

SÍNTESE DE 1-ALQUIL(ARIL)-2-AMINO-5-TRIFLUORACETIL-1,2,3,4-TETRAIDROPIRIDINAS

por

FABIANE MANKE NACHTIGALL

Dissertação apresentada ao programa de Pós-Graduação em Química - área de concentração em Química Orgânica - da Universidade Federal de Santa Maria (RS), como requisito parcial para a obtenção do grau de **MESTRE EM QUÍMICA**.

Santa Maria, RS – Brasil. 2005

UNIVERSIDADE FEDERAL DE SANTA MARIA CURSO DE PÓS-GRADUAÇÃO EM QUÍMICA

A COMISSÃO EXAMINADORA, ABAIXO ASSINADA, APROVA A TESE

SÍNTESE DE 1-ALQUIL(ARIL)-2-AMINO-5-TRIFLUORACETIL-1,2,3,4-TETRAIDROPIRIDINAS

Elaborada por FABIANE MANKE NACHTIGALL

COMO REQUISITO PARCIAL PARA A OBTENÇÃO DO GRAU DE MESTRE EM QUÍMICA

COMISSÃO EXAMINADORA:

Prof. Dr. Nilo Zanatta – Orientador – UFSM

Prof. Dr. Helio Gauze Bonacorso - UFSM

Prof. Dr. Adilson Sinhorin– UNICRUZ

Santa Maria, 28 de Fevereiro de 2005.

Muitos são os dons que concedi aos homens, não os coloquei em todas as pessoas para que fosseis obrigados a vos auxiliar mutuamente.

A meus pais, **Vera** e **Luiz Carlos**, por todo amor e compreensão. A minhas irmãs **Renata** e **Aline** pelo incentivo, apoio e confiança.

Ao Prof. Dr. **Nilo Zanatta** os meus sinceros agradecimentos pela sua competente orientação.

AGRADECIMENTOS

Aos colegas e amigos de laboratório: pelo apoio, dedicação e amizade e convivência nas pessoas de Helena, Leonardo, Simone, Fabio, Patricia, Liana, Juliana, Deise, Adriana, Darlene, Gabriela, Ana, Tiago, Mauro, Igor e Kelen.

Aos professores Dr. Helio Gauze Bonacorso e Dr. Rosemário Barichello pela colaboração e participação no processo de qualificação desta dissertação.

Aos professores Dr. Helio Gauze Bonacorso e Dr. Adilson Paulo Sinhorin pela colaboração e participação no processo de defesa desta dissertação.

A coordenação do curso de Pós-Graduação em Química e aos funcionários: Ademir Sartori e secretária Valéria Velasquez.

Aos colegas e funcionários do RMN pelo esforço e paciência quando do desenvolvimento dos meus espectros, principalmente nas pessoas de Leonardo Fantinel, Simone Schneider Amaral, Rogério Lourega e Sidnei Moura.

As minhas amigas, Roberta e Graciane, pelo apoio incondicional durante estes dois anos.

Aos colegas dos laboratórios dos professores Helio Bonacorso e Marcos Martins, pelas trocas de conhecimentos, empréstimo de reagentes e companheirismo.

Ao Departamento de Química, ao Setor de Química e as entidades financiadoras CAPES e CNPq.

A todos os amigos que de alguma forma contribuíram para a realização deste trabalho.

RESUMO

SÍNTESE DE 1-ALQUIL(ARIL)-2-AMINO-5-TRIFLUORACETIL-1,2,3,4-TETRAIDROPIRIDINAS

Autora: Fabiane Manke Nachtigall Orientador: Prof. Dr. Nilo Zanatta

A presente dissertação descreve a síntese de uma série inédita de 1alquil(aril)-2-alquil(aril)amino-5-trifluoracetil-1,2,3,4-tetraidropiridinas **6**, a partir de reações de ciclocondensação entre 2-alcoxi-5-trifluoracetil-2*H*-3,4diidropiranos **3** e **4** e aminas primárias **5**.

Os 2-alcoxi-5-trifluoracetil-2*H*-3,4-diidropiranos foram obtidos a partir de reações de trifluoracetilação de enoléteres, sendo estas duas trifluormetil cetonas obtidas com bons rendimentos (75 e 80%, repectivamente).

As reações de cicloadição empregando 2-alcoxi-5-trifluoracetil-2*H*-3,4diidropiranos e aminas primárias, utilizando relação molar de 1:2, foram realizadas sob diferentes condições reacionais, dependendo da amina empregada, sendo as tetraidropiridinas **6** sintetizadas com bons rendimentos.

UNIVERSIDADE FEDERAL DE SANTA MARIA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA Santa Maria, 28 de fevereiro de 2005.

ABSTRACT

SYNTHESIS OF 1-ALKYL(ARYL)-2-AMINO-5-TRIFLUOROACETYL-1,2,3,4-TETRAHYDROPYRIMIDINES

Author: Fabiane Manke Nachtigall Advisor: Prof. Dr. Nilo Zanatta

The present work describes the synthesis of a new series of 1alkyl(aryl)-2-alkyl(aril)amino-5-trifluoroacetyl-1,2,3,4-tetrahydropyridines **6** from the cyclocondesation reaction of 2-alkoxy-5-trifluoroacetyl-2*H*-3,4dihydropyrans **3** and **4**, and primary amines **5**.

The new 2-alkoxy-5-trifluoroacetyl-2*H*-3,4-dihydropyrans were obtained from trifluoroacetylation of vinylethers, in good yields (75 and 80%, respectively).

The cyclocondensation reaction of 2-alkoxy-5-trifluoroacetyl-2*H*-3,4dihydropyrans and primary amines were carried out in a molar ratio of 1:2 under different reaction conditions, depending on the amine used. All synthesized tetrahydropyridines were obtained analytical pure and in good yields.

UNIVERSIDADE FEDERAL DE SANTA MARIA GRADUATE PROGRAM IN CHEMISTRY Santa Maria, February 28, 2005

SUMÁRIO

I. ÍNDICE DE FIGURASXV
II. ÍNDICE DE TABELASXVIII
III. LISTA DE SIGLAS, ABREVIATURAS E SÍMBOLOSXX
1. INTRODUÇÃO E OBJETIVOS1
2. REVISÃO DA LITERATURA6
2.1 Síntese de β -Alcoxivinil Trifluormetil Cetonas6
2.2 Síntese de Hetrociclos a partir de β -Alcoxivinil Trifluormetil Cetonas
12
2.3 Síntese de 1,2,3,4-Tetraidropiridinas17
2.4 Utilização de 1,2,3,4-Tetraidropiridinas em Síntese Orgânica30
3. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS
3.1 Apresentação dos Compostos34
3.1.1 Numeração dos Compostos34
3.1.2 Nomenclatura dos Compostos Sintetizados
3.2 Acilação de 2-Alcoxi-2H-3,4,-diidropiranos com Anidrido Trifluoracético
3.2.1 Identificação dos Compostos 3 e 4
3.3 Obtenção de 1-Alquil(aril)-2-alquil(aril)amino-5-trifluoracetil-1,2,3,4-
tetraidropiridinas 6a-I 43
3.3.1 Identificação dos Compostos 6a-e através de RMN de ¹ H e ¹³ C

3	3.3.2 Identificação dos Compostos 6f-I através de RMN de ¹ H e ¹³ C	
		58
3	3.3.3 Identificação dos Compostos 6a-I através de espectrometria de	е
mass	sas	71
3.4 N	lecanismo Proposto	74
3.5 T	estes de Atividade Antimicrobiana	76
4. MATI	ERIAIS UTILIZADOS E PROCEDIMENTO EXPERIMENTAL	80
4.1 A	Aparelhos Utilizados	80
4	1.1.1 Espectroscopia de Ressonância Magnética Nuclear	80
4	1.1.2 Espectroscopia de Massas	81
4	1.1.3 Ponto de Fusão	81
4	1.1.4 Análise Elementar	81
4.2 R	Reagentes e Solventes	82
4.3 A	Atividade Antimicrobiana	82
4	1.3.1 Microrganismos	82
4	1.3.2 Padrões utilizados nos ensaios microbiológicos	83
4	1.3.3 Meios de Cultura	83
4	1.3.4 Preparação de inóculos bacterianos e fúngicos	85
4	1.3.5 Avaliação da Atividade Antimicrobiana	85
4.4 P	Procedimentos Experimentais	86
4	1.4.1 Procedimento geral de síntese de β -Alcoxivinil Trifluormetil	
Ceto	nas	86
4	1.4.2 Síntese dos Compostos 6a-I	87
4	1.4.3 Preparação das suspensões dos microrganismos	97

4.4.	4 Determinação	da ativ	/idade	antimicrobiana	pelo	Método	de
Bioautogra	afia						.97
5. CONCL	USÕES						.98
6. ANEXC	: Espectros de	RMN de	∘ ¹H e ′́	¹³ C{ ¹ H} e massa	as dos	s compos	tos
obtidos						1	00

I - ÍNDICE DE FIGURAS

Figura 1	Estrutura dos compostos nifedipine (I), Bay K-8644 (II), MPTP (III), arecolina (IV) e OXTP (V)				
Figura 2	Estrutura dos compostos 5-trifluoracetil-2-metoxi-2 <i>H</i> -3,4- diidropirano (3) e 2-etoxi-5-trifluoracetil-2 <i>H</i> -3,4,- diidropirano (4)				
Figura 3	Numeração dos compostos sintetizados				
Figura 4	Espectro de RMN de ¹ H a 200 MHz do composto 3 em CDCl ₃				
Figura 5	Espectro de RMN de ¹³ C{ ¹ H} a 100 MHz do composto 3 em CDCl ₃				
Figura 6	Espectro de RMN de HMQC do composto 4 em $CDCI_3$				
Figura 7	Expansão do espectro de RMN de HMQC do composto 4 em CDCl ₃				
Figura 8	Espectro de RMN de ¹ H a 200 MHz do composto 6d em CDCI ₃				
Figura 9	Espectro de RMN de ¹³ C{ ¹ H} a 100 MHz do composto 6d em CDCl ₃				
Figura 10	Espectro de RMN de HMQC do composto 6e em CDCl ₃				
Figura 11	Espectro de RMN de ¹ H a 400 MHz do composto 6f em $CDCI_3$				
Figura 12	Espectro de RMN de ¹³ C{ ¹ H} a 100 MHz do composto 6f em CDCl ₃				
Figura 13	Espectro de RMN de COSY H-H do composto 6f em CDCl ₃				

XV

igura 14	Espectro de RMN de HMQC do composto 6f em CDCI ₃
igura 15	Espectro de RMN de HMBC do composto $\mathbf{6f}$ em CDCl ₃
igura 16	Espectro de RMN de HMBC do composto 61 em $CDCI_3$
gura 17	Espectro de Massas (IE, 70 eV) do composto 6f
gura 18	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 3 em CDCl ₃
gura 19	Espectro de massas (IE, 70 eV) composto 3
gura 20	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 4 em CDCl ₃
gura 21	Espectro de massas (IE, 70 eV) do composto 4
gura 22	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6a em CDCl ₃
gura 23	Espectro de massas (IE, 70 eV) do composto 6a
jura 24	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6b em CDCl ₃
gura 25	Espectro de massas (IE, 70 eV) do composto 6b
gura 26	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6c em CDCl ₃
gura 27	Espectro de massas (IE, 70 eV) do composto 6c
gura 28	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6d em CDCl ₃
gura 29	Espectro de massas (IE, 70 eV) do composto 6d

XVI

Figura 30	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz
	do composto 6e em CDCl ₃
Figura 31	Espectro de massas (IE, 70 eV) do composto 6e
Figura 32	Espectros de RMN de ¹ H a 400 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6f em CDCl ₃
Figura 33	Espectro de massas (IE, 70 eV) do composto 6f
Figura 34	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6g em CDCl ₃
Figura 35	Espectro de massas (IE, 70 eV) do composto 6g
Figura 36	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6h em CDCl ₃
Figura 37	Espectro de massas (IE, 70 eV) do composto 6h
Figura 38	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6i em DMSO-d ₆
Figura 39	Espectro de massas (IE, 70 eV) do composto 6i
Figura 40	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6j em CDCl ₃
Figura 41	Espectro de massas (IE, 70 eV) do composto 6j
Figura 42	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6k em CDCl ₃
Figura 43	Espectro de massas (IE, 70 eV) do composto 6k
Figura 44	Espectros de RMN de ¹ H a 200 MHz e ¹³ C{ ¹ H} a 100 MHz do composto 6I em CDCl ₃
Figura 45	Espectro de massas (IE, 70 eV) do composto 6I

II - ÍNDICE DE TABELAS

Tabela 1	Reação do composto 94 com dienófilos selecionados
Tabela 2	Ozonólise das 1,2,3,4-tetraidropiridinas 139a-e
Tabela 3	Nomenclatura dos compostos sintetizados
Tabela 4	Dados físicos e espectroscópicos dos compostos 3 e 4
Tabela 5	Dados de RMN de ¹ H e ¹³ C dos compostos 3 e 4
Tabela 6	Otimização das condições reacionais para a síntese de 5- trifluoracetil-1-metil-2-N-metilamino-1,2,3,4-tetraidropiridina (6a)
Tabela 7	Otimização das condições reacionais para a síntese de 5- trifluoracetil-1-propil-2-N-propilamino-1,2,3,4- tetraidropiridina (6c)
Tabela 8	Otimização das condições reacionais para a síntese de 1- fenil-2-N-fenilamino-5-trifluoracetil-1,2,3,4-tetraidropiridina (6f)
Tabela 9	Condições reacionais otimizadas para a obtenção dos compostos 6a-I
Tabela 10	Propriedades físicas, fórmula molecular e análise elementar dos compostos 6a-I
Tabela 11	Dados de RMN de ¹ H e ¹³ C dos compostos 6a-e
Tabela 12	Dados de RMN de ¹ H e ¹³ C dos compostos 6f-I
Tabela 13	Comparação entre os sinais de ¹ H mais importantes dos compostos 3, 4 e 6a-I

Tabela 14	Comparação entre os sinais de ¹³ C mais importantes dos	
	compostos 3, 4 e 6a-I	70
Tabela 15	Atividade antibacteriana in vitro dos compostos 6d-I (QIM	
	μg/aplicação)	77
Tabela 16	Atividade antifúngica in vitro dos compostos 6d-I (QIM	
	μg/aplicação)	78

III - LISTA DE SIGLAS, ABREVIATURAS E SÍMBOLOS

- CG Cromatografia Gasosa
- CG/MS Cromatografia Gasosa acoplada ao detector seletivo de massas
- P.E. Ponto de ebulição
- P.F Ponto de fusão
- t.a. Temperatura ambiente
- RMN¹H -Ressonância magnética nuclear de hidrogênios
- RMN ¹³C {¹H}-Ressonância magnética nuclear de carbonos totalmente desacoplado
- COSY Correlated Spectroscopy
- HMBC Heteronuclear Multiple Bond Correlation
- HMQC Heteronuclear Multiple Quantum Correlation
- δ deslocamento químico
- $^{1}J_{C-F}$ Constante de acoplamento carbono-flúor a uma ligação de distância
- $^{2}J_{C-F}$ Constante de acoplamento carbono-flúor a duas ligação de distância
- s Singleto
- d Dubleto
- dd Duplo-dubleto
- m Multipleto (sobreposição de sinais)
- q Quarteto
- qui Quinteto
- t Tripleto
- TMS Tetrametil Silano
- CDCl₃ Clorofórmio deuterado
- DMSO-d₆ Dimetil sulfóxido deuterado
- ACN Acetonitrila
- BSA N,O-Bis(trimetilsilil)acetamida
- DIPEA Diisopropil etilamina
- LDA Diisopropil amideto de lítio
- MPTP 1-metil-4-fenil-1,2,3,6-tetraidropiridina

OXTP - 3-(5-alcoxi-oxazol-2-il)-1,2,5,6-tetraidropiridina

THF – Tetridrofurano

THP - Tetraidropiridina

1. INTRODUÇÃO E OBJETIVOS

Piridinas são componentes estruturais básicos de uma gama de heterociclos apresentando interessantes propriedades medicinais¹. Pelo fato destas moléculas serem conhecidas por exibirem recognição molecular através de interações não covalentes, os químicos medicinais vem explorando estas informações, simulando estas unidades bioativas para desenvolver novas moléculas biologicamente ativas³.

Às pridinas, de um modo geral, são associadas diversas atividades biológicas⁴⁻¹², e mais especificamente, às tetraidropiridinas, como as apresentadas na **Figura 1**, são associadas potenciais atividades como reguladores de fluxo de íons cálcio¹³, modelos de neurodegeneração¹⁴ e terapêuticos para o Mal de Parkinson e desordens motoras, gastrointestinais e geniturinárias¹⁵.

¹ (a) Smith, D. In *Comprehensive Organic Chemsitry*, Vol. 4; Sames, P. G., Ed.; Pergamon: Oxford, 1979, 3; (b) Bailey, T.; Goe, G.; Scriven, E. In *Heterocyclic Compounds*, Part 5, Vol. 14; Newkome, G. R., Ed.; Wiley: New York, 1984, 215; (c) Fodor, G. B.; Colasanti, B. In *Alkaloids: Chemical and Biological Perspectives*, Vol. 3; Pelletier, S. W., Ed.; Wiley: New York, 1985, 1–90.

³ Goel, A.; Singh, F. V.; Sharon, A.; Maulik, P. R. Synlett 2005, 623.

⁴ Niño, A.; Muñoz-Caro, C.; Carbò-Dorca, R.; Gironés, X. *Biophys. Chem.* **2003**, *104*, 417.

⁵ Sata, N.; Shibata, T.; Jitsuoka, M.; Ohno, T.; Takahashi, T.; Hirohashi, T.; Kanno, T.; Iwaasa, H.; Kanatani, A.; Fukami, T. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 1761.

⁶Carlsson, C.; Rosen, I.; Nilsson, E. Acta Anaesthesiol. Scand. 1993, 27, 87.

⁷ Curran, D.; Liu, H. J. Am. Chem. Soc. **1992**, 114, 5863.

⁸ (a) Cox, R.; O'Hagan, D. J. Chem. Soc., Perkin Trans. 1 **1991**, 2537; (b) Rigby, J.; Balasubramanian, N. J. Org. Chem. **1989**, 54, 224.

⁹ Williams, D.; Lowder, P.; Gu, Y-G. *Tetrahedron Lett.* **1997**, *38*, 327.

¹⁰ Teshima, Y.; Shin-ya, K.; Shimazu, A.; Furihota, K.; Chul, H. S.; Furihata, K.; Hayakawa, Y.; Nagai, K.; Seto, H. *J. Antibiot.* **1991**, *44*, 685.

¹¹ Matyus, P.; Kasztreiner, E.; Diesler, E.; Behr, A.; Varga, I.; Kosary, J.; Rabloczky, G.; Jaszlits, L. Arch. *Pharm.* **1994**, *327*, 543.

¹² Narusevicius, E.; Garaliene, V.; Krauze, A.; Duburs, G. Khim. Farm. Zh. 1989, 23, 1459.

¹³ Gandolfi, C. A.; Frigerio, M.; Riva, C.; Palmisano, G.; Pilati, T. Tetrahedron Lett. 1988, 29, 6335.

¹⁴ Adams, J. D.; Chang, M.-L.; Klaidman, L. Curr. Med. Chem. 2001, 8, 809.

¹⁵ Mitch, C. H.; Bymaster, F. P.; Calligaro, D. O.; Quimby, S. J.; Schoepp, D. D.; Wong, D. T.; Shannon, H. E. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 1721.

Figura 1: Estrutura dos compostos nifedipine (I), Bay K-8644 (II), MPTP (III), arecolina (IV) e OXTP (V).

Os métodos comumente utilizados para a síntese de aza-heterociclos, como as 1,2,3,4-THP, envolvem reações entre iminas e compostos carbonílicos¹⁶, ciclocondensação de δ -aloiminas¹⁷ e ainda, reações de ciclização de Hantzsch^{13,18}.

Nosso grupo de pesquisa tem utilizado β -alcoxivinil trialometil cetonas como blocos precursores para a síntese de muitos heterociclos como pirazóis¹⁹,

¹⁶ Foss, F. K.; Ho, C. C.; Liang, Y.; Rizvi, S. Q. A.; Stucki, H.; Steel, F. *Tetrahedron Lett.* **1978**, *4*, 327.

¹⁷ (a) De Kimpe, N.; Stevens, C. *Tetrahedron* **1995**, *51*, 2387; (b) De Kimpe, N.; Aelterman, W. *Tetrahedron* **1998**, *54*, 2563.

¹⁸ Ogawa, T.; Matsumoto, K.; Yoshimura, M.; Hatayama, K.; Kitamura, K.; Kita, Y. *Tetrahedron Lett.* **1993**, 1967.

¹⁹ (a) Martins, M. A. P.; Pereira, C. M. P.; Beck, P.; Machado, P.; Moura, S.; Teixeira, M. V.; Bonacorso, H. G.; Zanatta, N. *Tetrahedron Lett.* **2003**, *44*, 6669; (b) Pereira, C. M. P. *Tese de Doutorado*, UFSM, Brasil, **2004**; (c) Braibante, M. E. F.; Clar, G.; Martins, M. A. P. *J. Heterocycl. Chem.*, **1993**, *30*, 1159; (d) Flores, A. F. C.; Martins, M. A. P.; Rosa, A.; Flores, D. C.; Zanatta, N.; Bonacorso, H. G. Synthetic Comm. **2002**, *32*(10), 1585; (e)Martins, M. A. P.; Freitag, R. A.; Flores, A. F. C.; Zanatta, N. Synthesis

pirazolinas²⁰, isoxazóis²¹, isoxazolinas²², piridinas²³, pirimidinas²⁴, pirimidinonas²⁵ e diazepinos²⁶, entre outros. O grande interesse na introdução do grupo trifluormetil em compostos heterocíclicos se deve ao fato deste grupo poder trazer notáveis mudanças nas propriedades físicas, químicas e biológicas que resultam em novos compostos ou materiais para diversas aplicações farmacológicas²⁷, agroquímicas²⁸, analíticas²⁹ e sintéticas³⁰.

¹⁹⁹⁵, 1491; (f) Martins, M. A. P.; Freitag, R. A.; Rosa, A.; Flores, A. F. C.; Zanatta, N.; Bonacorso, H. G. *J. Heterocycl. Chem.* **1999**, *36*, 217; (g) Flores, A. F. C.; Zanatta, N.; Rosa, A.; Brondani, S.; Martins, M. A. P. *Tetrahedron Lett.* **2002**, *43*, 5005.

²⁰ (a) Bonacorso, H. G.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. *Synthetic Comm.* **2000**, *30*, 1457; (b) Bonacorso, H. G.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P.; Naue, J. A. *J. Fluorine Chem.* **1998**, *92*, 23.

²¹ (a) Martins, M. A. P.; Flores, A. F. C.; Siqueira, G. M.; Freitag, R.; Zanatta, N. *Química Nova* 1994, *17*, 298; (b) Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Sinhorin, A. P.; Bonacorso, H. G.; Zanatta, N. *Tetrahedron Lett.* 2000, *41*, 293; (c) Martins, M. A. P.; Neto, M.; Sinhorin, A. P.; Bastos, G. P.; Zimmermann, N. E. K.; Rosa, A.; Bonacorso, H. G.; Zanatta, N. *Synthetic Comm.* 2002, *32*(3), 425; (d) Martins, M. A. P.; Siqueira, G. M.; Bastos, G. P.; Bonacorso, H. G.; Zanatta, N. J. Heterocycl. Chem. 1996, *33*, 1619; (e) Martins, M. A. P.; Flores, A. F. C.; Freitag, R.; Zanatta, N. *J. Heterocycl. Chem.* 1995, *32*, 731.

²² (a) Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Zanatta, N.; Bonacorso, H. G. J. Heterocycl. Chem. 1999, 36, 837; (b) Martins, M. A. P.; Flores, A. F. C.; Freitag, R. A.; Zanatta, N. J. Heterocycl. Chem. 1996, 33, 1223; (c) Martins, M. A. P.; Beck, P.; Cunico, W.; Pereira, C. M. P.; Sinhorin, A. P.; Blanco, R. F.; Peres, R.; Bonacorso, H.; Zanatta, N. Tetrahedron Lett. 2002, 43, 7005.

²³Zanatta, N.; Barichello, R.; Bonacorso, H. G.; Martins, M. A. P. Synthesis **1999**, 765.

²⁴ (a) Zanatta, N.; Rosa, L. S.; Loro, E.; Bonacorso, H. G.; Martins, M. A. P. J. Fluorine Chem. 2001, 107, 149; (b) Zanatta, N.; Cortelini, M. F. M.; Carpes, M. J. S.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocycl. Chem. 1997, 34, 509; (c) Zanatta, N.; Fagundes, M. B.; Ellenshon, R.; Marques, M.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocycl. Chem. 1998, 35, 451; (d) Zanatta, N.; Pacholski, I. L.; Faoro, D.; Bonacorso, H. G.; Martins, M. A. P. Synthetic Comm. 2001, 31, 2855.

²⁵ (a) Bonacorso, H. G.; Lopes, I. S.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. J. Fluorine Chem. **2003**, *120*, 29; (b) Zanatta, N.; Pacholski, I. L.; Blanco, I.; Martins, M. A. P. J. Braz. Chem. Soc. **1991**, 2, 118; (c) Zanatta, N.; Blanco, I.; Pacholski, L.; Martins, M. A. P. *Química Nova* **1993**, *16*, 15; (d) Bonacorso, H. G.; Lourega, R. V.; Wastowski, A. D.; Flores, A. F. C.; Zanatta, N.; Martins, M. A. P. *Tetrahedron Lett.* **2002**, *43*, 9315.

²⁶ (a) Bonacorso, H. G.; Bittencourt, S. R. T; Wastowski, A. D.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. *Tetrahedron Lett.* **1996**, *37*, 9155; (b) Bonacorso, H. G.; Marques, L. M. L.; Zanatta, N.; Martins, M. A. P. Synthetic Comm. **2002**, *32*, 3233.

²⁷ (a) Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E.; Smart, B. E.; Tatlow, J. C., Ed.; Plenum: New York, 1994; (b) Organic Chemistry in Medicinal Chemistry and Biochemical Applications; Filler, R.; Ed.; Elsevier: Amsterdam, 1993; (c) Filler, R.; Kirk, K. In Chemistry of Organic Fluorine Compounds II: A Critical Review; Hudlicky, M.; Pavlath, A. E., Ed.; ACS: Monograph 187; American Chemical Society: Washington, DC, 1995.

 ²⁸ (a) Ishii, S. K. Y.; Umehara, Y.; Kudo, M.; Nawamaki, T.; Watanabe, S. Jpn. Pat. 02 129 171, 1990;
Chem. Abstr. 1990, *113*, 172014a; (b) Shimotori, H.; Ishii, T.; Yamazaki, H.; Kuwatsuka, T.; Yanase, Y.;
Tanaka, Y. GP 3 713 744, 1987; *Chem. Abstr.* 1988, *108*, 112445d; (c) Buntain, I. G.; Hatton, L. R.;

Recentemente, o uso de β -alcoxivinil trialometil cetonas cíclicas, como 2alcoxi-5-trifluoracetil-2*H*-3,4,-diidropiranos (**Figura 2**), tem despertado interesse devido ao fato destes compostos reagirem com agentes nucleofílicos gerando novos sistemas heterocíclicos trifluormetilados^{31, 32, 33, 34}.

Figura 2: Estrutura dos compostos 5-trifluoracetil-2-metoxi-2*H*-3,4-diidropirano (**3**) e 2-etoxi-5-trifluoracetil-2*H*-3,4,-diidropirano (**4**).

Os métodos encontrados na literatura para a síntese de 1,2,3,4,tetraidropiridinas são, em sua maioria rotas sintéticas extensas, com mistura de produtos e baixos rendimentos.

Tendo em vista a importância bilógica destes compostos e a dificuldade de síntese através das rotas clássicas geralmente empregadas, este trabalho tem por objetivos:

Hawkins, D. W.; Pearson, C. J.; Roberts, D. A. Eur. Pat. Appl. 295, 1988, 117; Chem. Abstr. 1990, 112, 35845n.

²⁹ (a) Joshi, K. C.; Pathak, V. N. *Coord. Chem.Rev.* **1977**, *22*, *37*; (b) De, A. K.; Khopkar, S. M.; Chalmers, R. A. Solvent Extraction of Metals; Van Nostrand: London, 1970; (c) *Organofluorine Chemicals and Their Industrial Applications*; Banks, R. E., Ed.; Ellis Horwood: New York, 1979; (d) Welch, J. T. *Tetrahedron* **1987**, *43*, 3123.

³⁰ (a) Olah, G. A.; Prakash, G. K. S.; Chambers, R. D. *Synthetic Fluorine Chemistry*; Wiley: New York; 1992; (b) Furin, G. G. *Synthetic Aspects of the Fluorination of Organic Compounds*; Haward Academic: London, 1991; (c) McClinton, M. A.; McClinton, D. A. *Tetrahedron* **1992**, *48*, 6555.

³¹ Mellor, J. M.; Reid, G.; El-Sagheer, A. H.; El-Tamany, E-S. H. *Tetrahedron* **2000**, *56*, 10039.

³² Zhu, S.; Qin, C.; Xu, G.; Chu, Q.; Huang, Q. J. Fluorine Chem. **1999**, 99, 141.

³³ Okada, E.; Okumura, H.; Nishida, Y.; Kitahora, T. Heterocycles 1999, 50, 377.

³⁴ Kawase, M.; Hirabayashi, M.; Saito, S.; Yamamoto, K. Tetrahedron Lett. 1999, 40, 2541.

- Sintetizar 2-alcoxi-5-trifluoracetil-2H-3,4,-diidropiranos 3 e 4 a partir de 2-metoxi-2H-3,4-diidropirano (1) e 2-etoxi-2H-3,4-diidropirano (2) como precursores na síntese das 1,2,3,4-THP (Esquema 1);
- Sintetizar, isolar e elucidar estruturalmente uma nova série de 1-alquil(aril)-2-alquil(aril)amino-5-trifluoracetil-1,2,3,4-tetraidropiridinas (6a-l) através de uma metodologia simples, utilizando reações de cicloadição entre os compostos 3 e 4 e aminas primárias, em uma única etapa (Esquema 1);
- Avaliar a possível atividade antimicrobiana da série inédita de compostos sintetizados durante o trabalho.

2. REVISÃO DA LITERATURA

A revisão bibliográfica objetiva abordar as principais referências que se relacionam de maneira direta ao trabalho desenvolvido nesta dissertação.

Inicialmente, serão apresentados trabalhos relacionados à síntese de β alcoxivinil trifluormetil cetonas a partir de enoléteres e acetais e seu emprego na síntese de compostos heterocíclicos. Em seguida, serão abordados trabalhos que divulgam métodos para a obtenção de 1,2,3,4-tetraidropiridinas e sua utilização em síntese orgânica.

2.1 Síntese de β-Alcoxivinil Trifluormetil Cetonas

A reação de enoléteres e acetais com derivados de ácidos haloacéticos foi inicialmente publicada por Effenberger e colaboradores³⁵ e por Hojo e colaboradores³⁶.

A partir de 1986, o Núcleo de Química de Heterociclos (NuQuimHe), vem aplicando de maneira sistemática o método de acilação de enoléteres e acetais com acilantes halogenados produzindo uma série de 1,1,1-trialo-3-alquil-4-alcoxi-3-buten-2-onas. O principal interesse na utilização de β-alcoxivinil trifluormetil cetonas, consideradas análogas a compostos 1,3-dicarbonílicos, é por apresentarem dois centros eletrofílicos com reatividades distintas que conduzem a reações regioseletivas.

³⁵ (a) Effenberger, F.; Maier, R.; Schonwalder, K.H.; Ziegler, T. *Chem. Ber.* **1982**, *115*, 2766. (b) Effenberger, F.; Schonwalder, K.H. *Chem. Ber.* **1984**, *117*, 3270.

³⁶ (a) Hojo, M.; Masuda, R.; Kokuryo, Y.; Shioda, H.; Matsu, S. *Chem. Lett.* **1976**, 499; (b) Hojo, M.; Masuda, R.; Okada, E. *Synthesis* **1986**, 1013. (c) Hojo, M.; Kamitori, Y.; Masuda, R.; Fujitani, T.; Kobuch, T.; Nishigaki, T. *Synthesis* **1986**, 340.

Uma série de β -alcoxivinil trialometil cetonas foi sintetizada com alta pureza por Martins e colaboradores, reagindo enoléteres com anidrido trifluoracético ou com cloreto de tricloroacetila³⁷. Quando foram empregados cloreto de dicloro acetila³⁸ para a mesma série de enoléteres, não apresentou alta eficiência, sendo necessárias condições de reação mais drásticas. Alguns enoléteres não formaram as β -alcoxivinil diclorometil cetonas previstas (**Esquema 2**).

Esquema 2:

A obtenção de 1,1,1-trialo-3-alquil(aril)-4-metoxi(etoxi)-3-buten-2-onas foi ampliada pelo NuQuimHe a partir da acilação direta de acetais derivados de acetofenonas³⁹ e propriofenonas^{40,41}. Esta metodologia teve por base trabalhos desenvolvidos por Knorr⁴² e Hojo e col.^{35a} (**Esquema 3**).

³⁷ Colla, A.; Martins, M. A. P.; Clar, G.; Krimmer, S.; Fischer, P. Synthesis 1991, 483.

³⁸ Martins, M. A. P.; Zoch, A. N.; Flores, A. F. C.; Clar, G.; Zanatta, N.; Bonacorso, H. G. *J. Heterocycl. Chem.* **1995**, *32*, 739.

³⁹ Martins, M. A. P.; Siqueira, G. M.; Flores, A. F. C.; Clar, G.; Zanatta, N. *Química Nova* 1994, 17, 24.

⁴⁰ Bonacorso, H. G.; Lopes, I. S.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. J. Fluorine Chem. **2003**, *120*, 29.

Em 1994 o NuQuimHe apresentou um estudo comparativo entre as reações de acilação de acetais, enoléteres e enaminas⁴³ para a síntese de β -alcovinil trialometil cetonas cíclicas. Com este estudo foi verificado que o rendimento para as reações de acilação de enoléteres e acetais é muito semelhante, porém, a acilação de enoléteres se mostrou mais econômica por utilizar quantidade equimolar de enoléter e acilante, enquanto a acilação de acetais torna necessário o uso de 2 equivalentes de acilante para 1 equivalente de acetal (**Esquema 4**).

⁴¹ Leão, L. L. M., *Dissertação de Mestrado*, UFSM, Brasil, **2001**.

⁴² Knorr, L. Ann. Chem. **1987**, 279, 219.

⁴³ Martins, M. A. P.; Flores, A. F. C.; Siqueira, G. M.; Freitag, R.; Zanatta, N. *Química Nova* **1994**, *17*, 298.

Esquema 4:

 β -alcovinil trifluormetil cetonas cíclicas também foram sintetizadas a partir da reação de acilação direta de 1,1-dimetoxicicloalcanos, derivados de ciocloalcanonas, com anidrido trifluoracético em piridina⁴⁴. Os 2-trifluoracetilmetoxicicloalquenos foram obtidos com rendimentos de 60-70% (**Esquema 5**).

Esquema 5:

Bonacorso e col.⁴⁵ demonstraram a síntese de 1,1,1-trifluor-3-alquil-4metóxi-3-buten-2-onas utilizando como precursores acetais derivados de alquil metil cetonas (**Esquema 6**).

Esquema 6:

⁴⁴ Costa, M. B., *Dissertação de Mestrado*, UFSM, Brasil, **2004.**

⁴⁵ Bonacorso, H. G.; Martins, M. A. P.; Bittencourt, S. R. T.; Lourega, R. V.; Flores, A. F. C.; Zanatta, N.

J. Fluorine Chem. 1999, 99, 177.

Flores e col.^{19g} apresentaram a obtenção de 1,1,1-trialo-3alquil(heteroaril)-4-metoxi-3-buten-2-onas a partir da acilação regioespecífica de acetais derivados de heteroaril cetonas (**Esquema 7**).

Esquema 7:

β-Alcovinil trifluormetil cetonas com grupos heteroaril na posição 4, como 1,1,1-trifluor-3-aril(heteroaril)-4-metoxi-3-buten-2-onas, também foram obtidas a partir da acilação de acetais derivados de 4-acetilbifenil e 1-acetilnaftaleno⁴⁶ (**Esquema 8**).

Esquema 8:

2.2 Síntese de Heterociclos a partir de β-Alcoxivinil Trialometil Cetonas

β-Alcoxivinil trialometil cetonas são versáteis precursores para a obtenção de diversos sistemas contendo na sua estrutura o grupo trialometil, por apresentarem diferente reatividade entre o carbono-β e o carbono carbonílico, o que possibilita a obtenção de compostos heterocíclicos de maneira regioseletiva. Com base nestes conceitos, há quase duas décadas o NuQuimHe vem sintetizando uma série de compostos heterocíclicos de 5 membros (**Esquema 9**) como pirazóis^{19,47}, pirazolinas^{19a,20,45,47,48}, isoxazóis^{21,49},

⁴⁶ Cechinel, C. A., *Dissertação de Mestrado*, UFSM, Brasil, **2004.**

⁴⁷ Martins, M. A. P.; Emmerich, D. J.; Cunico, W.; Rossato, M.; Pereira, C. M. P.; Zanatta, N.; Bonacorso, H. G. *Tetrahedron Lett.* **2004**, *45*, 4935.

⁴⁸ Bonacorso, H. G.; Oliveira, M. R.; Wastowski, A. D.; Wentz, A. P.; Oliveira, A. B.; Höerner, M.; Zanatta, N.; Martins, M. A. P. *Tetrahedron* **1999**, *55*, 345.

⁴⁹ Zoch, A. N., *Dissertação de Mestrado*, UFSM, Brasil, **1990**.

isoxazolinas^{21b,21d,21e,22,45,47}, pirrolidinonas^{50,51}, imidazóis⁵², furanos⁵³, lactonas⁵⁴, isoselenazóis⁵⁵, íons pirazolinicos^{56,57}, 6 e 7 membros (**Esquema 10**) como piridinas²³, pirimidinas²⁴, pirimidinonas^{40,45,58,59}, tiopirimidinonas^{58,60}, tiazinas⁶¹, benzoquinolinas⁶², diazepinos²⁶ e também bis heterociclos⁶³⁻⁷³ (**Esquema 11**) trialometil substituídos.

⁵⁶ Martins, M. A. P.; Blanco, R. F.; Pereira, C. M. P.; Beck, P.; Brondani, S.; Cunico, W.; Zimmermann, N. E. K.; Bonacorso, H. G.; Zanatta, N. *J. Fluorine Chem*, **2002**, *118*, 69.

⁵⁷ Martins, M. A. P.; Pereira, C. M. P.; Sinhorin, A. P.; Bastos, G. P.; Zimmermann, N. E. K.; Rosa, A.; Bonacorso, H. G.; Zanatta, N. *Synthetic Comm.* **2002**, *32*(3), 419.

⁵⁸ Martins, M. A. P.; Teixeira, M. V. M.; Cunico, W.; Scapim, E.; Mayer, R.; Pereira, C. M. P.; Zanatta, N.; Bonacorso, H. G.; Peppe, C.; Yuan, Y.-F. *Tetrahedron Lett.* **2004**, *45*, 8991.

⁵⁹ Zanatta, N.; Madruga, C. C.; Clerici, E.; Martins, M. A. P. J. Heterocycl. Chem. **1995**, *32*, 735.

⁶¹ Bonacorso, H. G.; Bittencourt, S. R. T; Lourega, R. V.; Flores, A. F. C.; Zanatta, N.; Martins, M. A. P. *Synthesis* **2000**, 1431.

⁶² Bonacorso, H. G.; Duarte, S. H. G.; Zanatta, N.; Martins, M. A. P. Synthesis **2002**, 1037.

⁶⁴ Bonacorso, H. G.; Lewandowiski, H.; Drekener, R. L.; Costa, M. B.; Wastowski, A. D.; Pereira, C. M. P.; Peppe, C.; Zanatta, N.; Martins, M. A. P. *J. Fluorine Chem.* **2003**, *122*, 159.

⁶⁶Bonacorso, H. G.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. Synthesis 2000, 1505.

⁵⁰ Zanatta, N.; Rosa, L. S.; Cortelini, M. F. M.; Beux, S.; Santos, A. P. D.; Bonacorso, H. G. e Martins, M. A. P. *Synthesis* **2002**, *16*, 2404.

⁵¹ Martins, M. A. P.; Pereira, C. M. P.; Zimmermann, N. E. K.; Cunico, W.; Moura, S.; Beck, P.; Zanatta, N.; Bonacorso, H. G. J. Fluorine Chem. **2003**, *123*, 261.

⁵² Bonacorso, H. G.; Bittencourt, S. R. T; Wastowski, A. D.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. J. Hetercycl. Chem. **1999**, *36*, 45.

⁵³ Zanatta, N.; Faoro, D.; Siva, S. C.; Martins, M. A. P.; Bonacorso, H. G. *Tetrahedron Lett.* **2004**, *45*, 5689.

⁵⁴ Zanatta, N.; Barichello, R.; Pauletto, M. M.; Bonacorso, H. G.; Martins, M. A. P. *Tetrahedron Lett.* **2003**, *44*, 961.

⁵⁵ Martins, M. A. P.; Bastos, G. P.; Sinhorin, A. P.; Zimmermann, N. E. K.; Bonacorso, H. G.; Zanatta, N. *Synthesis* **2002**, 15.

⁶⁰ Zanatta, N.; Madruga, C. C.; Marisco, P. C.; Flores, D. C.; Bonacorso, H. G.; Martins, M. A. P. J. *Heterocycl. Chem.* **2000**, *37*, 1213.

⁶³ Zanatta, N.; Flores, D. C. ; Madruga, C. C.; Faoro, D.; Flores, A. F. C.; Bonacorso, H. G. ; Martins, M. A. P. *Synthesis* **2003**, 894.

⁶⁵ Zanatta, N.; Lopes, E. C. S.; Fantinel, L.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocycl. Chem. **2002**, *39*, 943.

⁶⁷ Bonacorso, H. G.; Wastowski, A. D.; Muniz, M. N.; Zanatta, N.; Martins, M. A. P. Synthesis 2002, 1079.

⁶⁸ Bonacorso, H. G.; Muniz, M. N.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. *Heteroatom* **2003**, *14*, 132.

Esquema 9:

Dissertação de Mestrado – Fabiane Manke Nachtigall – UFSM - 2005

Esquema 10:

Esquema11:

2.3 Síntese de 1,2,3,4-tetraidropiridinas

Os métodos mais utilizados para sintetizar esta classe de compostos, baseiam-se em reações de ciclização entre iminas e compostos carbonílicos, ciclocondensação de δ -aloiminas e, ainda, reações de ciclização de Hantzsch¹⁴⁶⁹.

A reação de ciclização de Hantzsch consiste em reagir β-ceto ésteres, aldeídos e amônia em uma única etapa reacional, dando origem a diidropiridinas substituídas (**Esquema 12**).

⁶⁹ (a) Hantzsch, A. Justus Liebigs Ann. Chem. **1882**, 215; (b) Bosser, F.; Beyer, H.; Wehinger, E. Angew. Chem. Int. **1981**, 20, 762.

Foss e colaboradores¹⁶, em 1978, reportaram a síntese de 1,2,3,4tetraidropiridinas a partir da reação de glutaraldeído (**86**) e duas moléculas de amônia. Como verificaram que o composto era instável em solução, obtiveramno na forma de uma diuretana pelo tratamento com cloroformiato de etila. O procedimento consiste em reagir dióis com metaperiodato de sódio, numa etapa posterior com amônia líquida e por último com cloroformiato de etila, conforme o **Esquema 13**.

Esquema 13:

A síntese de tetraidropiridinas também foi conseguida a partir e reações de Diels-Alder. Sisti e colaboradores⁷⁰, em 1991, descreveram a síntese destas piridinas a partir da reação de N-fenil-2-ciano-azadienos (94) com dienófilos ricos e pobres em elétrons. O azadieno 94 foi preparado a partir da anilina (90) e cloreto de acriloíla (91), resultando na acrilamida 92, a qual após tratamento *in situ* com anidrido trifluormetasulfônico deu origem ao composto 93. O imidato 93 reagiu com cianeto de lítio e 12-crown-4 gerando o azadieno 94. Este azadieno reage através de uma reação de Diels-Alder com outra molécula de azadieno funcionando como dienófilo dando origem a piridina 95 (Esquema 14). Através deste experimento os autores verificaram que o azadieno pode reagir com dienófilos pobres em elétrons. Isto foi confirmado por uma série de experimentos apresentados na Tabela 1.

⁷⁰ Sisti, N. J.; Fowler, F. W.; Grierson, D. S. Synlett **1991**, 816.

Tabela 1: Reação do composto 94 com dienófilos selecionados

Dienófilo	Condições	Produto	Rendimento (%)
OEt	90°C, 26h	NC N OEt 96	75
C ₆ H ₆	40 eq. Benzeno, 90ºC, 22h	C ₆ H ₆ NC N C ₆ H ₆ 97	67
O OCH ₃	90°C, 17h	S C ₆ H ₆ NC N R R' 98a: R= CO ₂ CH ₃ ; R'= H 98b: R= H; R'= CO ₂ CH ₃	98a : 98b (5:1;62%)
O I	40 eq. Benzeno, 90ºC, 20h	C ₆ H ₆ NC N R P99a: R= COCH ₃ ; R'= H 99b: R= H; R'= COCH ₃	99a : 99b (4.5:1;65%)
0	120ºC, 46h		25-30

Dissertação de Mestrado – Fabiane Manke Nachtigall – UFSM - 2005

Gandolfi e colaboradores¹³, em 1988, através de reação de condensação de Knoevenagel de γ -cloro- β -cetoésteres com benzaldeídos obtiveram o composto **101**, e posteiror adição de Michael com o composto **102** chegaram as *trans* 2-clorometileno-1,2,3,4-tetraidropiridinas **103a,b** (**Esquema 15**).

Esquema 15:

No trabalho publicado por Ogawa e colaboradores¹⁸, em 1992, utilizando a ciclização de Hantzsch, uma mistura de 2-hidroxi-1,2,3,4-tetraidropiridinas **108** e **109**, na proporção de 4,6:1 para o substituinte **a** e 5,2:1 para o substituinte **b**, e 1,4-diidropiridina **110** foram obtidas pela ciclização de cianoetil 3-aminocrotonato e 4-dimetoximetil-2-benzilideno (**106**), sintetizado a partir de 3-nitrobenzaldeído (**104**) e 4-dimetoximetil acetoacetato (**105**), em refluxo de 2-propanol na presença de acetato de piperidina (**Esquema 16**).

De Kimpe e Stevens apresentaram a síntese de 6-acetil-1,2,3,4tetraidropiridina, que é considerada como o principal componente do aroma de pães através de rotas sintéticas diferentes.

No trabalho publicado pelos autores em 1993⁷¹, eles utilizam uma piperidina (111) como material de partida, a qual é N-clorada com hipoclorito de t-butila para gerar a N-cloropiperidina (112), que sofre subseqüente deidrocloração *in situ* com metóxido de sódio, levando a trimerização da piperidina (**Esquema 17**). O composto 114 foi tratado com cianeto de hidrogênio, dando origem ao composto 115 que foi oxidado a cianeto de imidoíla pela N-cloração e posteiror redução *in situ* do composto 116 com trietilamina resultando no composto 117. A última etapa da rota reacional consiste adição de iodeto de metilmagnésio ao cianeto de imidoíla (117) seguido da hidrólise em cloreto de amônio. O aromatizante ocorre como uma mistura de 4:1 da forma imino 118 e da forma enamino 119.

⁷¹ De Kimpe, N.; Stevens, C. J. Org. Chem. **1993**, 58, 2904.

Esquema 17:

No trabalho publicado pelos mesmos autores em 1995^{17a}, é apresentada a rota sintética para a obtenção do aromatizante tendo como substrato chave, δ -aloiminas com uma função carbonila na posição α protegida por um cetal. Partindo da reação da 2,3-butanona (**120**) com uma das carbonilas protegidas em reação com aminas primárias, na presença de cloreto de titânio, os autores chegaram as iminas **121** (**Esquema 18**). A alquilação deste composto levou a formação das δ -aloiminas **122** e **123**. As δ -aloiminas **122** foram ciclizadas com carbonato de potássio dando origem as tetraidropiridinas **124a,b**. O composto **124a** após a eliminação de metanol formou o composto 1,3-butadieno 2,3funcionalizado **125**. Já, a hidrólise ácida do composto **124a** deu origem a 6acetil-1,2,3,4-tetraidropiridina **126** como um análogo do aromatizante, tendo um grupo isopropila como substituinte no nitrogênio do anel.

Em 1998, De Kimpe e Aelterman^{17b} publicaram um trabalho demonstrando a síntese de 1,2,3,4-tetraidropiridinas 5-funcionalizadas. Neste trabalho a síntese do composto de interesse partiu da alquilação na posição α de um azaenolato de lítio levando ao composto **129a,b** (**Esquema 19**).

A imina **129** foi facilmente isomerizada para enamina **130** pelo fato desta ser mais estável. A enamina foi convertida à 1,2,3,4-THP **131** pela reação com cianeto de potássio, e à piperidina **132** pela reação com borohidreto de sódio. Também foram sintetizados outros compostos como a piperidina **133** obtida pela ciclização da δ -cloroimina **129** com borohidreto de sódio, ou pela reação de ciclização em borohidreto de sódio com a α -aminonitrila **134a**, obtida da reação do composto **129a** com cianeto de potássio.

Jones e colaboradores têm desenvolvido um grande estudo sobre reações de ciclização envolvendo como precursores enaminoesteres⁷². No trabalho publicado em 2003, os autores mostram a aplicação de enaminoester em adições de Michael a cetonas α , β -insaturadas.

A diamina **135**, obtida anteriormente após uma série de reações, é condensada com etoxicarbonilacetoimidato de etila, levando ao tetraidroimidazol **136** que reage com uma metil vinil cetona levando ao produto de adição conjugada **137** conforme **Esquema 20**. O composto **137** sofre um ciclização-eliminação redutiva com hidrogênio sobre o catalisador de Adams, levando à tetraidropiridina **138**.

Esquema 20:

⁷² (a) Jones, R. C. F.; Hirst, S. C. Arkivoc **2003**, 133; (b) Jones, R. C. F.; Turner, I.; Howard, K. J. *Tetrahedron Lett.* **1993**, *34*, 6332; (c) Jones, R. C. F.; Hirst, C. *Tetrahedron Lett.* **1989**, *30*, 5365.

2.4 Utilização de 1,2,3,4-tetraidropiridinas em Síntese Orgânica

Reiser e colaboradores⁷³, em 1994, desenvolveram uma nova forma de obter γ -amino ésteres e amino aldeídos pela ozonólise regioseletiva de 1,2,3,4-tetraidropiridinas. Neste procedimento as 1,2,3,4-tetraidropiridinas **139** foram tratadas com ozônio em uma solução de diclorometano/metanol, seguido pelo tratamento do hidroperóxido formado com trietilamina/anidrido acético, sendo obtido uma mistura de γ -amino ésteres **142** e γ -amino aldeído **143** (**Esquema 21**). Tentando obter somente um dos produtos, os autores modificaram o álcool utilizado na reação, mas isto não mudou o resultado obtido, o que os levou a concluir que a quebra do ozonídeo inicialmente formado não é influenciada pelo álcool utilizado. Os resultados obtidos estão apresentados na **Tabela 2**.

Esquema 21:

Tabela 2: Ozonólise^a das 1,2,3,4-tetraidropiridinas 139a-e

^a Ozonólise foi feita em diclorometano/metanol a –78°C, e posterior tratamento com trietilamina/ácido acético.

^b Determinado por RMN de ¹H e CG do produto isolado.

⁷³ Reiser, O.; Bubert, C.; Voigt, J.; Baisetton, S. Synlett 1994, 675.

Os amino aldeídos N-protegidos **144a-e** foram obtidos pelas mesmas condições de ozonólise, porém, o tratamento da reação foi feito com sulfeto de dimetila, sendo os produtos obtidos com rendimentos de 66-92% (**Esquema 22**).

Esquema 22:

 $R = CO_2Et$ $R^1 = H$, Me, Et, Ph, ciclopropil

Craig e colaboradores⁷⁴ vêm desenvolvendo estudos para a utilização de 1,4-bis(arilsulfonil)-1,2,3,4-tetraidropiridinas em reações do tipo S_N1 regio e estereoseletivas.

No trabalho publicado em 2001, os autores descrevem reações de substituição com ataque nucleofílico 1,4-intramolecular. Para isso foi usado a 1,4-bis(arilsulfonil)-2-isopropil-1,2,3,4-tetraidropiridina (145) com dimetil malonato ou nitroacetato de etila na presença do ácido de Lewis, para produzir os compostos 146 e 147 substituídos somente na posição 4 com altos rendimentos (Esquema 23). A reação mostrou completa seletividade 2,4-trans e houve a formação de um novo estereocentro exocíclico.

⁷⁴ a) Craig, D.; McCague, R.; Potter, G. A.; Williams, M. R. V. *Synlett* **1998**, 58. b) Craig, D.; Adelbrecht, J.; Thorimbert, S. *Tetrahedron Lett.* **2001**, *42*, 8369.

146: $E = CO_2Me$, $E' = CO_2Me$: 94% **147**: $E = CO_2Et$, $E' = NO_2$: 84%

3. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

3.1 Apresentação dos compostos

3.1.1 Numeração dos Compostos

A numeração adotada para a identificação dos compostos sintetizados nesta dissertação está representada na **Figura 3**.

Figura 3: Numeração dos compostos sintetizados

3.1.2 Nomenclatura dos Compostos Sintetizados

A nomenclatura dos compostos sintetizados nesta dissertação, baseada no Chemical Abstract, está descrita na **Tabela 3**.

Tabela 3: Nomenclatura dos compostos sintetizados

Composto	Nomenclatura
3	5-trifluoracetil-2-metoxi-2H-3,4-diidropirano
4	2-etoxi-5-trifluoracetil-2H-3,4-diidropirano
6a	5-trifluoracetil-1-metil-2-N-metilamino-1,2,3,4-tetraidropiridina
6b	1-etil-2-N-etilamino-5-trifluoracetil-1,2,3,4-tetraidropiridina
6c	5-trifluoracetil-1-propil-2-N-propilamino-1,2,3,4-tetraidropiridina
6d	1-benzil-2-N-benzilamino-5-trifluoracetil-1,2,3,4-tetraidropiridina
6e	1-(2-feniletan-1-il)-2-N-(2-feniletilamino)-5 -trifluoracetil-1,2,3,4-
	tetraidropiridina
6f	1-fenil-2-N-fenilamino-5-trifluoracetil-1,2,3,4-tetraidropiridina
6g	5-trifluoracetil-1-(2-metilfenil)-2-N-(2-metilfenilamino)- 1,2,3,4-
	tetraidropiridina
6h	5-trifluoracetil-1-(4-metilfenil)-2-N-(4-metilfenilamino)-1,2,3,4-
	tetraidropiridina
6i	5-trifluoracetil-1-(2-hidroxifenil)-2-N-(2-hidroxifenilamino)-1,2,3,4-
	tetraidropiridina
6j	5-trifluoracetil-1-(4-metoxifenil)-2-N-(4-metoxifenilamino)- 1,2,3,4-
	tetraidropiridina
6k	1-(4-clorofenil)-2-N-(4-clorofenilamino)-5-trifluoracetil-1,2,3,4-
	tetraidropiridina
61	5-trifluoracetil-1-(piridin-2-il)-2-N-(aminopiridin-2-il)- 1,2,3,4-
	tetraidropiridina

3.2 Acilação de 2-Alcoxi-2H-3,4-diidropiranos com Anidrido Trifluoracético

Os 2-alcoxi-5-trifluoracetil-2*H*-3,4-diidropiranos utilizados como reagentes de partida neste trabalho, foram obtidas com bons rendimentos e alto grau de pureza através da acilação de 2-metoxi-2*H*-3,4-diidropirano e 2-etoxi-2*H*-3,4-diidropirano com anidrido trifluoracético, conforme as condições reacionais desenvolvidas por Colla e col.³⁷ (**Esquema 24**).

Esquema 24:

Os compostos **3** e **4** foram obtidos na forma de um líquido incolor com bons rendimentos e purificados por destilação a pressão reduzida. Na **Tabela 4** estão apresentados os rendimentos, pontos de ebulição, fórmula molecular, espectrometria de massas e análise elementar para os compostos **3** e **4**.

Comp.	Rend. ^a	P. E.	Fórmula	CG-MS [<i>m/z</i> (%)]	A. E. (%)	
	(%)	(ºC/mbar)	Molecular		Calc. / Exp.	
			(g/Mol)		С	Н
3	80	60-62/2,2	$C_8H_9F_3O_3$	210 (M ⁺ , 29), 179	45,72	4,32
			(210,15)	(29), 141 (38), 69	45,98	4,47
				(38), 58 (100)		
4	75	64-65/2,3	$C_9H_{11}F_3O_3$	224 (M ⁺ , 29), 127	48,22	4,95
			(224,17)	(19), 53 (100)	48,53	5,10

 Tabela 4: Dados físicos e espectroscópicos dos compostos 3 e 4

^a Rendimento isolado

3.2.1 Identificação dos compostos 3 e 4

A identificação dos compostos **3** e **4** foi feita por RMN de ¹H e ¹³C, onde os espectros foram registrados em CDCl₃, utilizando tetrametilsilano (TMS) como referência interna. Os parâmetros de aquisição dos espectros estão descritos na Parte Experimental. Os dados de RMN de ¹H e ¹³C estão apresentados na **Tabela 5**.

Para a atribuição dos sinais de RMN de ¹H e ¹³C foram utilizados dados descritos na literatura¹⁹. Para exemplificar estes compostos foram selecionados os espectros de RMN de ¹H e ¹³C do composto **3** (**Figuras 4 e 5**).

Figura 4: Espectro de RMN de ¹H a 200 MHz do composto 3 em CDCl₃

Para o composto **3** foi observado um singleto na região de 7,72 ppm referente ao hidrogênio vinílico H-6, em 5,1 ppm um tripleto referente ao hidrogênio H-2, em 3,5 ppm um singleto referente a metoxila. Foram observados também multipletos nas regiões de 2,39-2,32 correspondente aos hidrogênios H-4, em 2,10-1,96 um multipleto referente a um hidrogênio H-3 e de 1,91-1,78 outro multipleto correspondente ao outro hidrogênio H-3.

Figura 5: Espectro de RMN de ¹³C{¹H} a 100 MHz do composto 3 em CDCl₃

No espectro de RMN de ¹³C do composto **3** foi observado um sinal em 179,1 ppm relativo a carbonila que se apresenta na forma de um quarteto com uma constante de acoplamento ${}^{2}J_{C-F}$ = 34,2 Hz. Os carbonos vinílicos apareceram na região de 159,2 ppm para o C-6 e 112,0 ppm para o C-5. O CF₃ apareceu na forma de um quarteto com constante de acoplamento ${}^{1}J_{C-F}$ = 289,3 Hz em 116,7 ppm. Em 100,2 ppm aparece o sinal do C-2 característico para carbono de acetal. A metoxila foi observada em 56,5 ppm e em 25,1 e 14,3 ppm os sinais relativos aos carbonos C-3 e C-4 respectivamente.

O mesmo padrão foi observado para o composto **4** sendo que este apresentou apenas um sinal a mais na região de 14,8 ppm relativo ao CH_3 do grupo etoxila.

Para confirmar a estrutura dos compostos **3** e **4** foi realizado experimento de HMQC do composto **4**.

Figura 6: Espectro de RMN de HMQC do composto 4 em CDCl₃

Pelo espectro de HMQC do composto 4 foi possível confirmar a posição dos carbonos C-4 e C-3 e desta forma, a posição dos hidrogênios H-3, que apareceram na forma de dois sinais por serem diastereotópicos, e dos

hidrogênios H-4 que aparecem como um multipleto. Para confirmar a posição dos carbonos C-4 e CH_3 foi necessário fazer uma expansão do espectro de HMQC.

Figura 7: Expansão do espectro de RMN de HMQC do composto 4 em CDCl₃

Composto	RMN ¹ Η δ(m, nº H, <i>J</i> =Hz,	RMN ¹³ C δ (m, <i>J</i> =Hz,
	identificação)	identificação)
0	7,72 (s, 1H, H-6); 5,15 (t,	179,1 (q, ² J _{C-F} = 34,2 Hz,
3 4 5 CF ₃	1H, <i>J</i> = 3,0 Hz, H-2); 3,54	C=O); 159,2 (C-6); 116,7
$H_3CO O O O O O O O O O O O O O O O O O O $	(s, 3H, OCH ₃); 2,39-2,32	(q, ¹ J _{C-F} = 289,3 Hz, CF ₃);
3	(m, 2H, H-4); 2,10-1,96	112,0 (C-5); 100,2 (C-2);
	(m, 1H, H-3); 1,91-1,83	56,5 (OCH ₃); 25,1 (C-3);
	(m, 1H, H-3).	14,3 (C-4).
O II	7,72 (s, 1H, H-6); 5,25	179,1 (q, ² J _{C-F} = 34,3 Hz,
3 4 5 CF ₃	(d/d, 1H, ¹ <i>J</i> = 3,6 Hz, ² <i>J</i> =	C=O); 159,5 (C-6); 116,7
H ₃ CCH ₂ O	2,6 Hz, H-2); 3,99-3,84 (m,	(q, ¹ J _{C-F} = 289,3 Hz, CF ₃);
4	1H, OCH ₂); 3,75-3,60 (m,	111,9 (C-5); 99,1 (C-2);
	1H, OCH ₂); 2,37 (d/d, 2H,	64,9 (OCH ₂); 25,4 (C-3);
	¹ <i>J</i> = 7,8 Hz, ² <i>J</i> = 5,4 Hz, H-	14,8 (CH ₃); 14,5 (C-4).
	4); 2,09-1,80 (m, 2H, H-3);	
	1,24 (t, <i>J</i> = 7,1 Hz, CH ₃).	

Tabela 5: Dados de RMN de ¹H e ¹³C dos compostos 3 e 4

3.3 Obtenção de 1-alquil(aril)-2-alquil(aril)amino-5-trifluoracetil-1,2,3,4-tetraidropiridinas 6a-l

Para a síntese de 1-alquil(aril)-2-alquil(aril)amino-5-trifluoracetil-1,2,3,4tetraidropiridinas **6a-I** foram empregados como precursores 5-trifluoracetil-2metoxi-2*H*-3,4-diidropirano (**3**) e 2-etoxi-5-trifluoracetil-2*H*-3,4-diidropirano (**4**) e as aminas **5a-I** como agentes nucleofílicos, conforme mostra o **Esquema 25**.

No desenvolvimento de uma metodologia para a obtenção dos compostos 6a-l, partiu-se para a síntese de 5-trifluoracetil-1-metil-2-Nmetilamino-1,2,3,4-tetraidropiridina (6a) empregando o 5-trifluoracetil-2-metoxi-2H-3,4-diidropirano (3) e metilamina (5a) de acordo com as condições reacionais descritas na Tabela 6,

Tabela 6: Otimização das condições reacionais para a síntese de 5trifluoracetil-1-metil-2-N-metilamino-1,2,3,4-tetraidropiridina (6a)

Reação ^a	Solvente	Tempo (h)	Temperatura (°C)	Rendimento (%)
1	MeOH	2	t.a.	_b
2	Hexano	2	t.a.	_b
3	MeOH	2	Refluxo	_b,c
4	Hexano	2	Refluxo	_b,c
5	MeOH	4	t.a.	_b,c
6	Hexano	4	t.a.	85
7	MeOH	24	t.a.	_c
8	Hexano	24	t.a.	84
9	MeOH	24	Refluxo	_c
10	Hexano	24	Refluxo	_c

^a Relação molar **5a/3** (3:1)
 ^b Recuperação de material de partida

^c Formação de subprodutos não identificados

Como a metilamina utilizada neste trabalho é vendida comercialmente como uma solução aquosa a 40%, foi utilizado um excesso de aproximadamante 3:1 da amina em relação ao substrato para garantir a quantidade mínima necessária de amina na reação.

Como pode ser visto na Tabela 6, a melhor condição reacional foi obtido usando como solvente o hexano por um período de 4 horas a temperatura ambiente. Quando foi usada temperatura de refluxo ocorreu a formação de

subprodutos não identificados. Já, quando foi empregado metanol como solvente foi observada a formação de pequena quantidade do produto de substituição do grupo metóxi do material de partida por uma molécula da amina, formando um pirano com um grupo N-alquil na posição 2 do anel, além de outros subprodutos.

Com o objetivo de determinar a quantidade molar do nucleófilo em relação ao substrato para ocorrer a formação da THP, como já visto, onde duas moléculas do nucleófilo reagem com o substrato, ou de uma enaminona acílcica, onde apenas uma molécula do nucleófilo reagiria com o substrato, foram testadas condições reacionais variando a relação molar e o tempo conforme é descrito na **Tabela 7**.

Foram empregados como substrato o 5-trifluoracetil-2-metoxi-2*H*-3,4diidropirano (**3**) e como nucleófilo a propilamina (**5c**), uma vez que a etilamina utilizada também é comercializada em solução.

Tabela 7: Otimização das condições reacionais para a síntese de 5-trifluoracetil-1-propil-2-N-propilamino-1,2,3,4-tetraidropiridina (6c)

Reação ^a	Relação molar	Tempo (h)	Rendimento (%)
	5c : 3		
1	1:1	2	b
2	1:1	4	_b
3	1:1	24	_b
4	2 : 1	2	_b
5	2 : 1	4	95
6	2:1	24	95

^a Condições reacionais: Hexano, t. a.

^b Recuperação de material de partida, produto (**6c**) e outros compostos não identificados

Como mostra a **Tabela 7**, houve a formação do produto **6c** e recuperação de grande parte do material de partida quando foi empregada a

Dissertação de Mestrado – Fabiane Manke Nachtigall – UFSM - 2005

relação molar de 1:1 (composto **3** e amina **5c**, respectivamente) e tempos reacionais diferentes (2 h, 4 h ou 24 h), não ocorrendo a formação da enaminona acíclica. Para a relação molar 2:1 (amina **5c** e composto **3**, respectivamente) em 2 horas, houve a recuperação de parte do material de partida também. Em 4 ou 24 horas foi obtido o produto **6c** em rendimentos iguais.

A partir dos resultados obtidos foi determinado que a melhor condição reacional, para a síntese dos compostos **6a-c**, é utilizar como solvente o hexano a temperatura ambiente e uma relação molar de nucleófilo para substrato igual a 2 : 1.

Para a série de aminas **5d-I** foram realizados testes em hexano e metanol para obter a melhor condição reacional para a síntese dos compostos **6d-I**. Foi observado que quando foi utilizado hexano como solvente foram obtidos os produtos **6d-k** em rendimentos inferiores aos obtidos com o uso de metanol. Isso pode ter ocorrido com a maior parte das aminas testadas pelo fato das mesmas não serem completamente solúveis em hexano. Os resultados obtidos estão apresentados na **Tabela 8** servindo como exemplo as condições reacionais testadas para a formação do composto **6f** empregando como precursores o composto **3** e a amina **5f**.

Tabela 8: Otimização das condições reacionais para a síntese de 1-fenil-2-N-fenilamino-5-trifluoracetil-1,2,3,4-tetraidropiridina (6f)

Reação ^a	Solvente	Tempo (h)	Temperatura	Rendimento (%)
			(0 C)	
1	MeOH	4	t.a.	_b
2	Hexano	4	t.a	_ b
3	MeOH	4	Refluxo	_b,c
4	Hexano	4	Refluxo	_b,c
5	MeOH	24	t.a.	80
6	Hexano	24	t.a	72
7	MeOH	24	Refluxo	_ c
8	Hexano	24	Refluxo	_ c

^a Relação molar 6f/3 (2:1)

^b Recuperação de material de partida

^c Formação de subprodutos não identificados

Como pode ser observada na tabela acima, a melhor condição reacional foi obtida usando metanol como solvente a temperatura ambiente por um período de 24 horas. Quando foi empregado refluxo, tanto em hexano quanto em metanol, houve a formação de produtos não identificados.

O produto **6I** não foi obtido utilizando as mesmas condições reacionais testadas para a série. Foram então testadas outras condições como aumento do tempo reacional para 48 e 72 horas e refluxo em metanol, mas nenhuma destas condições levou ao produto desejado. O composto **6I** só foi obtido quando foi empregado como solvente acetonitrila em refluxo por um tempo reacional de 24 horas.

Foram realizados testes com aminas secundárias na tentativa de obter enaminonas, mas foi impossível identificar os produtos formados.

Na **Tabela 9** estão apresentadas as condições reacionais otimizadas para a série de compostos **6a-I**.

Composto	Amina	Condições	Rendimento ^b	Produto
		reacionais ^a	(%)	
3	5a	Hexano, t. a., 4 h	85	6a
4	5a	Hexano, t. a., 4 h	82	6a
3	5b	Hexano, t. a., 4 h	89	6b
4	5b	Hexano, t. a., 4 h	86	6b
3	5c	Hexano, t. a., 4 h	95	6c
4	5c	Hexano, t. a., 4 h	95	6c
3	5d	MeOH, t. a., 24 h	90	6d
4	5d	MeOH, t. a., 24 h	87	6d
3	5e	MeOH, t. a., 24 h	98	6e
4	5e	MeOH, t. a., 24 h	95	6e
3	5f	MeOH, t. a., 24 h	80	6f
4	5f	MeOH, t. a., 24 h	81	6f
3	5g	MeOH, t. a., 24 h	95	6g
4	5g	MeOH, t. a., 24 h	92	6g
3	5h	MeOH, t. a., 24 h	92	6h
4	5h	MeOH, t. a., 24 h	87	6h
3	5i	MeOH, t. a., 24 h	89	6i
4	5i	MeOH, t. a., 24 h	90	6i
3	5j	MeOH, t. a., 24 h	94	6j
4	5j	MeOH, t. a., 24 h	93	6j
3	5k	MeOH, t. a., 24 h	35	6k

Tabela 9: Condições reacionais otimizadas para a obtenção dos compostos 6a-

Tabela 9: Continuação

Composto	Amina	Condições	Rendimento ^b	Produto

Dissertação de Mestrado – Fabiane Manke Nachtigall – UFSM - 2005

		reacionais ^a	(%)	
4	5k	MeOH, t. a., 24 h	30	6k
3	51	ACN, refluxo, 24 h	82	61
4	51	ACN, refluxo, 24 h	84	61

^a Relação molar de substrato e amina igual a 1:2

^b Rendimento isolado

Como pode ser observado na **Tabela 9**, os resultados obtidos para o uso das β-alcoxivinil trifluormetil cetona **3** ou **4**, utilizando as mesmas condições reacionais otimizadas, são praticamente os mesmos, o que leva a acreditar que a saída do grupo OR como metoxila ou etoxila não influencia no resultado obtido.

Na **Tabela 10** estão apresentados os pontos de fusão, fórmula molecular, espectrometria de massas e análise elementar para os compostos **6a-I**.

Tabela 10: Dados físicos e espectroscópicos dos compostos 6a-l

Comp. P. F. Fórmula CG-MS [*m*/*z* (%)] Anál. Elementar (%)

	(°C)	Molecular		Ca	alc. / Ex	р.
		(g/Mol)		С	Н	Ν
6a	Óleo	$C_9H_{15}F_5N_2O$	222 (M ⁺ , 24), 207	-	-	-
		(222,21)	(0,02), 192 (94), 176			
			(5), 155 (7), 125 (24),			
			110 (5), 94 (44), 57			
			(100)			
6b	Óleo	$C_{11}H_{17}F_5N_2O$	250 (M ⁺ , 28); 206	-	-	-
		(250,26)	(100); 176 (50), 155			
			(27); 156 (21), 108			
			(42)			
6c	Óleo	$C_{15}H_{21}F_5N_2O$	278 (M ⁺ , 50); 249 (5);	-	-	-
		(278,51)	220 (100); 181 (45);			
			150 (25); 122 (27)			
6d	104-105	$C_{21}H_{21}F_5N_2O$	574 (M ⁺ , 1), 505	67,37	5,65	7,48
		(574,40)	(0,02), 285 (18), 198	67,30	5,58	7,40
			(2), 176 (11), 108			
			(17), 91 (100)			
6e	Óleo	$C_{25}H_{25}F_5N_2O$	402 (M ⁺ , 5), 555 (2),	68,64	6,26	6,96
		(402,45)	505 (15), 282 (96),	68,23	5,82	7,03
			212 (2), 105 (100), 91			
			(50), 79 (21)			
6f	146-147	$C_{19}H_{17}F_3N_2O$	346 (M ⁺ , 9), 277	65,89	4,95	8,09
		(346,35)	(0,05), 254 (100), 184	65,68	5,00	8,22
			(3), 173 (0,02), 156			
			(33), 93 (11), 77 (35)			
Tabela	10: Continu	uação				
Comp.	P. F.	Fórmula	CG-MS [<i>m/z</i> (%)]	Anál. I	Element	tar (%)
	(°C)	Molecular		Ca	alc. / Ex	р.

		(g/Mol)		С	Н	Ν
6g	108-109	$C_{21}H_{21}F_3N_2O$	374 (M ⁺ , 5), 345	67,37	5,65	7,48
		(374,40)	(0,02), 305 (0,05), 268	67,34	5,36	7,04
			(100), 198 (3), 170			
			(29), 91 (40)			
6h	101-102	$C_{21}H_{21}F_3N_2O$	374 (M ⁺ , 5), 345	67,37	5,65	7,48
		(374,40)	(0,02), 268 (100), 198	67,21	5,42	7,11
			(2), 170 (37), 91 (39)			
6i	143-144	$C_{19}H_{17}F_3N_2O_3$	377 (M ⁻¹ , 0,05); 269	-	-	-
		(378,35)	(100); 200 (99); 172			
			(25); 93 (9)			
6j	110-111	$C_{21}H_{21}F_3N_2O_3$	406 (M ⁺ , 7), 284	62,06	5,21	6,89
		(406,40)	(100), 186 (34), 123	61,85	5,24	6,86
			(73), 107 (13), 92 (9),			
			77 (17)			
6k	128-129	$C_{19}H_{15}CI_2F_3N_2$	414 (M ⁺ , 3), 317	54,96	3,64	6,75
		0	(0,05), 303 (0,02), 288	54,94	3,75	6,79
		(415,24)	(100), 207 (2),190			
			(26), 111 (21)			
61	150-152	$C_{17}H_{15}F_3N_4O$	348 (M ⁺ , 3), 271	58,62	4,34	16,08
		(348,32)	(0,05), 254 (98), 157	58,60	4,20	15,68
			(48), 78 (100)			

3.3.1 Identificação dos compostos 6a-e através de RMN de ¹H e ¹³C
A identificação da série de compostos **6a-e** foi feita por RMN de ¹H e ¹³C, onde os espectros foram registrados em CDCl₃, utilizando tetrametilsilano (TMS) como referência interna. Os parâmetros de aquisição dos espectros estão apresentados na Parte Experimental. Os dados de RMN de ¹H e ¹³C estão representados na **Tabela 11**.

Para exemplificar a série de compostos **6a-e** foram selecionados os espectros de RMN de ¹H e ¹³C do composto **6d** (**Figuras 8** e **9**).

Figura 8: Espectro de RMN de ¹H a 200 MHz do composto 6d em CDCI₃

No espectro de RMN de ¹H do composto **6d** foi observado um singleto em 7,6 ppm referente ao hidrogênio H-6. Os sinais dos hidrogênios aromáticos apareceram na forma de dois multipletos, uma na região de 7,37-7,24 ppm e outro na região de 7,06-7,02 ppm. Em 3,99 ppm apareceu o sinal do H-2 na forma de um tripleto. Os dois CH₂ da benzila foram encontrados na forma de duplos dubletos em 4,6-3,4 e 3,9-3,7 ppm, sendo mais desblindado o que se encontra ligado ao nitrogênio terciário que faz parte do anel piridínico. Os hidrogênios H-3 e H-4 apareceram na região de 2,6-1,4 ppm na forma de três multipletos sendo o mais desblindado referente a um dos hidrogênios H-4, no multipleto central se encontram um hidrogênio H-4 e um hidrogênio H-3. Por fim, no multipleto mais blindado apareceu o sinal do outro hidrogênio H-3. O mesmo padrão de deslocamento dos hidrogênios H-6, H-2, H-4 e H-3 foi encontrado para todos os compostos da série.

Figura 9: Espectro de RMN de ¹³C{¹H} a 100 MHz do composto 6d em CDCl₃

No espectro de RMN de ¹³C do composto **6d**, em 175,21 ppm aparece o quarteto referente a carbonila com constante de acoplamento ${}^{2}J_{C-F}$ = 31,6 Hz. Os carbonos vinílicos C-6 e C-5 foram obervados em 150,6 e 102,4 ppm, respectivamente. Os oito sinais referentes aos carbonos dos anéis aromáticos apareceram na faixa de 139-127 ppm. O grupo trifluormetil foi encontrado na forma de um quarteto em 118,0 ppm com constante de acoplamento ${}^{1}J_{C-F}$ = 289,7 Hz. O carbono C-2 foi encontrado em 67,2 ppm e os carbonos da benzila C-7 e C-7' apareceram com uma diferença de deslocamento de quase 10 ppm, sendo o carbono C-7, que está ligado ao nitrogênio mais substituído, encontrado em 58,16 ppm e o carbono C-7' em 49,9 ppm. Os carbonos C-3 e C-4 do anel piridínico apareceram em 24,8 e 14,6 ppm, respectivamente.

Para confirmar a estrutura dos compostos **6a-e** foi realizado experimento de HMQC do composto **6e**.

Figura 10: Espectro de RMN de HMQC do composto 6e em CDCl₃

No espectro de HMQC do composto **6e** foi possível confirmar a posição dos dois hidrogênios diastereotópicos H-7, na forma de dois multipletos na região de 3,7-3,4 ppm, acoplando com o carbono C-7 que se encontra mais desblindado. Este tipo de sinal foi encontrado nos espectros dos compostos que possuem um carbono sp³ na posição 7 ligado a outro carbono sp³. **Tabela 11:** Dados de RMN de ¹H e ¹³C dos compostos **6a-e**

Composto	RMN ¹ H δ(m, nº H, <i>J</i> =Hz, identificação)	RMN ¹³ C δ (m, <i>J</i> =Hz, identificação)
$ \begin{array}{c} $	7,48 (s, 1H, H-6); 3,95 (t, 1H, <i>J</i> = 3,1 Hz, H-2); 3,23 (s, 3H, H-7); 2,63-2,50 (m, 4H, H-4, H-7'); 2,22-2,02 (m, 2H, H-4, H-3); 1,76-1,58 (m, 1H, H-3).	174,5 (q, ${}^{2}J_{C-F}$ = 32,0 Hz, C=O); 151,2 (C-6); 118,0 (q, ${}^{1}J_{C-F}$ = 289,8 Hz, CF ₃); 102,2 (C-5); 72,2 (C-2); 42,5 (C-7); 32,5 (C-7'); 24,4 (C-3); 14,5 (C-4).
^{8'} 7' N CF ₃ H 7 8 6b	7,53 (s, 1H, H-6); 4,13 (t, 1H, <i>J</i> = 2,9 Hz, H-2); 3,60- 3,32 (m, 2H, H-7); 2,78-2,56 (m, 3H, H-7', H-4); 2,24-2,02 (m, 2H, H-3, H-4); 1,71-1,54 (m, 1H, H-3); 1,30-1,00 (m, 6H, H-8, H-8').	174,5 (q, ${}^{2}J_{C-F}$ = 33,5 Hz, C=O); 149,8 (C-6); 118,1 (q, ${}^{1}J_{C-F}$ = 289,5 Hz, CF ₃); 102,3 (C-5); 68,8 (C-2); 49,5 (C-7); 40,4 (C-7'); 27,9 (C-8); 25,5 (C-3); 15,3 (C-8'); 14,6 (C-4).
9' 8' 7' N 4 5 6 CF ₃ 9 6 6 6 6	7,50 (s, 1H, H-6); 4,10 (s, 1H, H-2); 3,58-3,44 (m, 1H, H-7); 3,30-3,16 (m, 1H, H-7); 2,68-2,58 (m, 3H, H-7', H-4); 2,22-2,05 (m, 2H, H-4, H-3); 1,74-1,41 (m, 5H, H-3, H-8, H-8'); 0,94 (t, 6H, <i>J</i> = 7,4 Hz, H-9, H-9').	174,68 (q, ${}^{2}J_{C-F}$ = 30,0 Hz, C=O); 150,3 (C-6); 118,1 (q, ${}^{1}J_{C-F}$ = 289,4 Hz, CF ₃); 101,8 (C-5); 69,3 (C-2); 56,6 (C-7); 48,0 (C-7'); 25,40 (C-3); 23,5 (C-8); 22,7 (C-8'); 14,7 (C-4); 11,50 (C-9); 10,8 (C-9').

Composto	RMN ¹ H δ(m, nº H, <i>J</i> =Hz, identificação)	RMN ¹³ C δ (m, <i>J</i> =Hz, identificação)
$ \begin{array}{c} $	7,64 (s, 1H, H-6); 7,38-7,24 (m, 8H, Ar); 7,06-7,02 (m, 2H, Ar); 4,49 (d/d, 2H, ¹ <i>J</i> = 42,4 Hz, ² <i>J</i> = 15,0 Hz, H-7); 3,98 (t, 1H, <i>J</i> = 2,9 Hz, H-2); 3,82 (d/d, 2H, ¹ <i>J</i> = 26,5 Hz, ² <i>J</i> = 13,3 Hz, H-7'); 2,67-2,58 (m, 1H, H-4); 2,27-1,98 (m, 2H, H-4, H-3);1,60-1,43 (m, 1H, H-3).	175,2 (q, ${}^{2}J_{C-F}$ = 31,6 Hz, C=O); 150,6 (C-6); 139,3; 135,6; 128,9; 128,5; 128,2; 128,0; 127,5; 127,3 (12C, Ar); 118,0 (q, ${}^{1}J_{C-F}$ = 289,7 Hz, CF ₃); 102,4 (C-5); 67,2 (C-2); 58,2 (C-7); 49,9 (C- 7'); 24,8 (C-3); 14,6 (C-4).
6e	7,34-7,16 (m, 9H, H-6, Ar); 7,11-7,07 (m, 2H, Ar); 3,89 (s, 1H, H-2); 3,67 (qui, 1H, J= 6,9 Hz, H-7); 3,44 (qui, 1H, J = 7,0 Hz, H-7); 2,95- 2,72 (m, 6H, H-7', H-8, H-8'); 2,48 (d/d, 1H, ¹ J = 12,8 Hz, ² J = 4,8 Hz, H-4); 2,08-1,85 (m, 2H, H-4, H-3); 1,56-1,38 (m, 1H, H-3).	174,7 (q, ${}^{2}J_{C-F}$ = 31,7 Hz, C=O); 150,1 (C-6); 139,3; 137,4; 128,63; 128,59; 128,45; 128,4; 126,8; 126,3 (12C, Ar); 117,9 (q, ${}^{1}J_{C-F}$ = 289,8 Hz, CF ₃); 102,1 (C-5); 69,5 (C-2); 55,8 (C-7); 47,1 (C-7'); 36,5 (C-8); 36,1 (C-8'); 25,1 (C-3); 14,7 (C-4).

3.3.2 Identificação dos compostos 6f-l através de RMN de ¹H e ¹³C

A identificação da série de compostos **6f-I** foi feita por RMN de ¹H e ¹³C, onde os espectros foram registrados em CDCI₃ ou DMSO-d₆, utilizando tetrametilsilano (TMS) como referência interna. Os parâmetros de aquisição dos espectros estão apresentados na Parte Experimental. Os dados de RMN de ¹H e ¹³C estão representados na **Tabela 12**.

Para exemplificar a série de compostos **6f-I** foram selecionados os espectros de RMN de 1 H e 13 C do composto **6f**.

Figura 11: Espectro de RMN de ¹H a 400 MHz do composto 6f em CDCl₃

Pelo espectro de RMN de ¹H do composto **6**f foi observado que o singleto referente ao hidrogênio vinílico H-6 aparece na região de 7,9 ppm. Na região de 7,37-6,63 ppm foram observados os sinais dos dez hidrogênios dos anéis aromáticos. Em 5,47 ppm apareceu o singleto referente ao hidrogênio H-2 e em aproximadamente 4,1 ppm um sinal muito alargado do hidrogênio ligado ao nitrogênio na posição dois da piridina. Os hidrogênios dos dois CH₂ do anel piridínico apareceram na forma de um dubleto de dubletos (H-4) e dois multipletos (H-4 + H-3, H-3) na região de 2,74-1,83 ppm.

Figura 12: Espectro de RMN de ¹³C{¹H} a 100 MHz do composto 6f em CDCI₃

No espectro de RMN de ¹³C do composto **6f**, em 176,8 ppm apareceu o quarteto referente a carbonila com constante de acoplamento ${}^{2}J_{C-F}$ = 32,3 Hz. Em 146,4 e 105,7 ppm foram observados os carbonos vinílicos C-6 e C-5 respectivamente. Os carbonos dos anéis aromáticos apareceram na forma de oito sinais, na faixa de 144-114 ppm. O quarteto referente ao grupo trifluormetil foi encontrado em 117,7 ppm sendo que, só foi possível observar dois sinais do quarteto devido a sobreposição do sinal do grupo CF₃ com o carbono aromático que aparece em 119 ppm. O carbono C-2 foi encontrado em 66,88 ppm e os CH₂ do anel C-3 e C-4 em 25,2 e 14,4 ppm, respectivamente.

O mesmo padrão de deslocamento foi observado para os demais compostos da série (**6g-I**), havendo mudanças maiores, somente em relação aos carbonos referentes aos dois anéis aromáticos e seus substituintes. O

quarteto referente ao grupo trifluormetil foi observado em todos os outros compostos da série.

Para confirmar a estrutura do composto foram feitos experimentos de COSY H-H, HMBC e HMQC do composto 6f, os quais estão apresentados nas Figuras 13, 14 e 15.

No espectro de COSY H-H foi possível observar o acoplamento entre os dois hidrogênios diastereotópicos H-3, entre os dois hidrogênios

diastereotópicos H-4 e entre eles, ou seja, H-3 e H-4. Também apareceram acoplamentos entre os hidrogênios H-3 e H-4 com o hidrogênio H-2.

Figura 14: Espectro de RMN de HMQC do composto 6f em CDCl₃

Pelo espectro de HMQC do composto 6f foi confirmada a posição dos carbonos C-2 e C-6, pelo acoplamento destes com os respectivos hidrogênios H-2 e H-6.

Figura 15: Espectro de RMN de HMBC do composto 6f em CDCl₃

Pelo espectro de HMBC do composto **6f** foi confirmada a posição do carbono C-4 pelo acoplamento de três ligações entre o carbono C-4 e o hidrogênio H-6 e o acoplamento de duas ligações entre o carbono C-5 e os hidrogênios H-4. Também foram observados acoplamentos de três ligações entre o carbono da carbonila e o hidrogênio H-6. Apareceram ainda, acoplamentos de uma ligação entre os carbonos C-6, C-3 e C-4 e os hidrogênios H-6, H-3 e H-4, respectivamente.

Como o composto **6I**, em que o substituinte ligado ao nitrogênio é uma piridina e não um benzeno substituído como os outros compostos da série, apresentou uma mudança no deslocamento do sinal referente ao hidrogênio H-2, foram feitos experimentos de 2D para comprovar a posição referente a este hidrogênio. O espectro de RMN de HMBC do composto **6I** está apresentado na **Figura 16**.

Figura 16: Espectro de RMN de HMBC do composto 61 em CDCl₃

Pelo espectro de HMBC foi comprovada a posição do hidrogênio H-2 pelo acoplamento de 1 ligação do hidrogênio H-2 com o carbono C-2. Também foi vista a posição do hidrogênio H-6, que apareceu mais desblindado que nos

outros compostos da série, pelo acoplamento de 3 ligações deste com o carbono C-2.

Composto	RMN ¹ Η δ(m, nº H, <i>J</i> =Hz,	RMN ¹³ C δ (m, <i>J</i> =Hz,		
	identificação)	identificação)		
$ \begin{array}{c} $	7,90 (s, 1H, H-6); 7,37-7,33 (m, 2H, Ar); 7,24-7,16 (m, 5H, Ar); 6,78 (t, 1H, $J=$ 7,6 Hz, Ar); 6,64 (d, 2H, $J=$ 7,6 Hz, Ar); 5,47 (s, 1H, H-2); 2,71 (d/d, 1H, ¹ $J=$ 14,0 Hz, ² $J=$ 5,3 Hz, H-4); 2,39-2,31 (m, 2H, H-4, H-3); 1,92-1,83	176,8 (q, ${}^{2}J_{C-F}$ = 32,3 Hz, C=O); 146,4 (C-6); 144,7; 144,4; 129,8; 129,5; 126,2; 120,9; 119,1; 114,1 (12C, Ar); 117,7 (q, ${}^{1}J_{C-F}$ = 289,2 Hz, CF ₃); 105,7 (C-5); 66,9 (C-2); 25,2 (C-3); 14,4 (C- 4).		
$\mathbf{G}_{\mathbf{G}}^{\mathbf{G}}$	(m, 1H, H-3). 7,54 (s, 1H, H-6); 7,21 (d/d, 4H, ${}^{1}J=10,3$ Hz, ${}^{2}J=3,3$ Hz, Ar); 7,02 (d, 1H, $J=7,4$ Hz, Ar); 6,86 (t, 1H, $J=7,5$ Hz, Ar); 6,63 (t, 1H, $J=7,3$ Hz, Ar); 6,63 (t, 1H, $J=7,3$ Hz, Ar); 6,22 (d, 1H, $J=8,0$ Hz, Ar); 5,31 (d, 1H, $J=9,6$ Hz, H-2); 4,02 (d, 1H, $J=9,4$ Hz, NH); 2,92-2,83 (m, 1H, H-4); 2,46-2,07 (m, 9H, H-4, H-3, 2CH-)	176,2 (q, ${}^{2}J_{C-F}$ = 32,1 Hz, C=O); 149,8 (C-6); 143,8; 142,75; 134,2; 131,6; 130,5; 128,3; 127,2; 130,0; 126,8; 122,5; 118,7; 111,4 (12C, Ar); 117,7 (q, ${}^{1}J_{C-F}$ = 289,70 Hz, CF ₃); 103,1 (C-5); 67,4 (C-2); 26,3 (C-3); 17,6 (CH ₃); 17,4 (CH ₃); 14,5 (C- 4).		

Tabela 12: Dados de RMN de ¹H e ¹³C dos compostos 6f-I

Tabela 12: Continuação

Composto	RMN ¹ H δ(m, n⁰ H, <i>J</i> =Hz,	RMN ¹³ C δ (m, <i>J</i> =Hz,
	identificação)	identificação)
H_3C H_3C	7,86 (s, 1H, H-6); 7,14 (s, 4H, Ar); 6,99 (d, 2H, $J=$ 8,0 Hz, Ar); 6,55 (d, 2H, $J=$ 8,2 Hz, Ar); 5,39 (s, 1H, H-2); 3,93 (s, 1H, NH); 2,71 (d/d, 1H, ¹ $J=$ 16,0 Hz, ² $J=$ 5,1 Hz, H-4); 2,33–2,24 (m, 8H, H-4, H-3, 2CH ₃); 1,92–1,76 (m, 1H, H-3).	176,6 (q, ${}^{2}J_{C-F}$ = 32,0 Hz, C=O); 146,7 (C-6); 142,4; 142,1; 136,1; 130,3; 130,0; 128,5; 120,9; 114,4 (12C, Ar); 117,7 (q, ${}^{1}J_{C-F}$ = 289,8 Hz, CF ₃); 105,2 (C-5); 67,4 (C-2); 25,0 (C-3); 20,7 (CH ₃); 20,3 (CH ₃); 14,3 (C- 4).
	10,07 (s, 1H, OH); 9,34 (s, 1H, OH); 7,59 (s, 1H, H-6); 7,28 (d, 1H, <i>J</i> = 7,8 Hz, Ar); 7,12 (t, 1H, <i>J</i> = 7,6 Hz, Ar); 6,93 (d, 1H, <i>J</i> = 8,0 Hz, Ar); 6,78 (t, 1H, <i>J</i> = 7,5 Hz, Ar); 6,64 (d, 1H, <i>J</i> = 7,0 Hz, Ar); 6,47 (s, 3H, Ar); 5,53 (d, 1H, <i>J</i> = 8,8 Hz, H-2); 4,94 (d, 1H, <i>J</i> = 9,4 Hz, NH); 2,63-2,55 (m, 1H, H-4); 2,34-2,09 (m, 2H, H-4, H-3); 2,00-1,85 (m, 1H, H-3).	174,0 (q, ${}^{2}J_{C-F}$ = 30,9 Hz, C=O); 152,0; 144,3; 134,0; 131,6; 128,6; 126,8; 119,5; 119,4; 117,7; 116,6; 114,1; 111,9 (12C, Ar); 151,1 (C- 6); 117,8 (q, <i>J</i> = 288,8 Hz, CF ₃); 102,5 (C-5); 66,3 (C- 2); 25,5 (C-3); 14,5 (C-4).

Tabela 12: Continuação

Composto	RMN ¹ H δ(m, nº H, <i>J</i> =Hz, identificação)	RMN ¹³ C δ (m, <i>J</i> =Hz, identificação)
H ₃ CO N H ₃ CO N H Gj H ₃ CO CF ₃ CF ₃ H ₃ CO CF ₃ CF ₃ H ₃ CO CF ₃ CF ₃	7,78 (s, 1H, H-6); 7,13 (d, 2H, J = 8,0 Hz, Ar); 6,85 (d, 2H, J = 8,2 Hz, Ar); 6,74 (d, 2H, J = 7,8 Hz, Ar); 6,57 (d, 2H, J = 8,2 Hz, Ar); 5,27 (s, 1H, H-2); 3,78 (s, 3H, OCH ₃); 3,73 (s, 3H, OCH ₃); 2,78-2,67 (m, 1H, H-4); 2,38- 2,26 (m, 2H, H-4, H-3); 1,94- 1 81 (m, 1H, H-3)	176,3 (q, ${}^{2}J_{C-F}$ = 32,3 Hz, C=O); 158,1; 153,5; 138,5; 138,3; 123,4; 116,4; 115,0; 114,9 (12C, Ar); 147,4 (C- 6); 117,8 (q, ${}^{1}J_{C-F}$ = 290,0 Hz, CF ₃); 104,6 (C-5); 69,0 (C-2); 55,6 (OCH ₃); 55,5 (OCH ₃); 25,4 (C-3); 14,3 (C- 4).
$C + O + CF_3$ $H + O + CF_3$ $C + CF_3$	7,79 (s, 1H, H-6); 7,32 (d, 2H, $J=9,0$ Hz, Ar); 7,13 (d/d, 4H, ${}^{1}J=$ 8,7 Hz, ${}^{2}J=$ 4,9 Hz, Ar); 6,58 (d, 2H, $J=$ 8,6 Hz, Ar); 5,38 (s, 1H, H-2); 2,69 (d/d, 1H, ${}^{1}J=$ 15,4 Hz, ${}^{2}J=$ 4,8 Hz, H-4); 2,37-2,25 (m, 2H, H-4, H-3); 1,95-1,83 (m, 1H, H-3).	176,9 (q, ${}^{2}J_{C-F}$ = 31,3 Hz, C=O); 146,2 (C-6); 143,1; 142,9; 129,9; 129,4; 129,0; 123,9; 122,3; 115,1 (12 C, Ar); 117,5 (q, ${}^{1}J_{C-F}$ = 289,8 Hz, CF ₃); 106,0 (C-5); 66,9 (C-2); 25,1 (C-3); 14,3 (C- 4).

Tabela 12: Continuação

Composto	RMN ¹ H δ(m, nº H, <i>J</i> =Hz,	RMN ¹³ C δ (m, <i>J</i> =Hz,		
	identificação)	identificação)		
	9,15 (s, 1H, H-6); 8,36-8,34 (m, 1H, Ar); 8,17 (d, 1H, $J=$ 4,0 Hz, Ar); 7,68-7,59 (m, 1H, Ar); 7,49-7,40 (m, 1H, Ar); 7,27 (d, 1H, $J=$ 8,2 Hz, Ar); 7,05-7,00 (m, 1H, Ar); 6,71-6,65 (m, 1H, Ar); 6,53- 6,49 (m, 2H, H-2, Ar); 5,14 (d, 1H, $J=$ 8,8 Hz, NH); 2,75 (d/d, 1H, $^{1}J=$ 16,0 Hz, $^{2}J=$ 5,1 Hz, H-3); 2,40-2,28 (m, 2H, H-4, H-3); 2,00-1,80 (m,	178,1 (q, ${}^{2}J_{C-F}$ = 32,8 Hz, C=O); 155,9; 152,5; 148,2; 147,7; 138,8; 137,7; 119,5; 114,2; 110,6; 109,2 (10C, Ar); 142,8 (C-6); 117,6 (q, ${}^{1}J_{C-F}$ = 289,7 Hz, CF ₃); 107,5 (C-5); 59,8 (C-2); 25,8 (C- 3); 14,8 (C-4).		
	1H, H-3).			

Para fazer um estudo comparativo entre os deslocamentos químicos do 5-trifluoracetil-2-metoxi-2*H*-3,4-diidropirano **(3)** e 2-etoxi-5-trifluoracetil-2*H* -3,4-diidropirano **(4)** em relação as 1-alquil(aril)-2-alquil(aril)amino-5-trifluoracetil-1,2,3,4-tetraidropiridinas sintetizadas, foram montadas as **Tabelas 13** e **14** com os deslocamentos de ¹H e ¹³C dos compostos **3**, **4** e **6a-I**.

Tabela 13: Comparação entre os sinais de ¹H mais importantes dos compostos**3, 4** e**6a-I**

Composto	RMN ¹ Η δ			
	H-2	H-6		
3	5,15	7,72		
4	5,25	7,72		
6a	3,95	7,48		
6b	4,13	7,53		
6c	4,10	7,50		
6d	3,98	7,64		
6e	3,89 7,34-7,			
6f	5,47 7,90			
6g	5,31	7,54		
6h	5,39	7,86		
6i	5,53	7,59		
6j	5,27	7,78		
6k	5,38	7,79		
61	6,53-6,49	9,15		

Para as alquil-THP foi observado que o sinal do hidrogênio H-2 sofre efeito de blindagem em mais de 1 ppm em relação aos compostos 3 e 4, o que se deve ao fato de o carbono C-2 estar ligado a dois átomos de nitrogênio que é menos eletronegativo que o oxigênio, e asim, o sinal aprarece em campo mais baixo no espectro. O mesmo não é evidenciado para as aril-THP, sendo que nestes compostos o hidrogênio H-2 aparece desblindados em 0,3 ppm em relação aos compostos 3 e 4 o que se deve ao efeito de anisotropia magnética dos anéis aromáticos sobre o hidrogênio H-2.

Para o hidrogênio H-6 observa-se o mesmo efeito de blindagem para as alquil-THP, já para as aril-THP foi observado uma pequena desblindagem, provavelmente devido ao efeito anisotrópico dos anéis aromáticos.

Composto	RMN ¹³ C δ				
_	C-2	C-5	C-6	C=O	CF ₃
3	100,2	112,0	159,2	179,1	116,7
4	99,1	111,9	159,5	179,1	116,7
6 ^a	72,2	102,2	151,2	174,5	118,0
6b	68,8	102,3	149,8	174,5	118,1
6c	69,3	101,8	150,3	174,7	118,1
6d	67,2	102,4	150,6	175,2	118,0
6e	69,5	102,1	150,1	174,7	117,9
6f	66,9	105,7	146,4	176,8	117,7
6g	67,4	103,1	149,8	176,2	117,7
6h	67,4	105,2	146,7	176,6	117,73
6i	66,3	102,5	151,1	174,0	117,8
6j	69,0	104,6	147,4	176,3	117,8
6k	66,9	106,0	146,1	176,8	117,5
61	59,8	107,5	142,8	178,1	117,6

Tabela 14: Comparação entre os sinais de ¹³C mais importantes dos compostos
3, 4 e 6a-l

Como pode ser visto na tabela, o sinal referente ao C-2 que no material de partida estava ligado a dois oxigênios e aparecia na região de 100 pmm, nos compostos **6a-I** em que se encontra ligado a dois nitrogênios, é o que sofre a maior mudança, sendo blindado de 30 a 40 ppm. Os carbonos vinílicos C-5 e C-6 também sofrem blindagem em relação aos compostos **3** e **4** de aproximadamente 5-10 ppm para o carbono C-5 e 8-10 ppm para o carbono C-6. A carbonila e o grupo CF_3 não sofrem grande mudança em seus deslocamentos químicos sofrendo a carbonila efeito de blindagem e o CF_3 efeito de desblindagem.

3.3.3 Identificação dos compostos 6a-l através de espectrometria de massas

O espectro de massas para os compostos **6a-I**, apresentou uma série de fragmentos ionizados, utilizando impacto de elétrons com energia de 70 eV. Os principais fragmentos são: o íon molecular, o pico relativo à massa a partir da perda do grupo trifluormetil (M⁺ -69) e os picos referentes à perda do substituinte ligado ao carbono-2 (M⁺ -NHR¹). Os fragmentos mais prováveis e a intensidade relativa, representada entre parênteses, estão apresentados no **Esquema 26**, tendo como exemplo o composto **6f** (**Figura 17**).

Figura 17: Espectro de Massas (IE, 70 eV) do composto 6f

3.4 Mecanismo Proposto

0 mecanismo proposto 1-alquil(aril)-2para а síntese das alguil(aril)amino-5-trifluoracetil-1,2,3,4-tetraidropiridinas 6a-I foi baseado no trabalho publicado por Mellor e col.³¹ O mecanismo consiste em um ataque do par de elétrons do nitrogênio da amina à dupla ligação do pirano, havendo o deslocamento da ligação dupla pelo sistema conjugado formando o intermediário I. Com o retorno do par de elétrons do oxigênio, e a restituição da dupla, ocorre a abertura do anel e formação do intermediário II, o qual após uma transferência interna de próton passa ao intermediário III. No intermediário III o par de elétrons do oxigênio da hidroxila ataca o carbono ao qual está ligado, formando uma carbono com a saída do grupo ROH (intermediário IV). Ocorre então a ciclização interna com o ataque do par de elétrons do nitrogênio à carbonila do aldeído levando ao intermediário V, o qual após uma transferência interna de próton passa ao intermediário VI. O intermediário VI sofre eliminação do grupo OH pelo ataque do par de elétrons do nitrogênio ao carbono vizinho. O intermediário VII formado é atacado pelo par de elétrons do nitrogênio de outra molécula de amina, levando ao intermediário VIII que após a perda de um próton leva ao produto 6a-I (Esquema 27).

3.5 Testes de Atividade Antimicrobiana

Nos últimos dez anos, o uso de novas e mais efetivas drogas antibacterianas e imunossupressoras aumentaram a sobrevida dos pacientes com diversas enfermidades. A pesquisa de compostos biologicamente ativos vem crescendo cada vez mais, na busca da cura de muitos males tais como diversas doenças infecciosas causadas por fungos e por bactérias.

As técnicas empregadas para avaliação da atividade antimicrobiana de compostos são difusão em ágar, diluição em caldo determinado pelo *National Commitee for Clinical and Laboratory Standards* (NCCLS) e bioautografia.

O NCCLS padronizou o teste de suscetibilidade, e veio tornar a execução e leitura mais fáceis, com maior praticidade e menor custo, tornando-se um método de referência.

Alguns fatores devem ser levados em consideração para a determinação da técnica a ser utilizada como: o método de ensaio, o inóculo, o meio de crescimento, o tempo de leitura do teste, os microrganismos e ainda a solubilidade dos compostos a serem testados. Devido as 1,2,3,4-THP apresentarem baixa solubilidade o método de referência recomendado pelo NCCLS não pode ser empregado.

Desta forma, a atividade antimicrobiana *in vitro* para alguns dos compostos sintetizados foi avaliada frente a uma série de microrganismos patogênicos incluindo bactérias gram-positivas (*Staphylococcus aureus* ATCC 25923, *Staphylococcus aureus*) gram-negativas, (*Pseudomonas aeruginosa* ATCC 27850, *Escherichia coli* ATCC 25922), fungos (*Candida albicans* ATCC 44373, *Candida dubliniensis* BRCD 12, *Candida glabrata* ATCC 10231, *Cryptococcus neoformans* ATCC 28952, *Saccharomyces cerevisiae* ATCC

2601) e alga (*Prototheca zoopfi*) de acordo com o método de bioautografia descrito por Hostettmann e colaboradores⁷⁵ e Hamburger & Hostettmann⁷⁶.

O método de bioautografia baseia-se na aplicação dos compo stos sobre cromatoplacas, que são colocadas em placas de Petri e recobertas por meio de cultura inoculado com o microrganismo padrão. As concentrações dos compostos testados foram 100; 50; 25; 12,5; 6,25; 3,12; 1,56 e 0,78 µg por aplicação. Após tempo e temperatura de incubação específicos para cada microrganismo, a leitura foi realizada determinando-se como quantidade inibitória mínima (QIM), a menor concentração da substância, na qual houve o aparecimento de halo de inibição frente aos diferentes microrganismos testados.

Nas **Tabelas 15** e **16** estão reportadas as concentrações dos compostos necessárias para inibir o crescimento dos diferentes microrganismos utilizados nos ensaios.

Tabela 15: Atividade antibacteriana *in vitro* dos compostos **6d-I** (QIM μg/aplicação)

Composto	Bactérias ^{a,b}				
	S. aureus ATCC S. aureus P. aeruginosa E. e				
6d	12,5	25	50	25	
6e	25	50	3.12	50	
6f	6f 6,25		100	25	
6g	6g 12,5		100	100	
6h	25	25	3,12	50	
6i	1,56	12,5	6,25	3,12	

⁷⁵ Hostettman, K.; Ralyalinson, L.; Hamburger, M. *Phytochemical Analysis* **1991**, *2*, 199.

⁷⁶ Hamburger, M.; Hostettman, K. Phytochemistry **1991**, 30(12), 3864.

Tabela 15: Continuação

Composto	Bactérias ^{a,b}						
	S. aureus ATCC S. aureus P. aeruginosa E. coli						
6j	25	> 100	25	6,25			
6k	12,5	25	12,5	50			
61	25	25	6,25	100			

^a Quantidade Inibitória Mínima ^b Substância Padrão: Amoxicilina QIM= 0,1μg/aplicação)

Composto	Fungos ^{a,b}					
	C. albican	C. dubliniensis	C. glabrata	P. zoopfi	C. neoforman	S. cerevisae
6d	> 100	100	> 100	> 100	> 100	100
6e	100	50	> 100	> 100	50	100
6f	> 100	50	100	> 100	100	> 100
6g	> 100	100	12,5	> 100	25	100
6h	12,5	25	100	25	100	100
6i	50	50	3,12	1,56	1,56	6,25
6j	12,5	12,5	25	> 100	100	100
6k	100	50	100	> 100	50	100
61	50	25	100	> 100	100	100

^a Quantidade Inibitória Mínima
 ^b Substância Padrão: Nistatina QIM= 0,3µg/aplicação)

Algumas das piridinas testadas evidenciaram boa atividade contra bactérias, fungos e algas.

Os compostos **6d**, **6e**, **6f** e **6k** mostraram-se pouco ativos contra fungos, e em alguns casos não apresentaram atividade antimicrobiana. A atividade antifúngica do composto **6h** foi restrita para *Candida albicans*, *Candida dubliniensis* e *Prototheca zoopfi* (QIM= 12,5; 25 e 25 μg).

Os compostos **6h** e **6l** apresentaram alta atividade contra a bactérias gram-negativas. A quantidade mínima dos compostos **6h** e **6l** para inibir *Pseudomonas aeruginosa* foram respectivamente 3,12 e 6,25µg.

A presença do substituinte orto fenol no composto **6i**, foi importante para conferir alta sensibilidade de fungos e bactérias frente ao composto em estudo. O composto **6i** mostrou significativa atividade contra os fungos *Candida glabrata*, *Cryptococcus neoformans* e *Saccharomyces cerevisiae* e para alga *Prototheca zoopfi* (QIM= 3,12; 1,56; 6,25 e 1,56 µg). A atividade foi também significativa contra bactérias patogênicas especialmente para *Staphylococcus aureus* ATCC e *Escherichia coli* (QIM= 1,56 e 3,12 µg).

O composto **6j** mostrou atividade específica contra candida, ressaltando a atividade contra *Candida albicans* e *Candida dubliniensis*. O composto **6j** foi mais efetivo contra bactérias gram-negativas em especial *Escherichia coli*.

4. MATERIAIS UTILIZADOS E PROCEDIMENTOS EXPERIMENTAIS

4.1 Aparelhos utilizados

4.1.1 Espectroscopia de Ressonância Magnética Nuclear

Os espectros de RMN de ¹H e ¹³C foram obtidos em espectrômetros BRUKER DPX 200 ou BRUKER DPX 400 que operam nas freqüências de 200 MHz e 400 MHz (Departamento de Química - UFSM). Para a aquisição dos espectros de RMN de ¹H e ¹³C foram utilizados o DMSO-d₆ e o CDCl₃ como solventes deuterados, tendo como referência para δ =0 ppm o tetrametil silano, TMS, em tubos de 5 mm.

As condições experimentais dos equipamentos são bastante específicas para cada composto, contudo é possível definir algumas condições padrão que foram utilizadas no registro dos espectros de RMN de ¹H e ¹³C dos compostos sintetizados neste trabalho. As condições utilizadas no espectrômetro BRUKER DPX - 200 MHz foram: 200,13 MHz para ¹H e 50,32 MHz para ¹³C; largura de pulso 9,9 μ s para ¹H e 19,5 μ s (ângulo 90⁰) para ¹³C; tempo de aquisição 3,9 s para ¹H e 2,38 s para ¹³C; número de pontos 65536 com resolução digital do FID 0,128875 Hz/ponto para ¹H e 0,179994 Hz/ponto para ¹³C; temperatura de 298K.

As condições utilizadas no espectrômetro BRUKER DPX - 400 MHz foram: 400,13 MHz para ¹H e 100,62 MHz para ¹³C; largura de pulso 8,0 μ s para ¹H e 13,7 μ s (ângulo 90⁰) para ¹³C; tempo de aquisição 6,5 s para ¹H e 7,6 s para ¹³C; número de pontos 65536 com resolução digital do FID 0,677065 Hz/ponto para ¹H e 0,371260 Hz/ponto para ¹³C; temperatura de 298K.

4.1.2 Espectroscopia de Massas

Os espectros de massas e respectivos cromatogramas foram obtidos através de um cromatógrafos HP 6890 acoplado um detector de massa seletivo HP 5973 equipado com injetor split-splitless autosampler, coluna capilar cross-linked HP 5, com diâmetro interno de 0,32 mm e comprimento de 30 m, sendo usado hélio como gás de arraste.

4.1.3 Ponto de fusão

Os compostos sólidos obtidos tiveram seus pontos de fusão determinados em um aparelho kofler REICHERT - THERMOVAR (termômetro não aferido).

4.1.4 Análise Elementar

As análises elementares para os compostos **3**, **4**, **6a-I** foram realizadas em um analisador Perkin Elmer 2400 CHN, no Instituto de Química, USP, São Paulo.

4.2 Solventes e Reagentes

Para a síntese dos compostos em estudo foramutilizados solventes de qualidade técnica ou p.a., e/ou purificados antes de serem utilizados, conforme as normas usuais⁷⁷. Os reagentes comerciais foram convenientemente purificados, quando se fazia necessário.

4.3 Atividade antimicrobiana

4.3.1 Microrganismos

Utilizaram-se cepas referência da American Type Culture Collection (ATCC), constituídas de microorganismos gram-positivos, gram-negativos e fungos. Os microrganismos sem referência são provenientes de isolado clínico.

GRAM-POSITIVOS

Staphylococcus aureus ATCC 25923 Staphylococcus aureus

GRAM-NEGATIVOS

Pseudomonas aeruginosa ATCC 27850 Escherichia coli ATCC 25922

⁷⁷ Perrin, D. D. & Armarego, L. F. *Purification of Laboratory Chemicals*, 3rd Edition, Pergamon Press, New York, N. Y.,**1996**.

FUNGOS

Candida albicans ATCC 44373 Candida dubliniensis BRCD 12 Candida glabrata ATCC 10231 Prototheca zoopfi Cryptococcus neoformans ATCC 28952 Saccharomyces cerevisiae ATCC 2601

4.3.2 Padrões utilizados nos ensaios microbiológicos

As substâncias padrões utilizadas foram os seguintes antibióticos: Amoxicilina (978,9 μ g/mg) e Nistatina (2464,38 UI/mg), as quais foram preparados conforme FDA⁷⁸.

4.3.3 Meios de Cultura

Para a manutenção das cepas dos microrganismos padrões foram feitos repiques a cada 15 dias, em tubos de ensaio com Ágar simples e Ágar Sabouraud-dextrose inclinados, para bactérias e fungos respectivamente. A incubação deu-se a 37°C por 24 horas. Posteriormente, retirados da estufa e mantidos à temperatura ambiente até o momento da elaboração do experimento.

⁷⁸ Food and Drugs Administration: Code of Federal Regulations **1991**, Cap. 21; 300-499.

Ágar sabouraud

Peptona	10,0 g
Dextrose	40,0 g
Ágar-ágar	15,0 g
Água destilada	1000,0 m

Reidratou-se em 1000,0 mL de água destilada 65,0 g do meio, com aquecimento até a fusão do ágar. Posteriormente cerca de 5,0 mL foram distribuídos em tubos de ensaio 16X150 mm e esterilizados em autoclave a 120°C por 20 minutos. Após a esterilização, os tubos foram mantidos inclinados até a sua solidificação.

Ágar simples

Caldo nutriente	8,0 g
Ágar-ágar	15,0 g
Água destilada	1000,0 mL

O meio foi dissolvido em água destilada, e colocado volumes de 5,0 mL em tudos de ensaio 16X150 mm, tamponados com algodão e esterilizados em autoclave a 120°C, durante 15 minutos. Após a esterilização, os tubos eram mantidos inclinados até a solidificação do meio.

4.3.4 Preparação dos inóculos bacterianos e fúngicos

As culturas bacterianas e fúngicas, foram semeadas em Caldo de Caseína- Soja.

Caldo de Caseína-Soja

Caseína tratada por suco pancreático	. 17,0 g
Farinha de soja por digestão papaínica	. 3,0 g
Dextrose	2,5 g
Fosfato de potássio dibásico	2,5 g
Cloreto de sódio	5,0 g
Água destilada	1000,0 mL

4.3.5 Avaliação da Atividade Antimicrobiana

Para a determinação da atividade das amostras em estudo foi utilizado o seguinte meio de cultura:

Ágar Müeller-Hinton	
Infuso de carne	300 g
Caseína hidrolisada	17,5 g
Amido	1,5 g
Ágar-ágar	17,0 g
Água destilada	1000,0 mL
Preparado conforme as instruções do	fabricante, reidratar 38,0 g em

água destilada, em seguida esterilizar em autoclave por 15 minutos a 120°C.

4.4.1 Procedimento geral de síntese de β-Alcoxivinil Trifluormetil Cetonas³⁷

Em balão de uma boca, provido de funil de adição e agitação magnética, foram adicionados 150 mmol de anidrido trifuoracético em 70 mL de clorofórmio seco. À solução resfriada a 0°C foram adicionados, através de funil de adição, 165 mmol do enoléter e 165 mmol de piridina seca, juntamente.

Todo o material utilizado foi previamente flambado para evitar a formação de vapores ácidos que induzem à polimerização do enoléter.

Após o término da adição, a reação ficou sob agitação por 16 horas. Ao término do tempo reacional a mistura foi lavada com solução de HCI 0,1M (1X) e água destilada (3X). A fase orgânica foi seca com sulfato de sódio anidro e filtrada. Após a evaporação do solvente em rotaevaporador o produto foi purificado por destilação à pressão reduzida. Os compostos **3** e **4** foram obtidos na forma de um óleo incolor com rendimentos de 80 e 75% respectivamente.

5-trifluoracetil-2-metoxi-2*H*-3,4-diidropirano - (3) – O produto foi obtido na forma de um líquido incolor (80%).

RMN ¹**H (CDCI₃, 200MHz)** δ = 7,72 (s, 1H, H-6); 5,15 (t, 1H, *J*= 3,0 Hz, H-2); 3,54 (s, 3H, OCH₃); 2,39-2,32 (m, 2H, H-3); 2,10-1,96 (m, 1H, H-4); 1,91-1,78 (m, 1H, H-4).

RMN ¹³**C (CDCI₃, 100 MHz)** δ = 179,09 (q, ²*J*_{C-F}= 34,2 Hz, C-7); 159,16 (C-6); 116,68 (q, ¹*J*_{C-F}= 289,3 Hz, C-8); 112,03 (C-5); 100,21 (C-2); 56,51 (OCH₃); 25,11 (C-4); 14,25 (C-3).

Fórmula Molecular = $C_8H_9F_3O_3$; **Análise Elementar** Calc.: C = 45,72, H = 4,32; Experimental: C = 45,98, H = 4,47; **Massa Molecular** = 210,15 m/z (intensidade relativa %) = 210 (M⁺, 29), 179 (29), 141 (38), 69 (38), 58 (100).

2-etoxi-5-trifluoracetil-2*H*-3,4-diidropirano - (4)
O produto foi obtido na forma de um líquido incolor (75%).

RMN ¹**H (CDCl₃, 200MHz)** $\delta = 7,72$ (s, 1H, H-6); 5,25 (d/d, 1H, ¹*J*= 3,6 Hz, ²*J*= 2,6 Hz, H-2); 3,99-3,84 (m, 1H, OCH₂); 3,75-3,60 (m, 1H, OCH₂); 2,37 (d/d, 2H, ¹*J*= 7,8 Hz, ²*J*= 5,4 Hz, H-3); 2,09-1,80 (m, 2H, H-4); 1,24 (t, *J*= 7,1 Hz, CH₃).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 179,08$ (q, ²*J*_{C-F}= 34,3 Hz, C-7); 159,51 (C-6); 116,69 (q, ¹*J*_{C-F}= 289,3 Hz, C-8); 111,86 (C-5); 99,09 (C-2); 64,92 (O CH₂); 25,36 (C-4); 14,84 (CH₃); 14,47 (C-3).

Fórmula Molecular = $C_9H_{11}F_3O_3$; **Análise Elementar** Calc.: C = 48,22, H = 4,95; Experimental: C = 48,53, H = 5,10; **Massa Molecular** = 224,17 m/z (intensidade relativa %) = 224 (M⁺, 29), 127 (19), 53 (100).

4.4.2 Síntese dos compostos 6a-l

Em balão de uma boca, provido de agitação magnética, foram adicionados 2 mmol do 5-trifluoracetil-2-metoxi-2*H*-3,4-diidropirano **3** ou 2-etoxi-5-trifluoracetil-2*H*-3,4-diidropirano **4** em 15 mL de hexano para os produtos **6ac**, metanol para os produtos **6d-k** e acetonitrila para o produto **6**I. Após foram adicionados 4 mmol das aminas **5a-I** gota a gota. As aminas **5i-k** que são sólidas foram dissolvidas em 5 ml de metanol, já a amina **5**I, que também é
sólida, foi dissolvida em 5 mL de acetonitrila, sendo todas gotejadas através de funil de adição. A reação foi mantida sob agitação a temperatura ambiente por 4 horas para a obtenção dos compostos **6a-c**, a temperatura ambiente por 24 horas para a obtenção dos compostos **6d-k**, e em refluxo por 24 horas para a obtenção do composto **61**. Após o tempo reacional o solvente foi evaporado em rotaevaporador, os produtos foram lavados com diclorometano e o solvente foi evaporado novamente. Para a síntese do composto **6a** foi necessário usar um excesso da amina pelo fato da mesma ser comercializada em solução aquosa, desta forma após a remoção do metanol foram adicionados 20 mL de diclorometano e sulfato de sódio anidro para secar a água existente no meio. Os produtos **6a** e **6h-l** foram obtidos na forma de óleos alaranjados. Os produtos **6d** e **6h-l** foram obtidos na forma de sólidos e purificados por recristalização em diclorometano e hexano na proporção de 1:1.

5-trifluoracetil-1-metil-2-N-metilamino-1,2,3,4 - tetraidropiridina - (6a) - O produto foi obtido na forma de um óleo alaranjado (85^a, 82^b%).

RMN ¹³**C (CDCI₃, 100 MHz)** δ = 174,5 (q, ²J_{C-F}= 32,0 Hz, C=O); 151,2 (C-6); 118,0 (q, ¹J_{C-F}= 289,8 Hz, CF₃); 102,2 (C-5); 72,2 (C-2); 42,5 (C-7); 32,5 (C-7'); 24,4 (C-3); 14,5 (C-4).

Fórmula Molecular = $C_9H_{13}F_3N_2O$; **Massa Molecular** = 222,21 m/z (intensidade relativa %) = 222 (M⁺, 24), 207 (0,02), 192 (94), 176 (5), 153 (7), 125 (24), 110 (5), 94 (44), 57 (100).

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

1-etil-2-N-etilamino-5-trifluoracetil-1,2,3,4

tetraidropiridina - (6b) - O produto foi obtido na forma de um óleo alaranjado (89^a, 86^b%).

RMN ¹**H (CDCI₃, 200MHz)** δ = 7,53 (s, 1H, H-6); 4,13 (t, 1H, *J*= 2,9 Hz, H-2); 3,60-3,32 (m, 2H, H-7); 2,78-

2,56 (m, 3H, H-7', H-4); 2,24-2,02 (m, 2H, H-3, H-4); 1,71-1,54 (m, 1H, H-3); 1,30-1,00 (m, 6H, H-8, H-8').

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 174,5$ (q, ² $J_{C-F}= 33,5$ Hz, C=O); 149,8 (C-6); 118,1 (q, ¹ $J_{C-F}= 289,5$ Hz, CF₃); 102,3 (C-5); 68,8 (C-2); 49,5 (C-7); 40,4 (C-7'); 27,9 (C-8); 25,5 (C-3); 15,3 (C-8'); 14,6 (C-4).

Fórmula Molecular = $C_{11}H_{17}F_3N_2O$; **Massa Molecular** = 250,26 m/z (intensidade relativa %) = 250 (M⁺, 28); 206 (100); 176 (30), 153 (27); 136 (21), 108 (42).

5-trifluoracetil-1-propil-2-N-propilamino-1,2,3,4 - **tetraidropiridina - (6c) -** O produto foi obtido na forma de um óleo alaranjado (95^a, 95^b%).

RMN ¹**H (CDCI₃, 200MHz)** $\delta = 7,50$ (s, 1H, H-6); 4,10 (s, 1H, H-2); 3,58-3,44 (m, 1H, H-7); 3,30-3,16 (m, 1H, H-7); 2,68-2,58 (m, 3H, H-7', H-4); 2,22-2,05

(m, 2H, H-4, H-3); 1,74-1,41 (m, 5H, H-3, H-8, H-8'); 0,94 (t, 6H, *J*= 7,4 Hz, H-9, H-9').

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 174,68$ (q, ² $J_{C-F}= 30,0$ Hz, C=O); 150,3 (C-6); 118,1 (q, ¹ $J_{C-F}= 289,4$ Hz, CF₃); 101,8 (C-5); 69,3 (C-2); 56,6 (C-7); 48,0 (C-7'); 25,40 (C-3); 23,5 (C-8); 22,7 (C-8'); 14,7 (C-4); 11,50 (C-9); 10,8 (C-9').

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

Fórmula Molecular = $C_{13}H_{21}F_3N_2O$; **Massa Molecular** = 278,31 m/z (intensidade relativa %) = 278 (M⁺, 30); 249 (5); 220 (100); 181 (43); 150 (25); 122 (27).

1-benzil-2-N-benzilamino-5-trifluoracetil-1,2,3,4
-tetraidropiridina - (6d) – O produto foi obtido na
CF₃ forma de um sólido amarelo (90^a, 87^b%); P.F. (103 – 104°C).

RMN ¹**H (CDCI₃, 200MHz)** $\delta = 7,64$ (s, 1H, H-6); 7,38-7,24 (m, 8H, Ar); 7,06-7,02 (m, 2H, Ar); 4,49 (d/d, 2H, ¹*J*= 42,4 Hz, ²*J*= 15,0 Hz, H-7); 3,98 (t,

1H, *J*= 2,9 Hz, H-2); 3,82 (d/d, 2H, ¹*J*= 26,5 Hz, ²*J*= 13,3 Hz, H-7'); 2,67-2,58 (m, 1H, H-4); 2,27-1,98 (m, 2H, H-4, H-3);1,60-1,43 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 175,2$ (q, ² $J_{C-F}= 31,6$ Hz, C=O); 150,6 (C-6); 139,3; 135,6; 128,9; 128,5; 128,2; 128,0; 127,5; 127,3 (12C, Ar); 118,0 (q, ¹ $J_{C-F}= 289,7$ Hz, CF₃); 102,4 (C-5); 67,2 (C-2); 58,2 (C-7); 49,9 (C-7'); 24,8 (C-3); 14,6 (C-4).

Fórmula Molecular = $C_{21}H_{21}F_3N_2O$; Análise Elementar Calc.: C = 67,37, H = 5,65, N = 7,48; Experimental: C = 67,30, H = 5,58, N = 7,40; Massa Molecular = 374,40 m/z (intensidade relativa %) = 374 (M⁺, 1), 305 (0,02), 283 (18), 198 (2), 176 (11), 108 (17), 91 (100).

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

1-(2-feniletan-1-il)-2-N-(2-feniletilamino)-5 –
trifluoracetil-1,2,3,4-tetraidropiridina - (6e)
– O produto foi obtido na forma de um óleo laranja (98^a, 95^b%).

RMN ¹**H (CDCI₃, 200MHz)** $\delta = 7,34-7,16$ (m, 9H, H-6, Ar); 7,11-7,07 (m, 2H, Ar); 3,89 (s, 1H, H-2); 3,67 (qui, 1H, *J*= 6,9 Hz, H-7); 3,44 (qui, 1H, *J*= 7,0 Hz, H-7); 2,95-2,72 (m, 6H, H-7', H-8, H-8'); 2,48 (d/d, 1H, ¹*J*= 12,8 Hz,

²*J*= 4,8 Hz, H-4); 2,08-1,85 (m, 2H, H-4, H-3); 1,56-1,38 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 174,7$ (q, ²*J*_{C-F}= 31,7 Hz, C=O); 150,1 (C-6); 139,3; 137,4; 128,63; 128,59; 128,45; 128,4; 126,8; 126,3 (12C, Ar); 117,9 (q, ¹*J*_{C-F}= 289,8 Hz, CF₃); 69,5 (C-2); 55,8 (C-7); 47,1 (C-7'); 36,5 (C-8); 36,1 (C-8'); 25,1 (C-3); 14,7 (C-4).

Fórmula Molecular = $C_{23}H_{25}F_3N_2O$; Análise Elementar Calc.: C = 68,64, H = 6,26, N = 6,96; Experimental: C = 68,23, H = 5,82, N = 7,03; Massa Molecular = 402,45 m/z (intensidade relativa %) = 402 (M⁺, 3), 333 (2), 305 (13), 282 (96), 212 (2), 105 (100), 91 (50), 79 (21).

1-fenil-2-N-fenilamino-5-trifluoracetil-1,2,3,4
-tetraidropiridina - (6f) – O produto foi obtido na forma de um sólido branco (80^a, 81^b%); P.F. (144 – 145°C).

RMN ¹**H (CDCI₃, 400MHz)** δ = 7,90 (s, 1H, H-6); 7,37-7,33 (m, 2H, Ar); 7,24-7,16 (m, 5H, Ar); 6,78 (t, 1H, *J*= 7,6 Hz, Ar); 6,64 (d, 2H, *J*= 7,6

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

Hz, Ar); 5,47 (s, 1H, H-2); 2,71 (d/d, 1H, ¹*J*= 14,0 Hz, ²*J*= 5,3 Hz, H-4); 2,39-2,31 (m, 2H, H-4, H-3); 1,92-1,83 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** δ = 176,8 (q, ²*J*_{C-F}= 32,3 Hz, C=O); 146,4 (C-6); 144,7; 144,4; 129,8; 129,5; 126,2; 120,9; 119,1; 114,1 (12C, Ar); 117,7 (q, ¹*J*_{C-F}= 289,2 Hz, CF₃); 105,7 (C-5); 66,9 (C-2); 25,2 (C-3); 14,4 (C-4).

Fórmula Molecular = $C_{19}H_{17}F_3N_2O$; Análise Elementar Calc.: C = 65,89, H = 4,95, N = 8,09; Experimental: C = 65,68, H = 5,00, N = 8,22; Massa Molecular = 346,35 m/z (intensidade relativa %) = 346 (M⁺, 9), 277 (0,05), 254 (100), 184 (3), 173 (0,02), 156 (33), 93 (11), 77 (35).

5-trifluoracetil-1-(2-metilfenil)-2-(2 metilfenilamino)- 1,2,3,4-tetraidropiridina -(6g) – O produto foi obtido na forma de um sólido branco (95^a, 92^b%); P.F. (108 – 109°C).

RMN ¹**H (CDCI₃, 200 MHz)** δ = 7,54 (s, 1H, H-6); 7,21 (d/d, 4H, ¹*J*=10,3 Hz, ²*J*=3,3 Hz, Ar); 7,02 (d, 1H, *J*=7,4 Hz, Ar); 6,86 (t, 1H, *J*=7,5 Hz, Ar);

6,63 (t, 1H, *J*=7,3 Hz, Ar); 6,22 (d, 1H, *J*=8,0 Hz, Ar); 5,31 (d, 1H, *J*=9,6 Hz, H-2); 4,02 (d, 1H, *J*=9,4 Hz, NH); 2,92-2,83 (m, 1H, H-4); 2,46-2,07 (m, 9H, H-4, H-3, 2CH₃).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 176,2$ (q, ² $J_{C-F}= 32,1$ Hz, C=O); 149,8 (C-6); 143,8; 142,75; 134,2; 131,6; 130,5; 128,3; 127,2; 130,0; 126,8; 122,5; 118,7; 111,4 (12C, Ar); 117,7 (q, ¹ $J_{C-F}= 289,70$ Hz, CF₃); 103,1 (C-5); 67,4 (C-2); 26,3 (C-3); 17,6 (CH₃); 17,4 (CH₃); 14,5 (C-4).

Fórmula Molecular = $C_{21}H_{21}F_3N_2O$; Análise Elementar Calc.: C = 67,37, H = 5,65, N = 7,48; Experimental: C = 67,34, H = 5,36, N = 7,04; Massa Molecular

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

= 374,40 m/z (intensidade relativa %) = 374 (M⁺, 5), 345 (0,02), 305 (0,05), 268 (100), 198 (3), 170 (29), 91 (40).

5-trifluoracetil-1-(4-metilfenil)-2-(4 - metilfenilamino)- 1,2,3,4-tetraidropiridina
(6h) – O produto foi obtido na forma de um sólido amarelo (92^a, 87^b%); P.F. (101 – 102°C).

RMN ¹**H (CDCI₃, 200MHz)** δ = 7,86 (s, 1H, H-6); 7,14 (s, 4H, Ar); 6,99 (d, 2H, *J*= 8,0 Hz, Ar); 6,55 (d, 2H, *J*= 8,2 Hz, Ar); 5,39 (s,

1H, H-2); 3,93 (s, 1H, NH); 2,71 (d/d, 1H, ¹*J*= 16,0 Hz, ²*J*= 5,1 Hz, H-4); 2,33– 2,24 (m, 8H, H-4, H-3, 2CH₃); 1,92–1,76 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 176,6$ (q, ² $J_{C-F}= 32,0$ Hz, C=O); 146,7 (C-6); 142,4; 142,1; 136,1; 130,3; 130,0; 128,5; 120,9; 114,4 (12C, Ar); 117,7 (q, ¹ $J_{C-F}= 289,8$ Hz, CF₃); 105,2 (C-5); 67,4 (C-2); 25,0 (C-3); 20,7 (CH₃); 20,3 (CH₃); 14,3 (C-4).

Fórmula Molecular = $C_{21}H_{21}F_3N_2O$; Análise Elementar Calc.: C = 67,37, H = 5,65, N = 7,48; Experimental: C = 67,21, H = 5,42, N = 7,11; Massa Molecular = 374,40 m/z (intensidade relativa %) = 374 (M⁺, 5), 345 (0,02), 268 (100), 198 (2), 170 (37), 91 (39).

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

5-trifluoracetil-1-(2-hidroxifenil)-2-(2 - hidroxifenilamino)- 1,2,3,4-tetraidropiridina - (6i) – O produto foi obtido na forma de um sólido amarelo (89^a, 90^b%); P.F. (143-144^oC).

RMN ¹**H (DMSO, 200MHz)** δ = 10,07 (s, 1H, OH); 9,34 (s, 1H, OH); 7,59 (s, 1H, H-6); 7,28 (d, 1H, *J*= 7,8 Hz, Ar); 7,12 (t, 1H, *J*= 7,6 Hz,

Ar); 6,93 (d, 1H, *J*= 8,0 Hz, Ar); 6,78 (t, 1H, *J*= 7,5 Hz, Ar); 6,64 (d, 1H, *J*= 7,0 Hz, Ar); 6,47 (s, 3H, Ar); 5,53 (d, 1H, *J*= 8,8 Hz, H-2); 4,94 (d, 1H, *J*= 9,4 Hz, NH); 2,63-2,55 (m, 1H, H-4); 2,34-2,09 (m, 2H, H-4, H-3); 2,00-1,85 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 174,0$ (q, ² $J_{C-F}= 30,9$ Hz, C=O); 152,0; 144,3; 134,0; 131,6; 128,6; 126,8; 119,5; 119,4; 117,7; 116,6; 114,1; 111,9 (12C, Ar); 151,1 (C-6); 117,8 (q, J= 288,8 Hz, CF₃); 102,5 (C-5); 66,3 (C-2); 25,5 (C-3); 14,5 (C-4).

Fórmula Molecular = $C_{19}H_{17}F_3N_2O_3$; Análise Elementar Calc.: C = 60,32, H = 4,53, N = 7,40; Experimental: C = , H = , N = ; Massa Molecular = 378,35 m/z (intensidade relativa %) = 377 (M⁻¹, 0,05); 269 (100); 200 (99); 172 (25); 93 (9).

5-trifluoracetil-1-(4-metoxifenil)-2-(4 metoxifenilamino)- 1,2,3,4tetraidropiridina - (6j) - O produto foi obtido na forma de um sólido branco (94^a, 93^b%); P.F. (110 - 111°C).

RMN ¹**H (CDCI₃, 200MHz)** δ = 7,78 (s, 1H, H-6); 7,13 (d, 2H, *J*= 8,0 Hz, Ar);

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

6,85 (d, 2H, *J*= 8,2 Hz, Ar); 6,74 (d, 2H, *J*= 7,8 Hz, Ar); 6,57 (d, 2H, *J*= 8,2 Hz, Ar); 5,27 (s, 1H, H-2); 3,78 (s, 3H, OCH₃); 3,73 (s, 3H, OCH₃); 2,78-2,67 (m, 1H, H-4); 2,38-2,26 (m, 2H, H-4, H-3); 1,94-1,81 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 176,3$ (q, ² $J_{C-F}= 32,3$ Hz, C=O); 158,1; 153,5; 138,5; 138,3; 123,4; 116,4; 115,0; 114,9 (12C, Ar); 147,4 (C-6); 117,8 (q, ¹ $J_{C-F}= 290,0$ Hz, CF₃); 104,6 (C-5); 69,0 (C-2); 55,6 (OCH₃); 55,5 (OCH₃); 25,4 (C-3); 14,3 (C-4).

Fórmula Molecular = $C_{21}H_{21}F_{3}N_{2}O_{3}$; Análise Elementar Calc.: C = 62,06, H = 5,21, N = 6,89; Experimental: C = 61,85, H = 5,24, N = 6,86; Massa Molecular = 406,40 m/z (intensidade relativa %) = 406 (M⁺, 7), 284 (100), 186 (34), 123 (73), 107 (13), 92 (9), 77 (17).

1-(4-clorofenil)-2-(4-clorofenilamino)-5 trifluoracetil-1,2,3,4-tetraidropiridina (6k) – O produto foi obtido na forma de um sólido branco (35^a, 30^b%); P.F. (128 – 129°C).

RMN ¹**H (CDCI₃, 200MHz)** δ = 7,79 (s, 1H, H-6); 7,32 (d, 2H, *J*=9,0 Hz, Ar); 7,13 (d/d, 4H, ¹*J*= 8,7 Hz, ²*J*= 4,9 Hz, Ar); 6,58 (d, 2H,

J= 8,6 Hz, Ar); 5,38 (s, 1H, H-2); 2,69 (d/d, 1H, ¹*J*= 15,4 Hz, ²*J*= 4,8 Hz, H-4); 2,37-2,25 (m, 2H, H-4, H-3); 1,95-1,83 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** δ = 176,9 (q, ²*J*_{C-F}= 31,3 Hz, C=O); 146,2 (C-6); 143,1; 142,9; 129,9; 129,4; 129,0; 123,9; 122,3; 115,1 (12 C, Ar); 117,5 (q, ¹*J*_{C-F}= 289,8 Hz, CF₃); 106,0 (C-5); 66,9 (C-2); 25,1 (C-3); 14,3 (C-4).

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

Fórmula Molecular = $C_{19}H_{15}Cl_2F_3N_2O$; Análise Elementar Calc.: C = 54,96, H = 3,64, N = 6,75; Experimental: C = 54,94, H = 3,75, N = 6,79; Massa Molecular = 415,24 m/z (intensidade relativa %) = 414 (M⁺, 3), 317 (0,05), 303 (0,02), 288 (100), 207 (2),190 (26), 111 (21).

5-trifluoracetil-1-(piridin-2-il)-2-N -(aminopiridin-2-il)- 1,2,3,4-tetraidropiridina -(6I) – O produto foi obtido na forma de um sólido bege (82^a, 84^b%); P.F. (150 – 152°C).

RMN ¹**H (CDCI₃, 200MHz)** $\delta = 9,15$ (s, 1H, H-6); 8,36-8,34 (m, 1H, Ar); 8,17 (d, 1H, *J*= 4,0 Hz, Ar); 7,68-7,59 (m, 1H, Ar); 7,49-7,40 (m, 1H, Ar);

7,27 (d, 1H, J= 8,2 Hz, Ar); 7,05-7,00 (m, 1H, Ar); 6,71-6,65 (m, 1H, Ar); 6,53-6,49 (m, 2H, H-2, Ar); 5,14 (d, 1H, J= 8,8 Hz, NH); 2,75 (d/d, 1H, ¹J= 16,0 Hz, ²J= 5,1 Hz, H-3); 2,40-2,28 (m, 2H, H-4, H-3); 2,00-1,80 (m, 1H, H-3).

RMN ¹³**C (CDCI₃, 100 MHz)** $\delta = 178,1$ (q, ²*J*_{C-F}= 32,8 Hz, C=O); 155,9; 152,5; 148,2; 147,7; 138,8; 137,7; 119,5; 114,2; 110,6; 109,2 (10C, Ar); 142,8 (C-6); 117,6 (q, ¹*J*_{C-F}= 289,7 Hz, CF₃); 107,5 (C-5); 59,8 (C-2); 25,8 (C-3); 14,8 (C-4). **Fórmula Molecular** = C₁₇H₁₅F₃N₄O; **Análise Elementar** Calc.: C = 58,62, H = 4,34, N = 16,08; Experimental: C = 58,60, H = 4,20, N = 15,68; **Massa Molecular** = 348,32 m/z (intensidade relativa %) = 348 (M⁺, 3), 271 (0,05), 254 (98), 157 (48), 78 (100).

^a Rendimento isolado utilizando como precursor o composto **3**

^b Rendimento isolado utilizando como precursor o composto 4

4.4.3 Preparação das suspensões dos microrganismos (inóculos)

Utilizando-se uma alça de platina esterilizada, transferiu-se as culturas de 24 horas dos microrganismos padrões em ágar simples inclinado para tubos de ensaio contendo 5,0 mL de uma solução salina estéril. A densidade foi então ajustada em espectrofotômetro a 530nm, até atingir 80 a 82% de transmitância (0,08 a 0,10 de absorbância). Obteve-se, assim um inóculo contendo aproximadamente 10⁸ UFC/mL denominada de "suspensão concentrada".

4.4.4 Determinação da atividade antimicrobiana pelo Método de Bioautografia

A atividade antimicrobiana pelo método de Bioautografia foi realizada de acordo com Hostettmann e colaboradores e Hamburger & Hostettmann. Para a concretização deste, utilizou-se placas de Petri de 10X100 mm de diâmetro, onde foram depositadas as cromatoplacas com as amostras a serem analisadas. As concentrações de amostras testadas foram 100; 50; 25; 12,5; 6,25; 3,12; 1,56 e 0,78 µg/10 µl de aplicação. Em seguida, foram adicionados 10 mL do meio de cultura liquefeito e inoculado com o microrganismo padrão sobre as cromatoplacas. Após a solidificação do meio, as placas de Petri foram incubadas conforme o período de tempo preconizado pela metodologia para cada tipo de microrganismo. Decorrido o período de incubação, as cromatoplacas foram reveladas com uma solução aquosa de cloreto 2,3,5 trifenil tetrazóleo (20 mg/mL), e incubadas a 30°C durante 2-4 horas. A leitura foi realizada determinando-se como quantidade inibitória mínima (QIM), a menor concentração da substância, na qual houve o aparecimento de halo de inibição frente aos diferentes microrganismos testados.

5. CONCLUSÕES

- A obtenção dos 2-alcoxi-5-trifluoracetil-2*H*-3,4-diidropiranos 3 e 4 a partir de metodologias desenvolvidas pelo NuQuimHe mostrou-se viável, gerando precursores, para a síntese desenvolvida neste trabalho, com bons rendimentos (75-80%);
- As reações de aminas primárias com os precursores 3 e 4 foram reações de fácil manipulação, levando as 1-alquil(aril)-2-aminoalquil(aril)-5-trifluoracetil-1,2,3,4-tetraidropiridinas 6a-l com bons rendimentos (30-98%).
- A metodologia desenvolvida para a síntese dos compostos 6a-l mostrou-se eficaz pois levou aos compostos desejados, em uma única etapa, sem ocorrer a formação de mistura de produtos;
- Os resultados obtidos para o uso das β-alcoxivinil trifluormetil cetona 3 ou 4, utilizando as mesmas condições reacionais otimizadas, são praticamente os mesmos, o que leva a acreditar que a saída do grupo OR como metoxila ou etoxila não influencia no resultado obtido.
- A partir da utilização das técnicas de RMN de ¹H e ¹³C, análise elementar e espectroscopia de massas foi possível a análise estrutural dos compostos sintetizados neste trabalho;
- Algumas das 1,2,3,4-tetraidropiridinaspiridinas testadas evidenciaram boa atividade contra bactérias, fungos e alga. O composto 6i o qual apresenta subtituinte orto fenol apresentou significativa inibição para fungos, alga e bactérias. O composto 6i mostrou significativa atividade contra os fungos

Candida glabrata, Cryptococcus neoformans e Saccharomyces cerevisiae, alga Prototheca zoopfi e contra bactérias patogênicas em especial Staphylococcus aureus ATCC e Escherichia coli.

ANEXO

Figura 18: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto 3 em CDCl₃

Figura 19: Espectro de massas (IE, 70 eV) composto 3

-7.720 5,266 5,253 5,248 5,235 СНЗ CH3CH2O H6 H4 H2 OCH2 ΗЗ 13 1.1 3.4 20 2.2 8.0 7.5 2.5 2.0 4.0 7.0 6.5 6.0 1.5 1.0 0.5 5.5 5.0 3.5 4.5 3.0 0.0 179.589 179.252 178.908 178.561 121.024 118.132 115.239 112.346 111.855 99.091 64.918 -25.360 -14.835 -14.469 C2 СЗ H₃CH₂CO² OCH2 C4 СНЗ C5 C6 CF3 C=O

Figura 20: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto 4 em CDCl₃

Figura 21: Espectro de massas (IE, 70 eV) do composto 4

Figura 22: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6a** em CDCl₃

Figura 23: Espectro de massas (IE, 70 eV) do composto 6a

Figura 24: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6b** em CDCl₃

Figura 25: Espectro de massas (IE, 70 eV) do composto 6b

Figura 26: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto 6c em CDCl₃

Figura 27: Espectro de massas (IE, 70 eV) do composto 6c

Figura 28: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto 6d em CDCl₃

Figura 29: Espectro de massas (IE, 70 eV) do composto 6d

Figura 30: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6e** em CDCl₃

Figura 31: Espectro de massas (IE, 70 eV) do composto 6e

Figura 32: Espectros de RMN de ¹H a 400 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6f** em CDCl₃

Figura 33: Espectro de massas (IE, 70 eV) do composto 6f

Figura 34: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6g** em CDCl₃

Figura 35: Espectro de massas (IE, 70 eV) do composto 6g

Figura 36: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6h** em CDCl₃

Figura 37: Espectro de massas (IE, 70 eV) do composto 6h

Figura 38: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6i** em DMSO-d₆

Figura 39: Espectro de massas (IE, 70 eV) do composto 6i

6j em CDCl₃

Figura 41: Espectro de massas (IE, 70 eV) do composto 6j

Figura 42: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto 6k em CDCl₃

Figura 43: Espectro de massas (IE, 70 eV) do composto 6k

Figura 44: Espectros de RMN de ¹H a 200 MHz e ${}^{13}C{}^{1}H$ a 100 MHz do composto **6I** em CDCI₃

Figura 45: Espectro de massas (IE, 70 eV) do composto 6I