Mostrar registro simples

dc.creatorRupp, Caroline Jaskulski
dc.date.accessioned2017-05-04
dc.date.available2017-05-04
dc.date.issued2015-07-14
dc.identifier.citationRUPP, Caroline Jaskulski. Silicon and germanium in two-dimensional structures: a first principles study. 2015. 204 f. Tese (Doutorado em Física) - Universidade Federal de Santa Maria, Santa Maria, 2015.por
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/3932
dc.description.abstractFirst principles calculations within the density functional theory have been used to study the main structural, energetic, electronic, and optical properties of hydrogenated Si and Ge in the 2D structures (silicane and germanane). The calculations of the energetic stability were performed using the GGA-PBE approximation for the exchange-correlation functional. To a better description of the electronic properties, the HSE06 functional was used. We obtain that silicane and germanane are semiconductors com energy band gap of 2.94 eV (indirect, where the VBM is localized in the Γ point while the CBM is localized in the M point) and 1.61 eV (direct, both VBM and CBM are localized in the Γ point), respectively. The analysis of optical properties shows that germanane has a direct and smaller band gap being superior to silicane for fotocatalysis using solar energy. However, considering the production of H2 and O2 from the water splitting both materials are suitable only to the water reduction. The chemical functionalization through the substitution of a H atom by a N, P, S, Li, Na, K, Mg and Ca atom do not change the geometric structure of silicane and germanane. The calculated binding energies show that N, P and S adsorbed on a H site have greater binding energies (greater stability) when compared to alkaline metals (Li, Na, and K) and alkaline earth metals (Ca and Mg). The results show that the chemical functionalization give rise to new electronic levels inside the band gap, which is decreased when compared to the pristine system. Compared to the GGA-PBE functional, the use of HSE06 gives great values for the band gap as well as for the work function. A trend between the binding energies and the work functions is observed, the greater the binding energy the greater the work function. We also considered the chemical doping when a boron or a nitrogen substitutes a Si or Ge atoms. We have observed that when a B substitutes a SiH (GeH) unit, the systems preserve the semiconductor properties with a localized and empty electronic level inside the band gap. The adsorption of a H atom on the B site decreases the formation energies and the systems present metallic (for high concentrations of B) or p-type semiconductor (for low concentrations of B) properties. When a second H atom is adsorbed on the B atom the systems are more stable (lower formation energies) and semiconductors properties are observed. For N substituting a SiH (GeH) unit the semiconductor properties are preserved, however the band gap decreases and for silicane the band gap changes from indirect (pristine system) to direct (both VBM and CBM are localized in the Γ point). When a H atom is adsorbed on the N atom the systems present metallic (for high concentration of N) or n-type semiconductor properties (for low concentration of N). When a second H atom is adsorbed on the N impurity the systems present semiconductor properties, but localized electronic levels are present in the band gap. The analysis of the charge density and the electronic density of states shows that these localized levels come from Si (Ge) atoms with dangling bonds. The adsorption of H atoms on the dangling bonds stabilize the systems, which present negatives values for the formation energies (the systems are exothermic). These results show that the hydrogenated Si and Ge in the 2D structures are excellent candidates to be used in many applications, such as, fotocatalysis and electronic devices.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAcesso Abertopor
dc.subjectDFTpor
dc.subjectSilicanopor
dc.subjectGermananopor
dc.subjectFotocatálisepor
dc.subjectDopagempor
dc.subjectEletrônicapor
dc.subjectDFTeng
dc.subjectSilicaneeng
dc.subjectGermananeeng
dc.subjectPhotocatalysiseng
dc.subjectDopingeng
dc.subjectElectroniceng
dc.titleSistemas bidimensionais formados por silício e germânio: um estudo de primeiros princípiospor
dc.title.alternativeSilicon and germanium in two-dimensional structures: a first principles studyeng
dc.typeTesepor
dc.description.resumoΓUtilizando cálculos de primeiros princípios dentro da Teoria do Funcional da Densidade realizamos um estudo das principais propriedades estruturais, energéticas, eletrônicas e óticas dos sistemas hidrogenados formados por silício (Si) e germânio (Ge) na estrutura 2D (silicano e germanano). Os cálculos da parte energética foram realizados usando a aproximação GGA-PBE para descrever a energia de troca e correlação. Para uma melhor descrição da estrutura eletrônica usamos o funcional HSE06. Obtivemos que o silicano e o germanano são semicondutores com valores de gap de energia de 2,94 eV (indireto, onde o topo da banda de valência é localizado no ponto Γ e o fundo da banda de condução é localizado no ponto M) e 1,61 eV (direto, onde o topo da banda de valência e o fundo da banda de condução são localizados no ponto Γ). A análise das propriedades óticas mostra que o germanano é superior ao silicano para aplicações na fotocatálise utilizando a luz solar. Isto ocorre devido ao fato de que o germanano apresenta um espectro de absorção ótica na região da luz visível e um gap de energia direto. Entretanto, para a produção de H2 e de O2 a partir da quebra da molécula de H2O, ambos os materiais são somente bons candidatos para a reação de redução da água. Considerando a funcionalização química através da substituição de um átomo de H por um átomo de N, P, S, Li, Na, K, Mg e Ca, temos que a presença destes átomos não resulta em qualquer distorção na geometria do silicano e do germanano. Os valores das energias de ligação mostram que os elementos não metálicos, N, P e S, adsorvidos no lugar de um átomo de H apresentam os maiores valores de energias de ligação (maior estabilidade) em comparação com os metais alcalinos (Li, Na e K) e com os metais alcalinos terrosos (Mg e Ca). Os resultados mostram que a funcionalização química modifica as propriedades eletrônicas introduzindo níveis de defeitos nos gap de energias das estruturas eletrônicas de bandas em comparação com os sistemas pristinas. A utilização do funcional HSE06 faz com que os valores dos gap de energias e os valores das funções trabalho dos sistemas funcionalizados aumentem em comparação com os valores obtidos com o funcional GGA-PBE. Observamos que para os sistemas funcionalizados existe uma relação entre a energia de ligação e a função trabalho, ou seja, maior a energia de ligação maior é o valor da função trabalho. Consideramos também a dopagem química do silicano e do germanano com boro e nitrogênio substituindo um átomo de Si ou um átomo de Ge. Observa-se que quando um átomo de B substitui uma unidade SiH (GeH), os sistemas apresentam propriedades semicondutoras, com um nível de defeito no gap de energia. A adsorção de um átomo de H no átomo de B faz com que os valores das energias de formação diminuem e os sistemas apresentam propriedades metálicas (alta concentração de B) ou semicondutoras do tipo-p (baixa concentração de B). Quando um segundo átomo de H é adsorvido no átomo de B, os sistemas apresentam os menores valores de energias de formação e características semicondutoras. Para a dopagem com nitrogênio, temos que quando um átomo de N substitui uma unidade SiH (GeH), os sistemas apresentam propriedades semicondutoras com gap de energia direto no ponto Γ. A adsorção de um átomo de H no átomo de N faz com que os valores das energias de formação diminuem (aumentem) no germanano (silicano) e propriedades metálicas (alta concentração de N) ou semicondutoras do tipo-n (baixa concentração de N) são observadas. Quando um segundo átomo de H é adsorvido no átomo de N, a mesma tendência nas energias de formação é observada. Os sistemas apresentam propriedades semicondutoras com níveis de defeitos nos gap de energias devido a presença de ligações pendentes. Se átomos de H são adsorvidos nos átomos de Si (Ge) com ligações pendentes, os sistemas são estabilizados com valores de energias de formação negativos (os sistemas são exotérmicos). Estes resultados mostram que os sistemas formados por Si e Ge hidrogenados na estrutura 2D são excelentes candidatos para serem utilizados em dispositivos com várias aplicações como na fotocatálise e na eletrônica.por
dc.contributor.advisor1Baierle, Rogério José
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782775Y3por
dc.contributor.referee1Corrêa, Marcio Assolin
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764347Y1por
dc.contributor.referee2Scopel, Wanderlã Luis
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1465127043013658por
dc.contributor.referee3Machado, Marcelo Pereira
dc.contributor.referee3Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4707567A5por
dc.contributor.referee4Kloster, Carmen Luisa
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3218958424322612por
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4218314T0por
dc.publisher.countryBRpor
dc.publisher.departmentFísicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Físicapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::FISICApor


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples