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RESUMO

Trabalho de Graduação
Curso de Ciência da Computação

Universidade Federal de Santa Maria

DESENVOLVIMENTO DE UM ESCALONADOR SENSÍVEL AO CONTEXTO PARA
O APACHE HADOOP

AUTOR: GUILHERME WEIGERT CASSALES
ORIENTADORA: ANDREA SCHWERTNER CHARÃO

Local da Defesa e Data: Santa Maria, 20 de Janeiro de 2014.

Hoje em dia, o volume de dados gerados é muito maior do que a capacidade de pro-
cessamento dos computadores. Como solução para esse problema, algumas tarefas podem ser
paralelizadas ou distribuidas. O framework Apache Hadoop (Apache Hadoop, 2013), é uma
delas e poupa o programador as terefas de gerenciamento, como tolerância à falhas, particio-
namento dos dados entre outros. Um problema no escalonador do Apache Hadoop é que seu
foco é em ambientes homogêneos, o que muitas vezes não é possível de se manter. O foco deste
trabalho foi na melhora de um escalonador já existente, possuindo como objetivo torná-lo sen-
sível ao contexto, permitindo que as capacidades físicas de cada máquina sejam consideradas
na hora da distribuição das tarefas submetidas. Optou-se por inserir coletores de informações
de contexto (memória e cpu) no CapacityScheduler, tornando o comportamento desse sensível
ao contexto. Através das mudanças feitas e de experimentos feitos usando um benchmark bem
conhecido (TeraSort), foi possível demonstrar uma melhora no escalonamento em relação ao
escalonador original com a configuração padrão.
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Nowadays the volume of data generated by the services provided for end users, is way
larger than the processing capacity of one computer alone. As a solution to this problem, some
tasks can be parallelized. The Apache Hadoop framework, is one of these parallelized solutions
and it spares the programmer of management tasks such as fault tolerance, data partitioning,
among others. One problem on this framework is the scheduler, which is designed for homo-
geneous environments. It is worth to remember that maintaining a homogeneous environment
is somewhat difficult today, given the fast development of new, cheaper and more powerful
hardware. This work focuses on altering the Capacity Scheduler, in order to make it more
context-aware towards resources on the cluster. Making it possible to consider the the physical
capacities of the machines when scheduling the submitted tasks. It was chosen to insert context
information (memory and cpu) collectors on CapacityScheduler, making his scheduling more
context-aware. Through the changes and experiments made using a common and well known
benchmark (TeraSort), it was possible to notice a improvement on scheduling in relation to the
original scheduler using the default configuration.

Keywords: Apache Hadoop. Scheduler. Context-aware.
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1 INTRODUCTION

One of the major IT companies nowadays, known as Google (Google, 2013), had the

initial idea of a way to process a huge data volume generated by its servers. This approach

would later be known as MapReduce, built by two separate steps, Map and Reduce, each step

based on a functional language function. At the same time, a Yahoo! (Yahoo, 2013) led project

was starting the implementation of MapReduce for its own system, which would then become

a whole new project, named Apache Hadoop (Apache Hadoop, 2013).

Today the Apache Hadoop framework has a very active community of both developers

and users, however there are some characteristics that weren’t changed from the day the fra-

mework was first designed. Among these characteristics there is one very detrimental and prone

to bad performance issues, which is the focus on homogeneous environments. It is known that

maintaining a totally homogeneous environment is harder and harder as the time passes, requi-

ring either a huge initial investment or a huge effort in order to replace faulty hardware without

changing the component capability.

The MapReduce’s task performance inside Hadoop is tightly tied to the scheduler (KU-

MAR et al., 2012). Since it is an open source project, it is possible to change the scheduler

aiming to make it capable of better adapting to heterogeneity while at the same time presenting

a performance improvement.

A key characteristic in Hadoop’s transition to heterogeneous environments is the context-

aware capability. The definition of context can vary from one application to another, but as a

rule of thumb it is some information that the application can use as base for decision making.

When an application is context-aware, it will detect and adapt to the changes in the environment

(Kirsch-Pinheiro, M. and Steffenel, L. A., 2013).

In the present work, the context to which the application will have to adapt is related

to the physical configuration of the machines that compose the Hadoop cluster, allowing the

scheduler to work with real data collected from the machines and not suppositions as the default

Hadoop configuration implies. In a more complex degree, the present work is just a part of

a bigger project called PER-MARE (STEFFENEL et al., 2013), which has the objective of

adapting to more environment variations, as the insertion and removal of nodes in real time.
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1.1 Objective

The main objective of this work is to improve Hadoop through a context-aware schedu-

ling, which will provide better performance and adaptation on heterogeneous environments.

1.2 Motivation

Today, some processing tasks that used to be made through huge mainframes and ser-

vers are gradually transitioning to big clusters, which are composed of computers with more

accessible prices and easily bought in the market.

Even though the Apache Hadoop framework has clusters as its target, it was designed

and implemented under a specific assumption. The framework’s better performance is achieved

when it is running on a homogeneous cluster, in other words, when all nodes have the same

resources. The problem is that given today’s hardware development, it might take the system to

a point where it is not possible or at least not profitable to maintain cluster homogeneity.

Since the default configuration of the scheduler tells that every node on the cluster has

the same amount of resources, if a more powerful node is inserted all that extra capacity will

be wasted. This happens because the cluster will not collect the real configuration, but the

parameter set in a XML file as the node capacity. The opposite is also troublesome, if a less

powerful node is inserted, the cluster will use it as if it had more potential, possibly overloading

that node with more tasks that it can handle and causing errors or performance issues.

The present work is relevant, as it’s objective is based on adaptation and improvement of

an already existent technology. With the improved scheduler, not only will the Apache Hadoop

clusters have a possibility to improve cluster’s resource utilization, as the framework itself will

be better prepared and capable of adapting to new heterogeneous environments in an easier and

smoother way.
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2 FOUNDATIONS AND LITERATURE REVIEW

The tools and paradigms used on the work are: framework Apache Hadoop, MapRe-

duce, context-awareness, as well as related works. They will be further explained in the fol-

lowing sections.

2.1 Hadoop

The Apache Hadoop framework was actually originated from another Apache (Apache,

2013) project, the Apache Nutch (Apache Nutch, 2013), which was an open source web search

engine started on 2002. Unfortunately, Apache Nutch was facing problems due to its architec-

ture, that was happening almost at the same time that Google published an article describing

the architecture used on their distributed file system (GFS). The Nutch developers saw that a

similar architecture to the GFS would solve Nutch’s scalability problem.

In 2004 the Nutch developers began to implement the idea and the result was named

Nutch Distributed Filesystem (NDFS). As the project advanced it began to take bigger and

bigger proportions until 2006, when a new project was made because the advancements were

bigger than Nutch’s purpose. This new project was named Hadoop. The Hadoop framework

has the purpose of facilitating distributed processing through the MapReduce paradigm.

2.1.1 Apache Hadoop Architecture

In a general view, it is possible to break Apache Hadoop in two parts. These parts are

named Hadoop Distributed File System (HDFS) and Yet Another Resource Negotiator (YARN).

Figure 2.1 presents the aforementioned separation.

HDFS is responsible for the data storage, which is required in order to execute jobs. It is

the component which will replicate the data in order to provide fault tolerance, data distribution

according to the requirements of each node, among other things.

YARN is the other half of Apache Hadoop, it is responsible for processing tasks from

submitted jobs. It is through YARN components that the MapReduce tasks are executed, which

consequently makes YARN the manager for all cluster resources.
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Figure 2.1 – General Apache Hadoop architecture

2.1.1.1 HDFS

HDFS is in huge part responsible for Hadoop’s good performance, because it has the

task to not overloading the network with file transfers. Thanks to HDFS, the file access is

always local, it means that every node will receive the file portion relative to its workload, thus

preventing unnecessary replication other than for security and fault tolerance replication.

One problem of this approach is that Hadoop has a big latency, making its use inadvi-

sable to critical or real time applications. The HDFS may be further divided in two services,

NameNode and DataNode, responsible for the management of data in cluster level and local

level, respectively. Figure 2.2 presents the basic HDFS architecture scheme.

Figure 2.2 – General HDFS architecture (HADOOP, 2013a)
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2.1.1.2 YARN

YARN is the portion of Apache Hadoop responsible for MapReduce execution, therefore

the execution of management and processing tasks are controlled by YARN. In making the

processing tasks totally independent from data storage tasks, the Apache Hadoop opens a lot of

possibilities for it’s utilization. Just like HDFS, YARN can be further divided into two services,

ResourceManager and NodeManager, responsible for system resource management and local

resource management, respectively. Figure 2.3 presents the basic YARN’s architecture scheme.

Although not shown on the figure, each service has many internal modules, for exam-

ple the ResourceManager has the scheduler and the ApplicationsManager, which could still

be further divided into sub-modules. The present work aims to present an improved solution

for the scheduling and resource collection employed on Hadoop so it can adapt better to the

environment.

Figure 2.3 – General YARN architecture (HADOOP, 2013b)

2.1.2 Hadoop execution environment configuration

A correctly configured Hadoop environment has a few pre-requisites besides having

access between the nodes in a network. Every node must have in it’s Hadoop installation many

files, in XML format, containing the Virtual Machines’ (VMs) configuration on that node.

The XML files are: core-site.xml, yarn-site.xml, mapred-site.xml, hdfs-site.xml. Each

one of these files will contain one Hadoop service configuration. In case a parameter isn’t set
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on these files, the VM will get the value from one of the *-default.xml files which contains the

default Hadoop configuration. Although it may seem like an automated configuration, it is only

a default value Hadoop will use in case no other value has been specified.

2.1.3 MapReduce

The MapReduce paradigm, already mentioned many times on the present work, breaks

down the processing of tasks in two steps. These two steps are derived from functional language

functions Map and Reduce which, just like their original implementations, work based on key

and value tuples. The standard work-flow of a MapReduce application starts with the Map

function receiving an input file and searching for application desired information, after this

information is found it creates key and value tuples.

Once the tuples are made the Map function sends them to Reduce function, where the

keys will be processed and reduced to intelligible data. The Hadoop’s greatest advantage is that,

given a properly configured environment, the programmer can focus his attention and efforts on

solving the tasks through MapReduce paradigm and not on making the tasks work properly

distributed. Thus instead of having to worry about fault tolerance, scalability, and many other

characteristics, the programmer will just focus on his algorithm.

2.2 Context-awareness

Given the interactivity of today’s systems, it is possible to note some context-aware

applications already in use on most of them. For example, when a site is accessed through

a mobile device it will automatically load the mobile version on the device in order to have

optimized spacing and content designed for that kind of devices. Another example is when the

browsers take into account geographical data from the user point of access and refine the search

results towards that area. Also, it is possible to use an user navigation historic to predict which

products and offers will arouse more interest on that person.

All the above cases exemplified a situation where the application used some context in

order to make a decision, making that application context-aware. But what really means to be

a context-aware application? In order to answer this question there are two things that must be

understood first, the definition of context and context-aware.

Starting with the first, what would the so called context mean. This definition is funda-
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mental in order to understand what is a context-aware system and context-aware itself (Kirsch-

Pinheiro, M. and Steffenel, L. A., 2013). Context can assume a lot of meanings depending on

the situation, (DEY, 2001) defines context as any information possible to be used in order to

characterize an entity (person, place or object) considered relevant to the interaction between

user and application.

Knowing what context is, it is possible to understand the context-aware definition made

by (MAAMAR; BENSLIMANE; NARENDRA, 2006) in which he claims that context-aware

is the ability of an application to detect and respond to changes in the execution environment.

Which then can be complemented by the following definition made by (BALDAUF; DUST-

DAR; ROSENBERG, 2007), in which he defines a context-aware system as something capable

of adapting it’s operations to the actual context without explicit user intervention and therefore

improve the usability and efficacy.

Although there are many different methods to improve the MapReduce’s performance

through employment of context information, (Kirsch-Pinheiro, M. and Steffenel, L. A., 2013)

suggests three possible ways to do so. These three methods are: automated node configura-

tion on Hadoop installation/start-up, management of node removal and addition in real time

and finally through scheduler task distribution according to the available resources and already

executing tasks at any given time. The present work used a hybrid approach between the se-

cond and third suggestions, as it will collect the real node data and also impact on scheduling

resource distribution.

2.3 Hadoop Schedulers

One of the Hadoop’s main components is the scheduler. It is responsible for the resource

and workload distribution among the environment.

2.3.1 Hadoop Internal Scheduler

The standard Hadoop scheduler, was implemented aiming to support only batch job

submission. It takes the first job received and executes it, making a queue for subsequent sub-

missions. This scheduler supports five levels of priority, yet the choice for the next job to be

executed will always take into account the submission time.
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2.3.2 Fair Scheduler

Used for computing of small batch jobs that have the same input data size, using a

two level scheduling in order to distribute the resources equally (Fair Scheduler, 2013). The

superior level, usually allocates queues for each user, using a weighted fair algorithm. The

second level allocates the resources inside each user queue, the scheduling in this level uses the

same algorithm as Internal Scheduler.

2.3.3 Capacity Scheduler

This scheduler was implemented aiming the cases where the Hadoop environment is

shared among various companies or has many distributed parts on places under multi-tenant

responsibility. It focuses on guarantees that a minimum share will always be available for each

company. The benefit comes from the fact that different organizations have processing peaks at

different times, therefore the organization using more capacity, will use the idle capacity of the

other organizations. This is the most complete scheduler provided by Hadoop. It is able to track

the resources registered within the RM, although not consistent with the reality, and monitor

which resources are free and which are being used.

2.4 Related work

Beyond the schedulers patched together with Hadoop, there are other implementations

that sought to solve a specific necessity that the standard schedulers do not offer support. A

bibliographic research was made aiming to analyze the works already published involving Ha-

doop and having as purpose adapting or changing the scheduling. Besides, it was sought to

identify which techniques were the most used and which were the most common objectives of

the developed work. Following, there is a list of the related works containing a brief abstract of

their proposals, used context and expected objective with the interventions.

• CASH (Context Aware Scheduler for Hadoop) (KUMAR et al., 2012), this work had the

objective of improving the cluster overall performance. Assuming the hypothesis that

a huge part of the jobs are periodic and executed at roughly the same time, while also

having similar CPU, network and disk usage characteristics. The work still takes into

account that with time the nodes tend to become heterogeneous. With the intention to
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solve this situation, a scheduler that classifies both jobs and nodes with respect to its CPU

or I/O potential was implemented, it can then distribute the jobs for machines with a more

appropriated configuration regarding the job’s nature.

• LATE (Longest Approximation Time to End) (ZAHARIA et al., 2008), following what

the name suggests, in this work context information is regarded to a job’s estimated time

to end, this time is based on a heuristic that makes the connection between elapsed time

and the score. Score is a value that represents how much of the job has already been

processed. This information is used to generate a threshold which will determine when a

task is slow enough to start a new speculative copy on another possibly faster machine.

The objective of this work was to reduce the response time in large clusters executing

many jobs of short duration.

• A Dynamic MapReduce Scheduler for Heterogeneous Workloads (TIAN et al., 2009), the

authors of this work used the technique of classifying the jobs and machines according

to the I/O and CPU potential. Just like CASH the main objective is the improvement of

cluster performance. One of the differences however, is that this implementation uses a

three queue scheduler.

• SAMR (A Self-adaptative MapReduce) (CHEN et al., 2010), this implementation follow

the same idea from LATE, where the context information refers to the job progress calcu-

lation and is used to identify if it is necessary to launch a speculative task. However, this

solution changes a bit the calculation of progress by inserting information about the job’s

execution environment, the algorithm takes into account historical informations contained

in each node and uses it to adjust weight of each processing step.

• COSHH (A Classification and Optimization based Scheduler for Heterogeneous Hadoop

Systems) (RASOOLI; DOWN, 2012), a wider proposal if compared to the rest of the

solutions, this one takes into account informations not specified about the system. It’s

performance gain is achieved through classification of jobs in classes, then it searches

the whole cluster for machines that match the same class as the job. This search is made

by an algorithm that reduces the search sample size, thus improving search response and

performance. The objective of this solution is the improvement of medium job completion

time, besides offering a good performance when using the minimum share and providing

a fair distribution of resources.
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• Quincy (ISARD et al., 2009), this solution was not proposed solely for Hadoop environ-

ments, but still applicable to it. Possessing the objective of improving general cluster

performance, uses the distribution of resources as context information and modifies the

traditional way of treatment to these. In using a more dynamic approach, the solution

maps the resources in a capacity-demand graph and calculates the optimum scheduling

from a global cost function.

• Improving MapReduce Performance through Data Placement in heterogeneous Hadoop

Clusters (XIE et al., 2010), this solution aims to provide better performance on jobs th-

rough better data placement, using mainly the data locality as decision making informa-

tion. The performance gain is achieved by the data re-balancing in nodes, leaving faster

nodes with more data. This lowers the cost of speculative tasks and also of data transfers

through the network.

After studying the related works, it is possible to note that many of them have the reduc-

tion of response time or improvement of overall performance as objective, which are slightly

different from the present work that aims firstly for a better Hadoop adaptation in a heterogene-

ous environment, which will consequently provide a better performance. Regarding the context,

there were many contexts used although, it is possible to identify recurrent contexts such as: job

classification according I/O and CPU potential, job progress evaluation in order to launch or not

speculative tasks.
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3 DEVELOPMENT

This chapter describes the necessary steps to achieve this work’s objectives. Given the

complexity of the Hadoop framework, this work was divided in four stages, this decision was

taken aiming mainly on understanding the context in which the scheduler will have to adapt

and how it will be achieved, leaving the implementation stage to the end when every other

prerequisite for the code insertion on Hadoop is already concluded. The first stage had the focus

on installation and configuration of versions 1.0.4 and 2.0.3 (YARN), in order to enlarge the

knowledge about the environment requirements necessary to utilize the framework. The second

stage had the objective of installing and preparing the environment to compile the code, since

the objective is changing the Apache Hadoop behavior and that is done by making changes in

the code. The third stage was destined to the Hadoop’s architecture study, through the standard

Hadoop schedulers and related classes code and the Resource Manager and Node Manager state

machines. Finally the fourth stage is the development and testing stage.

3.1 Understanding Apache Hadoop internals

Aiming to insert context-awareness on a scheduler, it is necessary that the architecture

of Apache Hadoop is comprehended. This stage of the project had the objective to identify the

dependencies between the classes, besides which classes would be necessary to implement and

how would this implementation take place.

Since a working scheduler requires many abstract classes and interfaces to be implemen-

ted, it is a good practice to know the origins of these components and how they influence the

final class. Also, through the architecture study it is possible to identify the resources supported

by the framework, making it possible to decide the scheduling strategies.

Two methods were used in order to study the architecture. The first method consisted

on source code study, while the second method was a study of the state machines that dictate

the functioning of Resource Manager. This stage was planned aiming the identification of all

components inside a scheduler, since the implemented interfaces and abstract classes to the

scheduling criteria and how these are applied on available schedulers.
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3.1.1 Code structure and class diagrams

Given the framework’s complexity, it was decided to use an IDE on the execution of the

first method, in this case the chosen IDE was IntelliJ IDEA (jetBrains, 2013). Once the study

was finished, it was possible to generate a series of class diagrams. The generated diagrams

were used in conjunction with HortonWorks Diagram in order to make the understanding of the

whole YARN framework easier.

The first diagrams used in this step were the ResourceManager and NodeManager com-

ponent diagrams, which provided a better high level understanding of the components that com-

pose the ResourceManager and NodeManager.

The figure 3.1 illustrates the high level view of the ResourceManager. It is possible

to note many modules which doesn’t matter to the context of this work, such as: Security,

DelegationTokenRenewer, among others. Even so, the notion this figure passes has a high value

to the understanding.

Figure 3.1 – ResourceManager Component Diagram (HortonWorks, 2014a)

The ResourceManager is the master that arbitrates all the available cluster resources and

thus helps manage the distributed applications running on the YARN system. It works together
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with the per-node NodeManagers (NMs) and the per-application ApplicationMasters (AMs)

(HortonWorks, 2014a).

Except the scheduler itself, there are other components of fundamental importance to

the scheduling process. Like the ApplicationsManager, which manages all the submitted ap-

plications. The ApplicationsManager component not only has a list of submitted applications,

but also has information about all the completed applications and is able to provide this through

either web UI or command line.

Another important component is the ApplicationMasterLauncher, that will be responsi-

ble to create the application specific ApplicationMaster, everytime an application is submitted.

Another task left to the ApplicationMasterLauncher component is the deletion of Application-

Master when the application has finished, either normally of forcefully.

The ApplicationMaster itself is a concept that makes YARN completely different than

the previous Hadoop versions. It is a key component on MapReduce tasks execution because

it has one instance for every application being executed, making the ApplicationMaster the

component responsible for the execution and monitoring of the containers and their resource

consumption. Therefore, it has to communicate with the ResourceManager in order to ask and

report the status and progress of its monitored containers.

It is through ApplicationMaster that YARN can achieve better scalability, since it takes

some of the processing usually delegated to the Scheduler and ResourceManager components.

One of the key tasks that was transferred to the ApplicationMaster is the fault tolerance. It

is the ApplicationMaster that will decide when and/or if a speculative task is necessary and

beneficial. Thanks to this shift in the responsibilities and the ApplicationMaster being a per-

application manager, the cluster scaling potential is improved through the removal of a possible

bottleneck.

Another crucial component to the present work is the ResourceTrackerService, that is

responsible for the communication with the NodeManagers. This is the component that answers

to the RPC calls, whenever a node wants to register with the RM, send a heartbeat, or many

other tasks, this is the component that will be used. The node capacity is also passed on the

registration of a node with the RM, this process of registration will store the node’s information

in the NodesListManager. The second component is a collection of all the nodes, both the valid

and the decomissioned ones.

Finally, the Scheduler follows the same pattern as regular scheduler, comparing requests,
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availabilities and then granting the resources based on some heuristic. However, most Hadoop

schedulers use queues in order to help the task of managing the users and application submitted.

The other high level view that interests this work is the NodeManager. Just as the Re-

sourceManager counterpart, even having some irrelevant modules presented in the figure 3.2, it

facilitates the understanding of the service in a high level. Having a high level understanding is

necessary in order to understand how the two services will interact.

Figure 3.2 – NodeManager Component Diagram (HortonWorks, 2014b)

Each slave will have a NodeManager instance running, which is the local manager. This

service main responsibility is keeping his information updated on the ResourceManager, but it

has other attributions like managing the containers, monitoring the resource usage, monitoring

node health, among others.

One key component is the NodeStatusUpdater, which will be responsible for the regis-

tration with the ResourceManager, it is through registration that the ResourceManager will be

informed about the resources of a given node, making this component vital for the success of

the approach in this work. Also, after the initial registration this component is expected to main-

tain the communication with the ResourceManager in order to provide updates on containers
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launched, running or completed.

The largest component in the figure, the ContainerManager is as important as its size

implies. With help from its sub-components, the ContainerManager has the hard but extremely

necessary task of monitoring containers and informing whatever component needs this infor-

mation. There are several ContainerManager sub-components, they are: RPC server, Resource-

LocalizationService, ContainersLauncher, AuxServices, ContainersMonitor and LogHandler.

Some like the ResourceLocalizationService is of vital importance to the MapReduce tasks, as it

downloads the files that will be used on the tasks’ execution, but won’t interfere in this work’s

context.

The next diagram used to better understand the architecture was the scheduler compo-

nents class diagram, which provided a helped to view classes related to the scheduling process.

The Scheduler Components Class Diagram can be visualized in the figure 3.3.

Figure 3.3 – Class Diagram with the main CapacityScheduler classes

Following is a description of the main components that compose the CapacityScheduler:

• Schedulable: an abstract class that represents an entity capable of launching either a job

or a queue, it offers a simple interface whereby the algorithms can be applied either inside

a queue as well as several queues.

• Queue: an interface that enables the basic control of all the queues in the scheduler.

Possessing methods to allow reading of the queue info, and also queue management.

• PreemtableResourceScheduler: another interface that allows the preemption of resources,

through the scheduler.
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• Resource: an abstract class responsible for modelling the resources capable of being use,

which at this moment are only memory and core count.

• FiCaSchedulerNode and FiCaSchedulerApp: representations of the node and application,

provides vital information about the structures. Uses a lot of the components present on

the next Class Diagram.

Another key class diagram to the context of this work was the diagram that would re-

present three very important components, the RMContainer, RMNode and RMApp/RMAppAt-

tempt. All of these components represents fundamental parts on understanding how this work

has impacted the scheduling. RMContainer is the name given to the reservations of resources,

making it also responsible for the task execution. RMNode is the representation of a whole

NodeManager to the scheduler, and is through it that the scheduler will get access to the Node-

Manager real resource capacity. RMApp and RMAppAttempt represents the applications sent

to the scheduler. This diagram is represented in the figure 3.4.

Figure 3.4 – Class Diagram with the main RM components

3.1.2 State machines

The second method was executed through an option offered by the Maven tool, in which

it is possible to generate graphs that represents the Resource Manager and Node Manager state

machines. Through analysis of the graphs it is possible to identify the life cycle of some key

components, such as RMContainers, RMNodes and RMApplications.

The importance of RMContainers, RMNodes and RMApplications may be overlooked

until further analysis of source code and state machines at the same time. It is not a coinci-
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dence that all the components have a RM, referencing ResourceManager, in their names. In a

brief explanation, RMNodes have all resource and other static information concerning a given

NodeManager. RMContainers are the structures that represent the reservation of resources and

also responsible for the processing. Finally, the RMApplication is the component that provides

ResourceManager a way to access application status, reports and updates. All state machines

and a more thorough explanation can be found on Appendix A.

3.2 Understanding Hadoop allocation pattern

In order to improve Hadoop resource utilization and change the resource allocation beha-

vior, it was necessary to understand how the allocation is made. That implies knowing and

understanding the whole process of requisition and grant of resources, which is essentially the

scheduling. After the experiments made with the objective of understanding this process, it was

possible to identify which parameters influenced and how much impact would these parameters

have once they were changed.

Once a quick research on official documentation and the parameters which can be set

on XML files was made, it was found that there are five parameters that influence the allo-

cation pattern for each resource. These parameters can be roughly divided into three classes:

application request, cluster configuration towards containers and cluster configuration towards

ApplicationMaster (AM). All of these parameters have default values in case the application did

not set a request value or the cluster administrator did not set them properly on configuration

files.

The application request parameters are set through the JobConf class when the user is

coding his MapReduce job. If the parameters are not set at this time, the cluster will use the

properties mapreduce.map.memory.mb and mapreduce.reduce.memory.mb either at the mapred-

site.xml or mapred-default.xml, following default Hadoop behavior towards settings in the xml

files. The default behavior is: if the properties are set in any *-site.xml file that’s the value they

will assume, otherwise the values will be taken from *-default.xml file. The default value for

properties mapreduce.map.memory.mb and mapreduce.reduce.memory.mb is 1024.

The cluster configuration towards containers is composed by four parameters, these

parameters express the floor and ceiling of valid allocations. The floor limit parameters re-

ceive their values from the properties yarn.scheduler.minimum-allocation-mb related to the

memory and yarn.scheduler.minimum-allocation-vcores related to the cores, while the ceiling
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limit parameters receive their values from properties yarn.scheduler.maximum-allocation-mb

and yarn.scheduler.maximum-allocation-vcores. All properties will follow the default Hadoop

behavior towards settings in XML files. These four parameters are related to two variables in

the source code, which are named minimumAllocation and maximumAllocation, which repre-

sents the floor and ceiling limit respectively. The default value for yarn.scheduler.minimum-

allocation-mb is 1024 and the default value for yarn.scheduler.minimum-allocation-vcores is

1. The default values concerning the ceiling properties is 8192 for yarn.scheduler.maximum-

allocation-mb and 32 for yarn.scheduler.maximum-allocation-vcores.

The only parameter left is the AM request, this request will be the same for every appli-

cation submitted to the cluster and cannot be configured through JobConf. This parameter will

receive it’s value from properties yarn.app.mapreduce.am.resource.mb related to the memory

and yarn.app.mapreduce.am.resource.cpu-vcores related to the cores, also following the default

Hadoop behavior. The default value of the parameter yarn.app.mapreduce.am.resource.mb is

1536, and, the default value of the parameter yarn.app.mapreduce.am.resource.cpu-vcores is 1.

3.2.1 Experiment

In order to understand how the allocation process is made an experiment was performed.

The experiment was made aiming to understand how the RM allocates memory for applications

given requisition and minimum/maximum parameters changes. It consisted in altering some

of the parameters and analysing the resultant behavior. As the AM request is the same across

the cluster, it was excluded from the experiment. The reason being that different applications

would have the same amount requested by the AM and it’s behavior follows the same pattern

as the other requests, which are easier to manipulate.

3.2.1.1 Employed methods, procedures and scenarios

The experiment was performed in a cluster deployed on Grid’5000 environment. The

cluster had five nodes, one master and four slaves, each node having the following configuration:

2 CPUs AMD@1.7GHz, 12 cores/CPU and 47GB RAM. All nodes were running an Ubuntu-

x64-1204 standard image, having Sun JDK 1.7 installed. The Hadoop distribution was the 2.2.0

YARN version.

The procedure chosen as data acquisition method was the Hadoop Log System. The

reason for such a choice was that Hadoop Log System is, by default, enabled in the INFO level
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Parameters Default Higher Smaller Inside
Map Memory Requisition (MB) 1024 1024 1024 3456
Reduce Memory Requisition (MB) 1024 1024 1024 3712
Minimum Memory (MB) 1024 512 2048 512
Maximum Memory (MB) 8192 768 8192 8192
Map Memory Allocation (MB) 1024 ERROR 2048 3584
Reduce Memory Allocation (MB) 1024 ERROR 2048 4096

Tabela 3.1 – RM memory allocation pattern experiment results

and using the INFO level would be possible to insert small entries and extract useful information

in real time.

Following there is a brief description of the four scenarios used in the experiment:

• Default scenario: no parameter was changed.

• Requisition higher than maximum: the application requested an amount of memory

higher than the cluster maximum allocation parameter. The changed value was the maxi-

mum allocation memory. The minimum was also changed for consistency reasons.

• Requisition smaller than minimum: the application requested an amount of memory

smaller than the cluster minimum allocation parameter. The changed value was the mini-

mum allocation memory.

• Requisition inside range: the application requested an amount of memory inside the

cluster valid range. The changed values were the minimum allocation memory and requi-

sition from both map and reduce.

3.2.1.2 Results and interpretation

The results from the scenarios can be analysed on the figure ??.
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Because of the experiment, it was possible to detect that Hadoop allocation pattern dif-

fers a bit from usual. Unlike usual pattern in which if a request is inside the minimum and

maximum range, the amount granted is equal to the request, the requests on Hadoop will pass

through a small set of calculations in order to determine how much memory will be granted.

The figure 3.5 portraits the flow of operations executed by the Hadoop in order to deter-

mine the granted resources.

Figure 3.5 – Flow of operations for resource granting

The default scenario just demonstrates how Hadoop allocation will behave in case there

are no interventions.

The second scenario shows what happens if the application requests a value higher than

the maximum. The output is an error message and the job execution is aborted.

The third scenario shows what happens if the application requests a value smaller than

the minimum. The cluster grants the minimum allowed.

The fourth scenario shows a case in which the requests are inside the valid range but

although the requests were similar, the resources granted were different. This scenario is the

one that makes it possible to fully comprehend the allocation process. Since the second and

third scenarios provided evidence that a request can’t be higher than the maximum and that at

least the minimum allocation will be given, it is possible to infer that the allocation will always

start with the minimum allocation value. In the case the minimum allocation is not enough
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to satisfy the request, the value which will be granted is always incremented by the minimum

allocation until it matches one of the following cases: the value is equal to the request, the

value is higher than the request and lower than the maximum allocation or the value exceeds

maximum allocation. Concerning the scenario, it is the second case that occurs.

The figure 3.6 is provided along with extensive explanation to facilitate the understan-

ding of the whole calculation process.

Figure 3.6 – Flow of operations for resource granting

The step by step calculation on scenario four will be demonstrated. Assuming M is the

memory granted, or in the process of calculation, for the map request and R for the reduce. The

calculation happens as follows:

Firstly the M and R are set to the minimum memory allocation property, which is 512.

Since 512 does not satisfy any of the requests the M and R values are then incremented by

the minimum memory allocation, assuming the value of 1024. As 1024 still smaller than both

requisitions, they are again incremented by 512 and the process goes on as following:

M: 512, 1024, 1536, 2048, 2560, 3072, 3584.
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R: 512, 1024, 1536, 2048, 2560, 3072, 3584, 4096.

Note that in both cases the value granted was the smallest multiple of minimum memory

allocation (512) greater than or equal to the request (3456 and 3712).

3.3 Context-aware scheduling

Knowing that the scheduling task is closely related to the resources availability and,

therefore, having a wrong information could ruin the performance of the algorithm, an opportu-

nity for improvement was seen. After a quick study on the default schedulers, it was clear that

CapacityScheduler already had the whole structure to support a better scheduling, as stated in

the section 2.3. The flaw on CapacityScheduler wasn’t really a scheduling flaw, but actually a

wrong information received by the NodeManagers.

As stated numerous times in previous sections, Hadoop configuration is heavily depen-

dent in XML files. While providing an easy way to configure a real cluster, sometimes it acts

more as an obstacle than as a facilitator, the reason being that if one wants to change a para-

meter the whole service will have to be restarted. One huge restriction implied by XML files,

is regarding the nodes capacity. In case one doesn’t want to use Hadoop default configurations

for node capacity, every node will have to have it’s XML files edited. In a large heterogeneous

cluster, modifying one file in each node will certainly be time consuming since each node will

have a different configuration.

One possible solution to this case, is to overwrite the value gotten from XML file on

the code. At first glance this brings in more problems than solutions, because the administrator

would have to chose a certain hard coded value that would fit best as an average among all nodes.

However, as one looks closer into the proposal, there is an option that, although involving more

coding, would solve this problem.

It is clear that this solution requires the application to detect some context of the envi-

ronment. The context, in this case, being the real information about node capacity. With this

context at hands, it is a reasonable choice to make the scheduler context-aware. Therefore, im-

proving the scheduling performance. As the section 2.2 implies, being context-aware requires

the application to detect and adapt to changes in environment.

Regarding the detection of the node capacity, the chosen option was to integrate a col-

lector into Hadoop, meaning that every node would be able to access it’s true capacity. Thus,

preventing the hard coding that was suggested.
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Regarding the changes made once the context information was detected, the approach

adopted was to scale the allocation limits together with the total cluster resource availability.

This scaling meant that the containers would have more memory and cores at their disposal

and, therefore, speculative task would hardly have to be launched. Also, by adapting to the

cluster real resource, no resource would be wasted or left inactive while the scheduler is making

tasks wait due to wrong information being received. Thus improving the cluster utilization.

3.3.1 Collector description

The collector of choice was PER-MARE’s collector (Kirsch-Pinheiro, M., 2013). This

collector uses a standard java package in order to access the real node capacity, therefore, no

additional libraries would be necessary.

Only four files were necessary, an interface, an abstract class and two classes. Due to

it’s design, it would be easy to integrate new collectors and improve the resources available for

the scheduling process, providing data about the CPU load or disk usage for example.

The base of the collector is the interface Collector, which has two access methods and

the collect method.

The abstract class, called AbstractOSCollector, implements the interface and has some

access methods of its own. The great usability comes from the usage of OperatingSystemMX-

Bean, a public java interface that is used to access the operating system informations on which

the Java virtual machine is running (Oracle, 2014).

The collector classes, called PhysicalMemoryColletor and TotalProcessorsCollector ex-

tends the AbstractOSCollector and have only constructor and collector method implemented.

3.3.2 Collector integration with Hadoop

The collector would have to be placed on NodeManager (NM), since this is the service

responsible for processing tasks. The collected capacity is then sent to the ResourceManager

(RM) in the moment that each NM is registering with the RM. It is possible to view the whole

process of data acquisition until CapacityScheduler add the node in the figure 3.7.

After the collector integration, changing the scheduling behavior was possible due to the

now available information about the real resources of a given node. Further information about

the results gotten from the collector integration and modified scheduling can be found at the

chapter 4.
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Figure 3.7 – Flow of operations for resource granting
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4 EXPERIMENTS AND RESULTS

This chapter will provide information about the experiments that were capable of chan-

ging the Hadoop scheduling behavior and the results achieved.

4.1 Collector integration test

This experiment had the objective of testing the collector integration. The experiment

consisted in deploying and starting Hadoop services in the cluster with original CapacitySche-

duler and with the context-aware CapacityScheduler in order to compare the change in total

resources availability.

4.1.1 Hardware and Software configuration

The experiment was performed in a cluster deployed on Grid’5000 environment. The

cluster had five nodes, one master and four slaves, each node having the following configuration:

2 CPUs AMD@1.7GHz, 12 cores/CPU and 47GB RAM. All nodes were running an Ubuntu-

x64-1204 standard image, having Sun JDK 1.7 installed. The Hadoop distribution was the 2.2.0

YARN version.

The default Hadoop configuration is set on yarn-default.XML under the properties na-

med yarn.nodemanager.resource.memory-mb and yarn.nodemanager.resource.CPU-vcores which

have default values of 8192 and 8 respectively. The only difference being that one of the execu-

tions had the collector plugged.

4.1.2 Procedures

The procedure chosen as data acquisition method was the Hadoop Log System. The

reason for such a choice was that Hadoop Log System is, by default, enabled in the INFO level

and using the INFO level would be possible to insert small entries and extract useful information

in real time. The data was acquired with the same call during the execution of services with

both schedulers.
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Original CapacityScheduler Context-aware CapacityScheduler
Node Memory 8192 48303
Node Vcores 8 24

Tabela 4.1 – Resources available on original and context-aware CapacityScheduler

4.1.3 Results and interpretation

The comparison of node memory from default and collector implementation can be seen

in the table 4.1.

There are also two more figures that express how better the collector implementation

scales given proper hardware. These figures are figure 4.1 and figure 4.2.

Figure 4.1 – Cluster memory available on default and collector implementation

Since this experiment was run on Grid’5000 and all nodes have the same configuration,

it would be easy to discover the true capacity of a node, change the values on a XML file and

replicate it to all other nodes inside the environment. The problem becomes huge once the

environment is not homogeneous. It would require someone to discover the true capacity of

each node and then separately edit the XML files in every node.

Consider that according to HadoopWizard (HadoopWizard, 2014) by July 2011 Yahoo!

used a 42000 nodes Hadoop Cluster, and on the same month Facebook publicized it runs a

2000 nodes Hadoop cluster. Changing every node configuration manually would be quite chal-

lenging, therefore the collectors used would come in hand.
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Figure 4.2 – Cluster cores available on default and collector implementation

4.2 Original CapacityScheduler X Context-aware CapacityScheduler

This experiment was performed in order to compare the container allocation pattern

in the original CapacityScheduler and the context-aware CapacityScheduler. The experiment

consisted in executing a TeraSort in the cluster with the original CapacityScheduler and the

context-aware CapacityScheduler. This was made in order to compare how the higher resource

availability and higher allocation limits impacted the scheduling.

4.2.1 Hardware and Software configuration

The experiment used the same hardware configuration from the previous one. Regarding

the Hadoop configuration, there are new properties used. The properties are the minimum

and maximum allocation values, which are set in properties stated on section 3.2. The only

difference being that one of the executions had the collector plugged.

4.2.2 Procedures

The procedure chosen as data acquisition method was the Hadoop Log System. The

reason for such a choice was that Hadoop Log System is, by default, enabled in the INFO level

and using the INFO level would be possible to insert small entries and extract useful information

in real time. The data was acquired with the same call during the execution of services with



37

both schedulers.

The application used to test the scheduling was a TeraSort with 5GB data to sort, re-

questing enough containers and providing enough data to be processed in order to stress the

cluster.

4.2.3 Results and interpretation

Before going further into the interpretation of the results, there are some characteristics

of jobs that need to be reminded. If the number of reduce tasks parameter isn’t set on mapred-

site.XML, the default value used is 1, making the whole reduce step forced to be executed on

only one container.

Another thing to note is that the first allocated container is always the Application-

Master, making this container not relevant in grant of resources for MapReduce tasks analysis.

Thus both the ApplicationMaster and Reducer container were withdraw from the data analyzed,

which was left only with the Map containers. All times are normalized related to the first Map

container created.

The cluster configuration achieved with the original CapacityScheduler was:

• Total cluster resource of 32768mb and 32cores

• Minimum allocation of 1024mb and 1 core

• Maximum allocation of 8192mb and 32 cores.

• All Map containers were granted containers of 1024mb and 1 core, the minimum limit.

The cluster configuration achieved with the context-aware CapacityScheduler was:

• Total cluster resource of 193210mb and 96cores

• Minimum allocation of 4830mb and 2 cores

• Maximum allocation of 24151mb and 12 cores

• All Map containers were granted containers of 4830mb and 2 cores, the minimum limit.

Although a huge difference was achieved by only comparing the resources collected and

the allocation limits, the main objective of this work is to impact the scheduling performance
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in a Hadoop cluster. Therefore, a TeraSort execution was made and the results achieved are

discussed below.

The following Gantt Charts are consolidated by resources, which are the NodeMana-

gers. This means that the tasks, in this case portrayed as containers, will be consolidated to the

resources they are tied. As stated before, the containers are allocated to a certain NodeManager.

The consolidation works in a way that when a separation occurs in the segment, it means that

a container has either started or finished on that NodeManager. That implies that many contai-

ners will be on more than one segment, and, the numbers inside the segment indicates which

containers are running at that moment.

Figure 4.3 portraits the Gantt Chart of the TeraSort with original CapacityScheduler. It

is easy to notice that some containers had to wait for the completion of others in order to start

processing their tasks.

Figure 4.3 – Container assignment with default configuration

In order to illustrate how to interpret the Gantt charts, the node stremi-42 of figure 4.3

will be taken as example. It starts all its containers, numbered from 16 to 23, at the 0 seconds

mark, then the segment ends at the 21 seconds mark, meaning that either a container started

or finished. After a quick analysis of the containers in the first and second segments, it is

possible to note that containers 17, 18, 21 and 22 are not in the second segment, meaning they

have finished processing their tasks. Another thing to notice is that on the second segment,

containers with numbers 37, 38 and 39 appeared for the first time, meaning they were started

at this time. If the analysis is extended to the segment from 22 to 23 seconds, it is possible to

note that containers 16, 19 and 20 have finished processing their tasks too, and the only running

containers in this node at this moment are the containers 23, 37, 38 and 39.

Figure 4.4 portraits the Gantt Chart of the TeraSort with context-aware CapacitySche-

duler. In this case the overall completion time was reduced, this happened due to the fact that

all containers could be started right after the arrival of the request, thanks to the higher resource

availability.



39

Figure 4.4 – Container assignment with the improved configuration

After an analysis and comparison of both charts, it is possible to notice that the default

chart has containers 41-43 started on node stremi-5 and container 44 started on node stremi-

42, while the context-aware chart has only the standard containers, which are numbered 2-39.

This happens because these extra containers are, in reality, speculative tasks launched because

other tasks were taking to long to finish. Without a better information acquisition it is hard

to determine the match of original and speculative containers, but it is possible to infer which

containers would make possible candidates, leaving containers 2-9, 23, 28 and 30 as possible

staggers, responsible for the launching of speculative containers 41-43. Because of the same

reasons, it is only possible to infer that container 44 was launched because the most likely

stagger was one container in the 32-36 range.

By analysing the container numberings it is possible to notice how the scheduler decides

which node is going to be used. The containers launched on a given node follow a logic numbe-

ring, meaning that the resources of that container are used until exhaustion before the scheduler

starts launching containers on another node.

4.3 Heterogeneity simulation

This experiment was performed in order to simulate a heterogeneous environment and

test how well would the context-aware would adapt. The experiment consisted in executing

a TeraSort in the cluster with the simulated heterogeneous environment using context-aware

CapacityScheduler.

4.3.1 Hardware and Software configuration

The experiment used the same hardware configuration from the previous experiments.

Regarding the Hadoop configuration, there are no changes. The only difference is that the

nodes are purposely given false capacities when being added to the RM. Using this false values,
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a heterogeneous cluster will be simulated.

4.3.2 Procedures

The procedure chosen as data acquisition method was the Hadoop Log System. The

reason for such a choice was that Hadoop Log System is, by default, enabled in the INFO level

and using the INFO level would be possible to insert small entries and extract useful information

in real time. The data was acquired with the same call during the execution of services with

both schedulers.

The application used to test the scheduling was a TeraSort with 5GB data to sort, re-

questing enough containers and providing enough data to be processed in order to stress the

cluster.

4.3.3 Results and interpretation

As this experiment is a replication of the last one plus the simulated heterogeneity, the

same principles applies regarding the container analysis.

It is important to firstly know the configuration of the simulated heterogeneity. The

cluster had the following simulated configuration:

• stremi-17: 28981 MB of memory and 14 cores.

• stremi-22: 34715 MB of memory and 18 cores.

• stremi-33: 46287 MB of memory and 24 cores.

• stremi-35: 24151 MB of memory and 12 cores.

• Total Cluster Resources: 134134 MB of memory and 68 cores.

• Minimum Allocation: 3353 MB of memory and 1 core.

Figure 4.5 portraits the Gantt Chart of the TeraSort execution within the simulated hete-

rogeneous environment, also using context-aware CapacityScheduler. Compared to the default

case, the heterogeneous environment execution shows an improvement, but due to the lower

cluster capacity, it is a slightly worse than the context-aware CapacityScheduler executing on a

homogeneous environment.
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Figure 4.5 – Container assignment with the simulated heterogeneous environment

It is possible to note that the containers started the assignment with the node stremi-33,

which is the node with the most capacity in the cluster and also was the first to be added in

the node list. As in the other experiments, the scheduler launches containers on a node until its

resources are all reserved, then mode to the next node on the list.

On this experiment a speculative task was launched. Contrary to the other experiments,

its easy to infer which was the original stagger task, since there was only one container active

at the moment that the container 41 was launched. It is also possible to note that the scheduler

didn’t change nodes to launch the speculative, that happens because the node had spare capacity

when the request for the speculative arrived.

This experiment shows that it is possible to use this context-aware in a heterogeneous

environment, the allocations were adapted to a slightly smaller cluster if compared to the real

environment. As a future work, it is possible to set the allocation limits in function not only of

total cluster resources but also of each individual node resource capacity.
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5 CONCLUSION AND FUTURE WORK

This work had the objective of improving Hadoop scheduling, during the study process it

was identified that the CapacityScheduler had already the base for a context-aware scheduling.

However, this schedules lacked some fundamental components in order to be context-aware,

such as NodeManager real resource information and allocation limits scaling with the total

cluster capacity.

Through development of this work changes have been made on original source code,

these changes allowed Hadoop to be more aware of the context of nodes composing the clus-

ter. The scheduling algorithm remained the same, however key limitations caused by Hadoop’s

default configurations were noticed. A new distribution containing a context-aware CapacityS-

cheduler was generated in order to solve these issues.

The context-aware CapacityScheduler is capable of receiving the real capacity from

each NodeManager, thanks to the collector plugged on NodeManager. This provides the cluster

a better scaling potential while also using every node’s full capacity. Using the context-aware

CapacityScheduler, the allocations can be made to the full potential of the cluster instead of

waiting for more resources when the cluster actually had almost 40GB of free memory per

node.

Although the context-aware CapacityScheduler has better scaling potential and solves

some problems on containers management, all contributions made are purely static and there

are more ways to impact and improve Hadoop scheduling. Given Hadoop high modularity, it

is possible to improve scheduling changing many areas that range from ApplicationMaster and

Queues to NodeManager HeartBeat behavior.

Following there are some suggestions of future work:

• Extending the Resource class so it can track more resources like CPU load.

• Improving CapacityScheduler scheduling, taking into account other resources informa-

tion.

• Modification of ApplicationMaster behavior.

• Implementation of a scheduler capable of starting containers directly on a NodeManager,

and not dependant on queues.
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APPENDIX A – Generated ResourceManager Graphs

Following there are a brief explanation and the figures that were generated through the

second method employed on the section 3.1.

The pertinence of these figures is validated by the fact that they describe all possible

ways a given interface can take. The perfect case flow would be started with the submission of

a job to the RM. There are some pre requisites that need to be fulfilled for the start of the job.

From this point on, these figures are relevant.

Firstly an AppAttempt is created. The AppAttempt is literally a started application,

through which the RM will try to allocate necessary resources (Node and Containers). If the

resources are successfully allocated, the real App will be created. Then an ApplicationMaster

will be launched in order to manage each Application allocated RMContainers and to which

RMNode they belong.

Figure A.1 – RMNode’s state machine
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Figure A.2 – RMContainer’s state machine
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Figure A.3 – RMAppAttempt’s state machine
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Figure A.4 – RMApp’s state machine
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APPENDIX B – Grid’5000 execution environment configuration

This appendix has the necessary steps in order to setup a correctly working execution

environment on Grid’5000 cluster.

The Apache Hadoop’s installation, contrary to end users standard program installations,

doesn’t have a graphical interface. Actually the installation is just the extraction of files to

a determined folder, however the environment configuration isn’t trivial and demands some

network administration knowledge.

For the correct functioning of the framework, it is necessary to edit of some files res-

ponsible for describing the environment in which it will execute. Besides, it is necessary to

have a network in which every node has access to the others. Knowing that Apache Hadoop has

suffered some heavy changes in changing from 1.x to 2.x, it was expected that installing both

versions would make the differences clearer.

In the beginning of this work the objective was to install and configure the Apache

Hadoop in three situations:

• localhost, a single-node case.

• mini cluster, a multi-node case.

• Grid’5000, another multi-node case.

There are two configuration steps, the network step which refers to the configuration that

doesn’t depend on Hadoop and the Hadoop step which refers to the parameters that influence

Hadoop’s execution. This step is composed of tasks executed on the operational system, such

as the user creation and ssh configuration. The second step, on the other hand, is the proper

Hadoop environment configuration and, therefore, it has to change some configuration files in a

way that Hadoop can be executed without errors.

The OS configuration is equal on both versions, since it has already been noted that it

is independent of Hadoop. The Hadoop configuration, however, has a few differences between

versions. Even so, both versions follow the same general rules. The Hadoop configuration is

made through a bunch of xml files already mentioned in section 2, subsection 2.1.2, in which

some properties containing name and value are inserted. This properties will be responsible

for changing the default Hadoop behavior, but aside some properties changing their names, the

biggest difference is that YARN version has a new xml file named yarn-site.xml, it contains all
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parameters related to the YARN framework and therefore has a high influence on MapReduce

and job execution performance.

Initially it was chosen to configure both versions on every specified instance, howe-

ver, given the project focus the version 1.x was no longer a viable alternative and it’s use was

discontinued.

The localhost environment configuration, is a simple process and occurred without pro-

blems after a basic contact with the framework. The mini cluster environment, was configured

using two machines, already presenting a difference, in which the master could also be a slave

on 1.x, in other words, it was possible to run NameNode and DataNode on the same node. On

YARN version, the NameNode machine can’t start a DataNode service, and the same is va-

lid for ResourceManager and NodeManager. This change makes the tasks of processing and

management totally apart and differentiable making the cluster more organized.

The real experiment starts when the Hadoop is deployed on a real cluster, like the

Grid’5000, it was decided to use only the YARN version from this point onward. The ins-

tallation of YARN requires only a few changes from mini cluster to Grid’5000 environment.

The Grid also supplies a lot of tools that makes the job easier for Hadoop management.

At the end of this stage, some Hadoop peculiarities have already been cleared and the

execution environment for posterior testing of the implementations was already deployed. Also,

it is important to note that it was possible to identify some contexts that would present a high

difficult to change the behavior. One of these behaviors would be the addition or removal of

nodes on real time after the cluster initialization. The difficult comes from the way the service

uses static reference to xml files that are read only on the initialization, making it impossible to

use their values without restarting the services.
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APPENDIX C – Source code edition and compilation

This appendix has the necessary steps in order to setup a correctly working compilation

environment.

Given the project nature of generating a improved, context-aware, scheduler for the

Apache Hadoop, it is necessary that this scheduler is included on the final distribution. Not

only it has to be included, it has to be available for use by everyone who wants to try it. In order

to achieve this, new jar files have to be generated from the modified code. Because of this a

previous study was made about the necessary requisites in order to compile and generate these

jar files.

The study began with the official documentation consultation, which included Apache

Hadoop web site and help files included on the source code distributions. This way it was pos-

sible to create some steps required to compile the code. Starting from this list it was possible to

identify the required dependencies to compile the code, which were then installed. The depen-

dencies were: JDK 1.6 or higher, Maven 3.0, ProtocolBuffer 2.4.1 or higher and Cmake2.6 or

higher.

The greatest objective of this process was to discover how the compilation took place

and also how it would behave with the addition of new classes to standard code. Aiming to

achieve this objective, a new but simple scheduler class was added. After the compilation

process ended, the generated jar files were then copied to the Grid’5000 and deployed there in

order to test if it would be possible to execute the compiled version in that environment.

Once the Hadoop services were deployed, it could be proven that the new scheduler

was being used. It was also possible to identify the same vulnerability in the previous stage, in

which the service has to be restarted in order to modify some of the Hadoop’s parameters.
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APPENDIX D – Example of semi-processed log from a experiment

The experiment results were collected using the Log System from Hadoop. Here is an

example of a log already semi-processed, which means that this log has been filtered to show

only the entries relevant to the analysis.

The following log snippet, shows the log when an application was submitted, in this

case the application was the TeraSort. It is possible to note a lot of information, like the user

who submitted and queue used, the applicationId, among others.

1 2014−01−13 1 3 : 1 9 : 2 1 , 5 1 7 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .
s c h e d u l e r . c a p a c i t y . LeafQueue : A p p l i c a t i o n a p p l i c a t i o n _ 1 3 8 9 6 1 5 3 7 5 2 1 1 _ 0 0 0 2

from u s e r : hadoop a c t i v a t e d i n queue : d e f a u l t
2 2014−01−13 1 3 : 1 9 : 2 1 , 5 1 8 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .

s c h e d u l e r . c a p a c i t y . LeafQueue : A p p l i c a t i o n added − appId :
a p p l i c a t i o n _ 1 3 8 9 6 1 5 3 7 5 2 1 1 _ 0 0 0 2 u s e r : o rg . apache . hadoop . ya rn . s e r v e r .
r e s o u r c e m a n a g e r . s c h e d u l e r . c a p a c i t y . LeafQueue$User@5673e296 , l e a f −queue :
d e f a u l t # use r−pending−a p p l i c a t i o n s : 0 # use r−a c t i v e −a p p l i c a t i o n s : 1 #
queue−pending−a p p l i c a t i o n s : 0 # queue−a c t i v e −a p p l i c a t i o n s : 1

Another interesting log snippet is the one that show the assignment and completion of

containers. The following snippet shows when the Reduce and ApplicationMaster containers

are completed and the application is finished.

1 2014−01−13 1 3 : 2 4 : 0 5 , 0 1 6 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .
s c h e d u l e r . c a p a c i t y . LeafQueue : c o m p l e t e d C o n t a i n e r c o n t a i n e r = C o n t a i n e r : [
C o n t a i n e r I d : con ta ine r_1389615375211_0002_01_000040 , NodeId : s t r e m i −44.
r e i m s . g r i d 5 0 0 0 . f r : 3 4 0 4 8 , NodeHt tpAddress : s t r e m i −44. r e i m s . g r i d 5 0 0 0 . f r
: 8 0 4 2 , Resource : <memory : 4 8 3 0 , vCores :1 > , P r i o r i t y : 10 , Token : Token {
k ind : Con ta ine rToken , s e r v i c e : 1 7 2 . 1 6 . 1 6 0 . 4 4 : 3 4 0 4 8 } , ] r e s o u r c e =<memory
: 4 8 3 0 , vCores :1 > queue= d e f a u l t : c a p a c i t y = 1 . 0 , a b s o l u t e C a p a c i t y = 1 . 0 ,
u s e d R e s o u r c e s =<memory : 4 8 3 0 , vCores :1 > u s e d C a p a c i t y =0 .024998447 ,
a b s o l u t e U s e d C a p a c i t y =0 .024998447 , numApps =1 , numConta ine r s =1
u s e d C a p a c i t y =0.024998447 a b s o l u t e U s e d C a p a c i t y =0.024998447 used =<memory
: 4 8 3 0 , vCores :1 > c l u s t e r =<memory : 1 9 3 2 1 2 , vCores :96 >

2 2014−01−13 1 3 : 2 4 : 1 1 , 1 4 6 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .
s c h e d u l e r . c a p a c i t y . LeafQueue : d e f a u l t used =<memory : 0 , vCores :0 >
numConta ine r s =0 u s e r =hadoop use r−r e s o u r c e s =<memory : 0 , vCores :0 >

3 2014−01−13 1 3 : 2 4 : 1 1 , 1 4 7 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .
s c h e d u l e r . c a p a c i t y . LeafQueue : c o m p l e t e d C o n t a i n e r c o n t a i n e r = C o n t a i n e r : [
C o n t a i n e r I d : con ta ine r_1389615375211_0002_01_000001 , NodeId : s t r e m i −7.
r e i m s . g r i d 5 0 0 0 . f r : 5 8 2 1 5 , NodeHt tpAddress : s t r e m i −7. r e i m s . g r i d 5 0 0 0 . f r
: 8 0 4 2 , Resource : <memory : 4 8 3 0 , vCores :1 > , P r i o r i t y : 0 , Token : Token {
k ind : Con ta ine rToken , s e r v i c e : 1 7 2 . 1 6 . 1 6 0 . 7 : 5 8 2 1 5 } , ] r e s o u r c e =<memory
: 4 8 3 0 , vCores :1 > queue= d e f a u l t : c a p a c i t y = 1 . 0 , a b s o l u t e C a p a c i t y = 1 . 0 ,
u s e d R e s o u r c e s =<memory : 0 , vCores :0 > u s e d C a p a c i t y = 0 . 0 , a b s o l u t e U s e d C a p a c i t y
= 0 . 0 , numApps =1 , numConta ine r s =0 u s e d C a p a c i t y =0 .0 a b s o l u t e U s e d C a p a c i t y
=0 .0 used =<memory : 0 , vCores :0 > c l u s t e r =<memory : 1 9 3 2 1 2 , vCores :96 >

4 2014−01−13 1 3 : 2 4 : 1 1 , 1 5 0 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .
s c h e d u l e r . c a p a c i t y . LeafQueue : A p p l i c a t i o n removed − appId :
a p p l i c a t i o n _ 1 3 8 9 6 1 5 3 7 5 2 1 1 _ 0 0 0 2 u s e r : hadoop queue : d e f a u l t # use r−pending
−a p p l i c a t i o n s : 0 # use r−a c t i v e −a p p l i c a t i o n s : 0 # queue−pending−
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a p p l i c a t i o n s : 0 # queue−a c t i v e −a p p l i c a t i o n s : 0

Finally, there is something that influences a lot on the results, which is the time that an

action took place. As it was possible to see on the above examples, the Hadoop Log System

provides the hour, minute, second and milliseconds information. Thanks to this, two assign-

ments that happened with mere milliseconds of difference were shown as 1 second delayed on

chapter 4. The first container belongs to node stremi-44 and started at 13:19:29,995. The second

container belongs to stremi-42 and started at 13:19:30:079

1 2014−01−13 1 3 : 1 9 : 2 9 , 9 9 5 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .
s c h e d u l e r . c a p a c i t y . LeafQueue : a s s i g n e d C o n t a i n e r a p p l i c a t i o n =
a p p l i c a t i o n _ 1 3 8 9 6 1 5 3 7 5 2 1 1 _ 0 0 0 2 c o n t a i n e r = C o n t a i n e r : [ C o n t a i n e r I d :
con ta ine r_1389615375211_0002_01_000030 , NodeId : s t r e m i −44. r e i m s . g r i d 5 0 0 0
. f r : 3 4 0 4 8 , NodeHt tpAddress : s t r e m i −44. r e i m s . g r i d 5 0 0 0 . f r : 8 0 4 2 , Resource :
<memory : 4 8 3 0 , vCores :1 > , P r i o r i t y : 20 , Token : Token { k ind :
Con ta ine rToken , s e r v i c e : 1 7 2 . 1 6 . 1 6 0 . 4 4 : 3 4 0 4 8 } , ] c o n t a i n e r I d =
con ta ine r_1389615375211_0002_01_000030 queue= d e f a u l t : c a p a c i t y = 1 . 0 ,
a b s o l u t e C a p a c i t y = 1 . 0 , u s e d R e s o u r c e s =<memory : 1 4 0 0 7 0 , vCores :29 >
u s e d C a p a c i t y =0 .72495496 , a b s o l u t e U s e d C a p a c i t y =0 .72495496 , numApps =1 ,
numConta ine r s =29 u s e d C a p a c i t y =0.72495496 a b s o l u t e U s e d C a p a c i t y =0.72495496

used =<memory : 1 4 0 0 7 0 , vCores :29 > c l u s t e r =<memory : 1 9 3 2 1 2 , vCores :96 >
2 2014−01−13 1 3 : 1 9 : 3 0 , 0 7 9 INFO org . apache . hadoop . ya rn . s e r v e r . r e s o u r c e m a n a g e r .

s c h e d u l e r . c a p a c i t y . LeafQueue : a s s i g n e d C o n t a i n e r a p p l i c a t i o n =
a p p l i c a t i o n _ 1 3 8 9 6 1 5 3 7 5 2 1 1 _ 0 0 0 2 c o n t a i n e r = C o n t a i n e r : [ C o n t a i n e r I d :
con ta ine r_1389615375211_0002_01_000031 , NodeId : s t r e m i −42. r e i m s . g r i d 5 0 0 0
. f r : 4 3 9 9 9 , NodeHt tpAddress : s t r e m i −42. r e i m s . g r i d 5 0 0 0 . f r : 8 0 4 2 , Resource :
<memory : 4 8 3 0 , vCores :1 > , P r i o r i t y : 20 , Token : Token { k ind :
Con ta ine rToken , s e r v i c e : 1 7 2 . 1 6 . 1 6 0 . 4 2 : 4 3 9 9 9 } , ] c o n t a i n e r I d =
con ta ine r_1389615375211_0002_01_000031 queue= d e f a u l t : c a p a c i t y = 1 . 0 ,
a b s o l u t e C a p a c i t y = 1 . 0 , u s e d R e s o u r c e s =<memory : 1 4 4 9 0 0 , vCores :30 >
u s e d C a p a c i t y =0 .74995345 , a b s o l u t e U s e d C a p a c i t y =0 .74995345 , numApps =1 ,
numConta ine r s =30 u s e d C a p a c i t y =0.74995345 a b s o l u t e U s e d C a p a c i t y =0.74995345

used =<memory : 1 4 4 9 0 0 , vCores :30 > c l u s t e r =<memory : 1 9 3 2 1 2 , vCores :96 >



56

APPENDIX E – Main code changes performed

The changes that had the greatest impact on the behavior were the collector integration

and the allocation re-scaling. The collector code is available on the link at the references,

therefore, only the usage of the package will be inserted here in comparison to the original.

Starting with the original NodeManager creation, in which the totalResources are gotten.

Note how the memoryMB and virtualCores variables are taken from the conf, which is the

pointer to the default xml file. This method is from the NodeStatusUpdaterImpl class.

1
2 p r o t e c t e d void s e r v i c e I n i t ( C o n f i g u r a t i o n con f ) throws E x c e p t i o n {
3 i n t memoryMb =
4 con f . g e t I n t (
5 Y a r n C o n f i g u r a t i o n .NM_PMEM_MB, Y a r n C o n f i g u r a t i o n .

DEFAULT_NM_PMEM_MB) ;
6 f l o a t vMemToPMem =
7 con f . g e t F l o a t (
8 Y a r n C o n f i g u r a t i o n .NM_VMEM_PMEM_RATIO,
9 Y a r n C o n f i g u r a t i o n .DEFAULT_NM_VMEM_PMEM_RATIO) ;

10 i n t vir tualMemoryMb = ( i n t ) Math . c e i l ( memoryMb ∗ vMemToPMem) ;
11
12 i n t v i r t u a l C o r e s =
13 con f . g e t I n t (
14 Y a r n C o n f i g u r a t i o n .NM_VCORES, Y a r n C o n f i g u r a t i o n .

DEFAULT_NM_VCORES) ;
15
16 t h i s . t o t a l R e s o u r c e = r e c o r d F a c t o r y . n e w R e c o r d I n s t a n c e ( Resource . c l a s s ) ;
17
18 t h i s . t o t a l R e s o u r c e . setMemory ( memoryMb ) ;
19 t h i s . t o t a l R e s o u r c e . s e t V i r t u a l C o r e s ( v i r t u a l C o r e s ) ;
20 m e t r i c s . addResource ( t o t a l R e s o u r c e ) ;
21 t h i s . t o ke n K e e p A l i v e E n a b l e d = i sTokenKeepAl iveEnab led ( con f ) ;
22 t h i s . tokenRemovalDelayMs =
23 con f . g e t I n t ( Y a r n C o n f i g u r a t i o n . RM_NM_EXPIRY_INTERVAL_MS,
24 Y a r n C o n f i g u r a t i o n . DEFAULT_RM_NM_EXPIRY_INTERVAL_MS) ;
25
26 / / D e f a u l t d u r a t i o n t o t r a c k s t o p p e d c o n t a i n e r s on nodemanager i s 10Min

.
27 / / T h i s s h o u l d n o t be a s s i g n e d v e r y l a r g e v a l u e as i t w i l l remember a l l

t h e
28 / / c o n t a i n e r s s t o p p e d d u r i n g t h a t t i m e .
29 d u r a t i o n T o T r a c k S t o p p e d C o n t a i n e r s =
30 con f . ge tLong (YARN_NODEMANAGER_DURATION_TO_TRACK_STOPPED_CONTAINERS,
31 600000) ;
32 i f ( d u r a t i o n T o T r a c k S t o p p e d C o n t a i n e r s < 0) {
33 S t r i n g message = " I n v a l i d c o n f i g u r a t i o n f o r "
34 + YARN_NODEMANAGER_DURATION_TO_TRACK_STOPPED_CONTAINERS + " d e f a u l t

"
35 + " v a l u e i s 10Min ( 6 0 0 0 0 0 ) . " ;
36 LOG. e r r o r ( message ) ;
37 throw new Y arnExcep t i on ( message ) ;
38 }
39 i f (LOG. i sDebugEnab led ( ) ) {
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40 LOG. debug (YARN_NODEMANAGER_DURATION_TO_TRACK_STOPPED_CONTAINERS + " :
"

41 + d u r a t i o n T o T r a c k S t o p p e d C o n t a i n e r s ) ;
42 }
43 super . s e r v i c e I n i t ( con f ) ;
44 LOG. i n f o ( " I n i t i a l i z e d nodemanager f o r " + nodeId + " : " +
45 " p h y s i c a l −memory=" + memoryMb + " v i r t u a l −memory=" +

vir tualMemoryMb +
46 " v i r t u a l −c o r e s =" + v i r t u a l C o r e s ) ;
47 }

Then the changes made in the method to enable collectors. The rest of the method was

not altered. The reason for the double casting is that the collector returns a Float and Double

value and it’s not possible to cast directly to int.

1 p r o t e c t e d void s e r v i c e I n i t ( C o n f i g u r a t i o n con f ) throws E x c e p t i o n {
2 P h y s i c a l M e m o r y C o l l e c t o r memoryCol l ec to r = new

P h y s i c a l M e m o r y C o l l e c t o r ( ) ;
3 T o t a l P r o c e s s o r s C o l l e c t o r p r o c e s s o r s C o l l e c t o r = new

T o t a l P r o c e s s o r s C o l l e c t o r ( ) ;
4
5 i n t memoryMb = ( i n t ) ( f l o a t ) memoryCol l ec to r . c o l l e c t ( ) . g e t ( 0 ) / 1 0 2 4 ;
6 i n t v i r t u a l C o r e s = ( i n t ) ( double ) p r o c e s s o r s C o l l e c t o r . c o l l e c t ( ) . g e t ( 0 ) ;
7
8 t h i s . t o t a l R e s o u r c e = r e c o r d F a c t o r y . n e w R e c o r d I n s t a n c e ( Resource . c l a s s ) ;

The other change that had a strong impact in CapacityScheduler behavior was the inser-

tion of recalculations of allocation limits inside the addNode method. This method belongs to

the CapacityScheduler class. Starting with the original code.

1 p r i v a t e synchronized void addNode (RMNode nodeManager ) {
2 t h i s . nodes . p u t ( nodeManager . getNodeID ( ) , new FiCaSchedu le rNode (

nodeManager ,
3 usePortForNodeName ) ) ;
4 R e s o u r c e s . addTo ( c l u s t e r R e s o u r c e , nodeManager . g e t T o t a l C a p a b i l i t y ( ) ) ;
5 r o o t . u p d a t e C l u s t e r R e s o u r c e ( c l u s t e r R e s o u r c e ) ;
6 ++numNodeManagers ;
7 }

The same changes made on the addNode were also made on removeNode. Thus, when

a node is killed, or is not accessible for a long period, it will be removed and the limits will be

adjusted too.

1 p r i v a t e synchronized void addNode (RMNode nodeManager ) {
2 t h i s . nodes . p u t ( nodeManager . getNodeID ( ) , new FiCaSchedu le rNode (

nodeManager ,
3 usePortForNodeName ) ) ;
4 Resource oldCap = R e s o u r c e s . c l o n e ( c l u s t e r R e s o u r c e ) ;
5 R e s o u r c e s . addTo ( c l u s t e r R e s o u r c e , nodeManager . g e t T o t a l C a p a b i l i t y ( ) ) ;
6 r o o t . u p d a t e C l u s t e r R e s o u r c e ( c l u s t e r R e s o u r c e ) ;
7 ++numNodeManagers ;
8 LOG. i n f o ( "MEU Added node " + nodeManager . ge tNodeAddress ( ) +
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9 " c l u s t e r R e s o u r c e b e f o r e : " + oldCap + " n o d e c a p a b i l i t y : " +
nodeManager . g e t T o t a l C a p a b i l i t y ( ) + " c l u s t e r R e s o u r c e now : " +
c l u s t e r R e s o u r c e ) ;

10 LOG. i n f o ( "MEU Changing a l l o c a t i o n minimum & maximum . A c t u a l minimum : "
+ t h i s . min imumAl loca t ion + " a c t u a l maximum : " + t h i s .
maximumAllocat ion + " . \ n D e f a u l t s e t t i n g s : c l u s t e r must have c a p a c i t y

f o r a t l e a s t " + minimumConta iners + " c o n t a i n e r s , and no more t h a n
" + maximumContainers + " c o n t a i n e r s . 8GB RAM c l u s t e r would have 1GB
minimum / maximum , 80GB RAM c l u s t e r would have 4GB minimum and 10GB

maximum . " ) ;
11 t h i s . min imumAl loca t ion . setMemory ( c l u s t e r R e s o u r c e . getMemory ( ) /

maximumContainers ) ;
12 t h i s . min imumAl loca t ion . s e t V i r t u a l C o r e s ( c l u s t e r R e s o u r c e . g e t V i r t u a l C o r e s

( ) / maximumContainers ) ;
13 t h i s . maximumAllocat ion . setMemory ( c l u s t e r R e s o u r c e . getMemory ( ) /

minimumConta iners ) ;
14 t h i s . maximumAllocat ion . s e t V i r t u a l C o r e s ( c l u s t e r R e s o u r c e . g e t V i r t u a l C o r e s

( ) / minimumConta iners ) ;
15 i f ( t h i s . min imumAl loca t ion . getMemory ( ) < minimumMemory )
16 t h i s . min imumAl loca t ion . setMemory ( minimumMemory ) ;
17 i f ( t h i s . min imumAl loca t ion . g e t V i r t u a l C o r e s ( ) < minimumVcores )
18 t h i s . min imumAl loca t ion . s e t V i r t u a l C o r e s ( minimumVcores ) ;
19 i f ( t h i s . maximumAllocat ion . getMemory ( ) < t h i s . min imumAl loca t ion .

getMemory ( ) )
20 t h i s . maximumAllocat ion = t h i s . min imumAl loca t ion ;
21 LOG. i n f o ( "MEU New minimumAl loca t ion s e t t i n g s : " + min imumAl loca t ion + "

\ nNew maximumAllocat ion s e t t i n g s : " + maximumAllocat ion ) ;


