
UNIVERSIDADE FEDERAL DE SANTA MARIACENTRO DE TECNOLOGIACURSO DE GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO

Carlos Gabriel de Araujo Gewehr

DESIGN SPACE EXPLORATION OF HYBRID TOPOLOGIES ANDDVFS IN ON-CHIP COMMUNICATION NETWORKS

Santa Maria, RS2021

Carlos Gabriel de Araujo Gewehr

DESIGN SPACE EXPLORATION OF HYBRID TOPOLOGIES AND DVFS INON-CHIP COMMUNICATION NETWORKS

Trabalho de Conclusão de Curso ap-resentado ao Curso de Graduação emEngenharia de Computação da Univer-sidade Federal de Santa Maria (UFSM,RS), como requisito parcial paraobtenção do grau deGraduado em Engenharia de Com-putação.

ORIENTADOR: Prof. Mateus Beck Rutzig

Santa Maria, RS2021

Carlos Gabriel de Araujo Gewehr

DESIGN SPACE EXPLORATION OF HYBRID TOPOLOGIES AND DVFS INON-CHIP COMMUNICATION NETWORKS

Trabalho de Conclusão de Curso ap-resentado ao Curso de Graduação emEngenharia de Computação da Univer-sidade Federal de Santa Maria (UFSM,RS), como requisito parcial paraobtenção do grau deGraduado em Engenharia de Com-putação.

Aprovado em 24 de setembro de 2021:

Mateus Beck Rutzig, Dr. (UFSM)(Presidente/Orientador)

Rafael Follmann Faccenda, Dr. (PUC-RS)

Fernando Gehm Moraes, Dr. (PUC-RS)

Santa Maria, RS2021

RESUMO
DESIGN SPACE EXPLORATION OF HYBRID TOPOLOGIES ANDDVFS IN ON-CHIP COMMUNICATION NETWORKS

AUTOR: Carlos Gabriel de Araujo GewehrORIENTADOR: Mateus Beck Rutzig
Multi-Processor Systems-on-Chip (MPSoCs) estabeleceram-se como a plata-forma padrão para aplicaçoes de alta performance na industria de semicondu-tores. Com uma crescente quantidade de Processing Elements (PEs) integradosem um mesmo die, escalabilidade é um dos principais problemas a resolver.Networks-on-Chip (NoCs) foram propostas como forma de atender esta de-manda, provendo uma alternativa as tradicionais tecnicas para interconectarPEs, usando Barramentos e Crossbars. Apesar de oferecer os meios necessariospara comunicação com escalabilidade, NoCs ainda estão associadas a grandescustos iniciais em area e consumo de potência. Trabalhos de pesquisa recen-tes demonstram o uso de Dynamic Voltage and Frequency Scaling (DVFS) comomeio para enfrentar esses desa�os.Este trabalho visa realizar as seguintes contribuições ao estudo de redes deinterconexão intra-chip: Explorar o emprego de topologias hibridas, utilizandoBarramentos, Crossbars e NoCs em uma mesma rede, como forma de reduzircustos de area e potência em tempo de projeto; e Propor uma implementaçãode DVFS, para ganhos adicionais em potência em tempo de execução.Nos experimentos realizados, uma diferença de até 22% em consumo de po-tência e 42% em area foi observada entre uma topologia hibrida e uma NoCcom mesmo numero de PEs. Com DVFS, simulações com aplicações de codi-�cação de video demonstram uma diferença de consumo de poteência de até70% sem perdas de throughput, no mesmo cenário.

Palavras-chave: Arquitetura de Computadores. Redes intra-chip. DVFS. Dy-namic Voltage and Frequency Scaling.

ABSTRACT
DESIGN SPACE EXPLORATION OF HYBRID TOPOLOGIES ANDDVFS IN ON-CHIP COMMUNICATION NETWORKS

AUTHOR: Carlos Gabriel de Araujo GewehrADVISOR: Mateus Beck Rutzig
Multi-Processor Systems-on-Chip (MPSoCs) have been established as the stan-dard platform for high-performance applications in the semiconductor indus-try. With an increasing number of Processing Elements (PEs) within a die, scal-ability is one of the foremost concerns. Networks-on-Chip (NoCs) have beenproposed as a way of mitigating this issue, as an alternative for the well-knowndesign techniques, using Busses and Crossbars, for interconnecting PEs. De-spite providing the necessary means for scalable communication, NoCs are stillassociated to great power and on-chip area costs. Recent research e�orts havedemonstrated the use of Dynamic Voltage and Frequency Scaling (DVFS) as apromising way of dealing with these challenges.This work aims to make the following contributions to the study of on-chipinterconnection networks: Explore the use of hybrid topologies, with Busses,Crossbars and NoCs in the same network, as a way of reducing power and areacosts in interconnection networks at design-time; and Propose a DVFS imple-mentation for further power savings at run-time.Demonstrating the e�ectiveness of the proposal, in the experiments performed,a di�erence of up to 22% in power and 42% in area can be found between a hy-brid topology and a NoC with the same number of PEs. With DVFS, simulationswith popular video encoding applications show a power consumption gains ofup to 70%, with no signi�cant throughput losses in the majority of simulatedscenarios.

Keywords: Computer Architecture. On-chip interconnection networks. DVFS.Dynamic Voltage and Frequency Scaling.

LIST OF FIGURES

Figure 2.1 – 4 PE Bus Example . 11Figure 2.2 – 4 PE Crossbar Example . 12Figure 2.3 – A NoC Router . 13Figure 2.4 – Hybrid topology example . 14Figure 4.1 – Hermes packet (Header in green, Payload in blue) 22Figure 4.2 – Hermes communication protocol . 23Figure 4.3 – XY routing example . 23Figure 4.4 – Bus Bridge data path . 25Figure 4.5 – Bus Bridge control FSM . 26Figure 4.6 – Crossbar Bridge data path . 27Figure 4.7 – Crossbar Bridge control FSM . 27Figure 4.8 – Hermes packet header a) Hermes address format b) Hybridtopology address format . 28Figure 4.9 – Global Address assignment a) Example hybrid topology b)Square NoC Global Address assignment c) Example hybrid topol-ogy with Global Addresses assigned . 29Figure 5.1 – Clock signal generation via clock gating . 31Figure 5.2 – DVFS frequency adjustment a) Threads Throughputs b) Threadsmapped to NoC c) Router frequency adjustment 35Figure 5.3 – Hermes packet containing DVFS information. a) DVFS mes-sage b) DVFS �it containing clock frequency and supply voltagede�nitions in DVFS packet . 37Figure 5.4 – DVFS controller data path . 38Figure 5.5 – DVFS controller control FSM . 39Figure 6.1 – Characterization graph of an application (PIP) 42Figure 6.2 – Generation of stimulus . 43Figure 6.3 – Hermes packet containing DVFS information 44Figure 7.1 – Characterization graphs for PIP, MWD, VOPD and MPEG4 47Figure 7.2 – Characterization graphs for H264_30 and H264_60 48Figure 7.3 – Topology LL36 . 51Figure 7.4 – Topology HH36 . 52Figure 7.5 – Topology HL36 . 53Figure 7.6 – Topology LH36 . 54Figure 7.7 – Topology Hermes36 . 55Figure 7.8 – Area values for MMMC syntheses and interpolating functions 56Figure 7.9 – Power values for MMMC syntheses and interpolating functions 57Figure 7.10 – Baseline area values . 58Figure 7.11 – Baseline power values (No DVFS) . 58Figure 7.12 – Power, Throughput and Latency in DVFS experiments 60Figure B.1 – PIP characterization graph . 71Figure B.2 – Example hybrid topology . 72Figure B.3 – Console output of setcon�g with -s option . 79Figure B.4 – Console output of logparser showing amount of packets deliv-ered . 81Figure B.5 – Console output of logparser showing packet latencies 82

Figure B.6 – Console output of logparser showing PE output throughputs . 83Figure D.1 – Power, Throughput and Latency in DVFS experiments (en-larged) . 87

LIST OF TABLES

Table 7.1 – Emulated applications information . 49Table 7.2 – Workloads information . 49Table 7.3 – DVFS controller synthesis information. 62Table A.1 – Area information for MMMC syntheses. 68Table A.2 – Timing and power information for MMMC syntheses (0.9 V,125 MHZ corner) . 69Table A.3 – Timing and power information for MMMC syntheses (1.08 V,250 MHZ corner). 70

CONTENTS

1 INTRODUCTION . 92 FUNDAMENTAL CONCEPTS . 112.1 ON-CHIP INTERCONNECTION CONSTRUCTS . 112.1.1 Bus . 112.1.2 Crossbar . 122.1.3 Network-on-Chip (NoC) . 132.1.4 Hybrid topology interconnection networks . 142.2 DYNAMIC VOLTAGE AND FREQUENCY SCALING (DVFS). 152.2.1 Power consumption in a CMOS integrated circuit 152.2.2 Bandwidth and Throughput . 162.2.3 DVFS in NoCs . 163 RELATED WORKS . 173.1 HYBRID TOPOLOGIES IN INTERCONNECTION NETWORKS 173.2 DYNAMIC VOLTAGE AND FREQUENCY SCALING IN NOCS. 183.2.1 Network-level DVFS policies . 183.2.2 System-level DVFS policies . 204 IMPLEMENTING A HYBRID TOPOLOGY INTERCONNECTION NET-WORK . 224.1 NETWORK-ON-CHIP (NOC). 224.2 BUS . 244.3 CROSSBAR. 264.4 INTEGRATION BETWEEN PARTS . 285 DESIGN SPACE EXPLORATION OF DVFS IN INTERCONNECTIONNETWORKS . 305.1 GENERATION OF SUPPLY VOLTAGES AND CLOCK SIGNALS 305.2 EVALUATION OF NETWORK STATE . 315.3 SOFTWARE-BASED CENTRALIZED DVFS DECISION MAKING. 325.4 APPLICATION IN HYBRID TOPOLOGIES . 365.5 DVFS CONTROLLER . 376 A FRAMEWORK FOR THE PARAMETRIC GENERATION AND EVAL-UATION OF HYBRID TOPOLOGY INTERCONNECTION NETWORKS 416.1 OVERVIEW. 416.2 PRODUCING STIMULUS TO THE INTERCONNECTION NETWORK . . 416.3 DEFINING NETWORK TOPOLOGIES. 426.4 MAPPING A WORKLOAD TO A NETWORK TOPOLOGY 436.5 IMPLEMENTING DVFS WITHIN THE PROPOSED FRAMEWORK 446.6 FINAL CONSIDERATIONS . 457 EXPERIMENTAL EVALUATION . 467.1 METHODOLOGY. 467.1.1 Applications and Workloads . 467.1.2 Network Topologies . 497.2 OBTAINING AREA AND POWER VALUES FOR AN ARBITRARY NET-WORK TOPOLOGY. 557.3 ESTABLISHING A NO-DVFS BASELINE FOR THE TOPOLOGIES UN-DER STUDY . 57

7.4 COMPARING WORKLOADS AND NETWORK TOPOLOGIES UNDERDVFS . 597.5 POWER AND AREA COSTS OF IMPLEMENTING DVFS 628 CONCLUSION . 64BIBLIOGRAPHY . 65APPENDIX A – SYNTHESIS INFORMATION FOR BUSSES, CROSS-BARS AND NOCS . 68APPENDIX B – A COMPREHENSIVE EXAMPLE USE CASE OF THEFRAMEWORK EXPOSED IN CHAPTER 6 . 71B.1 OVERVIEW. 71B.2 FRAMEWORK SETUP . 72B.3 DESCRIPTION STEP . 73B.3.1 Topology Description . 73B.3.2 Workload Description . 74B.3.3 Allocation Map Description . 76B.3.4 Base Clocks Description . 77B.4 EXECUTION STEP . 77B.4.1 projgen . 78B.4.2 setcon�g . 78B.4.3 �owgen . 79B.4.4 run/runnogui/compile-elab-sim/compile-elab-simnogui 80B.4.5 logparser . 80APPENDIX C – SCRIPTED EXECUTION OF EXPERIMENTS WITHTHE FRAMEWORK EXPOSED IN CHAPTER 6 . 84APPENDIX D – POWER, THROUGHPUT AND LATENCY COMPAR-ISON FOR DVFS EXPERIMENTS . 87

1 INTRODUCTION

The increasing complexity of Systems-on-Chip (SoCs) brings challenges
in the integration of Processing Elements (PEs), memories and I/O interfaces.
As the amount of modules on a single die grows, so does the power and area
costs of the interconnection network that makes possible communication be-
tween them, all while performance degrades. Traditional design techniques,
using Busses and Crossbars, are unsuitable to address these concerns at scale,
due to poor performance, for Busses, and great power consumption and area
costs, for Crossbars.

As a way of providing adequate communication at scale, Networks-on-
Chip (NoCs) have been proposed as an alternative to Busses and Crossbars, and
have been one of the main topics of research in computer architecture. Never-
theless, NoCs are still associated to signi�cant power and area costs, especially
for a small number of PEs, when compared with Busses/Crossbars (Vangal et
al. (2008), Lee et al. (2007)).

Dynamic Voltage and Frequency Scaling (DVFS) is a well-known tech-
nique for adjusting the power consumption of integrated circuits, at the expense
of performance. It recently came into focus in the context of NoCs, being ex-
plored in many research works as a way of greatly reducing power consumption
without proportionately impacting network and application performance. The
use of DVFS is of special interest in NoCs, as opposed to in Busses or Cross-
bars, because of the granularity diversity made possible. Speci�c routers can
have their performance individually tuned, making such �ne-grained adjust-
ments possible of yielding near-optimal power consumption (YADAV; CASU;
ZAMBONI, 2013).

It has been observed that many applications are heterogeneous in them-
selves as of communication demands, where clear pockets of communication
intensity can be established. This presents an opportunity for optimizations in
the space of interconnection networks. Hybrid network topologies are of im-
mediate interest: Threads of an application that have a low communication de-
mand may be clustered together in a Bus, allowing for low power and area costs,
while performance is not compromised, provided that clusters are kept small
enough so the aforementioned scalability issues are not encountered. On the
other hand, threads with a high communication demand between themselves
may be placed within a Crossbar, allowing for performance to be adequately
provided. Furthermore, with the addition of DVFS, speci�c Threads that have
a disproportionately high or low demand may be more appropriately placed in

10

a NoC, leveraging �ne-grained DVFS to keep its power consumption costs to a
minimum.

In this work, hybrid topologies and DVFS in on-chip interconnection net-
works are explored. Through the use of both these techniques, it is demon-
strated that power and area costs can be greatly reduced, optimizing trade-o�s
in performance, power and area.

The rest of this document is organized as follows: Chapter 2 presents
an overview to some core concepts in the study of on-chip interconnection
networks. It is followed by a review of relevant previous works in Chapter 3.
Chapter 4 presents implementation details to the process of constructing hy-
brid topology interconnects, as conceptually exposed in Chapter 2. The same
structure is followed in Chapter 5, where a DVFS implementation is discussed.
Chapter 6 demonstrates a framework for the automation of experiments with
hybrid network topologies and DVFS. This framework is then employed in an
experimental evaluation of the contents of Chapters 4 and 5, shown and dis-
cussed in detail in Chapter 7. Finally, in Chapter 8, �nal remarks and sugges-
tions for future works are presented.

2 FUNDAMENTAL CONCEPTS

This chapter aims to describe the fundamentals of on-chip communica-
tion infrastructure, employed in the design of the proposed hybrid interconnec-
tion network, and provide an intuitive understanding of the concept of Dynamic
Voltage and Frequency Scaling (DVFS) in the context of on-chip communica-
tion.
2.1 ON-CHIP INTERCONNECTION CONSTRUCTS
2.1.1 Bus

A Bus consists of a shared communication mean between the Processing
Elements (PEs). In a Bus, only a single PE can input data into the Bus at a
given time. If a PE wishes to communicate with another, it must wait until the
transaction currently happening in the Bus to be �nished, as well as any other
higher priority transactions that must be carried out �rst. From this, it follows
that parallelism in a Bus is not feasible, as there is no way for two transactions
to to take place at the same time.

The management of which PE has control of a Bus at a certain time is
done by an entity called Arbiter. The Arbiter processes Request signals from
each PE and determines corresponding Grant signals, which explicitly informs
PEs if they can or can’t input data into the Bus. After a PE �nishes a transaction,
it must relinquish control of the Bus, by asserting the Bus’ ACK line. Once an
ACK signal is received, the Arbiter determines the next PE to grant control of
the Bus, and the same process is repeated for a di�erent pair of PEs.

A Bus with 4 PEs is illustrated in Figure 2.1:
Figure 2.1 – 4 PE Bus Example

Source: Author.

12

2.1.2 Crossbar
Instead of a single shared communication channel connecting all PEs,

such as in a Bus, each PE in a Crossbar has dedicated output and input channels.
Parallelism is clearly feasible, since PEs don’t compete for a single communi-
cation medium, but for access to the input channel at the receiving PE. Two or
more transactions can take place at the same time, provided no PE is the target
of two or more concurrent transactions.

Even though multiple connections between PEs can exist, a PE in a Cross-
bar may only accept a single incoming transaction at a time. It then follows that
PEs must compete for input channels at the target PE, in the same way that
in a Bus PEs compete for the shared communication medium. This establishes
the need for N Arbiters, where N is the number of PEs in a Crossbar, instead of
the single Arbiter needed in a Bus.

An example Crossbar with 4 PEs can be visualised in Figure 2.2:
Figure 2.2 – 4 PE Crossbar Example

Source: Author.

13

2.1.3 Network-on-Chip (NoC)
Simply stated, a NoC is the regular replication and association of common

elements, called Routers. Routers are connected between each other and to PEs
by links/ports. PEs are indirectly connected through the NoC, via these links. A
Router with 5 ports can be observed in Figure 2.3:
Figure 2.3 – A NoC Router

Source: Author.
The working principles of NoCs encompass many other factors not present

in Buses and Crossbars, namely the Routers’ routing algorithm, network con-
gestion, and the position of PEs in the NoC (or rather, the allocation of an
application’s threads to PEs in the NoC):

A NoC’s routing algorithm refers to determining a downstream router for
a packet being processed in an upstream router (the passing of packets between
two adjacent Routers is called a "hop"). Di�erent routing algorithms may lead
to di�erent paths taken through the NoC for a same packet and network state,
and consequently, parameters such as power consumption and latency may
di�er.

Network congestion also plays a role in NoC performance. Seeing as PEs

14

compete not only for input bu�ers, but, although indirectly, for every inter-
mediary bu�er/link along a packet’s route, at each hop a packet is subject to
possible interference by another packet already using the same link.

It is also clear that network position can drastically impact performance.
In Buses and Crossbars, it can be considered that packets only perform one hop,
as a direct connection between a sending PE and a receiving PE can be estab-
lished, making relative position within the Bus/Crossbar in question irrelevant.
That is not the case for NoCs, where only indirect connections are possible,
through routers/links. For NoCs, not only network position can directly in�u-
ence a packet’s latency, but also indirectly, as PEs located further away from
each other are more subject to network congestion, as discussed above.

After these considerations, an evaluation of parallelism can be made:
Parallelism in a NoC is de�nitely possible, seeing as PE’s indirect intercon-
nection via links isn’t necessarily shared, but also very dependant on network
state. This follows from the fact that an exclusive communication mean can-
not be established before a packet starts to travel along the NoC (unless in a
circuit-switched NoC, which, for this work, is not the case, since a wormhole
packet-switched NoC is used, as discussed in Chapter 4).

In terms of necessary resources, NoCs demand a great quantity of bu�ers,
as many as ports in a router, per router.
2.1.4 Hybrid topology interconnection networks

By associating Buses and Crossbars to a base NoC, a hybrid topology in-
terconnection network is made possible. Figure 2.4 illustrates such a hybrid
structure:
Figure 2.4 – Hybrid topology example

Source: Author.
In the hybrid structure depicted in Figure 2.4, PEs at NoC positions 2, 5

and 8 are replaced by, respectively, a Crossbar containing 7 PEs, a Bus contain-

15

ing 6 PEs, and another Bus containing 6 PEs.
Busses and Crossbars are connected to the base NoC by their associated

router’s local port. In order to make possible communication between these
di�erent constructs, an intermediary interface is needed: a Bridge.

A Bridge’s main functionality is to interact with Bus/Crossbar arbiters,
acting, from the arbiter’s perspective, as another PE in the Bus/Crossbar (as
previously discussed). When a PE is said to be connected to a Bus/Crossbar, is
actually connected to a Bridge within it, which provides the control functionality
required for communication, "bridging the gap" between two PEs that wish to
communicate.

From a Bus/Crossbar’s perspective, this extra Bridge e�ectively acts as
an additional PE, concentrating in itself (the Bridge) all communication with
outside the Bus/Crossbar in question. Seeing as connecting a Bus/Crossbar to a
NoC implies in the addition of an extra Bridge to this Bus/Crossbar, even though
it has N PEs associated to it, there are N + 1 Bridges within it, N for PEs, 1 for
the NoC.
2.2 DYNAMIC VOLTAGE AND FREQUENCY SCALING (DVFS)

DVFS is a well-established technique for modulating the power con-
sumption of an integrated circuit, by varying its clock frequency f and supply
voltage V.
2.2.1 Power consumption in a CMOS integrated circuit

It is known that the power consumption of a digital module implemented
in CMOS can be described by the following equations:

Pdyn = S ∗ f ∗ CL ∗ V 2
DD (2.1)

Pleak = ileak ∗ VDD (2.2)

P = Pdyn + Pleak (2.3)
Equation 2.1 describes the dynamic power consumption, proportional to

the transistor switching activity S and the average load capacitance C. Equation
2.2 describes the static power consumption, proportional to the leakage current
ileak. The total power consumption is given by Equation 2.3, by adding both
power consumption modes. It can be seen that power scales quadraticaly to
the supply voltage V and linearly to the clock frequency f.

16

2.2.2 Bandwidth and Throughput
A link’s Bandwidth B is de�ned by the maximum amount of bits in can

transmit per second. In the present context, in can be quanti�ed through the
equation below (where DW is the data width, in bits, of the link, and f, the clock
frequency):

B = DW ∗ f (2.4)
External factors such as network congestion (as discussed in Subsection

2.1.3) can make it so this value is not always reachable. Also, in situations where
the entire Bandwidth of the link is not used by a certain application, this does
not accurately represent the data rate is produces or consumes. The e�ective
value for information traveling through a link is called Throughput. Since it is
a fraction of a link’s Bandwidth, the Throughput T is also measured in bits per
second.

T = R ∗B (2.5)
Equation 2.5 quanti�es the Throughput of a link, where R is ratio in which

it uses the Bandwidth provided by the link in question.
2.2.3 DVFS in NoCs

A link’s maximum clock frequency is limited by its voltage. At a lower
voltage, the clock frequency must be reduced as to ensure correct outputs are
produced. From (2.1) and (2.2), this provides a decrease in power consumption,
at the cost of reduced link/router performance, both in terms of Bandwidth
(2.4) and packet delay.

By setting VF-pairs such that a link’s Bandwidth is as close as possible
to its Throughput ("saturating" a link), power consumption is optimized, all
while not compromising application performance.

3 RELATED WORKS

Many works in the recent past have explored hybrid network topologies
and DVFS in the context of NoCs in order to reduce power consumption. In
this chapter, these works and their proposed policies and strategies for deter-
mining VF-pairs are summarized and classi�ed by their network/system level
characteristics.
3.1 HYBRID TOPOLOGIES IN INTERCONNECTION NETWORKS

The simplest hybrid topology interconnection optimization is made in
(LEE et al., 2010). The authors present a hierarchical approach: PEs are �rst
clustered in Busses, based on the communication a�nity between them. Clus-
ters are then interconnected through a 2D mesh NoC. By keeping Bus clusters
small, the Bus scalability tipping point is never reached. Required Throughputs
can be maintained, while o�ering attractive performance-per-watt.

If clusters are large enough, the NoC’s severe initial power and area costs
also can be reduced, seeing as fewer Routers in the 2D mesh NoC will be needed.
Experiments with video encoding applications demonstrate reduced latency and
44% less area when compared to a homogeneous 2D mesh NoC. Unfortunately,
no power consumption analysis was provided.

Similar proposals are presented in (TSAI et al., 2010) and (CHESHMI et
al., 2015). (TSAI et al., 2010) presents a concrete clustering algorithm, left ab-
stract in (LEE et al., 2010), which allows for the optimal grouping of application
Threads for a given Bus-NoC hybrid topology. Protocol heterogeneity is also
explored, using AHB-Lite for the Bus and a Credit-based protocol for the NoC,
similar as the one used in Hermes. A reduction of up to 24% in packet latency
was observed, but again, no power consumption analysis was provided.

(CHESHMI et al., 2015) also presents a mapping algorithm for allocating
PEs in a regular hybrid network topology. The topology in question is a standard
2D mesh NoC, with a Distributed Time Division Multiple Access (dTDMA) Bus
of varying size at each Router local port. Applications are mapped to PEs as to
minimize inter-cluster communication. In a comparison with a homogeneous
2D mesh NoC, it shows a power consumption decrease of up to 69% and up to
31% decrease of average packet latency.

In (WALTER; CIDON; KOLODNY, 2008), the authors argue that NoCs have
a clear bene�t over the traditional Bus in scalability and parallelism, while a Bus
is superior in terms of latency and multicast communication. Thus, a hybrid

18

interconnect, containing both a mesh 2D NoC and a global Bus makes itself at-
tractive. By sending high-throughput unicast communication through the NoC
and low-throughput multicast communication through the Bus, both power
and performance can be optimized.

Power consumption is reduced due to the lesser amount of replicated
unicast messages to be sent through the NoC, emulating multicast functional-
ity. This increases NoC performance by reducing Link congestion, again, due to
the reduction of the total amount of packets travelling in the NoC. The proposal
is evaluated in a Dynamic Non-Uniform Cache Access (DNUCA) multiprocessor
system, where the desired communication behaviour can be observed. Results
show an average of 32% application execution time decrease while showing an
average of 18% energy savings.

Another relevant proposal for using Busses in a NoC context is presented
in (TAHGHIGHI et al., 2012). Instead of associating PEs to either a Bus cluster
or directly to the NoC, as done in the works above, PEs are connected to both
a Router and a Bus cluster. PEs in the same Bus cluster communicate through
it, while PEs in di�erent clusters communicate through the NoC. This results in
the reduction of network congestion in the NoC, again reducing packet latency,
on average, by 40%, when compared to a simple 2D mesh NoC.
3.2 DYNAMIC VOLTAGE AND FREQUENCY SCALING IN NOCS
3.2.1 Network-level DVFS policies

The authors of (YADAV; CASU; ZAMBONI, 2013) present the fundamen-
tal network-level policy for DVFS in NoCs. By the use of Throughput evalu-
ating modules at each router’s ports, these modules set its associated router’s
clock frequency to the lowest possible frequency that can provide the required
throughput (as evaluated by the aforementioned modules). Supply voltage is
set to the lowest possible voltage (within a range of discrete voltage values,
in the experiment performed by the authors, 2) that can sustain the router’s
operation at the determined clock frequency.

By matching the network provided throughput to the application’s re-
quired throughput, signi�cant power savings are obtained, at the cost of aver-
age message latency. When compared to a theoretical global DVFS approach,
where the whole NoC is subject to a single VF pair; and a theoretical ideal lo-
cal DVFS, where supply voltage levels are not discretized, the author’s proposal
consumes, on average, 33% less than the global approach.

In (CASU; GIACCONE, 2015), the authors formalize the previously de-
scribed throughput matching policy as Rate-based Max Slow Down (RMSD), and

19

introduce a novel metric, Delay-based Max Slow Down (DMSD), where, instead
of establishing a minimum throughput, as in the RMSD metric, a maximum
message latency value is established, and VF pairs are set so messages do not
have a higher latency than a target maximum.

These two policies, as well as a No-DVFS scenario, are then compared in
terms of power consumption and message latency, while running benchmark
applications. In those, compared to the RMSD metric, the DMSD policy presents,
on average, 2 times less latency and 1.4 times less power consumption.

In (CASU; GIACCONE, 2017), the authors expand on their previous work,
mentioned above (RMSD vs DMSD), while formalizing a third metric, Queue-
based Max Slow Down (QMSD), where VF pairs are set based on First-In First-
Out (FIFO) queue occupancy, increasing the clock frequency (and by extension,
Throughput) of a router as its bu�ers get increasingly �lled.

The three policies (RMSD, DMSD and QMSD), as well as a No-DVFS sce-
nario, are compared in a broader set of benchmarks, in terms of power con-
sumption, message delay and power-delay product. The RMSD and QMSD
policies have very similar observed behavior. Between the three policies, the
results obtained show better power �gures for the RMSD/QMSD policies, but
better delay �gures for the DMSD policy. As for the power-delay product, the
RMSD/QMSD policies present slightly lower values, signaling a better power-
performance trade-o� when compared to the DMSD policy.

The authors of (ABABEI; MASTRONARDE, 2014) implement a prediction
based DVFS scheme, where Bu�er Utilization (BU) and Link Utilization (LU)
histories are used in predicting the future usage state of the router, taking a
proactive stance in determining VF pairs, as opposed to the works cited so far,
which react to the perceived changes in network/router state, and only then
make a DVFS decision.

For each input bu�er and associated link in a router, at the end of a set
time window, its own BU and LU are evaluated for the current time window,
and used in estimating the BU and LU of its associated downstream bu�er/link
for the next time window. Averaging out the estimated downstream BU/LUs, a
router’s VF pair is set accordingly (For the sake of simplicity, decreased if high
usage is to be expected, or increased if low usage is to be expected).

Power and delay �gures are presented for the proposed technique with
increasing time window sizes and compared to a nominal No-DVFS scenario,
showing signi�cantly less power consumption in the proposed technique, in-
creasing with time window size. Delay �gures show a small decrease in cases
where the time window is a close match to packet sizes, and a small increase
otherwise.

20

A more solid evaluation of this proposal is presented in (MOGHADDAM;
ABABEI, 2016), where instead of synthetic tra�c, the NoC and its DVFS con-
trollers are subject to a real application, an H.264 encoder. In this case, the
authors report, on average, around 30% power savings as well as around a 4%
latency decrease when compared to a baseline No-DVFS scenario.
3.2.2 System-level DVFS policies

In (YAO; LU, 2016), the authors propose a distributed approach to de-
termining VF pairs, where each thread determines at run-time an ideal VF pair
for the router cluster it is allocated to. The VF pairs determined by each thread
are counted as votes in a pool of possible VF pairs, and the �nal VF pair for
each cluster is then chosen as the one which received the most votes out of the
possible VF pairs in the voting pool.

The authors evaluate their proposal in system-level simulations against
two other scenarios, one where no DVFS is performed, and other with a policy
very similar to (CASU; GIACCONE, 2017)’s QMSD. In terms of Million Packets
per Joule (MPpJ), the authors report savings of up to 17.9% in network energy
consumption, and, in terms of Million Instructions per Joule (MIpJ), up to 26.3%
in system energy consumption.

(LU; YAO, 2017)’s authors observe and discuss a non-linear relation-
ship of power and performance in the context of NoC DVFS. In a normal-
ized Power by Performance Characteristic Curve (PPCC), the authors identify
three distinct regions: an Inertial region, where providing more power to the
NoC doesn’t provide signi�cant performance bene�ts, due to severe bottle-
necking/congestion; a Linear region where application performance is linear to
NoC power, due to the NoC being the main bottleneck on overall performance;
and a Saturation region, where an increase in NoC performance doesn’t trans-
late to an increase in application performance, due to the NoC not being the
bottleneck to overall performance.

Considering that, if the NoC is operating in either the Inertial or Satu-
ration region, power is being wasted (which follows from the fact that power
expenditure while in these regions don’t lead to signi�cant application perfor-
mance gains), a new metric for evaluating the power-performance trade-o� is
introduced, Marginal Performance (MP), which accounts for potentially mislead
DVFS decisions, if a linear power-to-performance relationship is to be assumed.
With the MP metric, the NoC operates only in the Linear region of the PPCC,
which leads to only meaningful (as in, leads to overall performance bene�ts)
power expenditure.

Through extensive system-level simulations, the authors show the suc-

21

cessful identi�cation of power under and over-provisioning in two relevant NoC
DVFS implementations (their previous thread voting work in (YAO; LU, 2016),
and one very similar to (CASU; GIACCONE, 2017)’s QMSD policy) through the
proposed PPCC-MP method, but no method for the real-time determination
of VF pairs is formalized.

(YAO; LU, 2020), a follow-up of the author’s previous work in (LU; YAO,
2017) (mentioned above), demonstrates an implementation of NoC DVFS (∆-
DVFS) guided by their previously presented metric of PPCC. In ∆-DVFS, a PE’s
thread workload is continuously pro�led by a monitor, and based on this pro�le,
a target value in the PPCC is determined, from which follows the picking of
a VF pair that more closely matches the target value. Comparing itself with
the same works as in their previous publication, the authors report averages
of 38.9% power consumption reduction and 2.3% application execution time
increase.

(HESSE; JERGER, 2015) presents a proactive DVFS approach in the context
of shared memory Chip Multi-Processors (CMPs). This is accomplished through
the predictable nature of cache coherency to set relevant VF pairs in a proactive
manner, rather than wait for the network to observe a change in state and, only
then, react accordingly, as done in previously discussed works.

The case for proactive DVFS is made through the observation that, from
the point of view of a router or link, network state can drastically change with-
out warning. From this, it follows that a factual change in network state, as it
cannot be reliably predicted, can only be perceived after a certain amount of
time, in which VF pairs are set accordingly to a previous network state, leading
to an obvious ine�ciency. By removing this ine�ciency associated with the
time taken to observe a change in network state, proactive DVFS can lead to
further power savings than reactive DVFS.

In system-level simulations of standard benchmarks, the authors’ pro-
posal shows 41% power consumption decrease when compared to a No-DVFS
scenario and a, on average, 21% decrease when compared to a state-of-the-art
reactive DVFS proposal.

4 IMPLEMENTING A HYBRID TOPOLOGY INTERCONNECTION NETWORK

In this chapter the implementation information of the interconnection
infrastructures (Bus, Crossbar and NoC) and further details on integrating them
in a hybrid network topology are discussed.
4.1 NETWORK-ON-CHIP (NOC)

The NoC implementation used is a 2D packet-switched wormhole NoC
with a XY routing algorithm (MORAES et al., 2004).

In a packet-switched NoC, data sent from one PE to another is split into
segments, called packets. Packets are composed of a header and a payload. The
header contains metadata, such as the target PE’s address and the size of the
payload, and the payload the data itself. This is exempli�ed in Figure 4.1:
Figure 4.1 – Hermes packet (Header in green, Payload in blue)

Source: Author.
A packet is sub-divided into �its (short for �ow control unit), each con-

sisting of the amount of bits that can be transmitted in parallel through a link.
In a wormhole-switched NoC, each �it is transmitted right after the previous,
not waiting for any subsequent �its to arrive in the current router (such as in
a store-and-forward scheme, where the whole packet must be received by a
router before it is forwarded to another).

The inter-router communication protocol is in essence a ready-valid pro-
tocol. The success of a transaction is determined by two control signals: Tx
(transmitter side) and Credit (receiver side). The Tx signal informs the receiver
that there is valid data on the Data bus. The Credit signal informs the transmit-
ter that the receiver is able to write a �it in its input First-In-First-Out (FIFO)
bu�er. If both signals are simultaneously asserted, the �it in the Data bus has
been successfully been written into the input FIFO. In the next clock cycle the
transmitter can safely place another �it in the Data bus. The router-to-router
communication protocol is illustrated in Figure 4.2

In the XY routing algorithm, �rst, NoC routes a packet along the X di-
mension, moving from the sending PE’s X coordinate to the receiving PE’s X

23

Figure 4.2 – Hermes communication protocol

Source: Author.
coordinate, but conserving its position in the Y dimension. Finally, the packet
travels through the Y dimension, towards the receiving PE’s Y coordinate.

The use of XY routing leads to low hardware implementation costs (due to
low complexity, implying in low power and area costs), deadlock-free guarantee
(no recursive dependencies), and deterministicity (the route taken by a packet
traveling the NoC from a PE A to a PE B is a function only of the position of PEs
A and B in the NoC).

XY routing is exempli�ed in Figure 4.3, where a packet from Router 0 to
Router 8 takes the route in green, and a packet from Router 8 to Router 0 takes
the route in yellow:
Figure 4.3 – XY routing example

Source: Author.

24

4.2 BUS
Since the NoC implementation used is not made speci�cally for this work,

the Bus and Crossbar implementations must follow the NoC’s already estab-
lished communication protocol. Implementing a Bus is a straightforward pro-
cess, which follows from it being a low-complexity construct by design. The
main e�orts are in the implementation of the Arbiter (de�ning the source PE)
and the correct acceptation of a transmitted packet only by its receiving PE
(de�ning the target PE).

The inner workings of an Arbiter, left abstract until now, can be done ac-
cording to many possible algorithms, namely Daisy Chain (DC) or Round Robin
(RR). In (SOARES, 2017), it has been shown that the RR algorithm shows a
well balanced power-performance trade-o�, so it was chosen for use in this
proposal. The RR algorithm aims for a fair distribution of Grants among PEs,
minimizing starvation issues (when a PE requests Bus access, which is only
provided at an unacceptable time after the requisition, if at all).

The algorithm works by selecting a PE in a pool of initially equal prior-
ity requesting PEs. After the selected PE has given up its Grant, by asserting
the Bus’ ACK signal, its priority is set to the lowest possible. This process is
performed at every ACK event, setting the corresponding PE’s priority to the
lowest possible, and incrementing by one all other PE’s priorities. In this arbi-
tration scheme, the lowest priority PE will always be one which most recently
had access to the Bus, and the highest priority PE, the one which least recently
had access to the Bus (Or, in a more general fashion, PE access priorities are
descendingly sorted based on latest access time1). Once a Grant signal is as-
serted by the Arbiter, the source PE is de�ned, allowing that PE to write into
the Data and Tx lines of the Bus.

For determining the target PE, a new component, Bus Control, is needed.
N −1 comparators, where N is the amount of PEs in a Bus, are used to compare
the packet’s ADDR �it, written into the Bus right after a Grant is given, with all
PE Global Addresses in the Bus in question. From the comparator that matches
a PE Global Address to an ADDR �it, the PE in this Bus the packet is destined
to is de�ned. Once the target PE is determined, it can write into the Bus Credit
line, allowing for communication to take place.

Interaction with the Arbiter is done exclusively through an intermediary
entity called the Bridge. The Bridge is responsible for assuring transparent
communication between PEs, abstracting away implementation details, such

1Further implementation details for the RR arbiter are outside of the scope of this work, butcan be found at the aforementioned reference for bus arbiters

25

as the Bus arbitration process, from a PE’s point of view. By providing the
same interface as a Router’s (as exposed in Section 4.1), a PE has no knowledge
of whether it is communicating with other PEs through a Router or a Bus’s
Bridge (or any other possible interconnection construct that provides the same
common interface).

A Bus’s Bridge implementation details can be visualized in Figures 4.4
and 4.5.
Figure 4.4 – Bus Bridge data path

Source: Author.

26
Figure 4.5 – Bus Bridge control FSM

Source: Author.

4.3 CROSSBAR
A Crossbar is considerably more complex than a Bus, but, since most

functional elements can be reused from the Bus implementation mentioned
above, this does not translate into a proportionally di�cult implementation
e�ort. The elements shared with the Bus implementation are the Round Robin
Arbiters and most portion of the Bridge, which is modi�ed as to interact with
N Arbiters, instead of only 1.

Besides an easier implementation e�ort, this also allows for a fair com-
parison between Bus and Crossbar, as done in the scenarios presented in Chap-
ter 7. Implementation details for the Crossbar Bridge can be observed in Figures
4.6 (data path) and 4.7 (control FSM).

27

Figure 4.6 – Crossbar Bridge data path

Source: Author.

Figure 4.7 – Crossbar Bridge control FSM

Source: Author.

28

4.4 INTEGRATION BETWEEN PARTS
Aside from implementing the Bus and Crossbar following the packet-

switching wormhole logic previously described, an addition to the addressing
scheme must be performed: On top of a Base NoC Address, shared between all
PEs in a Bus/Crossbar, a Global Address is also necessary, so that after travelling
in the NoC (using the Base NoC Address), packets can be forwarded to the
speci�c PE in a Bus/Crossbar it is destined to (according to the Global Address).

A Hermes address header �it is structured as follows, for a 32 bit data
width NoC, in Figure 4.8:
Figure 4.8 – Hermes packet header a) Hermes address format b) Hybrid topol-ogy address format

Source: Author.

Seeing as the 16 higher order bits are not used in the address �eld, in
these the Global Address is stored, not interfering with normal Hermes behav-
ior. In the 16 lower order bits, where NoC addresses are expected, the address
in the base NoC of a packet’s target PE is stored.

For the determination of Global Addresses, the following algorithm is
used: A hypothetical NoC with equal X and Y dimensions, that has an equal
or greater number of PEs than the hybrid structure of interest, is established.
Over this hypothetical NoC, the base NoC of the hybrid topology of interest
is superposed, with XY coordinates in the base NoC being equivalent to XY
coordinates in this hypothetical NoC. This process is exempli�ed in a topology
with a 3x3 base NoC two Busses with 6 PEs and a Crossbar with 7 PEs in Figure
4.9.

For PEs in the base NoC, Global Addresses are taken as the position in
this hypothetical NoC. For base NoC positions that are associated, not to a PE,
but to a Bus/Crossbar, to the �rst PE in it is assigned this position as its Global
Address (Figure 4.9a).

For the remaining PEs (not in the base NoC and not the �rst PE in a

29

Bus/Crossbar) Global Addresses are assigned in the following manner: Sorted
by their position in the base NoC, �rst Buses, then Crossbars, (excluding their
�rst element, whose Global Address was already assigned in the previous step)
are superposed in the hypothetical NoC in perimeters along the base NoC’s pro-
jection. Each of these perimeters follows a clockwise rotation around the base
NoC’s projection, starting from the left-most position not already assigned, and
�nishing when an edge of the hypothetical NoC is reached, either when the Y
coordinate reaches 0 or the X coordinate reaches the size of the X dimension
(Figure 4.9b).
Figure 4.9 – Global Address assignment a) Example hybrid topology b) SquareNoC Global Address assignment c) Example hybrid topology with Global Ad-dresses assigned

Source: Author.

5 DESIGN SPACE EXPLORATION OF DVFS IN INTERCONNECTION NETWORKS

In Chapter 3, relevant works considering DVFS in NoCs were brie�y dis-
cussed and summarized. In this chapter, some of them will be expanded upon
as they are used to justify our design decisions.
5.1 GENERATION OF SUPPLY VOLTAGES AND CLOCK SIGNALS

If a network cluster were to independently set its VF pair with certain
voltage and clock frequency in a continuous values range, that would imply
in an individual voltage regulator and clock generator components for each
cluster. Such a scenario would be unsuitable, since integrated voltage regulators
are associated with severe on-chip area costs and partially-integrated voltage
regulators to economic, packaging and board layout costs. In this way, a coarse-
grained approach is not likely to yield signi�cant power savings (considering
the additional resources needed to make DVFS possible in the �rst place) and
a �ne-grained approach inviable due to on-chip area costs, which would scale
with the amount of clusters.

(YADAV; CASU; ZAMBONI, 2013) solves this issue by discretizing possible
supply voltages and clock frequencies. By not actually generating the supply
voltage and clock signal locally, but selecting them among well-de�ned val-
ues that are shared between clusters, the amount of regulators needed does
not scale with network size, but with the amount of such possible well-known
values.

More speci�cally, scalable local clock signal generation can be achieved,
due to the low-complexity nature of the proposed clock-gating based method.
Comparing it to its alternative, not locally generating clock signals, where many
clock signals are externally generated, assumed from a single Phase Locked
Loop (PLL), and each routed from the PLL to every cluster, some issues are
made evident:

Firstly, the routing of clock nets (which inherently carry a high frequency
signal) across long distances (seeing as the PLL would almost certainly be placed
in an area which concentrates analog modules, away from the (digital) inter-
connection network in question) lead to signi�cant losses, which would not be
present in a local clock signal generation scenario. In such a scenario, clock
signals would be generated physically much closer to its destination (the clus-
ter in question), which signi�cantly reduces parasitic losses and, routing-wise.
Area savings are shown both in the metal layers in routing from the PLL to the

31

Figure 5.1 – Clock signal generation via clock gating

Source: (YADAV; CASU; ZAMBONI, 2013)

cluster and bu�er cells needed for signal integrity. These routing area savings
would balance the area overhead associated with a clock-gating based on local
clock generation.

Going back to the non-local clock generating scheme, each of the clock
nets would need to be sized for a worst-case scenario where all clusters oper-
ate on the same clock frequency. An obvious ine�ciency is observed, as it is
impossible for all clock nets to be used at the worst-case scenario load at the
same time. Nevertheless, clock nets must be implemented in a way that, indi-
vidually, such a scenario is possible. In a local scheme, this ine�ciency does not
exist, seeing as there is a single clock net of varying frequency for each cluster,
rather than multiple clock nets with static frequency shared by clusters.

It can then be a�rmed that local clock-gating based generation of clock
signals is a worthwhile avenue to be pursued; and can be intuitively understood
as being superior to its non-local alternative, even though no formal experi-
ments were made to scienti�cally substantiate this claim in a more rigorous
manner.
5.2 EVALUATION OF NETWORK STATE

In (Yadav, Casu e Zamboni (2013), Ababei e Mastronarde (2014), Casu
e Giaccone (2017)), a hardware-based distributed approach is taken, where
dedicated modules are implemented, locally evaluating router’s and/or link’s
states, setting VF pairs according to a certain policy. This leads to a situation
where a change in network state is only observed by these modules some time

32

after the change in state has taken place, where an opportunity for further
power saving through DVFS is missed.

The evaluation of network state as a whole, and not only link or router
state, is important because of relevant second-order e�ects on a NoC, such
as network congestion. The aforementioned e�ect of time di�erence between
an actual and locally observed change in network state is a convenient way of
illustrating this. At this time, a VF pair is determined so that it either satis�es
a worst-case scenario, or maintains a default or previous state until it must be
changed (as de�ned by the speci�c policy employed). Both these courses of ac-
tion are not ideal (characterized by (LU; YAO, 2017) as power over-provisioning
and under-provisioning), and are due to an inaccurate assessment of perfor-
mance needs.

Aside from the obvious area overheads involved in a dedicated-hardware
distributed approach (for example, the authors of (CASU; GIACCONE, 2017) re-
port an area cost of 27% of the area of a NoC switch for a specialized module
to determine a router’s frequency), it can be said that such an approach intrin-
sically leads to an ine�cient DVFS implementation, due to the limited amount
of information available to a local module evaluating its associated router or
link’s state.

This notion of using system-level information to guide DVFS is also ex-
plored in (HESSE; JERGER, 2015), namely with cache coherence prediction, and
serves to reinforce the proposal as explained above.
5.3 SOFTWARE-BASED CENTRALIZED DVFS DECISION MAKING

Assuming a scenario in which there is a master PE that handles the al-
location of threads in the system1, which naturally knows: the Network map-
ping of every thread in the system; the Predictable communication pattern of
those threads; and the Routing algorithm employed; the aforementioned sit-
uation can be prevented. Unlike in a distributed-hardware approach, in which
such issues are observed at run-time, then leading to the previously mentioned
time delay; in a centralized-software approach, they can be handled at thread
allocation time, leading to better power savings and network performance.

A �rst strategy for determining each Bus/Crossbar/Router’s frequency is
directly from the Throughput of the network’s links:

The minimum frequency required for a link to maintain a given Through-
put can be obtained from Equations 2.4 and 2.5, setting R as 1 (Bandwidth =
Throughput):

1Or a scenario in which threads are allocated at design time

33

f(T) =
T

DW
(5.1)

A Bus’s Throughput TB is given by the sum of its input, output and local
Throughputs (TBi, TBo, TBl, respectively), as de�ned in Equation 5.2

TB = TBi + TBo + TBl (5.2)
Its minimum frequency can then be determined from Equation 5.1:

fB =
TB
DW

(5.3)
A similar process applies to Crossbars. Considering a Crossbar with n PEs,

there is a set TCo containing the output Throughputs at each PE TCon, and a set
TCi containing the input Throughputs of each PE TCin.

TCi = {TCi1 + TCi2 + ...+ TCin} (5.4)

TCo = {TCo1 + TCo2 + ...+ TCon} (5.5)
A Crossbar’s frequency is obtained from the maximum Throughput in

both input and output port Throughput sets, as de�ned in Equation 5.6:
fC =

max(max(TCi),max(TCo))

DW
(5.6)

The same applies for NoC Routers. Considering a Router with n ports,
there is a set TRo containing the output Throughputs at each port TRon, and a
set TRi containing the input Throughputs at each port TRin.

TRi = {TRi1 + TRi2 + ...+ TRin} (5.7)

TRo = {TRo1 + TRo2 + ...+ TRon} (5.8)
As with a Crossbar’s, a Router’s frequency is also obtained from the max-

imum Throughput in both input and output port Throughput sets, as de�ned
in Equation 5.9:

fR =
max(max(TRi),max(TRo))

DW
(5.9)

A Packet’s time locality also plays a role in determining minimum fre-
quencies. Suppose a situation in where a thread A has an output Throughput
of 64 MBps to threads B and C and all three threads are allocated in adjacent

34

Routers in a NoC. Per the strategy outlined above, the total output Throughput
of 128 MBps, assuming a Data Width of 4 bytes, would amount to a minimum
frequency of 32 MHz. For threads B and C, assuming no communication with
any other threads, their total input Throughput of 64 MBps would amount to
a minimum frequency of 16 MHz.

Assume then a (likely) scenario in which the Router’s bu�ers are of a
smaller length than the packet that carries data from A to B (or A to C). Seeing
as A’s frequency is higher than B’s, this means that the bu�er of the Router
port that connects A to B, will eventually be �lled up, causing a stall in the A
to B implicit pipeline. In this situation, the Throughput established by thread
A will clearly not be provided, since A can’t input more �its into the network
until the previous �its have not been consumed by B.

This requires a frequency adjustment in the Routers associated to threads
B and C. By matching their frequencies to thread A’s router, thread A has its de-
�ned Throughput correctly provided by the network. The same applies not only
where a thread has multiple targets, but also, multiple sources. This process is
illustrated in Figure 5.2, and is formalized below:

Let a thread’s Descriptive Throughput be the maximum of its total out-
put and input Throughputs. Let DTR be the set of Descriptive Throughputs a
Router R is associated to, either by being the source/target Router, or being an
intermediary in the path taken by a given packet sent/received by the thread
associated to a member of DTR. A router’s adjusted frequency fAR will be given
by the maximum of its original frequency fR (as determined from Equation 5.9)
and the maximum of DTR:

fAR = max(fR, f(max(DTR))) (5.10)
A similar treatment is required for Busses/Crossbars. For the frequency

adjustment, only threads which communicate with other threads outside the
Bus/Crossbar in question need to be factored in to the sets DTB and DTC (con-
taining the DTs for the Bus/Crossbar in question).

fAB = max(fB, f(max(DTB))) (5.11)

fAC = max(fC , f(max(DTC))) (5.12)

35

Figure 5.2 – DVFS frequency adjustment a) Threads Throughputs b) Threadsmapped to NoC c) Router frequency adjustment

36

5.4 APPLICATION IN HYBRID TOPOLOGIES
The same issue motivating the frequency adjustment necessary in Routers

can also be observed in NoC-to-Bus communication. Consider a thread A,
mapped to a Router in a NoC, which sends packets to a thread B, mapped to a
Bus. If in the Bus that B is allocated to there are other threads communicating
locally, a packet sent from A to B will have to wait for an arbiter grant until it
gains priority over said local communication. Again, assuming packets are of
longer length than Router/Bridge bu�ers, this eventually causes a stall in the
implicit A to B pipeline.

It follows that a change in Bus arbitration logic is required, so that packets
coming from the NoC interrupt local communication within the Bus. In this
manner, Router/Bridge bu�ers are not �lled, because the target PE in the Bus
can immediately start consuming �its (before bu�ers are �lled), without having
to wait for a local packet to be completely transmitted.

However, this change is not necessarily required in Crossbars. From the
inherent parallelism possible in a Crossbar, by adequately mapping threads,
this issue can be avoided entirely, without requiring further architectural mod-
i�cations. By allocating threads that have a common target PE, either all to
Routers or all to the same Crossbar, no interruption of local communication is
necessary. The �rst case is already covered by the previously described Router
frequency adjustment. In the second case, since all communication happens
inside the Crossbar in question, the network state outside of it is irrelevant.

This obviously also applies to Busses, but, if these threads have a high
Throughput demand, they may not all be accommodated inside a Bus, so that
the sum of their required Throughputs, plus the Throughputs of all other threads
in the same Bus, is less than Bus’ Bandwidth. In Crossbars, since there is the
possibility of parallelism, Throughputs need not all be summed, just the in-
put/output Throughputs of the leaf threads, allowing for an easier �tting of all
threads inside the Crossbar.

The same principle also applies to the frequency adjustments exposed in
Section 5.3. When a thread allocated to a Bus, if its DT is taken as part of the
computation of Router frequencies, the Bus’ total Throughput should be taken
as its DT instead.

DVFS granularity is also a concern. Busses and Crossbars do not allow for
a variation of granularities, seeing as in both packets are transmitted directly
from one PE to another. The opposite is true for NoCs, where any granular-
ity between the most �ne-grained (per Router) and the most coarse-grained
(whole NoC) is possible due to the indirect nature of packet transmission be-

37

tween Routers.
5.5 DVFS CONTROLLER

DVFS information is sent from PEs to DVFS controllers through the net-
work itself, via packets such as the one illustrated in Figure 5.3. Such packets
originate from PEs in the network and travel towards a single, previously known
DVFS master PE. The Amount Of Voltages and Counter Bit Width �elds have their
bit widths parametric, as well as the DVFS Service ID, which has its value para-
metric.
Figure 5.3 – Hermes packet containing DVFS information. a) DVFS messageb) DVFS �it containing clock frequency and supply voltage de�nitions in DVFSpacket

Source: Author.

From a target frequency f, a base frequency fb and obtained frequency
fo =

N ∗ fb
M

N and M are determined such that fo is the smallest real that satis�es
fo > f

The Supply Voltage value is set as the largest integer SV that satis�es
1

2SV
>
fo
fb

and
0 6 SV 6 AmountOfV oltages− 1

(For ease of understanding, in the case explored in Chapter 7, where fb =

38

250 MHz and Amount Of Voltages = 2, SV will be 0 for fo > 125 MHz, else, 1).
The IsNoC bit is set as 1 if the packet in question describes a VF-pair that

is intended for a Router. Else, it is set as 0 if the packet in question describes
a VF-pair that is intended for a Bus/Crossbar.

The DVFS controller’s data path can be visualized in Figure 5.4, and its
control state machine in Figure 5.5.
Figure 5.4 – DVFS controller data path

Source: Author.

39

Figure 5.5 – DVFS controller control FSM

Source: Author.

DVFS controllers are replicated in the following manner: One per Router
in the NoC, plus one for every Bus/Crossbar instantiated. The Credit, Tx and
Data input ports of each controller are connected to the local ports of Routers
in the base NoC. For Routers associated to a PE, this is done directly in the link
between the Router’s local port and the PE in question. For Routers associated
to a Bus/Crossbar, this is done in the link between the Router’s local port and
the Bus/Crossbar in question (Notice that there will be two DVFS controllers
associated to a Router where in its local port there is a Bus/Crossbar, one for
setting the VF-pair of the Router itself, and the other for setting the VF-pair
of the Bus/Crossbar, hence the need for the IsNoC bit the the con�guration �it,
specifying which DVFS controller this packet is intended to).

Clock signals are gated based on a N/M ratio, where N is the amount of
cycles it will be enabled in a window of M cycles. To accomplish this, a cycle
counter is necessary, assuming values between 0 and M - 1. When this counter’s
value is less than N, the clock signal will be enabled, else, it will be disabled.

Seeing as each possible supply voltage will have a speci�c clock period
associated to it (higher supply voltages will imply in a shorter clock period), the

40

clock pulse to be manipulated by clock gating must be selected beforehand. For
a trivial case where each clock pulse has a period of double than the previous,
this can be accomplished through a simple �ip-�op clock divider.

Finally, in order to safely have N and M values be set synchronously across
all controllers, a set of synchronization registers must be added. The writing
of values into these registers is controlled directly by the FSM illustrated in
Figure 5.5. These intermediary values will only be propagated to the N, M and
Supply Voltage registers when a synchronization counter over�ows. This counter
holds the same value for all controllers at any given time, assuring the event
of writing of new values into N, M and Supply Voltage happens in phase for all
controllers.

6 A FRAMEWORK FOR THE PARAMETRIC GENERATION AND EVALUATION
OF HYBRID TOPOLOGY INTERCONNECTION NETWORKS

6.1 OVERVIEW
To facilitate the process of describing and evaluating such hybrid com-

munication structures, a scriptable framework encompassing topological de�-
nitions and stimulus generation has been developed, using Python for its soft-
ware component and VHDL for its hardware component. In general terms, the
software component generates JSON �les containing relevant parameters for
its associated entities in the software domain, which are read by the hardware
component through a JSON parsing library (LEHMANN, 2015). In this manner,
the described topology and stimulus are implemented in the hardware domain,
as per the parameters determined in the software domain.

The software domain is made of two Python modules, AppComposer and
PlatformComposer, as well as several front-end scripts, to set up required �le
structures and provide a common interface to external tools (Namely, NCVHDL
to compile VHDL, NCElab to elaborate the top level entity, NCSim to simulate
it and Genus to synthesize it), and is described in greater detail in Appendix B.

Translation from the software domain to the hardware domain occurs
in the generation of the JSON �les containing the parameters expected by the
parametric VHDL implementations. This functionality is obtained through the
�owgen script, which takes in the objects de�ned by the AppComposer and Plat-
formComposer modules, and outputs the intended JSON con�guration �les.

The hardware domain consists of parametric synthesizable RTL descrip-
tions of the entities mentioned in Chapter 4 in VHDL, for network topologies,
and non-synthesizeable VHDL, for stimulus generation. In the top level mod-
ule, the JSON �le containing topological parameters is read, and the parameters
themselves passed on to the instantiated sub-modules (NoC, Busses, Crossbars,
Bridges, Arbiters, ...) as needed, implementing the desired network topology as
de�ned by the use of PlatformComposer.
6.2 PRODUCING STIMULUS TO THE INTERCONNECTION NETWORK

Generation of stimulus is accomplished through the AppComposer Python
module, which aims to emulate previously characterized applications, in terms
of Constant Bit-Rate (CBR) bandwidth between its threads (TEDESCO et al.,
2006). An example of an application characterization can be seen in Figure
6.1. In such characterization graphs, nodes represent threads of an applica-

42

tion, while edges and their weights represent the expected Throughput between
threads, in MBps.
Figure 6.1 – Characterization graph of an application (PIP)

Source: Author.
In the AppComposer domain, Applications are instantiated within a Work-

load. Applications themselves are nothing but a collection of Threads, which
in turn are a collection of Flows. Flows can be understood as the fundamental
unit of an application or workload described with AppComposer. They contain
the information of Source and Target Threads, the CBR bandwidth sent from
Source to Target, a certain time window in which it is active, its periodicity, and
the amount of messages it should send.

Each Flow is mapped into an Injector (generates messages themselves)
and a Trigger (controls writing of messages into a bu�er, considering start and
stop times, amount of messages to be sent, ...), parametric entities that im-
plement a Flow at RTL. Each Flow is associated with a JSON object generated
from PlatformComposer (to be mentioned later in this chapter). This JSON ob-
ject contains all the aforementioned information of its related Flow. Finally,
the association of Injector-Trigger pairs models the speci�ed communication
pattern as stimulus to the de�ned network topology, emulating a real-world
application’s observed communication pattern.

The �its of the payload of a packet can be de�ned symbolically, through
strings such as "RANDO" or "BLANK", or literally, through a string such as
"00000000" (accomplishing the same as with de�ning a �it as "BLANK").
This will be useful when exploring the implementation of DVFS within the
framework, in Section 6.5.
6.3 DEFINING NETWORK TOPOLOGIES

Topological de�nitions are made through the PlatformComposer Python
module. In it, a topology is initially given from the dimensions of a base NoC.

43

Figure 6.2 – Generation of stimulus

Source: Author.

Busses/Crossbars are added one-by-one to the base NoC, when the follow-
ing information is provided: The Structure type (in the current state of the
framework, either a Bus or a Crossbar, but easily extensible to other forms of
interconnections in the future); its Location in the base NoC; and the amount
of PEs it services.

In the same manner as AppComposer, PlatformComposer generates a JSON
object which describes the intended network topology, as well as other relevant
parameters such as NoC bu�er size and Bridge bu�er sizes. This �le is read by
a top-level VHDL entity that correctly instantiates and connects Busses/Cross-
bars to the base NoC, as de�ned in the generated JSON �le. The parameters
read from this �le are then passed to parametric Bus/Crossbar VHDL imple-
mentations, as presented in Sections 4.2 and 4.3. It is only when exporting
the de�ned topology to JSON that PE addresses are de�ned, per the algorithm
exposed in Section 4.4.
6.4 MAPPING A WORKLOAD TO A NETWORK TOPOLOGY

Associating an Application’s Thread to a PE Global Address in the de-
�ned network topology is a signi�cantly easier e�ort than describing either
a Workload or topology. Thus, no further Python modules are required. The
framework simply requires an array (named an Allocation Map), formatted as
JSON, of Thread names in the form: "ApplicationName.ThreadName". This ar-

44

ray should be as deep as many PEs in the network topology in question, where
each index in the array is associated to a PE Global Address, e�ectively mapping
Threads to network positions.

In situations where multiple Threads are allocated to the same PE, Thread
names should be given as an array of strings, each in the aforementioned for-
mat. The need for this functionality will become evident when discussing the
implementation of DVFS, in Section 7.4.
6.5 IMPLEMENTING DVFS WITHIN THE PROPOSED FRAMEWORK

Details of the DVFS implementation exposed in Chapter 5, left abstract
until now, will be made concrete in this section.

Starting from the DVFS con�guration packet in Figure 5.3 (replicated in
Figure 6.3 for ease of understanding): The DVFS Service ID, Counter Bit Width and
Amount Of Voltages parameters are de�ned within the network topology JSON
�le, discussed in Section 6.3.
Figure 6.3 – Hermes packet containing DVFS information

Source: Author.

All VF-pair information is contained inside a DVFS Application (described
through AppComposer, as exposed in Section 6.2). This DVFS Application, added
to a base Workload, makes a �nal Workload for DVFS experiments. In this
Application, there will be N + 1 Threads, where N is the number of PEs in the
network topology in question. N of these Threads will be Source Threads, and 1
will be a Sink Thread. In the Allocation Map, Source Thread N should be mapped
to PE N, while the Sink Thread can be mapped to any PE. For convenience’s sake,
it is usually mapped to PE 0.

DVFS packets are sent from Source Threads to the Sink Thread. As such
a packet travel towards the Sink Thread, when the local port of the Router the

45

Source thread is associated to (either directly or through a Bus/Crossbar) is
traversed, the VF-pair information it carries is captured by a DVFS controller.

DVFS Flows are only added to Source Threads associated to PEs either
connected to the base NoC or the �rst PE in a Bus/Crossbar. The remaining
Source Threads, associated to PEs in a Bus/Crossbar other than the �rst, are left
idle. The contents of the packet associated with these Flows, actual values for
the Supply Voltage, IsNoC, N and M �elds in the DVFS Info �it of a DVFS service
message, are de�ned using the arbitrary �it value functionality presented in
Section 6.2, through the process described in Section 5.5.
6.6 FINAL CONSIDERATIONS

Finally, after de�ning a Workload (Section 6.2), network topology (Sec-
tion 6.3), and Allocation Map (Section 6.4), all that is left is de�ning the base
clock waveform for each Bus/Crossbar/Router. This is done in a similar fash-
ion as de�ning an Allocation Map, through a JSON-formatted array of clock
periods, given in nanoseconds. This array should be as deep as the amount
of Routers in the network topology in question. A Bus/Crossbar’s base clock
waveform will be obtained from the Router it is associated to.

Once these 4 �les (Workload, Topology, Allocation Map and Clocks) are
de�ned, the scenario can be simulated using any VHDL simulator.

7 EXPERIMENTAL EVALUATION

In order to evaluate the e�ectiveness of the use of hybrid network topolo-
gies and the proposed DVFS mechanism, RTL simulations were performed for
a variety of Workloads under di�erent network topologies. The Workloads are
described in Section 7.1.1, while the network topologies are described in Sec-
tion 7.1.2. In Section 7.2 a method for establishing power and area costs to
each of these experiments is de�ned. This method is then employed in Section
7.3, where a comparison of the previously described Workloads and network
topologies is made.
7.1 METHODOLOGY
7.1.1 Applications and Workloads

Using the tool described in Chapter 6, Workloads consisting from rel-
evant real-world multimedia applications are used to stimulate the network
topologies to be explored. These application characterizations are taken from
(BERTOZZI et al., 2005) (Figure 7.1) and (LATIF et al., 2013) (Figure 7.2). In
these graphs, nodes represent threads of an application, while edges and their
weights represent the expected Throughput between threads, in MBps.

47

Figure 7.1 – Characterization graphs for PIP, MWD, VOPD and MPEG4

Source: Author.

48
Figure 7.2 – Characterization graphs for H264_30 and H264_60

Source: Author.

For elaborating Workloads from these applications, two properties were
taken into consideration, Throughput Variance and Throughput Demand, which
respectively correspond to the variance and mean of the edges in the applica-
tion’s characterization graphs. Three Workloads (LL, MM and HH) were elabo-
rated such as to have an increasing average amount of each (across all appli-
cations within themselves). A fourth Workload (VV) was then made such that
there was a variation of both properties within its applications, containing both
high and low quantities of them. Workloads are named according, respectively,
to their Throughput Variance and Throughput Demand characteristics (for ex-
ample, workload LL36 has a (L)ow amount of Throughput Variance and a (L)ow
amount of Throughput Demand). These application characteristics are exposed
in Table 7.1, and the workloads themselves in Table 7.2:

49

Table 7.1 – Emulated applications information
Application PIP MWD VOPD MPEG4 H264_30 H264_60
Threads 8 12 12 12 15 15

AVG Tp 72 86.15 232.93 266.62 48.28 97.96
STDDEV Tp 22.63 19.38 160.13 297.25 44.65 92.60
Tp Variance low low medium high medium medium
Tp Demand low medium high high low medium

Tp Variance # 5 6 4 1 2 2
Tp Demand # 5 3 2 1 6 4

Max Tp Thread 192 192 800 935 300 600
Thread Name InpMemA IN VopRec SRAM2 YUVGen YUVGen

Source: Author.

Table 7.2 – Workloads information
Workload LL MM HH VV

Application 1 PIP H264_60 MPEG4 PIP
Application 2 MWD H264_60 MPEG4 H264_60
Application 3 H264_30 - VOPD MPEG4
Of Threads 35 30 36 35

Source: Author.

7.1.2 Network Topologies
For the experiments to be performed, four hybrid network topologies

were made, as to provide scenarios in which to evaluate the workloads described
in Subsection 7.1.1. The process of elaborating network topologies was again
based on the metrics of Throughput Variance and Throughput Demand:

Intuitively, it can be understood that the ideal network topology for a
workload with a low Throughput Demand would be a Bus, from its inherent
low complexity, enabling su�cient performance at low power and area costs.
On the opposite end, a Crossbar would be more well-suited for a workload with
high Throughput Demand, as it can provide a greater amount of performance
than a Bus or NoC.

For workloads with high Throughput Variance, an ideal hybrid topology
would consist of a number of both Busses and Crossbars, seeing as each appli-
cation in it (or speci�c threads of applications) would greatly bene�t from the

50

heterogeneity of the topology. In such a scenario, threads with low Through-
put Demand would allocated to Busses, while threads with high Throughput
Demand would be allocated to Crossbars. Again, this allows for a more precise
match of application performance demands and network performance o�ering,
all while reducing power and area costs. Complementarily, for workloads with
low Throughput Variance, a more homogeneous network would be best, seeing
as there are no gains to be had in a more diverse topology.

As of the process of allocating application threads to a given topology,
no formal algorithm was employed, but was done such that the principles of
a�nity between threads and networking elements, as outlined above, were
always followed. For a given topology and workload, Crossbars in the topology
are �lled with the workload’s threads that show a high Throughput Demand, as
taken from the characterization graphs in Figures 7.1 and 7.2. Similarly, Busses
are �lled with the threads that show the lowest Throughput Demands, while
the remaining threads are allocated to the NoC. Threads that are allocated to
the NoC are assigned speci�c routers such that hop counts an link contention
are minimized.

The 4 topologies, with the previously described workloads, are illustrated
in Figures 7.3, 7.4, 7.5 and 7.6. A comparison case, a NoC with the same
workloads allocated to, is shown in Figure 7.7. Similarly as done previously
with workloads, hybrid topologies are named according, respectively, to their
Throughput Variance and Throughput Demand characteristics, and number of
PEs (for example, topology HL36 has a (H)igh amount of Throughput Variance,
(L)ow amount of Throughput Demand, and 36 PEs).

51

Figure 7.3 – Topology LL36

Source: Author.

52

Figure 7.4 – Topology HH36

Source: Author.

53

Figure 7.5 – Topology HL36

Source: Author.

54

Figure 7.6 – Topology LH36

Source: Author.

55

Figure 7.7 – Topology Hermes36

Source: Author.

7.2 OBTAINING AREA AND POWER VALUES FOR AN ARBITRARY NETWORK
TOPOLOGY
In order to quantify the power and area costs of an arbitrary network

topology, logic syntheses were performed for Bus, Crossbar and NoCs in a vary-
ing number of PEs. These syntheses were done in a Multi-Mode Multi-Corner
(MMMC) �ow, using the Cadence Genus synthesis tool. The constraints used
were of 0.9 V for a target operating frequency of 125 MHz and 1.08 V for a target
operating frequency of 250 MHz (Minimum needed frequency for Thread with
largest throughput demand "MPEG4.SRAM2"). For all the scenarios, a bu�er
size of 4 �its and a data width of 32 bits were used. The information obtained
is shown in Tables A.1, A.2 and A.3, in Appendix A.

From the values in Tables A.1, A.2 and A.3, interpolation was performed,
as to obtain continuous functions that describe the power and area of a Bus,
Crossbar and NoC, for an arbitrary number of PEs, supply voltage and clock fre-
quency. The interpolating functions for area are given in Equations 7.1, 7.2 and
7.3 (in µm²); while the interpolating functions for power are given in Equations

56

7.4, 7.5 and 7.6 (in mW). Each is plotted against their source data points in
Figures 7.8 (area) and 7.9 (power).

ABus(N) = 3855.748392N (7.1)

ACrossbar(N) = 245.20020097N2 + 2, 758.92934103N (7.2)

ANoC(N) = 26085.96864N (7.3)

PBus(N, V, f) = (0.31754698f)(0.00492488V 2)(2.10027304N) (7.4)

PCrossbar(N, V, f) = (0.000111632394f)(0.347180324V 2)(1.79594527N2 + 91.4592863N)

(7.5)
PNoC(N, V, f) = (0.07510325f)(0.0651329V 2)(2.09489284N) (7.6)

Figure 7.8 – Area values for MMMC syntheses and interpolating functions

57

Figure 7.9 – Power values for MMMC syntheses and interpolating functions

Finally, from Equations 7.1 through 7.6, area and power values can be
obtained for any hybrid network topology, by Equations 7.7 (area) and 7.8
(power):

P = PNoC(N, V, f) +
∑
i

PBus(Ni + 1, Vi, fi) +
∑
j

PCrossbar(Nj + 1, Vj, fj) (7.7)

A = ANoC(N) +
∑
i

ABus(Ni + 1) +
∑
j

ACrossbar(Nj + 1) (7.8)

7.3 ESTABLISHING A NO-DVFS BASELINE FOR THE TOPOLOGIES UNDER STUDY
Using the power and area models exposed in Section 7.2, reference values

for the network topologies presented in Subsection 7.1.2 are obtained. A and P,
as de�ned in Equations 7.7 and 7.8, are evaluated for each topology, using the
1.08 V, 250 MHz corner for P. The values obtained are presented Figures 7.10
(area) and 7.11 (power):

58
Figure 7.10 – Baseline area values

Source: Author.

Figure 7.11 – Baseline power values (No DVFS)

Source: Author.
Figures 7.10 and 7.11 show the great impact in power and area of the

NoC, compared to the Bus and Crossbars. In the 4 hybrid topologies being

59

studied, the NoC is responsible for between 60% and 85% of power consump-
tion and between 77% and 92% of area. Furthermore, comparing the LH36 and
Hermes36 topologies, up to 22% of power and 42% of area can be gained by
employing a hybrid topology, instead of a homogeneous NoC.
7.4 COMPARING WORKLOADS AND NETWORK TOPOLOGIES UNDER DVFS

RTL simulations of 1ms each of the Workloads and Topologies shown in
Section 7.1 were performed. For all experiments, packet sizes were arbitrarily
set as 128 �its. For these simulations, the parameters of the DVFS controller
described in Section 5.5 are set as follows: Counter resolutions assume values
of 2, 5, 8, 11 and 14 bits, while the amount of supply voltages is set as 2 (cor-
responding to the 0.9 V and 1.08 V values from the synthesis step, in Section
7.2). Additionally, 3 DVFS granularities are explored: Router-grained, where
each Router, Bus and Crossbar have individual VF-pairs; Struct-grained, where
each Bus and Crossbar has an individual VF-pair, but the whole NoC has a sin-
gle VF-pair; and Global-grained, where there is a single global VF-pair. The
script that executes these simulations can be found in Appendix C, showing the
experiment automation capabilities of the framework presented in Chapter 6.

60
Figure 7.12 – Power, Throughput and Latency in DVFS experiments

Source: Author.
The results of the simulations are presented in Figure 7.12, normalized

to the associated No-DVFS case. (For the reader’s convenience, Figure 7.12 is
available in an enlarged format in Appendix D). For each DVFS granularity, three
metrics are presented: Power, Throughput and Latency. These three metrics are
di�erentiated in Figure 7.12 by their hatch pattern: Power bars are hatched with
diagonal bars; Throughput bars with circles; and Latency with horizontal bars.
DVFS granularity is di�erentiated by color: Router-grained DVFS �gures are
presented in blue; Struct-grained in green; and Global-grained in orange.

From Figure 7.12, the most obvious correlations are between DVFS ag-
gressiveness and increases in packet latencies, and reductions in power con-
sumption. This is can be more clearly seen in the experiment with Workload
LL. In the most extreme case (Topology LH36, router granularity and counter
resolution of 14) a power consumption di�erence of 89% can be observed, fol-
lowing a 635% increase in latency.

The same relationship is not observed between Throughput and Power.
Even though Power is seen to be greatly reduced, the same is not observed
of Throughput �gures, especially for Workloads LL and MM, where demand
is lower. Throughputs remain roughly the same, while power consumption is

61

signi�cantly decreased, especially with Router-grained DVFS. Proportionately,
Power gains are always seen to outweigh Throughput losses.

It can also be seen that Router-grained DVFS always provides a better
Power-Throughput trade-o� than Struct-grained and Global-grained DVFS.
This is clearly due to the fact that more precise clock frequency tuning is made
possible on �ner-grained DVFS. From this observation, it also follows that the
same applies between Struct-grained DVFS and Global-grained DVFS. As far as
Throughput is concerned, power consumption gains mostly come for free with
�ner-grained DVFS. No great change in Throughput is made evident, despite
signi�cant increases in Latency.

Another source of additional power consumption gains is the counter res-
olution of the DVFS controllers. As with DVFS granularity, this follows from the
same principle of additional precision in the frequency tuning of the network
elements. With this additional precision, the e�ective network frequency more
closely matches the theoretical target frequency (as exposed in Section 5.5),
allowing for further Power savings. The increase of counter resolution does
come at a Latency cost, even though Throughput remains una�ected.

Under DVFS, Throughput loss is mainly observed in Workloads MM, HH
and VV. In these Workloads, di�erent Throughput values are seen across vari-
ations in DVFS granularities and counter resolutions. This demonstrates an
inadequacy of the method employed for determining frequency costs of link
contention with the required exactness. Optimistic frequency numbers can be
masked by being rounding them up by a single counter step. In low enough
resolutions, this can be a large enough o�set as to silently cover inadequacies
in the frequency computations, at the cost of increased power consumption.
Additionally, with Struct- and Global- grained DVFS, the same masking e�ect
is found, when Routers’ computed frequencies are �attened out to either the
highest frequency Router’s, or the higher frequency network element, respec-
tively, as per the frequency matching logic exposed in Section 5.4.

While the proposed method seems to be well-suited for applications that
communicate in a more concise, "pipelined" manner (as seen in applications
such as PIP and MWD, present in Workload LL), the same cannot be said for sit-
uations in which threads communicate either through shared memory (MPEG4
implementation) or a with a large number of other threads (H264 YUV Generator
thread). In such situations, signi�cant drops in Throughput are observed, as far
as 45% in experiment with Topology HL36 and Workload MM (but providing
Power gains of 60%). Further study is still required for an optimal DVFS mech-
anism, allowing for maximum power savings, while not causing any signi�cant
losses in Throughput.

62

Finally, the Latency values shown in Figure 7.12 can’t be seen as reli-
able for Workload HH. Signi�cantly lower �gures (as far as 10%) are seen, and
cannot be taken as representative of real performance, seeing as its Power and
Throughput values more coherently match the No-DVFS case, as expected. Dis-
proportionately higher frequency values are seen as well, such as in the exper-
iment with Topology HH36, Workload VV, and a counter resolution of 8. Fur-
thermore, Throughput values are at times seen as slightly higher when com-
pared to No-DVFS experiments with the same Workload and Topology. This is
may be explained by non-steady-state behaviour being factored into the ex-
periment’s evaluation, and is expected to be reduced as to more closely match
the No-DVFS case with longer simulation times.
7.5 POWER AND AREA COSTS OF IMPLEMENTING DVFS

The cost of implementing DVFS comes through 4 elements: The DVFS
controller itself; the Power switches used to select supply voltages; the Level
shifter cells that assure correct logic levels between di�erent power domains;
and the Voltage regulator that generates the supply voltages to be selected by
each power domain.

The DVFS controller presented in Section 5.5 was synthesized under 0.9 V
voltage and 250 MHz frequency constraints. The Amount Of Voltages parameter
was taken as 2, while the Counter Bit Width parameter was taken as 5. This bit
width value is seen as reasonable, since it allows for a frequency step of 7.8125
MHz when used with an input clock of 250 MHz, making possible �ne-grained
frequency tuning. Synthesis information can be visualized in Table 7.3:
Table 7.3 – DVFS controller synthesis information

Timing Slack (ps) Total Power (nW) Total Area (µm²)
568 46787.759 631.023

Source: Author.
From Table 7.3, it can be seen that the DVFS contributes to total power

consumption to the order of µW, while the power consumption is to the order
of mW (from Figure 7.11). The same proportion is observed of area, which (in
the network topologies being studied) is to the order of hundreds of thousands
of µm², while the area of the controller is to the order of hundreds of µm².
This makes the addition of DVFS controllers of little impact to the area and
power consumption of the whole interconnection network, even at the �nest
granularity.

63

In (YADAV; CASU; ZAMBONI, 2013), synthesis results are reported for a
technology node of 45 nm. Conveniently, in this work, synthesis results are also
obtained from a 45 nm technology node. The authors report an area cost of
25 µm² for two supply switches, plus additional gate driver circuitry. A voltage
drop of less than 0.5% in the power switches was observed, making the power
consumption of the switches themselves negligible.

As for level shifters, the X1 strength 0.9V-to-1.08V cell LSLHX1_TO is
de�ned to have an area of 11.628 µm². Considering the worst-case scenario for
amount of level shifters, Router-grained DVFS in the Hermes36 topology, each
Router will require 5(32 + 1 + 1) level shifters each, totaling 6210 level shifting
cells required (32 data lines + Tx + Credit, times the amount of Router ports).
Assuming them to be LSLHX1_TO, this results in a signi�cant 71163.36 µm²
area overhead, which corresponds to 11% of the cell area of a 36 PE NoC (from
Table A.1).

Finally, (ABABEI; MASTRONARDE, 2014) argues that costs for an inte-
grated regulator that makes DVFS possible cannot be attributed solely to the
interconnection network. Seeing as the supply voltage generated by such a reg-
ulator will most likely be used in other modules throughout the system, power
and area costs must be split between the additional components that use this
voltage. Since there is no way to estimate possible voltage usage by di�erent
modules, no reliable values for the cost of a voltage regulator can be deter-
mined. Nevertheless, seeing there are 36 PEs serviced by the interconnection
network, it can be assumed that the amount of PEs that in fact use the gen-
erated voltage will be numerous enough that the costs of a regulator, diluted
between them and the interconnect, will be low enough as to make the addition
of DVFS worthwhile, as far as a voltage regulator is concerned.

8 CONCLUSION

The use of hybrid topologies in on-chip interconnection networks is demon-
strated to be an e�ective way of obtaining power and area savings. When com-
pared to a homogeneous NoC with the same number of PEs, gains of up to 22%
in power and 42% in area (Topology LH36) can be obtained through a hybrid
topology interconnection network.

Further power savings can be achieved by the use of DVFS. By discretizing
possible supply voltages, local generation of clock signals and software-based
centralized decision making, DVFS can be implemented such that area over-
heads and additional system complexity are minimized while power e�ciency
is maximized. Experiments with popular video encoding applications show an
improvement of up to 89% in power consumption (Topology HL36, Workload
LL, Counter Resolution 14), while application performance is not compromised
in most, but no all cases. The implementation of �ne-grained DVFS has non-
trivial area costs, but still presents a favorable outcome as far as the area-power
trade-o� is concerned.

As for future works, additional exploration of hybrid topologies is called
for. In this work, a NoC-centric approach was taken, but many other possibil-
ities are left to be explored. Such opportunities may be as an array of Busses
interconnected by a Crossbar, or the use of hierarchical Busses/Crossbars within
other Busses/Crossbars.

On the DVFS aspect of the proposal, it can be seen that not all Through-
put demands were supplied by the network under �ne-grained DVFS, making
obvious room for improvement in the methods used for computing networking
elements’ clock frequencies. Once this is accomplished, a concrete DVFS-aware
thread allocation algorithm, based on previous works in (TSAI et al., 2010) and
(CHESHMI et al., 2015) might be developed, as to provide optimal task alloca-
tion, allowing for minimal power consumption while still meeting application
Throughput demands.

BIBLIOGRAPHY

ABABEI, C.; MASTRONARDE, N. Bene�ts and costs of prediction based DVFSfor NoCs at router level. In: 2014 27th IEEE International System-on-ChipConference (SOCC). IEEE, 2014. Disponível em: <https://doi.org/10.1109/socc.2014.6948937>.
BERTOZZI, D. et al. NoC synthesis �ow for customized domain speci�c mul-tiprocessor systems-on-chip. IEEE Transactions on Parallel and DistributedSystems, Institute of Electrical and Electronics Engineers (IEEE), v. 16, n. 2, p.113–129, fev. 2005. Disponível em: <https://doi.org/10.1109/tpds.2005.22>.
CASU, M. R.; GIACCONE, P. Rate-based vs delay-based control for DVFS in NoC.In: Design, Automation & Test in Europe Conference & Exhibition (DATE),2015. IEEE Conference Publications, 2015. Disponível em: <https://doi.org/10.7873/date.2015.0613>.

. Power-performance assessment of di�erent DVFS control policies inNoCs. Journal of Parallel and Distributed Computing, Elsevier BV, v. 109, p.193–207, nov. 2017. Disponível em: <https://doi.org/10.1016/j.jpdc.2017.06.004>.
CHESHMI, K. et al. A clustered GALS NoC architecture with communication-aware mapping. In: 2015 23rd Euromicro International Conference on Par-allel, Distributed and Network-Based Processing. IEEE, 2015. Disponível em:<https://doi.org/10.1109/pdp.2015.113>.
HESSE, R.; JERGER, N. E. Improving DVFS in NoCs with coherence prediction. In:Proceedings of the 9th International Symposium on Networks-on-Chip -NOCS '15. ACM Press, 2015. Disponível em: <https://doi.org/10.1145/2786572.2786595>.
LATIF, K. et al. Design space exploration for MPSoC architectures. TUCS Disser-tations No 166, 2013.
LEE, H. G. et al. On-chip communication architecture exploration. ACM Trans-actions on Design Automation of Electronic Systems, Association for Com-puting Machinery (ACM), v. 12, n. 3, p. 1–20, ago. 2007. Disponível em:<https://doi.org/10.1145/1255456.1255460>.
LEE, S. et al. BusMesh NoC: A novel NoC architecture comprised of bus-basedconnection and global mesh routers. In: 2010 IEEE Asia Paci�c Conference onCircuits and Systems. IEEE, 2010. Disponível em: <https://doi.org/10.1109/apccas.2010.5774825>.
LEHMANN, P. JSON for VHDL. [S.l.]: GitHub, 2015. <https://github.com/Paebbels/JSON-for-VHDL>.

66

LU, Z.; YAO, Y. Marginal performance: Formalizing and quantifying powerover/under provisioning in NoC DVFS. IEEE Transactions on Computers, In-stitute of Electrical and Electronics Engineers (IEEE), v. 66, n. 11, p. 1903–1917,nov. 2017. Disponível em: <https://doi.org/10.1109/tc.2017.2715018>.
MOGHADDAM, M. G.; ABABEI, C. Investigation of DVFS for network-on-chipbased h.264 video decoders with truly real workload. In: 2016 Seventh Inter-national Green and Sustainable Computing Conference (IGSC). IEEE, 2016.Disponível em: <https://doi.org/10.1109/igcc.2016.7892586>.
MORAES, F. et al. HERMES: an infrastructure for low area overhead packet-switching networks on chip. Integration, Elsevier BV, v. 38, n. 1, p. 69–93,out. 2004. Disponível em: <https://doi.org/10.1016/j.vlsi.2004.03.003>.
SOARES, G. S. Estudo do Impacto de Diferentes Mecanismos de Arbitragemde Barramento em Sistemas Multiprocessados. 2017. Monogra�a (Mono-gra�a (Trabalho de Conclusão de Curso)) — Curso de Graduação em Engenhariade Computação, Universidade Federal de Santa Maria, Santa Maria, 2017.
TAHGHIGHI, M. et al. A new hybrid topology for network on chip. In: 20th Ira-nian Conference on Electrical Engineering (ICEE2012). IEEE, 2012. Disponívelem: <https://doi.org/10.1109/iraniancee.2012.6292457>.
TEDESCO, L. et al. Application driven tra�c modeling for NoCs. In: Proceedingsof the 19th annual symposium on Integrated circuits and systems design -SBCCI '06. ACM Press, 2006. Disponível em: <https://doi.org/10.1145/1150343.1150364>.
TSAI, K.-L. et al. Design of low latency on-chip communication based on hy-brid NoC architecture. In: Proceedings of the 8th IEEE International NEWCASConference 2010. IEEE, 2010. Disponível em: <https://doi.org/10.1109/newcas.2010.5603934>.
VANGAL, S. et al. An 80-tile sub-100-w TeraFLOPS processor in 65-nm CMOS.IEEE Journal of Solid-State Circuits, Institute of Electrical and ElectronicsEngineers (IEEE), v. 43, n. 1, p. 29–41, jan. 2008. Disponível em: <https://doi.org/10.1109/jssc.2007.910957>.
WALTER, I.; CIDON, I.; KOLODNY, A. BENoC: A bus-enhanced network on-chipfor a power e�cient CMP. IEEE Computer Architecture Letters, Institute ofElectrical and Electronics Engineers (IEEE), v. 7, n. 2, p. 61–64, jul. 2008.Disponível em: <https://doi.org/10.1109/l-ca.2008.11>.
YADAV, M. K.; CASU, M. R.; ZAMBONI, M. LAURA-NoC: Local automatic rateadjustment in network-on-chips with a simple DVFS. IEEE Transactions onCircuits and Systems II: Express Briefs, Institute of Electrical and ElectronicsEngineers (IEEE), v. 60, n. 10, p. 647–651, out. 2013. Disponível em: <https://doi.org/10.1109/tcsii.2013.2277983>.

67

YAO, Y.; LU, Z. DVFS for NoCs in CMPs: A thread voting approach. In: 2016IEEE International Symposium on High Performance Computer Architec-ture (HPCA). IEEE, 2016. Disponível em: <https://doi.org/10.1109/hpca.2016.7446074>.
. Pursuing extreme power e�ciency with PPCC guided NoC DVFS. IEEETransactions on Computers, Institute of Electrical and Electronics Engineers(IEEE), v. 69, n. 3, p. 410–426, mar. 2020. Disponível em: <https://doi.org/10.1109/tc.2019.2949807>.

APPENDIX A – SYNTHESIS INFORMATION FOR BUSSES, CROSSBARS AND
NOCS

Table A.1 – Area information for MMMC syntheses
Struct # PEs # Cells Cell Area (µm²) Net Area (µm²) Total Area (µm²)

Bus

4 2511 10815.07 3489.93 14305.00
9 5373 23716.33 7527.35 31243.68
16 9333 41640.55 13140.47 54781.02
25 14799 70324.09 20715.13 91039.22
36 21382 101783.64 29898.85 131682.49
49 31738 154524.15 42531.63 197055.78
64 40979 193715.30 54959.71 248675.00
81 52229 245334.04 70082.45 315416.50

100 63123 297970.58 85256.31 383226.89

Crossbar

4 2534 9925.52 3634.10 13560.51
9 8844 27479.36 12572.37 40051.72
16 22025 65110.30 31674.11 96784.41
25 46179 128070.45 66937.04 195007.49
36 87004 237585.00 127900.41 365485.42
49 195294 470876.20 267015.24 737891.44
64 324069 782181.40 445179.69 1227361.05
81 497641 1174919.11 687170.96 1862090.07

100 734921 1705134.37 989478.16 2694612.52

NoC

4 13324 47154.276 17204.90 64359.17
9 37315 130915.90 48355.96 179271.85
16 72446 255061.55 94997.16 350058.71
25 130605 438456.65 164452.29 602908.88
36 198488 653930.68 246021.41 899952.09
49 276153 909438.19 342492.68 1251930.87
64 366635 1208952.90 454910.49 1663863.39
81 468649 1547900.55 582164.10 2130064.65

100 583803 1929276.38 725721.93 2654998.39

Source: Author.

69
Table A.2 – Timing and power information for MMMC syntheses (0.9 V, 125MHZ corner)

Struct # PEs Slack (ps) Leakage (nW) Dynamic (nW) Total (nW)

Bus

4 670 254.929 1199168.88 1199423.81
9 670 558.591 2450205.229 2450763.82
16 680 975.108 4480334.442 4481309.55
25 552 1761.144 7081124.504 7082885.648
36 482 2523.366 10212815.7 10215339.06
49 383 4134.495 16539256.27 16543390.77
64 -233 5087.839 21758398.39 21763486.23
81 -1479 6618.652 27970114.3 27976732.96

100 -3039 8006.496 34713010.63 34721017.13

Crossbar

4 2449 201.82 1140877.045 1141078.864
9 2450 600.576 3014212.836 3014813.412
16 1545 1460.457 6309098.667 6310559.124
25 520 2972.584 11481602.62 11484575.2
36 427 5632.516 18479008.79 18484641.31
49 416 12238.421 36344102.17 36356340.59
64 375 20859.441 60484359.87 60505219.31
81 402 30847.553 78388476.2 78419323.75

100 387 44805.01 107443451.9 107488256.9

NoC

4 332 978.736 2579155.084 2580133.82
9 332 2663.731 7133463.856 7136127.587
16 321 5216.706 13857307.86 13862524.56
25 306 9492.15 23612373.07 23621865.22
36 342 14237.404 35750872.21 35765109.61
49 318 19802.466 49485353.48 49505155.95
64 332 26328.924 65863179.1 65889508.02
81 314 33709.356 83019561.76 83053271.12

100 314 41991.691 106417265.7 106459257.4

Source: Author.

70

Table A.3 – Timing and power information for MMMC syntheses (1.08 V, 250MHZ corner)
Struct # PEs Slack (ps) Leakage (nW) Dynamic (nW) Total (nW)

Bus

4 21 409.678 3332561.467 3332971.145
9 22 901.333 6940216.95 6941118.283
16 28 1573.357 11957559.31 11959132.66
25 3 2850.457 20297051.94 20299902.4
36 5 4081.655 28512205.79 28516287.44
49 0 6706.893 46926925.27 46933632.17
64 -329 8247.135 61057579.83 61065826.96
81 -1124 10670.935 78188052.01 78198722.95

100 -1953 12921.484 98622165.01 98635086.5

Crossbar

4 837 329.174 3043695.793 3044024.967
9 837 988.471 8349266.281 8350254.753
16 543 2407.378 17810604.37 17813011.74
25 1 4913.211 31175166.94 31180080.15
36 0 9277.849 51051461.68 51060739.53
49 0 19940.592 100357699.6 100377640.2
64 0 33973.681 166108383.8 166142357.5
81 0 50288.051 219320985.5 219371273.6

100 0 72979.263 297410733.1 297483712.4

NoC

4 0 1602.331 7510590.625 7512192.955
9 0 4362.35 20601955.97 20606318.32
16 0 8537.24 40124121.39 40132658.63
25 2 15464.877 68513115.85 68528580.72
36 1 23209.768 102875100.9 102898310.7
49 0 32285.622 145158933.7 145191219.3
64 0 42917.859 190935163.1 190978080.9
81 0 54958.045 242579692.2 242634650.3

100 0 68468.534 304568939.3 304637407.9

Source: Author.

APPENDIX B – A COMPREHENSIVE EXAMPLE USE CASE OF THE
FRAMEWORK EXPOSED IN CHAPTER 6

B.1 OVERVIEW
A complete execution of the common use case is done in two steps: De-

scription and Execution. In the Description step, 4 de�nitions must be elabo-
rated: Topology, Workload, Allocation Map and Base Clocks. Topology de�ni-
tions are done through the use of PlatformComposer, Workloads with AppCom-
poser, Allocation Maps and Cluster Clocks with plain Python. In the Execution
step, the de�nitions made in the Description step are used to generate the
JSON �les containing the parameters expected by the hardware. As per the de-
�ned parameters, the desired topology is simulated in RTL, with the emulated
application as stimulus.

The example use case to be explored is exposed in Figures B.1 (workload
consisting of 3 PIP applications) and B.2 (topology):
Figure B.1 – PIP characterization graph

72

Figure B.2 – Example hybrid topology

A “-h” argument for the commands and scripts to be mentioned is al-
ways available. Executing a command/script with this argument describes the
required and optional arguments for the command/script it is executed with,
which might be useful if this text is ever unclear or inadequate for a speci�c
functionality.
B.2 FRAMEWORK SETUP

The �rst step is to execute the setup.py script, located at “setup/setup.py”.
This script generates two other scripts, which, when executed, de�ne necessary
environment variables. One of these scripts, meant to be executed in Linux, is
written to a “.source” �le, while the other, meant for Windows, is written to
a “.bat” �le. (Any other OS are not immediately incompatible). These gen-
erated scripts contain environment variable de�nitions that are indispensable
to the use of the framework, and must always be executed (with the “source”
command, in Linux, or “call”, in Windows) before any attempt to use it in a
new shell instance. It is recommended that, for Linux, the “source” call to the
generated script is added to “.bash_aliases”, removing the need to manually
execute it at every new shell instance.

The setup.py script requires the following arguments: InstallName, the
main command name to be executed from shell e.g. (<InstallName> compile
[project]). If not given, “hibrida” will be taken as default; InstallPath, the frame-
work’s main directory (where “doc/”, “data/”, “scripts/”, “setup/” and “src/” are
contained). If not given, setup.py’s parent directory will be taken as default; De-
faultProjDir, the default directory for new projects. If not given, “Desktop/Hib-
ridaProjects” will be taken as default.

For a main command name “hibrida” and an install directory “/home/us-
r/ExUser/hibrida/”, setup.py should be executed as:

python setup.py -InstallName hibrida -InstallPath /home/usr/ExUser/hibrida/

73

Executing the above command, “hibrida.source” and “hibrida.bat” will be
created in the same directory as setup.py.

Additionally, the script creates the con�g.json and projectIndex.json �les,
located at “data/”. Thess �les contains default directories info, as well as
project info, respectively, to be �lled out later, when using the projgen and
setcon�g commands.
B.3 DESCRIPTION STEP
B.3.1 Topology Description

Topology descriptions are done through the Platform class in the Plat-
formComposer module and the Bus and Crossbar classes in the Structures module.
Starting with a Platform object, the Platform.addStructure() method can be called
to insert a new Bus/Crossbar at a given position in the base NoC.

For the topology from the use case example being explored, the required
PlatformComposer manipulations necessary are shown in Listing B.1

Listing B.1: Describing the example Topology being explored
1 import PlatformComposer
2
3 # Creates base 3x3 NoC
4 Setup = PlatformComposer.Platform(BaseNoCDimensions=(3, 3))
5
6 # Adds crossbar containing 7 PEs @ base NoC position (2, 0)
7 CrossbarA = PlatformComposer.Crossbar(AmountOfPEs = 7)
8 Setup.addStructure(NewStructure=CrossbarA, BaseNoCPos=(2, 0))
9

10 # Adds bus containing 6 PEs @ base NoC position (2, 1)
11 BusA = PlatformComposer.Bus(AmountOfPEs = 6)
12 Setup.addStructure(NewStructure=BusA, BaseNoCPos=(2, 1))
13
14 # Adds bus containing 6 PEs @ base NoC position (2, 2)
15 BusB = PlatformComposer.Bus(AmountOfPEs = 6)
16 Setup.addStructure(NewStructure=BusB, BaseNoCPos=(2, 2))
17
18 Setup.toJSON(SaveToFile = True, FileName = "ExampleTopology")

Executing the script above creates a “ExampleTopology.json” �le in its di-
rectory, containing the topology parameters which describe the desired network
topology for the example being explored, such as Bus/Crossbar positions in base
NoC, their sizes, and PEPos values for its associated PEs (too big to be included
as a �gure in this document). This �le will be used later on in the Execution
step.

74

B.3.2 Workload Description
In a similar fashion, application descriptions are done through the App-

Composer module. The Application, Thread and Flow classes are hierarchically
used, with Application at the top. A Flow class represents an edge in an applica-
tion’s communication graph (associating two vertices with a quanti�ed value,
in this case, communication bandwidth, in MBps), and a Thread its vertices.
Thread classes are a collection of Flow objects, and Application classes a col-
lection of Thread objects.

For the application (PIP) in the example being explored, it is described as
shown in Listing B.2:

Listing B.2: Describing the example Application being explored
1 import AppComposer
2
3 # Make Application
4 PIP = AppComposer.Application(AppName = "PIP", StartTime = 0, StopTime = 0)
5
6 # Make Threads
7 InpMemA = AppComposer.Thread(ThreadName = "InpMemA")
8 HS = AppComposer.Thread(ThreadName = "HS")
9 VS = AppComposer.Thread(ThreadName = "VS")

10 JUG1 = AppComposer.Thread(ThreadName = "JUG1")
11 InpMemB = AppComposer.Thread(ThreadName = "InpMemB")
12 JUG2 = AppComposer.Thread(ThreadName = "JUG2")
13 MEM = AppComposer.Thread(ThreadName = "MEM")
14 OpDisp = AppComposer.Thread(ThreadName = "OpDisp")
15
16 # Add Threads to applications
17 PIP.addThread(InpMemA)
18 PIP.addThread(HS)
19 PIP.addThread(VS)
20 PIP.addThread(JUG1)
21 PIP.addThread(InpMemB)
22 PIP.addThread(JUG2)
23 PIP.addThread(MEM)
24 PIP.addThread(OpDisp)
25
26 # Add Flows to Threads (Bandwidth parameter must be in Megabytes/second)
27 InpMemA.addFlow(AppComposer.Flow(TargetThread = HS, Bandwidth = 128))
28 InpMemA.addFlow(AppComposer.Flow(TargetThread = InpMemB, Bandwidth = 64))
29 HS.addFlow(AppComposer.Flow(TargetThread = VS, Bandwidth = 64))
30 VS.addFlow(AppComposer.Flow(TargetThread = JUG1, Bandwidth = 64))
31 JUG1.addFlow(AppComposer.Flow(TargetThread = MEM, Bandwidth = 64))
32 InpMemB.addFlow(AppComposer.Flow(TargetThread = JUG2, Bandwidth = 64))

75

33 JUG2.addFlow(AppComposer.Flow(TargetThread = MEM, Bandwidth = 64))
34 MEM.addFlow(AppComposer.Flow(TargetThread = OpDisp, Bandwidth = 64))
35
36 # Save App to JSON
37 PIP.toJSON(SaveToFile = True, FileName = "PIP")

Hierarchically, Application, Thread and Flow objects are de�ned, and linked
to their parent object with the Application.addThread() and Thread.addFlow()
methods. Like previously done for the topology description, the Application
class is exported in JSON format to “PIP.json”. This �le will be used for de�n-
ing a Workload.

In the same way that Application objects are a collection of Thread ob-
jects, Workload objects are a collection of Application objects. A Workload can
be composed of any number of instances of any Application object, as made
such as in Figure 4. This can be leveraged as to easily reuse previously made
Application objects in di�erent Workloads.

For the example use case being explored, 3 PIP applications are instanti-
ated. Such a workload can be described, using AppComposer, like demonstrated
in Listing B.3:

Listing B.3: Describing the example Workload being explored
1 import os
2 import AppComposer
3
4 # Makes Workload object
5 PIP_WL = AppComposer.Workload(WorkloadName = "PIP_WL")
6
7 # Opens PIP App json file
8 with open(os.getenv("HIBRIDA_PATH") + "/data/flowgen/applications/PIP.json") as PIP_JSON:
9

10 # Builds 3 PIP Apps from JSON and add them to PIP_WL Workload
11 for i in range(3):
12
13 PIPApp = AppComposer.Application()
14 PIPApp.fromJSON(PIP_JSON.read())
15 PIPApp.AppName = "PIP_" + str(i+1)
16 PIP_WL.addApplication(PIPApp)
17 PIP_JSON.seek(0)
18
19 # Exports Workload to json format
20 PIP_WL.toJSON(SaveToFile = True, FileName = "PIP_WL")

Executing the script in Listing B.3 creates “PIP_WL.json”, describing the 3
PIP instances. This �le will be used in the Execution step.

76

B.3.3 Allocation Map Description
Allocation Maps are more simply described than Workloads or Topologies.

It is a list of Application and Thread name strings, associating a Thread to a
location in the network (PEPos).

Threads should be identi�ed as “<AppName>.<ThreadName>”, or a list of
such, if multiple Threads are to be allocated to the same PEPos.

For the example being explored, this is exempli�ed in Listing B.4:
Listing B.4: Describing the example Allocation Map being explored

1 import json
2
3 # AllocMap[PEPos] = $App.$Thread
4 AllocArray = [None] * 25
5
6 AllocArray[0] = None
7 AllocArray[1] = "PIP_3.OpDisp"
8 AllocArray[2] = "PIP_3.InpMemA"
9 AllocArray[3] = "PIP_1.JUG1"

10 AllocArray[4] = "PIP_3.MEM"
11 AllocArray[5] = "PIP_2.InpMemA"
12 AllocArray[6] = "PIP_2.HS"
13 AllocArray[7] = "PIP_2.InpMemB"
14 AllocArray[8] = "PIP_1.VS"
15 AllocArray[9] = "PIP_3.VS"
16 AllocArray[10] = "PIP_1.InpMemA"
17 AllocArray[11] = "PIP_1.HS"
18 AllocArray[12] = "PIP_1.InpMemB"
19 AllocArray[13] = "PIP_2.OpDisp"
20 AllocArray[14] = "PIP_3.HS"
21 AllocArray[15] = "PIP_2.VS"
22 AllocArray[16] = "PIP_2.JUG1"
23 AllocArray[17] = "PIP_2.JUG2"
24 AllocArray[18] = "PIP_2.MEM"
25 AllocArray[19] = "PIP_3.JUG2"
26 AllocArray[20] = "PIP_1.JUG2"
27 AllocArray[21] = "PIP_1.MEM"
28 AllocArray[22] = "PIP_1.OpDisp"
29 AllocArray[23] = "PIP_3.InpMemB"
30 AllocArray[24] = "PIP_3.JUG1"
31
32 AllocJSONString = json.dumps(AllocArray, sort_keys = False, indent = 4)
33
34 with open("ExampleAllocMap.json", "w") as JSONFile:
35 JSONFile.write(AllocJSONString)

77

This script creates “ExampleAllocMap.json”, which contains a mapping of
Threads to PEPos values. This �le will be used in the Execution step.
B.3.4 Base Clocks Description

A Base Clocks �le establishes clock periods (in nanoseconds) for every
cluster in a described topology. A cluster is de�ned as a single router in the
base NoC plus its associated Bus/Crossbar, if any. As with Allocation Maps,
Base Clocks are described using plain Python.

For the example being explored, de�ning 100 MHz clocks (10 ns period)
for every cluster is done as in Listing B.5:

Listing B.5: Describing the example Allocation Map being explored
1 import json
2
3 # ClusterClocks[BaseNoCPos] = Clock Period (in ns)
4 ClusterClocks = [None] * 9
5
6 ClusterClocks[0] = float(10)
7 ClusterClocks[1] = float(10)
8 ClusterClocks[2] = float(10)
9 ClusterClocks[3] = float(10)

10 ClusterClocks[4] = float(10)
11 ClusterClocks[5] = float(10)
12 ClusterClocks[6] = float(10)
13 ClusterClocks[7] = float(10)
14 ClusterClocks[8] = float(10)
15
16 ClocksJSONString = json.dumps(ClusterClocks, sort_keys = False, indent = 4)
17
18 with open("ExampleClusterClocks.json", "w") as JSONFile:
19 JSONFile.write(ClocksJSONString)

B.4 EXECUTION STEP
In the Execution step, the 4 required descriptions made in the Descrip-

tion step are used to create JSON con�guration �les to be read by the VHDL
implementations, and simulate the intended network topology, with stimulus
emulating the desired real-world application.

Each sub-step in the Execution step is implemented as a sub-command
to the main command de�ned by the setup script, in Section A.3. For the ex-
ample being explored, it was previously de�ned in the previous chapter as “hi-
brida”.

78

All of the commands mentioned in this chapter, except for projgen (for
obvious reasons), require a “-p” argument, de�ning the project in which the
given command will operate upon. This can be done explicitly, with the already
mentioned -p option, or implicitly, taking the most recently used project, saved
in “data/con�g.json”, as default. A warning message will be given in this case.
In this text, the project will be de�ned explicitly, as to avoid any confusion by
the reader.
B.4.1 projgen

In the projgen command, the required directory structure for a frame-
work project is established. 5 main directories are created: “platform/”, where
Topology and Cluster Clock parameters will be stored; “�ow/”, for application
emulation parameters; “log/”, for run-time logs; “src_json/” for the original
JSON �les, from the Description step; and “deliverables/” for reports generated
by logparser.

projgen expects two arguments:
ProjectDirectory, pd: Directory where “�ow/”, “log/”, “�ow/” and “src_json” will
be contained. If not given, the default project dir as de�ned in con�g.json will

be taken as default;
ProjectName, pn: Name of new project, to be indexed in projects list in

con�g.json. If not given, “HibridaProject” will be used as default.
In the example being explored, from the main command name de�ned

as “hibrida”, to create a new project “ExampleProject” at “\home \user\cgewehr
\HibridaProjects”, projgen should be executed as:

hibrida projgen -pd \home\user\cgewehr\HibridaProjects -pn ExampleProject

projgen also creates a make�le, which can be used to interface with the
simulator used to compile/elaborate/simulate the VHDL implementations (Ca-
dence tools are taken as default). It can be used directly, through the make
Linux command (make compile, make elab, ...), or through the framework’s com-
mon frontend, as hibrida compile, hibrida elab, ...

B.4.2 setcon�g
The �les created in the Description step are linked to a project by the use

of setcon�g. Files can be linked individually, with multiple calls to setcon�g, or
all at once, with a single call to setcon�g. Each required �le has an associated
argument in setcon�g:

79

ProjectName, p: Project created by projgen;
TopologyFile, t: Topology �le, created in the Description step;

WorkloadFile, w: Workload �le, created in the Description step;
AllocationMapFile, a: Allocation Map �le, created in the Description step;

ClusterClocksFile, c: Cluster Clocks �le, created in the Description step;
State, s: Print out status of required �les

Description �les can be given either as an absolute path or as a relative
path, in which case the default directory for its �le type, as de�ned in con�g.json,
is concatenated to the given relative path. Additional directories for �les to be
searched for if given as relative paths can be added through the addsearchpath
command (not covered in this text).

Setting the �les created in this text at the Description step, using relative
paths and multiple calls to setcon�g, should be executed as:

hibrida setCon�g -p ExampleProject -t ExampleTopology.json
hibrida setCon�g -p ExampleProject -w PIP_WL.json

hibrida setCon�g -p ExampleProject -a ExampleAllocMap.json
hibrida setCon�g -p ExampleProject -c ExampleClusterClocks.json

Checking the status of a project’s Description �les can be done by exe-
cuting setcon�g with “-s” produces the console output shown in Figure B.3:
Figure B.3 – Console output of setcon�g with -s option

B.4.3 �owgen
With �owgen, the Description �les previously de�ned with setcon�g will

be used to generate the parameter �les expected by the hardware component,
implementing the intended network topology and stimulus.

For the example being explored, �owgen should be executed as:
hibrida �owgen -p ExampleProject

After its execution, “�ow/” will be populated by the JSON con�gura-
tion �les to be read by the Injectors and Triggers, and “platform/” by the JSON
�les to be read by the top level entity, which instantiates the base NoC and
Bus/Crossbars, as de�ned by the topology Description �le.

80

B.4.4 run/runnogui/compile-elab-sim/compile-elab-simnogui
The run command is used to interface with the make�le generated with

projgen through the framework’s common frontend, invoking the all make�le
recipe. With it, VHDL �les are compiled, the top level entity elaborated (with
the con�guration �les generated by �owgen) and the VHDL simulator opened
with a waveform viewer, all in one step. Alternatively, the runnogui command
may be executed, compiling and elaborating all �les, but simulating with no
waveform viewer.

These steps (compiling, elaborating and simulating) may also be exe-
cuted individually, through the compile, elab, sim/simnogui commands, respec-
tively. For each of these, an -opt option is available, passing through arguments
to the tool being invoked as if from the command line. For the run/runnogui
commands, each tool being invoked has a speci�c argument for options pass-
ing: -compopt for the compiler, -elabopt for the elaborator and -simopt for the
simulator.

For the example being explored, assuming a “run_for_100us.in” �le con-
taining the simulator commands necessary for simulating the project for 100
microseconds, the project can be executed with:

hibrida runnogui -p ExampleProject -simopt “-input run_for_100us.in”

B.4.5 logparser
After executing a project with a VHDL simulator, its “log/” directory will

be populated by input and output logs associated with each PE in the network.
The content of these log �les can be parsed and analysed with the logparser
command.

With the logparser command, packet receive count, average latency and
throughput information can be obtained. The depth of the analysis can be set
as PE-deep or Thread-deep, as de�ned by the -PE and –Thread options (both
can be used at the same time). A -DVFS option is also available, reporting the
frequency changes in any Router/Bus/Crossbar in the topology.

Executing logparser produces the following outputs:
hibrida logparser -p ExampleProject -PE –Thread -DVFS

Console output is shown in Figures B.4, B.5, B.6:

81
Figure B.4 – Console output of logparser showing amount of packets delivered

82
Figure B.5 – Console output of logparser showing packet latencies

83
Figure B.6 – Console output of logparser showing PE output throughputs

This information is also available in JSON format inside the project’s "de-
liverables/" directory, allowing for automated analysis of an experiments out-
comes.

APPENDIX C – SCRIPTED EXECUTION OF EXPERIMENTS WITH THE
FRAMEWORK EXPOSED IN CHAPTER 6

Listing C.1: Script executing the experiments described in Section 7.1
1 import json
2 import os
3
4 Setups = ["SetupLL36", "SetupLH36", "SetupHL36", "SetupHH36", "Hermes36"]
5 CounterResolutions = [2, 5, 8, 11, 14]
6 Granularities = ["GlobalGrained", "StructGrained", "RouterGrained"]
7 Workloads = ["WorkloadLL", "WorkloadMM", "WorkloadHH", "WorkloadVV"]
8
9 ProjectBaseDir = "/home/usr/cgewehr/Desktop/DVFSProjects/"

10
11 mainScript = "python3 /home/usr/cgewehr/Desktop/FrameworkHibrida/scripts/mainScript.py"
12
13 for Setup in Setups:
14 for Resolution in CounterResolutions:
15 for Granularity in Granularities:
16
17 if Setup == "Hermes36" and Granularity == "StructGrained":
18 continue
19
20 for Workload in Workloads:
21
22 # Create project
23 ProjectName = Setup + "_" + str(Resolution) + "_" + Granularity + "_" + Workload
24 ProjectDir = ProjectBaseDir + Setup + "/" + ProjectName
25 os.system(mainScript + " projgen -pn " + ProjectName + " -pd " + ProjectDir)
26
27 # Set description files
28 os.system(mainScript + " setconfig -a " + Workload + "/" + Setup + ".json")
29 os.system(mainScript + " setconfig -c 36_250MHz.json")
30 os.system(mainScript + " setconfig -t " + Setup + ".json")
31 os.system(mainScript + " setconfig -w " + Workload + "/" + ProjectName ".json")
32
33 # Change counter resolution to match resolution defined by DVFS Workload
34 with open(ProjectDir + "/src_json/Topology.json", ’r+’) as TopologyFile:
35 TopologyDict = json.loads(TopologyFile.read())
36 TopologyDict["DVFSCounterResolution"] = Resolution
37 TopologyFile.truncate(0)
38 TopologyFile.seek(0)
39 TopologyFile.write(json.dumps(TopologyDict, sort_keys = False, indent = 4))
40

85

41 # Generate hardware config files
42 os.system(mainScript + " flowgen")
43
44 # Create sim.in file for ncsim (simulate for 1 ms)
45 with open(ProjectDir + "/ncsim.in", ’w’) as InputFile:
46 InputFile.write("run 1ms\n")
47 InputFile.write("exit\n")
48
49 # run ncsim with -f sim.in (simulate for 1 ms)
50 os.system(mainScript + " runnogui -simopt \" -input ncsim.in\"")
51
52 # Generate PE throughput and DVFS reports
53 os.system(mainScript + " logparser -PE --Thread -min 0 -max " + str(1*10**6))
54 os.system(mainScript + " logparser -DVFS -min 0 -max " + str(1*10**6))
55
56 # Delete ncsim.log (save HD space)
57 os.remove(ProjectDir + "/log/cadence/ncsim.log")

87

APPENDIX D – POWER, THROUGHPUT AND LATENCY COMPARISON FOR
DVFS EXPERIMENTS

Figure D.1 – Power, Throughput and Latency in DVFS experiments (enlarged)

Source: Author.

