Ψ ₁₀₀₀	0		Ψ∞	0					
As	20								
Ap	35	Cm ²							
f _{ptk}	190								
ρ	0,00574								
ep	0	0,13	0,27	0,39	0,51	0,56			
P _i (kN)	4879	4879	4879	4879	4879	4879			
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099			
σ _{cpo}	127.98314	117.8581433	93.37915838	72.17738802	55.11347767	49.33560598			
	,	N	létodo simplifica	do da NBR 6118	8:2014	-,			
seção 1 2 3 4 5 6									
$\sigma_{c,p0q}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12			
x(t.t _o)	0	0	0	0	0	0			
σ _{p0} (Mpa)	950	950	950	950	950	950			
(بی طربت) عربی	-0.000481	-0.000481	-0.000481	-0.000481	-0.000481	-0.000481			
F-	200000	200000	200000	200000	200000	200000			
p	6.52	6.52	6.52	6.52	6.52	6.52			
φ(t t _o)	3.21	3 21	3.21	3 21	3.21	3.21			
Ψ(¹ , ¹ 0)	1.065	1.065	1.065	1.065	1.065	1,065			
Λp V	2 605	2,605	2 605	2,605	2,605	2 605			
n n	1	1 085908333	1 370575	1 773175	2 322175	2 594133333			
	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705			
$\frac{PP}{\Delta \sigma}$	-213 4676176	-210 1536548	-206 3372375	-207 4057594	-221 8275958	-233 7246263			
$\Delta \sigma_{\rm pr}(t,t_0)$	213,4070170	210,1000040	21 71070021	207,4037034	22 1,027 3330	24 60250224	22.7		
	22,47027334	22,12140704 M	létodo aprovima	do da NBR 611	20,00027024 8·2014	24,00200224	22,1		
		nara acos d	le relavação baix	(RB) (valor er	m porcentagem)	•			
secão	1	2	3		5	6			
30ç40	6.52	6.52	6.52	6.52	6.52	6.52			
d_p	3.21	3.21	3.21	3.21	3.21	3.21			
$\varphi(\mathbf{u},\mathbf{u})$	7.26	7.16	7.22	7.67	9.09	10.12			
$O_{c,p0g}$ (ivit a)	10 850876/1	10 738/3512	10,8112000	20 3577857	3,03	23 33300732	20.9		
$\Delta O_{\rm pr}(t,t_0)$	19,03907041	Mátodo simpl	ificado do Euroc	20,3377037	22,00223203	23,33309732	20,9		
cocão	1				рот Basios (201	6			
Seçau	0.000481	2	0.000481	4	0.000481	0 000481			
ε _{cs}	200000	200000	200000	200000	200000	200000			
⊂p α	200000	200000	200000	200000	200000	200000			
d_p	0,52	2.21	2.21	2.21	2.21	0,52			
$\varphi(\iota,\iota_0)$	3,21	3,21	3,21	3,21	3,21	3,21			
∆∪ _{pr} (1,1 ₀)	0	0	0	0	0	0			
A _p	35	3D	35 6100	ა ა	35 6100	ა ა			
A _c	12000000	12000000	12000000	12000000	12000000	12000000			
I _C	12000000	12000000	1200000	1200000	1200000	12000000			
e _p	0	13	27	39	51	56			
σ _{c,PQ} (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964			
Δ _{σp,cc+cs+r}	99,6401338	97,48554003	91,64760295	85,42276125	78,94037346	76,25046954	• -		
$\Delta \sigma_{p,cc+cs+r/}$	10,48843514	10,26163579	9,6471161	8,991869605	8,309512996	8,026365214	9,3		

Tabela 1C - Cálculo das perdas progressivas para tensão 0,5 f_{ptk} e aço de protensão tipo RB.

	Método Alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481				
Ep	200000	200000	200000	200000	200000	200000				
φ (t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	6,666666667	6,666666667	6,666666667	6,666666667	6,666666667	6,666666667				
$ ho_{ps}$	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	90,74536082	88,55537276	86,31214229	84,4779058	82,7200065	82,00895527				
$\Delta \epsilon_{p,cc}$	146,554701	141,0479047	138,6269905	144,1375728	167,268108	184,6207425				
σ _{pi} (Mpa)	950	950	950	950	950	950				
$\Delta \sigma_{pr}(t,t_0)$	0	0	0	0	0	0				
φ(t,σ _{pi})	0	0	0	0	0	0				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
Δσ _{pr} (MPa)	0	0	0	0	0	0				
Δσ _{p,cs+cc+r}	237,3000619	229,6032775	224,9391327	228,6154786	249,9881145	266,6296977				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	24,97895388	24,16876605	23,67780345	24,06478722	26,31453836	28,06628397	25,2			
Método de vasconcelos (1980)										
Ep	200000									
Ŷ	30	U<90%								
Ec	30672									
ε _{cs} ,∞	0,000481									
0,8(1-f _{cj} /fc∞)	0,144									
ф _{1с}	2,5									
\$ _{2c}	1,37									
φ∞	3,969									
n	6,520605112									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(Mpa)$	0	0	0	0	0	0				
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
η	1	1,086	1,371	1,773	2,322	2,594				
A _c	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702				
σ_{p0}	950	950	950	950	950	950				
$\Delta \sigma_{p,c+s}$	286,9604036	287,2112841	288,0474281	289,2393536	290,8912617	291,7202116				
$\Delta \sigma_{p,c+s+r}$	284,0908451	284,0908451	284,0908451	284,0908451	284,0908451	284,0908451				
$\Delta \sigma_{\text{p,c+s+r}} / \sigma_{\text{p0}}$	29,90429948	29,90429948	29,90429948	29,90429948	29,90429948	29,90429948	29,9			

			Dados				
F _{ck}	30	Мра					Perdas
Ac	0,61	m²		6100	cm ²		Progressivas (%)
l _c	0,12	m^4					
Ψ ₁₀₀₀	0		Ψ∞	0			
As	20						
An	35	cm ²					
fotk	190						
ρ _m	0.00574						
e _p	0	0.13	0.27	0.39	0.51	0.56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479.4099	4479,4099	4479.4099	4479.4099	4479.4099	4479.4099	
σ _{στο}	127.98314	117.8581433	93.37915838	72.17738802	55.11347767	49.33560598	
- 000	,	,				,	
			Método Simplifi	cado da NBR 6	118:2014		
secão	1	2	3	4	5	6	
$\sigma_{c,n0a}$ (MPa)	7.26	7.16	7.22	7.67	9.09	10.12	
$\mathbf{x}(t t_0)$	0	0	0	0	0	0	
$\sigma_{\rm p0}({\rm Mpa})$	990	990	990	990	990	990	
εω	-0.000481	-0.000481	-0.000481	-0.000481	-0.000481	-0.000481	
E.	200000	200000	200000	200000	200000	200000	
a _p	6.52	6.52	6.52	6.52	6.52	6.52	
$\phi(t, t_0)$	3.21	3 21	3.21	3 21	3 21	3.21	
Ψ(ι,ι) V-	1.065	1.065	1 065	1.065	1 065	1 065	
Np	2 605	2 605	2 605	2 605	2 605	2 605	
n	1	1 085908333	1 370575	1 773175	2 322175	2 594133333	
0	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	
$\Delta \sigma_{\rm eff}(t,t_0)$	-213 467618	-210 153655	-206 337238	-207 405759	-221 8275958	-233 724626	
$\Delta \sigma_{rr}(t,t_0)/\sigma_{rr}(t,t_0)$	21 56238562	21 22764189	20 84214521	20.9500767	22 40682786	23 60854811	21.8
	21,00200002	21,22701100	Método aproxin	nado da NBR 6	118 .2014	20,00001011	21,0
		para acos	de relaxação b	aixa (RN) (valo	r em porcentage	em):	
secão	1	2	3	4	5	6	
d ^o	6.52	6.52	6.52	6.52	6.52	6.52	
$\phi(t t_0)$	3,21	3,21	3.21	3.21	3,21	3.21	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7.22	7.67	9.09	10.12	
$\Delta \sigma_{\rm er}(t,t_0)$	26.98198426	26.89541522	26.94735665	27.33691736	28.56619783	29.45785902	27.7
	Método s	simplificado da	Eurocode 2 a	daptado por Ba	stos (2019)	20, 101 00002	,.
secão	1	2	3	4	5	6	
£	0.000481	0.000481	0.000481	0.000481	0.000481	0.000481	
En En	200000	200000	200000	200000	200000	200000	
p	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t t _o)	3 21	3 21	3.21	3.21	3 21	3.21	
$\Delta \sigma_{\rm e}(t,t_{\rm o})$	0	0	0	0	0	0	
Δορη(1,10)	35	35	35	35	35	35	
Δ.	6100	6100	6100	6100	6100	6100	
	12000000	12000000	12000000	12000000	12000000	12000000	
'с е	0	13	27	39	51	56	
	0 799836066	0 736559469	0.583577014	0.45107565	0 344434018	0 308324964	
	99 6401338	97 48554003	91 64760205	85 42276125	78 94037346	76 25046954	
$\Delta \sigma_{\rm p,cc+cs+r}$	10.06465998	9.847024246	9.257333631	8.628561743	7.973775097	7,70206763	89
	. 0,00 100000	5,51152-72-70	2,20,000001	3,020001140	.,	.,	0,0

	Método alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481				
Ep	200000	200000	200000	200000	200000	200000				
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	6,666666667	6,666666667	6,666666667	6,666666667	6,66666667	6,666666667				
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	90,74536082	88,55537276	86,31214229	84,4779058	82,7200065	82,00895527				
$\Delta \epsilon_{p,cc}$	146,554701	141,0479047	138,6269905	144,1375728	167,268108	184,6207425				
σ _{pi} (Mpa)	990	990	990	990	990	990				
$\Delta \sigma_{pr}(t,t_0)$	0	0	0	0	0	0				
φ(t,σ _{pi})	0	0	0	0	0	0				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}(MPa)$	0	0	0	0	0	0				
Δσ _{p,cs+cc+r}	237,3000619	229,6032775	224,9391327	228,6154786	249,9881145	266,6296977				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	23,96970322	23,19225025	22,72112452	23,09247259	25,25132469	26,9322927	24,2			
Método do Vasconcelos (1980)										
Ep	200000									
γ	30	U<90%								
Ec	30672									
ε _{cs} ,∞	0,000481									
0,8(1-f _{cj} /fc∞)	0,144									
ф _{1с}	2,5									
ф _{2с}	1,37									
¢∞	3,969									
n	6,520605112									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(Mpa)$	0	0	0	0	0	0				
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
η	1	1,086	1,371	1,773	2,322	2,594				
Ac	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702				
σ_{p0}	990	990	990	990	990	990				
$\Delta \sigma_{p,c+s}$	286,8427637	287,0831978	287,8843386	289,0258693	290,6069685	291,3999629				
$\Delta \sigma_{p,c+s+r}$	284,0908451	284,0908451	284,0908451	284,0908451	284,0908451	284,0908451				
$\Delta \sigma_{p,c+s+r} / \sigma_{p0}$	28,69604496	28,69604496	28,69604496	28,69604496	28,69604496	28,69604496	28,7			

							(continua)
			Dados				
F _{ck}	30	Мра					
A _c	0,61	m²		6100	Cm ²		Perdas Progressivas (%)
I _c	0,12	m^4					1 10918331843 (70)
Ψ_{1000}	1,3		Ψ∞	0,00325			
As	20						
Ap	35	Cm ²					
f _{ptk}	190						
ρη	0,00574						
e _p	0	0.13	0.27	0.39	0.51	0.56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ	127.98314	117,8581433	93.37915838	72,17738802	55.11347767	49.33560598	
Сро	,	N	létodo simplific	ado da NBR 61	18:2014	.0,0000000	
secão	1	2	3	4	5	6	
σ	7.26	7 16	7 22	7.67	9.09	10.12	
$v(t t_0)$	0.032552927	0.032552927	0.032552927	0.032552927	0.032552927	0.032552927	
$\sigma_{\rm e}(Mpa)$	1140	1140	1140	1140	1140	1140	
ο _{ρ0} (πρα)	-0.000/81	-0.000481	-0.000/81	-0.000/81	-0.000/81	-0.000481	
ε _{cs}	200000	200000	200000	200000	200000	200000	
	200000	200000	200000	200000	200000	200000	
u_p	0,52	0,52	0,52	0,52	0,52	0,52	
φ(ι,ι ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
Xp	1,065	1,005	1,005	1,005	1,005	1,005	
<u>Χ</u> ε	2,605	2,605	2,605	2,605	2,605	2,605	
1	1	1,085908333	1,370575	1,773175	2,322175	2,594133333	
ρ _ρ	0,005737705	0,005/3//05	0,005/3//05	0,005/3//05	0,005/3//05	0,005737705	
$\Delta \sigma_{\rm pr}(t,t_0)$	-245,3917892	-241,8495523	-237,299515	-237,386629	-250,5662919	-261,8853438	
$\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$	21,52559554	21,21487301	20,81574693	20,82338851	21,97949929	22,97239858	21,5
		N	létodo aproxima	ado da NBR 61	18:2014		
		para aços c	le relaxação ba	ixa (RB) (valor	em porcentagen	n):	
seção	1	2	3	4	5	6	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{pr}(t,t_0)$	19,85987641	19,73843512	19,8112999	20,3577857	22,08225203	23,33309732	20,8
		Método simpl	ificado do Euro	code 2 adaptad	lo por Bastos (20	019)	
seção	1	2	3	4	5	6	
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
$\Delta \sigma_{pr}(t,t_0)$	145,8179044	145,8179044	145,8179044	145,8179044	145,8179044	145,8179044	
Ap	35	35	35	35	35	35	
A _c	6100	6100	6100	6100	6100	6100	
I _c	12000000	12000000	12000000	12000000	12000000	12000000	
ep	0	13	27	39	51	56	
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
Δ _{σp,cc+cs+r}	202,5572554	199,3719222	190,2613322	179,7513572	167,9921973	162,9011022	
Δσ _{p,cc+cs+r/}	17,7681803	17,48876511	16,68959054	15,76766291	14,73615765	14,28957036	16,1
· · · · · · · · · · · · · · · · · · ·							

Tabela 3C - Cálculo das perdas progressivas para tensão 0,6 f_{ptk} e ψ_{1000} =1,3% e aço de protensão tipo RB.

	Método alternativo adaptado por Bastos (2019)										
seção	1	2	3	4	5	6					
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481					
Ep	200000	200000	200000	200000	200000	200000					
φ (t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
E _c (MPa)	30000	30000	30000	30000	30000	30000					
$\bar{\alpha}_{ep,k}$	7,363299309	7,363299309	7,363299309	7,363299309	7,363299309	7,363299309					
ρ _{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393					
es	66	66	66	66	66	66					
Δε _{p,cs}	90,21086431	87,82608347	85,39496252	83,41578611	81,52627328	80,76400438					
Δε _{p,cc}	145,6914836	139,8863182	137,1538968	142,3253669	164,8542603	181,8180759					
σ _{pi} (Mpa)	1140	1140	1140	1140	1140	1140					
$\Delta \sigma_{pr}(t,t_0)$	145,8179044	145,8179044	145,8179044	145,8179044	145,8179044	145,8179044					
$\phi(t,\sigma_{pi})$	0,127910442	0,127910442	0,127910442	0,127910442	0,127910442	0,127910442					
σ _{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598					
Δσ _{pr} (MPa)	13,80399363	14,05150679	16,5221536	19,64240913	24,46505374	27,27645088					
$\Delta \sigma_{p,cs+cc+r}$	249,7063415	241,7639085	239,0710129	245,3835622	270,8455873	289,8585312					
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	21,90406505	21,20736039	20,97114148	21,52487388	23,75838485	25,42618694	22,4				
Método de Vasconcelos (1980)											
Ep	200000										
Y	30	U<90%									
Ec	30672										
ε _{cs} ,∞	0,000481										
0,8(1-f _{cj} /fc∞)	0,144										
ф 1c	2,5										
ф _{2с}	1,37										
φ∞	3,969										
n	6,520605112										
seção	1	2	3	4	5	6					
$\Delta \sigma_{pr}(Mpa)$	4,16622584	4,16622584	4,16622584	4,16622584	4,16622584	4,16622584					
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
η	1	1,086	1,371	1,773	2,322	2,594					
Ac	6100	6100	6100	6100	6100	6100					
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702					
σ_{p0}	1140	1140	1140	1140	1140	1140					
$\Delta \sigma_{p,c+s}$	286,4760724	286,6840331	287,3764662	288,3617639	289,7238792	290,4059129					
$\Delta \sigma_{p,c+s+r}$	288,3099601	288,3145714	288,3299251	288,3517728	288,3819758	288,397099					
$\Delta \sigma_{\text{p,c+s+r}} / \sigma_{\text{p0}}$	25,29034738	25,29075187	25,2920987	25,29401516	25,29666455	25,29799114	25,2				

$\begin{tabular}{ c c c c c } \hline Dados & Perc \\ \hline Port \\ \hline Progress \\ $	las sivas)									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	sivas)									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
As 20 Image: Constraint of the second secon										
Ap 35 cm²										
forte 190										
- pin										
ρ _p 0,00574										
e _p 0 0,13 0,27 0,39 0,51 0,56										
P _i (kN) 4879 4879 4879 4879 4879 4879 4879										
P ₀ 4479,4099 4479,4099 4479,4099 4479,4099 4479,4099 4479,4099										
σ _{cpo} 127,98314 117,8581433 93,37915838 72,17738802 55,11347767 49,33560598										
Método simplificado da NBR 6118:2014										
seção 1 2 3 4 5 6										
σ _{c,p0g} (MPa) 7,26 7,16 7,22 7,67 9,09 10,12										
χ(t,t ₀) 0,08788506 0,08788506 0,08788506 0,08788506 0,08788506 0,08788506 0,08788506										
σ _{p0} (Mpa) 1140 1140 1140 1140 1140 1140										
ε _{cs} -0,000481 -0,000481 -0,000481 -0,000481 -0,000481 -0,000481										
E _p 200000 200000 200000 200000 200000 200000										
α _p 6,52 6,52 6,52 6,52 6,52 6,52										
φ(t,t ₀) 3,21 3,21 3,21 3,21 3,21 3,21										
X _p 1,065 1,065 1,065 1,065 1,065 1,065										
X _c 2,605 2,605 2,605 2,605 2,605 2,605										
Π 1 1,085908333 1,370575 1,773175 2,322175 2,594133333										
ρ _p 0,005737705 0,005737705 0,005737705 0,005737705 0,005737705 0,005737705										
Δσ _{pr} (t,t ₀) -299,6551893 -295,7249414 -289,9279268 -288,3468839 -299,4151511 -309,7517786										
$\Delta \sigma_{\rm pr}({\rm t},{\rm t}_{\rm 0})/\sigma_{\rm p0}$ 26,28554292 25,94078433 25,43227428 25,2935863 26,26448694 27,17120865 26	1									
Método aproximado da NBR 6118:2014										
para aços de relaxação baixa (RN) (valor em porcentagem):										
seção 1 2 3 4 5 6										
α _p 6,52 6,52 6,52 6,52 6,52 6,52										
φ(t,t ₀) 3,21 3,21 3,21 3,21 3,21 3,21										
σ _{c.00g} (MPa) 7,26 7,16 7,22 7,67 9,09 10,12										
Δσ _{pr} (t,t ₀) 26,98198426 26,89541522 26,94735665 27,33691736 28,56619783 29,45785902 27	7									
Método simplificado do Eurocode 2 adaptado por Bastos (2019)										
seção 1 2 3 4 5 6										
ε _{cs} 0,000481 0,000481 0,000481 0,000481 0,000481 0,000481										
E _p 200000 200000 200000 200000 200000 200000										
α _p 6,52 6,52 6,52 6,52 6,52 6,52										
φ(t,t ₀) 3,21 3,21 3,21 3,21 3,21 3,21										
Δσ _p (t,t ₀) 393,6732093 393,6732093 393,6732093 393,6732093 393,6732093 393,6732093										
A _p 35 35 35 35 35 35 35										
ן א _כ ן טוט ן טוט ן טוט ן טוט ן 100 ן 100 ן 100 ן 100 ן										
I _c 12000000 12000000 12000000 12000000 12000000 12000000										
Ac 8100 8100 8100 8100 8100 Ic 12000000 12000000 12000000 12000000 12000000 12000000 ep 0 13 27 39 51 56										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										

Tabela 4C- Cálculo das perdas progressivas para tensão 0,6 f_{ptk} e ψ_{1000} =3,5% e aço de protensão tipo RN.

	Método alternativo adaptado por Bastos (2019)										
seção	1	2	3	4	5	6					
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481					
Ep	200000	200000	200000	200000	200000	200000					
φ (t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
E _c (MPa)	30000	30000	30000	30000	30000	30000					
$\bar{\alpha}_{ep,k}$	8,547406958	8,547406958	8,547406958	8,547406958	8,547406958	8,547406958					
$ ho_{ps}$	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393					
es	66	66	66	66	66	66					
$\Delta \epsilon_{p,cs}$	89,31665281	86,61364804	83,8799093	81,67043598	79,57437438	78,73243349					
$\Delta \epsilon_{p,cc}$	144,2473227	137,9551934	134,7205512	139,3474223	160,9073259	177,2445494					
σ _{pi} (Mpa)	1140	1140	1140	1140	1140	1140					
$\Delta \sigma_{pr}(t,t_0)$	393,6732093	393,6732093	393,6732093	393,6732093	393,6732093	393,6732093					
$\phi(t,\sigma_{pi})$	0,345327377	0,345327377	0,345327377	0,345327377	0,345327377	0,345327377					
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598					
$\Delta \sigma_{pr}(MPa)$	36,45995295	36,85012544	43,24234375	51,39868911	64,01272201	71,3589246					
$\Delta \sigma_{p,cs+cc+r}$	270,0239285	261,4189669	261,8428043	272,4165473	304,4944223	327,3359075					
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	23,68630952	22,93148832	22,96866704	23,89618836	26,71003704	28,7136761	24,8				
Método do Vasconcelos (1980)											
Ep	200000										
Y	30	U<90%									
Ec	30672										
ε _{cs} ,∞	0,000481										
0,8(1-f _{cj} /fc∞)	0,144										
ф 1с	2,5										
ф _{2с}	1,37										
φ∞	3,969										
n	6,520605112										
seção	1	2	3	4	5	6					
$\Delta \sigma_{pr}(Mpa)$	11,24780598	11,24780598	11,24780598	11,24780598	11,24780598	11,24780598					
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
η	1	1,086	1,371	1,773	2,322	2,594					
Ac	6100	6100	6100	6100	6100	6100					
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702					
σ_{p0}	1140	1140	1140	1140	1140	1140					
$\Delta \sigma_{p,c+s}$	286,4760724	286,6840331	287,3764662	288,3617639	289,7238792	290,4059129					
$\Delta \sigma_{p,c+s+r}$	295,4814391	295,4938884	295,5353399	295,5943233	295,6758643	295,7166932					
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	25,91942449	25,92051653	25,92415262	25,9293266	25,93647932	25,94006081	25,9				

Tabela 5C – Cálculo das perdas progressivas para tensão 0,7 f_{ptk} e ψ_{1000} =2,5% e aço de protensão tipo RB.

(ററ	nt	in	U:	a)
V	υU	110		u	a)

			Dados		-		Dordoo
F _{ck}	30	MPA					Progressivas (%)
Ac	0,61	m²		6100	Cm ²		
lc	0,12	m^4					
Ψ_{1000}	2,5		Ψ∞	0,0625			
As	20						
Ap	35	Cm ²					
f _{ptk}	190						
ρ_{p}	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
	•	M	létodo Simplifica	do da NBR 611	8:2014	•	•
seção	1	2	3	4	5	6	
$\sigma_{c,p0q}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\chi(t,t_0)$	0,0645	0,0645	0,0645	0,0645	0,0645	0,0645	
σ _{p0} (Mpa)	1330	1330	1330	1330	1330	1330	
ε _{cs}	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	
E	200000	200000	200000	200000	200000	200000	
αρ	6,52	6,52	6,52	6,52	6,52	6,52	
$\phi(t,t_0)$	3.21	3.21	3.21	3.21	3.21	3.21	
Yn	1.0645	1.0645	1.0645	1.0645	1.0645	1.0645	
Xp Xc	2.605	2.605	2.605	2.605	2.605	2.605	
n n	1	1.085908333	1.370575	1.773175	2.322175	2.594133333	
0 ₀	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	
$\Delta \sigma_{\rm pr}(t,t_0)$	-287.3877862	-283,5436149	-278.0262425	-276.8219595	-288.372202	-298,9349276	
$\Delta \sigma_{\rm pr}(t,t_0)/\sigma_{\rm po}$	21.60810423	21.31906879	20.90422876	20.81368116	21.68212045	22,47631035	21.5
pr(-,-0)/ - po		,•.•••••••	létodo aproxima	do da NBR 611	8:2014	,	, •
		para acos d	le relaxação bai	xa (RB) (valor e	m porcentagem):	
secão	1	2	3	4	5	6	
	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t t _o)	3 21	3 21	3 21	3 21	3.21	3.21	
φ(0,0) σ	7.26	7 16	7 22	7.67	9.09	10.12	
$\Delta \sigma_{c,pog}$ (in a)	19 85987641	19 73843512	10 8112000	20 3577857	22 08225203	23 33309732	20.9
	13,03307041	Método simpl	ificado do Euroc	rode 2 adaptado	por Bastos (20	19)	20,5
secão	1	2	3		5	6	
SCÇUO	0.000481	0.000481	0.000481	0.000481	0.000481	0.000481	
E E	200000	200000	200000	200000	200000	200000	
	6.52	6.52	6.52	6.52	6.52	6.52	
d_p	3.21	3.21	3.21	3.21	3.21	3.21	
$\varphi(t,t_0)$	299 0210296	299 0210296	299 0210296	299 0210296	299 0210296	299 0210296	
$\Delta O_{\rm pr}(1,t_0)$	200,9219300	200,9219300	200,9219300	200,9219300	200,9219300	200,9219300	
A _p	55 6100	55 6100	55 6100	55 6100	55 6100	55 6100	
A _c	12000000	12000000	12000000	12000000	12000000	12000000	
	1200000	1200000	1200000	1200000	1200000	1200000	
	0 70000000	13		39	0.24424042	00000000	
U _{c,PQ} (IVIPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
Δ _{σp,cc+cs+r}	303,5589489	299,3620598	287,0397253	272,3243693	255,386645	247,9390482	00.0
$\Delta \sigma_{p,cc+cs+r/}$	22,82398112	22,50842555	21,58193424	20,47551649	19,20200339	18,6420337	20,9

	Método alternativo adaptado por Bastos (2019)										
seção	1	2	3	4	5	6					
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481					
Ep	200000	200000	200000	200000	200000	200000					
φ (t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
E _c (MPa)	30000	30000	30000	30000	30000	30000					
$\bar{\alpha}_{ep,k}$	8,046966667	8,046966667	8,046966667	8,046966667	8,046966667	8,046966667					
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393					
es	66	66	66	66	66	66					
$\Delta \epsilon_{p,cs}$	89,69240208	87,12195234	84,5136088	82,39908399	80,38778696	79,57843397					
$\Delta \epsilon_{p,cc}$	144,8541617	138,7648028	135,7383437	140,5906533	162,5521273	179,1490882					
σ _{pi} (Mpa)	1330	1330	1330	1330	1330	1330					
$\Delta \sigma_{pr}(t,t_0)$	288,9219386	288,9219386	288,9219386	288,9219386	288,9219386	288,9219386					
$\phi(t,\sigma_{pi})$	0,21723454	0,21723454	0,21723454	0,21723454	0,21723454	0,21723454					
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598					
$\Delta \sigma_{pr}(MPa)$	23,14925637	23,46754581	27,56115311	32,76165136	40,8023896	45,48715665					
$\Delta \sigma_{p,cs+cc+r}$	257,6958202	249,3543009	247,8131057	255,7513886	283,7423039	304,2146789					
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	19,37562558	18,74844368	18,63256434	19,22942772	21,33400781	22,87328412	20,0				
Método de Vasconcelos (1980)											
Ep	200000										
Y	30	U<90%									
Ec	30672										
ε _{cs} ,∞	0,000481										
0,8(1-f _{cj} /fc∞)	0,144										
ф 1с	2,5										
ф _{2с}	1,37										
φ∞	3,969										
n	6,520605112										
seção	1	2	3	4	5	6					
$\Delta \sigma_{pr}(Mpa)$	8,25491253	8,25491253	8,25491253	8,25491253	8,25491253	8,25491253					
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
η	1	1,086	1,371	1,773	2,322	2,594					
Ac	6100	6100	6100	6100	6100	6100					
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702					
σ_{p0}	1330	1330	1330	1330	1330	1330					
$\Delta \sigma_{p,c+s}$	286,1316246	286,3092038	286,900074	287,7397835	288,898569	289,4778946					
$\Delta \sigma_{p,c+s+r}$	292,4354185	292,4432203	292,46918	292,5060723	292,5569831	292,5824356					
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	21,98762545	21,98821206	21,99016391	21,99293777	21,99676565	21,99867937	22,0				

Tabela 6C- Cálculo das perdas progressivas para tensão 0,7 f_{ptk} e ψ_{1000} =7% e aço de protensão tipo RN.

			Dados				
F _{ck}	30	Мра					Perdas
Ac	0,61	m²		6100	cm²		progressivas (70)
I _c	0,12	m^4					
Ψ_{1000}	7		Ψ∞	0,0175			
As	20						
Ap	35	Cm ²					
f _{ptk}	190						
ρ _ρ	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
			Método simplifi	cado da NBR 6	118:2014		
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
χ(t,t ₀)	0,017654935	0,017654935	0,017654935	0,017654935	0,017654935	0,017654935	
σ _{p0} (Mpa)	1330	1330	1330	1330	1330	1330	
ε _{cs}	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	
E₅	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
Xp	1,065	1,065	1,065	1,065	1,065	1,065	
Xc	2,605	2,605	2,605	2,605	2,605	2,605	
n n	1	1,085908333	1,370575	1,773175	2,322175	2,594133333	
ρ _p	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	0,005737705	
$\Delta \sigma_{\rm pr}(t,t_0)$	-233,667205	-230,208805	-225,9282	-226,375749	-240,0116171	-251,542939	
$\Delta \sigma_{\rm pr}(t,t_0)/\sigma_{\rm p0}$	17,56896282	17,30893273	16,9870827	17,02073302	18,04598625	18,91300297	17,6
P.(, P.		· ·	Método aproxin	nado da NBR 6	118:2014		
		para aços	de relaxação b	aixa (RN) (valo	r em porcentage	em):	
seção	1	2	3	4	5	6	
αρ	6,52	6,52	6,52	6,52	6,52	6.52	
$\phi(t,t_0)$	3,21	3,21	3,21	3,21	3,21	3,21	
$\sigma_{c,p0q}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{\rm pr}(t.t_0)$	26.98198426	26.89541522	26.94735665	27.33691736	28.56619783	29.45785902	27.7
pr(1) of	-,	Método sim	olificado do Eur	ocode 2 adapta	do por Bastos (1980)	,
secão	1	2	3	4	5	, 6	
ε _{cs}	0,000481	0.000481	0,000481	0,000481	0,000481	0,000481	
E,	200000	200000	200000	200000	200000	200000	
a ^b	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t.t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
$\Delta \sigma_{\rm pr}(t.t_0)$	79,08369169	79,08369169	79,08369169	79,08369169	79,08369169	79,08369169	
An	35	35	35	35	35	35	
A ₂	6100	6100	6100	6100	6100	6100	
	12000000	12000000	12000000	12000000	12000000	12000000	
e _n	0	13	27	39	51	56	
σ _{c.PQ} (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
· · · · · /							

155,4567768

11,68847946

 $\Delta_{\sigma p, cc + cs + r}$

 $\Delta \sigma_{\text{p,cc+cs+r/}}$

152,7431661

11,48444858

145,1303203

136,5814556

10,91205416 10,26928238

127,2372339

9,566709315

123,2450546

9,26654546

10,5

	Método alternativo adaptado por Bastos (2019)										
seção	1	2	3	4	5	6					
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481					
Ep	200000	200000	200000	200000	200000	200000					
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21					
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12					
E _c (MPa)	30000	30000	30000	30000	30000	30000					
$\bar{\alpha}_{ep,k}$	7,044482281	7,044482281	7,044482281	7,044482281	7,044482281	7,044482281					
ρ _{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393					
es	66	66	66	66	66	66					
$\Delta \epsilon_{p,cs}$	90,4546955	88,15834959	85,81228302	83,89853623	82,06828637	81,32903797					
$\Delta \epsilon_{p,cc}$	146,0852735	140,4155401	137,8241603	143,149043	165,9502648	183,0900945					
σ _{pi} (Mpa)	1330	1330	1330	1330	1330	1330					
$\Delta \sigma_{pr}(t,t_0)$	79,08369169	79,08369169	79,08369169	79,08369169	79,08369169	79,08369169					
$\phi(t,\sigma_{pi})$	0,059461422	0,059461422	0,059461422	0,059461422	0,059461422	0,059461422					
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598					
$\Delta \sigma_{pr}(MPa)$	6,454943455	6,583315752	7,745283433	9,208801848	11,47041004	12,78917241					
$\Delta \sigma_{p,cs+cc+r}$	242,9949125	235,1572054	231,3817268	236,2563811	259,4889612	277,2083049					
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	18,27029417	17,68099289	17,39712232	17,76363768	19,51044821	20,84272969	18,6				
Método do Vasconcelos (1980)											
Ep	200000										
Y	30	U<90%									
Ec	30672										
ε _{cs} ,∞	0,000481										
0,8(1-f _{cj} /fc∞)	0,144										
ф 1с	2,5										
ф _{2с}	1,37										
φ∞	3,969										
n	6,520605112										
seção	1	2	3	4	5	6					
$\Delta \sigma_{pr}(Mpa)$	2,259534048	2,259534048	2,259534048	2,259534048	2,259534048	2,259534048					
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099					
η	1	1,086	1,371	1,773	2,322	2,594					
Ac	6100	6100	6100	6100	6100	6100					
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702					
σ_{p0}	1330	1330	1330	1330	1330	1330					
$\Delta \sigma_{p,c+s}$	286,1316246	286,3092038	286,900074	287,7397835	288,898569	289,4778946					
$\Delta \sigma_{p,c+s+r}$	286,3749211	286,3770566	286,3841623	286,3942605	286,4081958	286,4151626					
$\Delta \sigma_{p,c+s+r}/\sigma_{p0}$	21,53194895	21,53210952	21,53264378	21,53340304	21,53445081	21,53497463	21,5				

Tabela 7C – Cálculo das perdas progressivas para tensão 0,8 f_{ptk} e ψ_{1000} =3,5% e aço de protensão tipo RB.

			<u> </u>				
_			Dados				Perdas
F _{ck}	30	Мра					Progressivas
Ac	0,61	m²		6100	Cm ²		(%)
I _c	0,12	m^4					
Ψ_{1000}	3,5		Ψ∞	0,00875			
As	20						
Ap	35	CM ²					
f _{ptk}	190						
$ ho_p$	0,00574						
ep	0	0,13	0,27	0,39	0,51	0,56	
P _i (kN)	4879	4879	4879	4879	4879	4879	
P ₀	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
		Μ	étodo simplifica	do da NBR 6118	3:2014		
seção	1	2	3	4	5	6	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\chi(t,t_0)$	0,08788506	0,08788506	0,08788506	0,08788506	0,08788506	0,08788506	
σ _{p0} (Mpa)	1520	1520	1520	1520	1520	1520	
ε _{cs}	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	-0,000481	
E	200000	200000	200000	200000	200000	200000	
α _p	6.52	6.52	6.52	6.52	6.52	6.52	
φ(t t _o)	3.21	3.21	3.21	3.21	3.21	3.21	
¥.	1.065	1.065	1.065	1.065	1.065	1.065	
χ _ρ	2 605	2 605	2 605	2 605	2 605	2 605	
n.	1	1 085908333	1 370575	1 773175	2 322175	2 594133333	
0	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	0.005737705	
$\frac{PP}{\Delta \sigma_{\rm e}(t,t_{\rm o})}$	-328 3843799	-324 2487036	-317 7914898	-315 3272587	-325 2776695	-335 0941626	
$\Delta \sigma_{\rm pr}(t,t_0)$	21 60/23552	21 33215155	20 90733486	20 7/521/30	21 3008/668	22 04566859	21.3
$\Delta O_{\rm pr}(t,t_0)/O_{\rm p0}$	21,00423332	21,00210100 M	ótodo aprovima	20,74521459	21,39904000	22,04300039	21,5
				(2 (PR)) (valor or	n porcontagom)		
000ão	1	para aços u			r porcentagem)		
seçao	0.50	2	3	4	с С 50	0	
	6,52	6,52	6,52	6,52	6,52	6,52	
$\varphi(l, l_0)$	3,21	3,21	3,21	3,21	3,21	3,21	
$\sigma_{c,p0g}$ (IVIPa)	7,26	7,16	7,22	7,67	9,09	10,12	
$\Delta \sigma_{\rm pr}(t,t_0)$	19,85987641	19,73843512	19,8112999	20,3577857	22,08225203	23,33309732	20,9
~		Nietodo simpl	ficado do Euroc	ode 2 adaptado	por Bastos (201	9)	
seçao	1	2	3	4	5	6	
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481	
Ep	200000	200000	200000	200000	200000	200000	
α _p	6,52	6,52	6,52	6,52	6,52	6,52	
φ(t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
$\Delta \sigma_{pr}(t,t_0)$	393,6732093	393,6732093	393,6732093	393,6732093	393,6732093	393,6732093	
Ap	35	35	35	35	35	35	
Ac	6100	6100	6100	6100	6100	6100	
I _c	12000000	12000000	12000000	12000000	12000000	12000000	
ep	0	13	27	39	51	56	
$\sigma_{c,PQ}$ (MPa)	0,799836066	0,736559469	0,583577014	0,45107565	0,344434018	0,308324964	
$\Delta_{\sigma p, cc+cs+r}$	377,4915658	372,554224	357,8809125	340,0872434	319,358842	310,1863005	
$\Delta\sigma_{p,cc+cs+r/}$	24,83497144	24,51014632	23,54479687	22,37416075	21,01045013	20,40699345	22,8

	Método alternativo adaptado por Bastos (2019)									
seção	1	2	3	4	5	6				
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481				
Ep	200000	200000	200000	200000	200000	200000				
φ (t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21				
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12				
E _c (MPa)	30000	30000	30000	30000	30000	30000				
$\bar{\alpha}_{ep,k}$	8,547406958	8,547406958	8,547406958	8,547406958	8,547406958	8,547406958				
ρ_{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393				
es	66	66	66	66	66	66				
$\Delta \epsilon_{p,cs}$	89,31665281	86,61364804	83,8799093	81,67043598	79,57437438	78,73243349				
$\Delta \epsilon_{p,cc}$	144,2473227	137,9551934	134,7205512	139,3474223	160,9073259	177,2445494				
σ _{pi} (Mpa)	1520	1520	1520	1520	1520	1520				
$\Delta \sigma_{pr}(t,t_0)$	393,6732093	393,6732093	393,6732093	393,6732093	393,6732093	393,6732093				
$\phi(t,\sigma_{pi})$	0,258995532	0,258995532	0,258995532	0,258995532	0,258995532	0,258995532				
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598				
$\Delta \sigma_{pr}$ (MPa)	27,34496472	27,63759408	32,43175782	38,54901683	48,00954151	53,51919345				
$\Delta \sigma_{p,cs+cc+r}$	260,9089403	252,2064355	251,0322183	259,5668751	288,4912418	309,4961764				
$\Delta \sigma_{p,cs+cc+r}/\sigma_{p0}$	17,16506186	16,59252865	16,51527752	17,0767681	18,97968696	20,36159055	17,8			
Método de Vasconcelos (1980)										
Ep	200000									
Y	30	U<90%								
Ec	30672									
ε _{cs} ,∞	0,000481									
0,8(1-f _{cj} /fc∞)	0,144									
ф 1c	2,5									
ф _{2с}	1,37									
φ∞	3,969									
n	6,520605112									
seção	1	2	3	4	5	6				
$\Delta \sigma_{pr}(Mpa)$	11,24780598	11,24780598	11,24780598	11,24780598	11,24780598	11,24780598				
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099				
η	1	1,086	1,371	1,773	2,322	2,594				
Ac	6100	6100	6100	6100	6100	6100				
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702				
σ_{p0}	1520	1520	1520	1520	1520	1520				
$\Delta \sigma_{p,c+s}$	285,8741061	286,0290485	286,544335	287,2759342	288,2841911	288,7876805				
$\Delta \sigma_{p,c+s+r}$	295,4454033	295,4546787	295,4855256	295,5293217	295,5896795	295,6198201				
$\Delta \sigma_{\text{p,c+s+r}} / \sigma_{\text{p0}}$	19,43719759	19,43780781	19,43983721	19,44271853	19,44668944	19,44867238	19,4			

Dados Perdas F_{ck} 30 Mpa progressivas (%) A_{c} 0,61 m² 6100 cm² 0,12 m^4 \mathbf{I}_{c} Ψ∞ 0,03 12 Ψ_{1000} 20 A_{s} 35 A_p cm² 190 **f**_{ptk} 0,00574 ρ_{p} 0 0,13 0,27 0.39 0,51 0.56 ep P_i(kN) 4879 4879 4879 4879 4879 4879 4479,4099 4479,4099 4479,4099 4479,4099 4479,4099 4479,4099 P_0 127,98314 117,8581433 93,37915838 72,17738802 55,11347767 49,33560598 σ_{cpo} Método simplificado da NBR 6118:2014 seção 1 2 3 4 5 6 $\sigma_{c,p0g}$ (MPa) 7,26 7,16 7,22 7,67 9,09 10,12 0,030459207 0,030459207 0,030459207 0,030459207 0,030459207 0,030459207 $\chi(t,t_0)$ σ_{p0}(Mpa) 1520 1520 1520 1520 1520 1520 -0,000481 -0,000481 -0,000481 -0,000481 -0,000481 -0,000481 ϵ_{cs} 200000 200000 200000 200000 200000 200000 Ep 6,52 6,52 6,52 6,52 6,52 6,52 α_{p} φ(t,t₀) 3,21 3,21 3,21 3,21 3,21 3,21 1,065 1,065 1,065 1,065 1,065 1,065 Xр 2,605 2,605 2,605 2,605 2,605 2,605 Xc η 1 1,085908333 1,370575 1,773175 2,322175 2,594133333 0,005737705 0,005737705 0,005737705 0,005737705 0,005737705 0,005737705 ρ_{p} -253,2954733 -249,696721 -244,9650565 -244,8091966 -257,6813262 -268,857284 $\Delta \sigma_{\text{pr}}(t,t_0)$ 16,66417588 16,42741586 16,95271883 17,68797921 16,7 $\Delta \sigma_{pr}(t,t_0)/\sigma_{p0}$ 16,11612213 16,1058682 Método aproximado da NBR 6118:2014 para aços de relaxação baixa (RN) (valor em porcentagem): seção 1 2 3 4 5 6 6,52 6,52 6,52 6,52 6,52 6,52 α_p $\phi(t,t_0)$ 3,21 3,21 3,21 3,21 3,21 3.21 σ_{c,p0g} (MPa) 7,26 7,16 7,22 7,67 9,09 10,12 26,98198426 26,89541522 26,94735665 27,33691736 28,56619783 29,45785902 27,7 $\Delta \sigma_{pr}(t,t_0)$ Método Simplificado do Eurocode 2 adaptado por Bastos (2019) 1 3 4 ε_{cs} 5 6 Ep 0,000481 0,000481 0,000481 0,000481 0,000481 0,000481 200000 200000 200000 200000 200000 200000 α_p φ(t,t₀) 6,52 6,52 6,52 6,52 6,52 6,52 3,21 3,21 3,21 3,21 3,21 $\Delta \sigma_{pr}(t,t_0)$ 3,21 136,4392756 136,4392756 136,4392756 136,4392756 136,4392756 136,4392756 A_p 35 35 35 35 35 35 A_{c} 6100 6100 6100 6100 6100 6100 I_{c} 12000000 12000000 12000000 12000000 12000000 12000000 ep $\sigma_{c,PQ}$ (MPa) 0 13 27 39 51 56 0,736559469 0,583577014 0,45107565 0,344434018 0,308324964 0,799836066 $\Delta_{\sigma p, cc+cs+r}$ 195,9378935 192,8188548 183,9187533 173,6843869 162,2646153 157,3279585 $\Delta \sigma_{\text{p,cc+cs+r/}}$ 12,89065089 12,68545097 12,09991798 11,4266044 10,67530364 $\Delta \sigma p, cc+cs+r/$ 10,35052359 11,7

Tabela 8C- Cálculo das perdas progressivas para tensão 0,8 f_{ptk} e ψ_{1000} =12% e aço de protensão tipo RN.

Método alternativo adaptado por Bastos (2019)							
seção	1	2	3	4	5	6	
ε _{cs}	0,000481	0,000481	0,000481	0,000481	0,000481	0,000481	
Ep	200000	200000	200000	200000	200000	200000	
φ (t,t ₀)	3,21	3,21	3,21	3,21	3,21	3,21	
$\sigma_{c,p0g}$ (MPa)	7,26	7,16	7,22	7,67	9,09	10,12	
E _c (MPa)	30000	30000	30000	30000	30000	30000	
$\bar{\alpha}_{ep,k}$	7,318493707	7,318493707	7,318493707	7,318493707	7,318493707	7,318493707	
ρ _{ps}	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	0,009016393	
es	66	66	66	66	66	66	
$\Delta \epsilon_{p,cs}$	90,2450522	87,87262783	85,45336621	83,4832946	81,60201342	80,84293791	
$\Delta \epsilon_{p,cc}$	145,7466974	139,9604525	137,2476996	142,440551	165,0074144	181,9957732	
σ _{pi} (Mpa)	1520	1520	1520	1520	1520	1520	
$\Delta \sigma_{pr}(t,t_0)$	136,4392756	136,4392756	136,4392756	136,4392756	136,4392756	136,4392756	
φ (t,σ _{pi})	0,089762681	0,089762681	0,089762681	0,089762681	0,089762681	0,089762681	
σ_{cpo}	127,98314	117,8581433	93,37915838	72,17738802	55,11347767	49,33560598	
∆σ _{pr} (MPa)	9,6951424	9,871645214	11,60828116	13,80069427	17,18918994	19,16461118	
$\Delta \sigma_{p,cs+cc+r}$	245,686892	237,7047255	234,309347	239,7245399	263,7986177	282,0033223	
$\Delta \sigma_{p,cs+cc+r} / \sigma_{p0}$	16,16361132	15,63846878	15,41508862	15,77135131	17,35517222	18,55285015	16,5
Método de Vasconcelos (1980)							
Ep	200000						
Y	30	U<90%					
Ec	30672						
ε _{cs} ,∞	0,000481						
0,8(1-f _{cj} /fc∞)	0,144						
ф 1c	2,5						
ф _{2с}	1,37						
φ∞	3,969						
n	6,520605112						
seção	1	2	3	4	5	6	
$\Delta \sigma_{pr}(Mpa)$	3,898265016	3,898265016	3,898265016	3,898265016	3,898265016	3,898265016	
Po	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	4479,4099	
η	1	1,086	1,371	1,773	2,322	2,594	
Ac	6100	6100	6100	6100	6100	6100	
σ_{cp0}	0,734329492	0,797481828	1,006765733	1,301966189	1,70511308	1,904850702	
σ_{p0}	1520	1520	1520	1520	1520	1520	
$\Delta \sigma_{p,c+s}$	285,8741061	286,0290485	286,544335	287,2759342	288,2841911	288,7876805	
$\Delta \sigma_{p,c+s+r}$	288,0261083	288,029323	288,0400139	288,0551927	288,0761115	288,0865577	
$\Delta \sigma_{\text{p,c+s+r}} / \sigma_{\text{p0}}$	18,94908607	18,94929756	18,95000091	18,95099952	18,95237576	18,953063	19,0