UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM DISTÚRBIOS DA COMUNICAÇÃO HUMANA

OTOPROTEÇÃO DA N-ACETILCISTEÍNA E VIA DE MODULAÇÃO DA APOPTOSE EM CÉLULAS CILIADAS DE RATOS TRATADOS COM CISPLATINA

TESE DE DOUTORADO

Maiara Santos Gonçalves

Santa Maria, RS, Brasil 2015

OTOPROTEÇÃO DA N-ACETILCISTEÍNA E VIA DE MODULAÇÃO DA APOPTOSE EM CÉLULAS CILIADAS DE RATOS TRATADOS COM CISPLATINA

Maiara Santos Gonçalves

Tese apresentada ao Curso de Doutorado do Programa de Pós-Graduação em Distúrbios da Comunicação Humana, Área de concentração em Fonoaudiologia e Comunicação Humana: clínica e promoção, Linha de pesquisa Audição e Equilíbrio: diagnóstico, habilitação e reabilitação, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de **Doutor em Distúrbios da Comunicação Humana**

Orientador: Prof. Dr. Aron Ferreira da Silveira Co-orientador: Prof. Dr. Miguel Angelo Hyppolito

Universidade Federal de Santa Maria Centro de Ciências da Saúde Programa de Pós-Graduação em Distúrbios da Comunicação Humana

A Comissão Examinadora, abaixo assinada, aprova a Tese de Doutorado

OTOPROTEÇÃO DA N-ACETILCISTEÍNA E VIA DE MODULAÇÃO DA APOPTOSE EM CÉLULAS CILIADAS DE RATOS TRATADOS COM CISPLATINA

elaborada por Maiara Santos Gonçalves

como requisito parcial para obtenção do grau de **Doutor em Distúrbios da Comunicação Humana**

COMISSÃO EXAMINADORA:

Aron Ferreira da Silveira, Dr. (Presidente/Orientador)

Miguel Angelo Hyppolito, Dr. (FMRP-USP) (Co-orientador)

Jacqueline da Costa Escobar Piccoli (UNIPAMPA)

Ivana Beatrice Mânica da Cruz (UFSM)

Eliara Pinto Vieira Biaggio (UFSM)

Valdete Alves Valentins dos Santos Filha (UFSM)

Santa Maria, 10 de março de 2015.

DEDICATÓRIA

Ao **Fabiano**, amor de toda a vida,

por estar ao meu lado me fortalecendo e encorajando.

Por ser a minha estrutura e o meu refúgio.

AGRADECIMENTOS

Agradeço aos meus pais, **Odinei Bueno Gonçalves** e **Carmem Lucia Santos**, à minha irmã **Luana Santos Gonçalves**, à minha avó **Maria Jurema** (*in memorian*), minha base e essência, onde eu encontro acolhimento e apoio. Aos meus pais, todo o meu amor, reconhecimento e gratidão por terem me dado uma estrutura educacional sólida e tão importante para que eu soubesse o valor do estudo e alcançasse o sonho do doutorado. À minha avó, a constante lembrança do amor mais doce e terno que já recebi e senti.

Ao Prof. Dr. **Aron Ferreira da Silveira**, minha gratidão pela orientação e por ter aceitado o desafio dessa pesquisa confiando no meu trabalho. Obrigada também por ter sido um grande amigo, me tranquilizando nos momentos de maior aflição e insegurança.

Ao meu co-orientador, Prof. Dr. **Miguel Angelo Hyppolito**, por sempre ter sido cordial e gentil, pelos preciosos ensinamentos e por me conceder a oportunidade de uma experiência e um aprendizado transformadores.

À Adriana Muraschima, do Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço da FMRP-USP, por ter sido persistente, dedicada e solidária durante a pesquisa, por ter agido com inteligência quando foi necessário. Este trabalho não teria se concretizado sem ti. Muito obrigada!

À Maria Rossato, técnica de Laboratório Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço da FMRP-USP, meu sincero agradecimento pelo carinho com que me recebeste, me ajudando para além da pesquisa. Obrigada pela generosidade e por dedicar a tua competência a este trabalho!

À Vani Maria Alves Corrêa, técnica do Laboratório de Histotecnologia do Departamento de Biologia Celular e Molecular de Bioagentes Patogênicos da FMRP - USP, pelos ensinamentos enquanto estive no laboratório e pela a disponibilidade na preparação das amostras.

Às equipes dos Laboratórios de Microscopia Eletrônica, Microscopia Confocal e Neurobiologia da Audição da FMRP – USP.

À equipe do Laboratório de Técnica Cirúrgica e Cirurgia Experimental do Departamento de Cirurgia e Anatomia da FMRP – USP, em especial aos técnicos **José Carlos Vanni** e **Paulo Alves Junior**, pelo auxílio na etapa experimental desta pesquisa.

Aos membros da banca examinadora, pelo respeito e cordialidade com que fizeram as considerações desta pesquisa.

Aos professores do Programa de Pós Graduação em Distúrbios da Comunicação Humana da UFSM, pela contribuição ao meu aperfeiçoamento profissional e acadêmico. Em especial à Prof^a **Ana Paula Ramos de Souza**, por ter me incentivado enquanto Coordenadora do Programa e por ter acreditado em mim e na ideia da pesquisa desde o começo.

À Adriana Ribas, secretária do Programa de Pós Graduação em Distúrbios da Comunicação Humana, pelo tratamento gentil e prestativo durante todos os anos em que frequentei o Programa.

Aos órgãos financiadores desta pesquisa: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital de Clínicas da FMRP-USP (FAEPA) e ao Programa de Pós Graduação em Distúrbios da Comunicação Humana da UFSM.

Às colegas de pós-graduação que compartilharam os momentos acadêmicos e os tornaram mais leves, Lícia Assunção Cogo, Maria Elaine Trevisan, Leila Finger e Sinéia Neujahr.

Às minhas amigas, pela incrível capacidade de enfeitar a minha vida, cada uma com seu jeito especial, **Bibiana Moraes**, **Thiana Oliveira**, **Larissa Lautenschlager**, **Paula Marchetti**, **Bruna Correa** e, em especial, à **Geovana Bolzan**, pela forte e constante presença durante todos estes anos, pelo precioso apoio que nos dedicamos.

RESUMO

Tese de Doutorado
Programa de Pós-Graduação em Distúrbios da Comunicação Humana
Universidade Federal de Santa Maria

OTOPROTEÇÃO DA N-ACETILCISTEÍNA E VIA DE MODULAÇÃO DA APOPTOSE EM CÉLULAS CILIADAS DE RATOS TRATADOS COM CISPLATINA

AUTORA: MAIARA SANTOS GONÇALVES ORIENTADOR: ARON FERREIRA DA SILVEIRA CO-ORIENTADOR: MIGUEL ANGELO HYPPOLITO

Data e local da defesa: Santa Maria, 10 de março de 2015.

Este trabalho teve o objetivo de investigar o mecanismo de otoproteção da N-acetilcisteína (NAC) e a via de modulação da apoptose por meio da análise da expressão da enzima glutationa peroxidase (GSH-Px) e da proteína Bcl-2 em células ciliadas externas (CCEs) de ratos tratados com cisplatina. Também foi avaliada a função auditiva de ratos sob efeito de diferentes doses de cisplatina e NAC. Foram realizados dois experimentos, denominados de A e B, sendo o primeiro com um período experimental de cinco dias e o segundo de três dias. Cada experimento foi composto por quatro grupos, submetidos aos seguintes protocolos: grupo A1 (controle negativo): solução fisiológica 0,9%, via intraperitoneal, no mesmo volume correspondente à dose de cisplatina; grupo A2 (controle positivo): 100mg/Kg/dia de NAC, via oral por gavagem; grupo A3 (ototóxico): 3mg/Kg/dia de cisplatina via intraperitoneal; grupo A4 (ototóxico com otoproteção): 100 mg/Kg/dia de NAC via oral por gavagem, uma hora antes da administração de 3 mg/Kg/dia de cisplatina via intraperitoneal; grupo B1 (controle negativo): solução fisiológica 0,9% via intraperitoneal no mesmo volume correspondente à dose de cisplatina (8mg/Kg/dia); grupo B2 (controle positivo): 300 mg/Kg/dia de NAC via oral por gavagem; grupo B3 (ototóxico): 8 mg/Kg/dia de cisplatina via intraperitoneal; grupo B4 (ototóxico com otoproteção): 300 mg/Kg/dia de NAC via oral por gavagem, uma hora antes da administração via intraperitoneal de 8 mg/Kg/dia de cisplatina. Os animais do experimento A realizaram otoscopia, emissões otoacústicas produto de distorção (EOAPD) e potencial evocado auditivo de tronco encefálico (PEATE), antes e depois da administração das drogas. Os animais do experimento B realizaram estas mesmas avaliações também no pré e pós-tratamento, além de terem suas bulas timpânicas removidas e suas cócleas preparadas para a avaliação anatômica com microscopia eletrônica de varredura e imunofluorescência para a marcação da enzima GSH-Px e da proteína Bcl-2. No experimento A, verificou-se que não houve diminuição significativa da relação sinal-ruído das EOAPD, porém houve aumento significativo do limiar eletrofisiológico obtido por PEATE nos grupos A3 e A4. No experimento B, verificou-se que: não houve aumento significativo do limiar eletrofisiológico obtido por PEATE; as CCEs mantiveram-se anatomicamente íntegras; a enzima GSH-Px apresentou imunomarcação ausente no grupo B1 e imunomarcação presente nos grupos B2, B3 e B4; a proteína Bcl-2 apresentou imunomarcação ausente em todos os grupos estudados. A partir dos resultados, concluiu-se que a função auditiva foi mais prejudicada com a exposição de uma subdose de cisplatina durante um período mais prolongado, a via de modulação da apoptose nas células ciliadas externas de ratos tratados com cisplatina está relacionada com a expressão da enzima GSH-Px e não expressão da proteína Bcl-2.

Palavras-chave: Cisplatina. Radicais livres. Estresse oxidativo. Apoptose. Otoproteção. Cóclea.

ABSTRACT

Doctoral Thesis Program in Human Communication Disorders Federal University of Santa Maria

OTOPROTECTION BY N-ACETYLCYSTEINE AND THE APOPTOSIS MODULATION PATHWAY IN HAIR CELLS OF RATS TREATED WITH CISPLATIN

AUTHOR: MAIARA SANTOS GONÇALVES ADVISOR: ARON FERREIRA DA SILVEIRA CO-ADVISOR: MIGUEL ANGELO HYPPOLITO Santa Maria, March 10, 2015.

This paper aimed to investigate the apoptosis modulation pathway and the otoprotection mechanism of N-acetylcysteine (NAC) through the analysis of the glutathione peroxidase (GSH-Px) enzyme and the Bcl-2 protein expression in outer hair cells (OHCs) of rats treated with cisplatin. The listening function was also assessed in mice under the effect of different doses of cisplatin and NAC. Two experiments were performed, named A and B, the first being over an experimental period of five days, and the second during three days. Each experiment comprised four groups, under the following protocols: group A1 (negative control): intraperitoneally saline solution 0,9%, in the same volume corresponding to cisplatin dose; group A2 (positive control): 100mg/kg/day of NAC, oral administration by gavage; group A3 (ototoxic): 3mg/kg/day of intraperitoneally cisplatin; group A4 (ototoxic with otoprotection): 100 mg/kg/day of NAC oral administration by gavage, one hour before the administration of 3 mg/kg/day of intraperitoneally cisplatin; group B1 (negative control): intraperitoneally saline solution 0,9% in the same volume corresponding to the cisplatin dose (8mg/kg/day); group B2 (positive control): 300 mg/kg/day of NAC, oral administration by gavage; group B3 (ototoxic): 8 mg/kg/day of intraperitoneally cisplatin; group B4 (ototoxic with otoprotection): 300 mg/kg/day of NAC orally by gavage, one hour before the administration of 8 mg/Kg/day of intraperitoneally cisplatin. The animals in experiment A underwent otoscopy, distortion-product otoacustic emissions (DPOAEs) and brainstem auditory evoked potential (BAEP), before and after the administration of drugs. The animals in experiment B underwent the same testing in pre- and post-treatment, their tympanic bulla being removed ant their cochleae prepared for anatomical assessment with scanning electron microscopy and immunofluorescence for labeling the GSH-Px enzyme and the Bcl-2 protein. In experiment A, it was verified that there was no significant decrease in the signal-to-noise ratio of DPOEAs, but there was a significant increase in the electrophysiologic threshold obtained through BAEP in groups A3 e A4. In experiment B, it was verified that: there was no significant increase in the electrophysiologic threshold obtained through BAEP; the OHCs remained anatomically intact; the GSH-Px enzyme showed immunostaining absent in group B1 and immunostaining present in groups B2, B3 and B4; the Bcl-2 protein showed immunostaining absent in all groups. From the results, it was concluded that the listening function was more impaired by the exposure to a subdose of cisplatin over a longer period, the apoptosis modulation pathway in outer hair cells of mice treated with cisplatin is related to the expression of the GSH-Px enzyme and not expression of the Bcl-2 protein.

Key words: Cisplatin. Free radicals. Oxidative stress. Apoptosis. Otoprotection. Cochlea.

LISTA DE ILUSTRAÇÕES

Figura 1 - In	nagem demonstrativa da realização da EOAPD em rato	51
Figura 2- In	nagem demonstrativa da realização do PEATE em rato	52
Figura 3 - A:	cóclea de rato fixada pela base em um porta-espécime cilíndrico de metal; B: visualização da cóclea ao microscópio óptico	53
Figura 4 - Bu	ula timpânica de rato com orifício no ápice da cóclea para injeção de solução fixadora	55
Figura 5 - Fl	uxograma da sequência de procedimentos realizados no experimento A	58
Figura 6 - Fl	uxograma da sequência de procedimentos realizados no experimento B	59
Figura 7 - V	/ariação média do peso (em gramas) dos animais dos quatro grupos do experimento entre o primeiro e o sexto dia do experimento	
Figura 8 - Ex	xemplo de resultado de EOAPD de rato do grupo A1	64
Figura 9 - Ex	kemplo de resultado de EOAPD de rato do grupo A2	65
Figura 10 - E	Exemplo de resultado de EOAPD de rato do grupo A3	66
Figura 11 - E	Exemplo de resultado de EOAPD de rato do grupo A4	67
Figura 12 -	Exemplo de resultado do PEATE em rato do grupo A1. Limiar eletrofisiológico da onda na orelha direita em 20 dBNA e na orelha esquerda em 30 dBNA	
Figura 13 -	Exemplo de resultado do PEATE em rato do grupo A2. Limiar eletrofisiológico da ondo na orelha direita em 10 dBNA e na orelha esquerda em 20 dBNA	
Figura 14 -	Exemplo de resultado do PEATE em rato do grupo A3. Limiar eletrofisiológico da ondo na orelha direita e esquerda em 20 dBNA.	
Figura 15 -	Exemplo de resultado do PEATE em rato do grupo A4. Limiar eletrofisiológico da ondo na orelha direita e esquerda em 20 dBNA.	
Figura 16 -	Variação média do peso (em gramas) dos animais dos quatro grupos do experimento entre o primeiro e o quarto dia do experimento	
Figura 17 -	Exemplo de resultado do PEATE em rato do grupo B1. Limiar eletrofisiológico da onda na orelha direita e esquerda em 20 dBNA.	
Figura 18 -	Exemplo de resultado do PEATE em rato do grupo B2. Limiar eletrofisiológico da ondo na orelha direita em 20 dBNA e na orelha esquerda em 30 dBNA	
Figura 19 -	Exemplo de resultado do PEATE em rato do grupo B3. Limiar eletrofisiológico da ondo na orelha direita e esquerda em 20 dBNA.	
Figura 20 -	Exemplo de resultado do PEATE em rato do grupo B4. Limiar eletrofisiológico da onda na orelha direita e esquerda em 20 dBNA.	
Figura 21 -	Fotomicrografia de Microscopia Eletrônica de Varredura do órgão de Corti de rato grupo B1, mostrando o terço médio da espira basal. CCI: células ciliadas intern (estereocílios); CCE: células ciliadas externas (estereocílios); F1: primeira fileira; I	nas

_	a fileira; F3: terceira fileira. Obs de CCE. Aumento de 1500x	•	·
grupo (estere segund	crografia de Microscopia Eletrô B2, mostrando o terço médic ocílios); CCE: células ciliadas e a fileira; F3: terceira fileira. Obs de CCE. Aumento de 2000x	o da espira basal. CCI: c externas (estereocílios); l erva-se manutenção da a	células ciliadas internas F1: primeira fileira; F2: rquitetura ciliar nas três
grupo (estere segund	crografia de Microscopia Eletrô B3, mostrando o terço médic ocílios); CCE: células ciliadas e a fileira; F3: terceira fileira. Obs de CCE. Aumento de 1500x	o da espira basal. CCI: c externas (estereocílios); erva-se manutenção da a	células ciliadas internas F1: primeira fileira; F2: rquitetura ciliar nas três
Grupo (estere segund	crografia de Microscopia Eletrô B4, mostrando o terço médio ocílios); CCE: células ciliadas e a fileira; F3: terceira fileira; tura ciliar nas três fileiras de CC	o da espira basal. CCI: c externas (estereocílios); C: corpo celular. Obse	células ciliadas internas F1: primeira fileira; F2: rva-se manutenção da
Corti. A asteriso células	copia confocal do ducto coclear A: imagem em campo claro para co: membrana tectória retraída; imunomarcadas com anti-gluta eposição de imagens (B+C); seta	a orientação visual das cé B: núcleos celulares marc tiona peroxidase revelado	elulas do órgão de Corti; ados com DAPI (azul); C: o com Alexa 488 (verde);
A: imag asterisc DAPI (a	opia confocal do ducto coclear o gem em campo claro para orie co: membrana tectória retraída zul); C: células imunomarcadas osição de imagens (B+C); círculo	ntação visual das células (objetiva 63x); B: núcleos com anti-Bcl-2 revelado co	ciliadas externas (CCE), celulares marcados com om Alexa 488 (verde); D:
Corti. <i>A</i> (azul);	copia confocal do ducto coclear A: núcleos celulares marcados c B: células imunomarcadas com erde); C: sobreposição de imager	com DAPI e círculo indica n anti-glutationa peroxida	ndo os núcleos das CCE ase revelado com Alexa
A: ima membr imunor	opia confocal do ducto coclear o gem em campo claro com rana tectória retraída; B: nú marcadas com anti-Bcl-2 revela setas: núcleos das CCEs (objetiva	núcleos marcados com Icleos marcados com E do com Alexa 488; D: sc	DAPI (azul), asterisco: DAPI (azul); C: células obreposição de imagens
Corti. <i>A</i> (CCE); a (azul);	copia confocal do ducto coclear A: imagem em campo claro par asterisco: membrana tectória ro C: células imunomarcadas com erde); D: sobreposição de imago O)	ra orientação visual das o etraída; B: núcleos celula n anti-glutationa peroxida	células ciliadas externas res marcados com DAPI ase revelado com Alexa

So	croscopia confocal do ducto coclear de rato do grupo B3, evidenciando órgão de Corti. Obreposição de imagens (DAPI + anticorpo anti-glutationa peroxidase revelada com exa 488). Círculo indicando os núcleos das CCEs (objetiva 63x, zoom 2.0)
Co ma 48	croscopia confocal do ducto coclear de rato do grupo B3, evidenciando o órgão de orti. A: ducto coclear, EV: estria vascular, OC: órgão de Corti; B: núcleos celulares arcados com DAPI (azul); C: células imunomarcadas com anti-Bcl-2 revelado com Alexa (verde); D: sobreposição de imagens (B+C), CCE: células ciliadas externas (objetiva 8x, zoom 2.0).
Co cír glu	croscopia confocal do ducto coclear de rato do grupo B4, evidenciando o órgão de orti. A: imagem em campo claro para orientação visual das células do órgão de Corti; rculo: CCE; asterisco: membrana tectória retraída; B: células imunomarcadas com antiutationa peroxidase revelado com Alexa 488 (verde); C: sobreposição de imagens úcleos em azul marcados com DAPI + B) (objetiva 63x)
Co DA	croscopia confocal do ducto coclear de rato do grupo B4, evidenciando o órgão de orti; CCE:células ciliadas externas. Sobreposição de imagens (núcleos marcados com API + anticorpo anti-glutationa peroxidase revelado com Alexa 488) (objetiva 63x, nom 2.0)
A: Co an	croscopia confocal do ducto colear de rato do grupo B4, evidenciando o órgão de Corti. ducto coclear em objetiva 20x, GC: gânglio coclear, EV: estria vascular, OC: órgão de orti. B: núcleos celulares marcados com DAPI (azul); C: células imunomarcadas com ati-Bcl-2 revelado com Alexa 488 (verde); D: sobreposição de imagens (B+C) (objetiva 8x, zoom 2.0).
So	roscopia confocal do ducto colear de rato do grupo B4, evidenciando o órgão de Corti. Obreposição de imagens: núcleos celulares marcados com DAPI (azul) e células nunomarcadas com anti-Bcl-2 revelado com Alexa 488 (verde) (objetiva 63x, zoom 4.0).
im cel pe	omposição de imagens do órgão de Corti de ratos dos quatro grupos, referente à nunomarcação da enzima glutationa peroxidase. Sobreposição de imagens: núcleos flulares marcados com DAPI (azul) e células imunomarcadas com anti-glutationa eroxidase revelada com Alexa 488 (verde); A: grupo B1; B: grupo B2; C: grupo B3; D: upo B4 (objetiva 63x, zoom 2.0)
im ma	omposição de imagens do órgão de Corti de ratos dos quatro grupos, referente à nunomarcação da proteína Bcl-2. Sobreposição de imagens: núcleos celulares arcados com DAPI (azul) e células imunomarcadas com anti-Bcl-2 revelado com Alexa (verde). A: grupo B1; B: grupo B2; C: grupo B3;D: grupo B4 (objetiva 63x, zoom 2.0).

LISTA DE QUADROS

Quadro 1 - Comparação dos parâmetros do PEATE utilizados em roedores e humanos	41
Quadro 2 - Delineamento dos grupos de estudo	49

LISTA DE TABELAS

Tabela 1- Média e desvio padrão do peso (em gramas) em função dos dias nos grupos A1, A2, A3 e
A4
Tabela 2 – Média e desvio padrão da relação sinal-ruído (em dB) das EOAPD do grupo A1 por
frequência e orelha, antes e após o tratamento (n=2)
Tabela 3 – Média e desvio padrão da relação sinal-ruído (em dB) das EOAPD do grupo A2 por
frequência e orelha, antes e após o tratamento (n=2)
Tabela 4 – Comparação entre as médias dos valores da relação sinal-ruído (em dB) das EOAPD do
grupo A3 por frequência e orelha, antes e após o tratamento (n=6)
Tabela 5 - Comparação dos valores médios da relação sinal-ruído (em dB) das EOAPD do grupo A4
por frequência, antes e após o tratamento (n=7)
Tabela 6 - Comparação das médias da relação sinal-ruído (em dB) por frequência obtidas no pré e
pós-tratamento nos quatro grupos do experimento A, agrupando-se as orelhas direita e
esquerda (n=17)
Tabela 7 - Média e desvio padrão do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-
tratamento, por orelha, nos grupos A1 (n=2) e A2 (n=2)
Tabela 8 - Comparação dos valores médios do limiar eletrofisiológico (em dBNA) obtidos no pré e
pós-tratamento, por orelha e entre as orelhas direita e esquerda, no grupo A3 (n=6) 70
Tabela 9 - Comparação dos valores médios do limiar eletrofisiológico (em dBNA) obtidos no pré e
pós-tratamento, por orelha e entre as orelhas direita e esquerda, no grupo A4 (n=7) 71
Tabela 10 - Comparação dos valores médios do limiar eletrofisiológico (em dBNA) obtidos no pré e
pós-tratamento do experimento A, por grupo, agrupando-se as orelhas direita e esquerda.
Tabela 11 - Média e desvio padrão do peso (em gramas) em função dos dias nos grupos B1, B2, B3 e
B4
Tabela 12 – Média e desvio padrão do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-
tratamento, por orelha, nos grupos B1 (n=3) e B2 (n=3)
Tabela 13 - Comparação dos valores do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-
tratamento em cada orelha e entre as orelhas direita e esquerda, no grupo B3 (n=4) 76
Tabela 14 - Comparação dos valores do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-
tratamento em cada orelha e entre as orelhas direita e esquerda, no grupo B4 (n=4) 77
Tabela 15 - Comparação dos valores do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-
tratamento do experimento B, por grupo, agrupando-se as orelhas direita e esquerda 78

LISTA DE ABREVIATURAS E SIGLAS

4-HNE aldeído 4-hidroxinonenal

Apaf-1 fator ativador da protease na apoptose 1

Bax bcl-2 homologus antagonist bcl-x

Bcl-2 B-cell lymphoma 2

BSA Bovine Serum Albumine (Albumina de soro bovino)

CASPASE cysteine-aspartic-acid-proteases

CAT catalase

CCE célula ciliada externa
CCI célula ciliada interna

CDDP Cis-diaminodicloroplatina

COBEA Colégio Brasileiro de Experimentação Animal

DAPI 4',6-diamidino-2-phenylindole

dB decibel

dBNA Decibel em Nível de Audição

DL dose letal

DNA Deoxyribonucleic acid (Ácido desoxirribonucleico)

EDTA Ethylenediamine tetraacetic acid (ácido etilenodiamino tetra-acético)

EOAPD Emissões Otoacústicas Produto de Distorção

ERO espécie reativa de oxigênio

et al E colaboradores

FMRP Faculdade de Medicina de Ribeirão Preto

g Gramas

GSH glutationa reduzida

GSH-Px glutationa peroxidase

GSH-R glutationa redutase

h hora Hz Hertz

Kg Kilograma

MEV Microscopia Eletrônica de Varredura

mg Miligrama

ml Mililitros

ms Milissegundos

NAC N-acetilcisteína

NADPH Nicotinamida Adenina Dinucleotídeo Fosfato Oxidase

O₂. Radical superóxido

ºC Graus Celsius

OH radical hidroxila

PBS phosphate buffered saline

PEATE Potencial Evocado Auditivo de Tronco Encefálico

RNA Ribonucleic acid (Ácido ribonucleico)

Marca registrada

s Segundos

SBCAL Sociedade Brasileira de Ciência em Animais de Laboratório

SOD superóxido dismutase

TNFR1 Tumor Necrosis Factor Receptor 1

TRP Transient Receptor Potencial

TRPV1 Transient Receptor Potencial Vanilloid 1

USP Universidade de São Paulo

LISTA DE ANEXOS

Anexo 1	Aprovação da (Comissão de Etica er	n Experimentação	Animal	123

SUMÁRIO

1	INTRO	DUÇÃO	19	
2	JUSTIF	ICATIVA	23	
3	3 OBJETIVOS2			
	3.1	Objetivo geral	25	
	3.2	Objetivos específicos	25	
4	REV	ISÃO DE LITERATURA	26	
	4.1	Mecanismo de ototoxicidade da cisplatina	26	
	4.1.	1 Aspectos clínicos	26	
	4.1.	2 Mecanismo de ação	28	
	4.1.	Apoptose: a morte celular provocada pelas EROs na cóclea	31	
	4.2	Otoproteção da N-acetilcisteína e o papel da enzima glutationa peroxidase	34	
		nissões Otoacústicas evocadas produto de distorção (EOAPD) e Potencial Evo vo de Tronco Encefálico (PEATE)		
5	MA	TERIAL E MÉTODOS	42	
	5.1	Delineamento	42	
	5.2	Aspectos éticos	42	
	5.3	População e amostra	43	
	5.4	Processo de amostragem	43	
	5.4.	1 Cálculo do tamanho da amostra	43	
	5.4.	2 Critérios de inclusão	44	
	5.4.	3 Critérios de exclusão	44	
	5.5	Variáveis em estudo	44	
	5.6	Materiais	45	
	5.6.	1 Drogas e anticorpos utilizados	45	
	5.7	Grupos de estudo (n= número de ratos)	47	
	5.7.	1 Grupo A1: controle negativo (n=2)	47	
	5.7.	2 Grupo A2: controle positivo (n=2)	47	
	5.7.	3 Grupo A3: ototóxico (n=8)	48	
	5.7.	4 Grupo A4: ototóxico com otoproteção (n=7)	48	
	5.7.	5 Grupo B1: controle negativo (n=3)	48	
	5.7.	6 Grupo B2: controle positivo (n=3)	48	
	5.7.	7 Grupo B3: ototóxico (n=5)	49	

5.7	7.8 Grupo B4: ototóxico com otoproteção (n=5)	49
5.8	Descrição dos procedimentos utilizados para a coleta de dados	50
5.8	3.1 Reflexo de Preyer	50
5.8	3.2 Avaliação fisiológica da audição por Emissões Otoacústicas Evocada de Distorção (EOAPD)	
5.8	3.3 Avaliação eletrofisiológica da audição por Potencial Evocado Auditir Encefálico (PEATE)	
5.8	3.4 Análise anatômica das células ciliadas externas por Microscopia Ele Varredura (MEV)	
5.8	3.5 Preparação histológica	53
5.8	3.6 Imunofluorescência	55
5.8	3.7 Microscopia Confocal	56
5.9	Logística	56
5.9	_	
5.9	9.2 Experimento B	57
5.9	9.3 Fluxograma – Experimento A	58
5.9	9.4 Fluxograma – Experimento B	59
5.10	Metodologia estatística	60
6 RESU	LTADOS	61
6.1. F	Resultados do experimento A	61
6.1	L.1 Avaliação do comportamento clínico	61
6.1	L.2 Avaliação funcional da audição	63
6.2 R	Resultados do experimento B	73
6.2	2.1 Avaliação do comportamento clínico	73
6.2	2.2 Avaliação funcional da audição	74
6.2	2.3 Microscopia eletrônica de varredura	79
6.2	2.4 Imunofluorescência	81
7 DIS	scussão	96
7.1 R	Resultados clínicos	96
7.1	l.1 Variação de peso, vias de administração e efeitos da dose	96
7.1	L.2 Avaliação funcional da audição	98
7.2 A	Avaliação anatômica das CCEs	102
7.3 lr	munofluorescência	104
7.3	3.1 otoproteção da NAC e via de modulação da apoptose: enzima GSH-Px Bcl-2	•

8 COMENTÁRIOS CONCLUSIVOS	108
9 CONCLUSÕES	110
10 REFERÊNCIAS BIBLIOGRÁFICAS	111
11 ANEXO	123

1 INTRODUÇÃO

O regime terapêutico baseado em cisplatina é considerado padrão ouro para o tratamento de uma variedade de tumores sólidos (RIGA et al, 2013). Apesar da sua comprovada eficácia, a cisplatina deve ser administrada com cautela em função dos seus efeitos colaterais, os quais incluem a nefrotoxicidade, a neurotoxicidade, a toxicidade no trato gastrointestinal, na medula óssea (mielossupressão) e a ototoxicidade (McKEAGE, 1995; GARCÍA-BERROCAL et al, 2007).

No sistema auditivo, existem mecanismos distintos pelos quais a cisplatina provoca lesão e desperta a via de morte celular. O mais discutido atualmente refere-se à geração de radicais livres, mais especificamente as espécies reativas de oxigênio (EROs) que causam lesões e podem conduzir a célula à morte por apoptose (CASARES et al, 2012).

Radicais livres são átomos, moléculas ou íons que contém um ou mais elétrons não emparelhados na órbita mais externa, sendo este estado químico extremamente instável e reativo (EVANS e HALLIWELL, 1999). Apesar de apresentarem um papel biológico fundamental, estes radicais possuem também um potente efeito oxidante, subtraindo elétrons de outras moléculas que com eles interagem e podendo as convertendo em outros radicais livres, propagando a cadeia de danos através de um efeito cascata. É o chamado estresse oxidativo (KUMAR, ABBAS e FAUSTO, 2005).

As células, incluindo as da cóclea, apresentam um sistema antioxidante endógeno composto pela glutationa e as enzimas superóxido dismutase (SOD), catalase (CAT), glutationa peroxidase (GSH-Px) e glutationa redutase (GSH-R) (RYBAK et al, 2009). Quando não controladas por este sistema de defesa, as EROS provocam alterações na membrana plasmática, nas proteínas e no DNA (GUTTERIDGE e HALLIWELL, 2010). Já na década de 80, Pierson e Gray citavam que a cóclea contém níveis significativos de SOD, CAT, GSH-Px e glutationa S-transferase, o que sugere que esta estrutura da orelha interna, assim como todos os tecidos do corpo humano, requer proteção antioxidante (PIERSON e GRAY, 1982).

A cisplatina acumulada no tecido coclear integra-se ao DNA e causa disfunção na síntese de proteínas e enzimas. Com este acúmulo, há um aumento de EROs associado a um sistema antioxidante prejudicado (RYBAK et al, 2000). Dessa forma, este agente

antineoplásico age na célula reduzindo os níveis de enzimas antioxidantes endógenas e ativando a cascata apoptótica (RYBAK et al, 2007).

A morte celular por apoptose é despertada por duas vias principais: a via extrínseca ou citoplasmática, e a via intrínseca ou mitocondrial, sendo que ambas convergem para a ativação das caspases efetoras. A via intrínseca é regulada por proteínas da família Bcl-2, composta por membros anti e pró-apotóticos, cuja expressão regula a apoptose (BORNER, 2003). A Bax é uma proteína pró-apotótica que provoca aumento da permeabilidade da membrana mitocondrial e consequente evasão do citocromo c desta para o citoplasma. Essa situação desencadeia uma sucessão de eventos que culmina na ativação de caspases efetoras (GOLDSTEIN et al, 2000). A proteína Bcl-2 é inibidora da apoptose (anti-apoptótica) por ser capaz de formar heterodímero com a proteína Bax e por fazer um tamponamento dos poros da membrana mitocondrial externa causados pela Bax, evitando assim que o citocromo c se desloque para o citoplasma e desencadeie a cascata apoptótica (TAYLOR, et al, 2008).

Histologicamente, os danos causados pela cisplatina podem ser observados em todas as estruturas do labirinto membranoso, incluindo as células ciliadas externas (CCEs), células ciliadas internas (CCI), células de sustentação, estria vascular, gânglio espiral, ligamento espiral e limbo espiral (FREITAS et al, 2009).

Clinicamente, a ototoxicidade se manifesta com perda auditiva neurossensorial, bilateral, irreversível e com zumbido associado, comprometendo primeiramente as altas frequências e progredindo para as baixas (CASARES et al, 2012). A incidência de perda auditiva nas altas frequências foi observada em 50% de crianças (STAVROULAKI et al, 2001) e em 100% de adultos (GARCIA, IÓRIO e PETRILLI, 2003) tratados com cisplatina.

Crianças pequenas não têm base linguística ou maturidade neurológica para preencher as lacunas sonoras quando o acesso acústico está comprometido, por isso requerem maior audibilidade para reconhecer e compreender a fala (BOOTHROYD, 1970). Como já mencionado, a ototoxicidade pela cisplatina afeta inicialmente a acuidade auditiva das altas frequências. Quando as baixas frequências estão preservadas as crianças continuam a ouvir sons vocálicos, entonação, nasalidade e consoantes cuja energia se encontra nas baixas frequências. Mas, quando a perda auditiva ocorre nas altas frequências, há uma dificuldade na discriminação de consoantes como f, s, ch, z, que são fundamentais

para a inteligibilidade de fala e cujo reconhecimento é prejudicado na presença de ruído (BEATTIE, BARR e ROUP, 1997).

Frente à ototoxicidade da cisplatina, o grande desafio tem sido descobrir e viabilizar uma substância com ação otoprotetora que não interfira no seu efeito citotóxico nas células tumorais. Estudos investigam esta ação em algumas substâncias, obtendo resultados positivos e promissores. Como exemplo, pode-se citar a D-metionina (CAMPBELL et al 1996), a fosfomicina (JORDAN, SCHWADE e TRUELSON, 1999), o tiossulfato de sódio (MULDOON et al, 2000), o extrato de Ginkgo Biloba (HYPPOLITO et al, 2003; HUANG, WHITWORTH e RYBAK, 2007), a vitamina E (KALKANIS, WHITWORTH e RYBAK, 2004), a amifostina (HYPPOLITO et al, 2005), o alopurinol (LYNCH et al, 2005), o licopeno (Özkiris et al, 2013), a N-acetilcisteína (FEGHALI, LIU e VAN DE WATER, 2001; FETONI et al, 2009; RIGA et al, 2013), entre outros.

Dentre estes diversos otoprotetores já estudados, a N-acetilcisteína (NAC) foi selecionada para este estudo pelo seu potencial efeito antioxidante (FEGHALI et al, 2001; Dickey et al, 2004; RYBAK et al, 2009; RIGA et al, 2013). *In vitro*, a NAC inibiu a apoptose induzida pela cisplatina através da via de sinalização da caspase (WU, MULDOON e NEUWELT, 2005), e evidenciou proteção contra a ototoxicidade em ratos (DICKEY et al, 2004) e humanos (RIGA et al, 2013).

A NAC possui ação antioxidante (WEIBROUM et al, 2000) e é precursora na síntese da glutationa intracelular, a qual atua como um "sequestrador" endógeno de radicais livres (OKADA et al, 1997). Clinicamente, a NAC é utilizada como um agente mucolítico para desobstruir as vias aéreas e também como um antídoto contra a intoxicação por paracetamol (HOLDINESS, 1991). É um medicamento de larga aplicação clínica em humanos, de fácil acesso e baixo custo.

A glutationa (GSH, L-g-glutamil-L-cisteinil-glicina), potencialmente sintetizada pela NAC, é um tripeptídeo presente em todas as células dos mamíferos (LEHNINGER, 2002), atuando direta ou indiretamente em diversos processos celulares, além de ser o substrato da enzima glutationa peroxidase (GSH-Px), a qual faz parte do sistema antioxidante enzimático (MEISTER e ANDERSON, 1983).

Na orelha interna, a glutationa evidenciou proteção contra a ação citotóxica da gentamicina (GARETZ, ALTSCHULER e SCHACHT, 1994). Na década de 70 já se conhecia o seu importante papel em diversos processos celulares, incluindo detoxificação de xenobióticos e proteção contra EROs (JAKOBY, 1978; MEISTER e ANDERSON, 1983).

Dessa forma, neste estudo, o mecanismo de otoproteção da NAC e a via de modulação da apoptose foram estudados a partir da expressão da GSH-Px (uma enzima antioxidante que atua na neutralização dos radicais livres intracelulares) e da proteína Bcl-2 (que tem ação anti-apoptótica) juntamente com a análise da condição anatômica das CCEs e da condição funcional da via auditiva de ratos tratados com cisplatina.

2 JUSTIFICATIVA

A cisplatina é um fármaco amplamente utilizado no combate a diversas linhagens de tumores. Os seus efeitos colaterais são variados e dependem da dose praticada, porém, a ototoxicidade tem elevada incidência e se manifesta clinicamente com perda auditiva neurossensorial, bilateral e irreversível. A presença da cisplatina no tecido coclear deflagra uma série de eventos nocivos, havendo principalmente uma sobrecarga de espécies reativas de oxigênio (radicais livres) que causam lesões estruturais e funcionais às células. Tais lesões, quando não reparadas pelo sistema de defesa, despertam a via de morte celular por apoptose.

A NAC foi selecionada para o protocolo deste estudo por apresentar propriedades antioxidantes, combatendo, por si só, a formação excessiva de radicais livres intracelulares ou motivando a produção de antioxidantes endógenos, como a enzima GSH-Px. Como o evento inicial que desperta as lesões e a consequente morte celular por apoptose é o estresse oxidativo, esta enzima age numa etapa precoce deste processo. Neste momento, existe a tentativa de redução do grau da lesão por meio de mecanismos de neutralização dos radicais livres.

Quando o estímulo nocivo se torna constante ou muito importante, a célula cruza o limiar de lesão reversível e se programa para morrer. Mesmo que seja difícil identificar com precisão o estágio a partir do qual a célula se torna irreversivelmente direcionada à morte, alguns marcadores celulares podem sinalizar esta situação, como é o caso da proteína Bcl-2. Com ação diferente à da GSH-Px, mas também fazendo parte do sistema de defesa celular, a proteína Bcl-2 se liga às moléculas pró-apoptóticas na tentativa de inibir sua atividade lesiva. Como é o caso da proteína Bax (sintetizada pelo gene p53 ao receber sinal de morte celular) que forma poros na membrana mitocondrial externa permitindo o escape do citocromo c para o citoplasma, situação que marca o destino da célula à morte.

Assim, estes marcadores celulares (GSH-Px e Bcl-2) foram selecionados para o estudo da otoproteção da NAC e da via de modulação da apoptose. Os resultados foram

relacionados com a investigação da condição anatômica das CCEs e condição funcional da via auditiva.

Apesar de ter sido encontrada vasta literatura sobre os efeitos otoprotetores da NAC, não foram encontrados estudos sobre a relação da NAC com a expressão dos marcadores citados especificamente nas células ciliadas externas da cóclea.

Acredita-se que haja uma contribuição para o esclarecimento dos eventos de ototoxicidade da cisplatina e otoproteção da NAC, incentivando outros estudos clínicos deste otoprotetor em humanos e auxiliando a tomada de medidas preventivas à ototoxicidade durante o tratamento quimioterápico com cisplatina.

3 OBJETIVOS

3.1 Objetivo geral

Investigar o mecanismo de otoproteção da NAC e a via de modulação da apoptose por meio da análise da expressão da enzima GSH-Px e da proteína Bcl-2 em células ciliadas externas de ratos tratados com cisplatina.

3.2 Objetivos específicos

- Avaliar o comportamento clínico de ratos tratados com diferentes doses de cisplatina e NAC;
- avaliar a condição funcional da via auditiva de ratos tratados com diferentes doses de cisplatina e NAC;
- avaliar a condição anatômica das células ciliadas externas de ratos tratados com cisplatina e/ou NAC;
- verificar a expressão da enzima GSH-Px nas células ciliadas externas de ratos tratados com cisplatina e/ou NAC;
- verificar a expressão da proteína Bcl-2 nas células ciliadas externas de ratos tratados com cisplatina e/ou NAC;
- verificar se a via de modulação da apoptose e o mecanismo de otoproteção da NAC nas células ciliadas externas estão relacionados com a expressão da enzima GSH-Px e da proteína Bcl-2.

4 REVISÃO DE LITERATURA

Neste capítulo estão expostos os trabalhos científicos que foram consultados para embasar os princípios desta pesquisa, e que também nortearem a discussão dos resultados. Compuseram esta revisão livros clássicos da área e artigos científicos publicados em periódicos nacionais e internacionais disponíveis nas bases de dados Medline, Scielo, Bireme, PubMed e Lilacs, desde 1970 até o ano de 2013.

Ressalta-se que foi respeitada a nomenclatura utilizada pelo autor do trabalho e optou-se por ordenar as citações conforme o encadeamento de ideias.

4.1 Mecanismo de ototoxicidade da cisplatina

4.1.1 Aspectos clínicos

A cisplatina (*Cis*-diaminodicloroplatina II-CDDP) é um agente quimioterápico usado no tratamento de tumores sólidos como o ovariano, o testicular, o pulmonar, o cervical e os de cabeça e pescoço (RYBAK et al, 2009). É frequentemente usada em adultos e crianças pela sua eficiente ação antineoplásica, porém provoca reações colaterais como nefrotoxicidade, neurotoxicidade, toxicidade no trato gastrointestinal, na medula óssea (mielossupressão) e ototoxicidade (McKEAGE, 1995; GARCÍA-BERROCAL et al, 2007).

A nefrotoxicidade pode ser diminuída com a hiper-hidratação, assim como os outros efeitos colaterais podem ser amenizados com doses fracionadas da medicação (ILHA et al, 2007). No entanto, inexistem tratamentos clínicos comprovadamente eficazes para a prevenção ou controle da ototoxicidade (RYBAK et al, 2009), embora terapias com uso de antioxidantes tenham se mostrado benéficas em modelos animais (RYBAK e KELLY, 2003) e em humanos (RIGA et al, 2013).

Os danos ao sistema auditivo acontecem tanto com doses agudas elevadas como com doses cumulativas. A perda auditiva é do tipo neurossensorial, bilateral, irreversível e com zumbido associado (CASARES et al, 2012). Em função do arranjo tonotópico da cóclea, as altas frequências são afetadas primeiro (DICKEY et al, 2005; CASARES et al, 2012), uma vez que os danos às células ciliadas externas (CCEs) progridem da base para o ápice da cóclea e da terceira para a primeira fileira destas células (KAMIMURA et al, 1999; KALKANIS, WHITWORTH e RYBAK, 2004; HYPPOLITO et al, 2003; 2005), em seguida o dano acomete as células ciliadas internas (CCI) (HYPPOLITO et al, 2003; 2005). No Entanto, as lesões não se limitam às células ciliadas, também acometem as células de sustentação, estria vascular, gânglio espiral, ligamento espiral, limbo espiral (FREITAS et al, 2009b) e membrana vestibular de Reissner (CARDINAAL et al, 2000).

Alguns fatores podem interferir na variabilidade e severidade da ototoxicidade provocada pela cisplatina, como idade do paciente, função renal, interação com outras substâncias como antibiótico aminoglicosídio e diuréticos, existência prévia de perda auditiva, duração e forma de infusão da cisplatina, além da dosagem cumulativa (SIMON et al, 2002).

Considerando a dose de cisplatina utilizada, Van Ruijven et al (2005) não observaram ototoxicidade na estria vascular de cobaias com a dose de 2mg/Kg/dia durante quatro, seis ou oito dias consecutivos, administrada com injeção intraperitoneal. Por outro lado, tanto dose única de 16 mg/Kg de cisplatina por infusão intraperitoneal (RYBAK et al, 1999), como 8 mg/Kg/dia durante três dias por injeção intraperitoneal (FREITAS, 2006; YAZICI et al, 2012) causaram danos às CCEs e à estria vascular. Dickey et al (2004) consideram que a cisplatina aplicada via intra arterial causa ototoxicidade em doses baixas.

Com o objetivo de verificar a dose e a posologia de administração ideal de cisplatina para a obtenção de lesão coclear significativa, Ilha et al (2007) estudaram 48 cobaias albinas fêmeas divididas em quatro grupos, assim organizados: grupo 1: dose única de 7,5 mg/kg; grupo 2: duas doses de 7,5 mg/kg/dia, no primeiro e quinto dia; grupo 3: 3 doses de 7,5 mg/kg/dia no primeiro, quinto e sexto dia; grupo 4: doses de 2,5 mg/kg/dia no primeiro, segundo, terceiro, quarto, quinto e sexto dia. Todas as doses foram aplicada via intraperitoneal. Os animais foram submetidos ao exame de EOAPD durante o tratamento com cisplatina e, depois de eutanasiados, tiveram suas cócleas analisadas por MEV. Os

autores encontraram 70% de lesão nas células ciliadas externas no primeiro e segundo giros com a administração de 7,5 mg/kg/dia no primeiro, quinto e sexto dias. Ainda, esta administração, além de produzir maior perda de função auditiva, mostrou repercussões clínicas que não limitaram a manutenção dos animais por períodos de até 21 dias. Este regime de administração foi utilizado em estudo posterior com otoprotetores por Kasse et al (2008).

Comparando as doses de 16 mg/Kg e 24 mg/Kg de cisplatina em ratos, Freitas (2006) identificou significativa maior marcação de apoptose na cóclea com a primeira dose. As estruturas analisadas foram as células ciliadas externas e internas, células de sustentação, estria vascular, ligamento espiral, limbo espiral e gânglio espiral.

4.1.2 Mecanismo de ação

O mecanismo de ação antitumoral da cisplatina envolve sua absorção pelas células cancerígenas e reação com alvos intracelulares (RYBAK, 2007). As quebras do DNA causadas pela cisplatina alteram a função da fita de DNA impedindo a replicação, induzindo a parada do ciclo celular em G2, inibindo a transcrição do RNA e promovendo a morte celular, principalmente através da apoptose. Porém, quando expostas a altas concentrações de cisplatina, a célula pode morrer por necrose (WANG e LIPPARD, 2005; CASARES, et al 2012). Dessa forma, a ototoxicidade causada pela cisplatina envolve perda de células ciliadas da cóclea via necrose, apoptose, ou por uma combinação de ambas. A necrose acontece em regiões do órgão de Corti que sofreram danos mais intensos. As características histológicas da necrose evolvem inchaço mitocondrial e nuclear, dissolução de organelas celulares e lise de células sensoriais cocleares afetadas com degradação desregulada do DNA. Ao contrário da apoptose, este tipo de morte celular acontece de forma muito rápida, sendo, portanto, difícil de ser revertida por meio do tratamento com otoprotetores (ESHRAGHI, BUBLIK, VAN DER WATER, 2006).

Por outro lado, a apoptose pode ser desencadeada pela formação de radicais livres intracelulares que conduzem a célula a um estado de estresse oxidativo, com peroxidação

lipídica da membrana plasmática e alteração de enzimas e proteínas estruturais (CASARES, et al 2012). Este tipo de morte celular é caracterizado pela sua auto regulação, sendo um processo mais lento e programado (RUBIN et al, 2006).

Radicais livres são átomos, moléculas ou íons que contém um ou mais elétrons não emparelhados na órbita mais externa, sendo este estado químico extremamente instável e reativo. Os radicais livres possuem um potente efeito oxidante, subtraindo elétrons de outras moléculas que com eles interagem e as convertendo em outros radiais livres, propagando a cadeia de danos através de um efeito cascata, que é o chamado estresse oxidativo (EVANS e HALLIWELL, 1999).

Espécies reativas de oxigênio (EROs) são um tipo de radical livre derivado do oxigênio cujo papel no dano celular é bem conhecido. Eles são produzidos normalmente na célula durante a respiração mitocondrial e geração de energia, porém são degradados e removidos pelo sistema de defesa celular. Quando a produção de EROs aumenta ou o sistema de defesa não é efetivo, há um excesso destas espécies radicalares, levando a uma condição de estresse oxidativo (KUMAR, ABBAS e FAUSTO, 2005).

Além de serem formados pelo metabolismo celular normal (respiração mitocondrial), as EROs são produzidas por fontes exógenas como radiação solar, agentes químicos e metais pesados (OSTHOFF et al, 1997). Já em 1982, Freeman e Capo referiram que os radicais livres podem ser formados por alguma disfunção biológica como processos inflamatórios, radiação, agentes quimioterápicos e por alguns antibióticos. São exemplos de EROs: radical superóxido $(O_2$. $^{-})$ e radical hidroxila $(OH \cdot)$ (HALLIWELL, 2001).

Para combater as EROs e manter os sistema oxidativo equilibrado, as células apresentam um sistema antioxidante endógeno. Este sistema é composto por enzimas com papel detoxificador que agem antes que ocorra a lesão celular, são elas: glutationa reduzida (GSH), superóxido dismutase (SOD), catalase e glutationa peroxidase (GSH-Px). Com a função de reparar a lesão já causada pelas EROs, o sistema de defesa é formado por ácido ascórbico, glutationa redutase (GSH-R), glutationa peroxidase (GSH-Px), além de outros (ROSS e MOLDEUS, 1991). O sistema antioxidante da cóclea inclui a glutationa e as enzimas superóxido dismutase (SOD), catalase (CAT), glutationa peroxidase (GSH-Px) e glutationa redutase (GSH-R) (RYBAK et al, 2009).

Uma vez geradas e não controladas pelo sistema antioxidante, as EROs podem reagir com uma diversidade de componentes celulares causando alterações como peroxidação aldeído lipídica das membranas, modificações oxidativas das proteínas e lesões ao DNA (GUTTERIDGE e HALLIWELL, 2010).

Na cóclea, a cisplatina acumula-se no tecido, integra-se no DNA e provoca disfunção na síntese de proteínas e em especial nas enzimas antioxidantes. Como a cóclea está numa posição anatômica isolada e é praticamente um sistema fechado, é incapaz de expulsar a toxina acumulada na mesma proporção e rapidez em que é gerada. Dessa forma, há uma sobrecarga de EROs associada a um sistema antioxidante prejudicado (RYBAK et al, 2000). Esta condição provoca um aumento da peroxidação lipídica iniciando eventos que culminam com a apoptose de células ciliadas, células de sustentação, da estria vascular e do nervo auditivo (CAMPBELL, KALKANIS e GLATZ, 2000).

Estudos *in vitro* mostram que a exposição do neuroepitélio coclear à cisplatina produz espécies oxidantes e depleção da glutationa nas células ciliadas, seguido de morte destas (RAMÍREZ-CAMACHO et al, 2004). A interação entre a glutationa e a cisplatina ocorre através da formação de complexos, ou seja, os íons de platina que entram na célula se unem à glutationa presente no citoplasma. A formação deste complexo limita a quantidade de droga disponível para a ligação ao DNA. Portanto, a depleção de glutationa mitocondrial deixa o DNA desprotegido contra o dano pela cisplatina (GARRIDO, PÉREZ-MARTOS, FARO et al, 2008).

A degeneração da estria vascular está entre os primeiros eventos causados pela cisplatina na cóclea (LEE et al, 2004), havendo um prejuízo na absorção e secreção de potássio na endolinfa e um comprometimento da homeostase metabólica das células ciliadas externas e internas, que sofrem lesões estruturais e funcionais (CASARES et al, 2012).

A extensão e o grau das alterações histológicas e funcionais do sistema auditivo estão relacionados à dose de cisplatina administrada (DEVARAJAN, SAVOCA e CASTANEDA, 2002; RYBAK et al, 2009). Em concentrações pequenas, a cisplatina promove apoptose, já em doses maiores pode levar à necrose celular, podendo esses dois mecanismos serem um continuum (DEVARAJAN, SAVOCA e CASTANEDA, 2002).

A morte celular por apoptose, que é benéfica em se tratando de uma neoplasia, é a base para a compreensão da toxicidade da cisplatina em tecidos sãos, como o tecido coclear (VAN RUJVEN et al, 2005a).

A isoforma NOX3 do complexo enzimático NADPH oxidase (nicotinamida adenina dinucleotídeo fosfato oxidase) é exclusivamente encontrada na orelha interna e parece contribuir significativamente para a geração de EROs na cóclea (MUKHERJEA et al, 2008).

Em culturas organotípicas, quando é ativada pela cisplatina, a isoforma NOX3 da NADPH oxidase produz radical superóxido (O_2^{-1}) (RYBAK, 2007). O excesso desta ERO no tecido coclear pode reagir com óxido nítrico para gerar peroxinitrito e inativar proteínas (LEE et al, 2004); formar radical hidroxila (OH $^-$) na sua forma livre, na qual a interação com ferro reage com ácidos graxos insaturados na bicamada lipídica da membrana celular para gerar aldeído 4-hidroxinonenal (4-HNE), que é altamente tóxico e pode levar à morte celular. O aumento do 4-HNE está associado com o aumento do influxo de cálcio para as CCEs, levando à apoptose (IKEDA, SUNOSE e TAKASAKA, 1993). O ânion superóxido também pode inativar enzimas antioxidantes (PIGEOLET et al, 1990) e causar migração da proteína Bax (próapoptótica) para o citoplasma, o que provoca a liberação do citocromo c da mitocôndria lesada e consequente ativação das caspases 9 e 3 (RYBAK et al, 2009).

Além da peroxidação lipídica da membrana plasmática e dos efeitos no tecido coclear acima citados, as EROs podem também ativar e aumentar a expressão do TRPV1 (MUKHERJEA et al, 2008). O receptor de potencial transiente V1, ou TRPV1 (*Transient Receptor Potencial Vanilloid 1*) é uma proteína membro da família de canais iônicos TRP (*Transient Receptor Potencial*) expressa principalmente em neurônios de pequeno diâmetro (CATERINA et al, 1997), além de tecidos não neuronais como o órgão de Corti (ZHENG et al, 2003). O aumento da expressão do TRPV1 contribui para a morte celular pelo aumento (e consequente sobrecarga) do influxo de cálcio na célula através destes canais e ativação das caspases (CASARES et al, 2012; MUKHERJEA et al, 2008).

4.1.3 Apoptose: a morte celular provocada pelas EROs na cóclea

O órgão de Corti é um epitélio sensorial formado por um arranjo altamente ordenado de células sensoriais ciliadas e células não sensoriais de suporte. As células ciliadas estão conectadas diretamente aos neurônios primários no gânglio espiral e não têm capacidade de regeneração, portanto a perda destas células resulta em perda auditiva permanente (POIRRIER et al, 2010).

A apoptose é uma via de morte induzida por um programa celular altamente regulado (KUMAR, ABBAS e FAUSTO, 2005). É um tipo de morte celular programada ou "suicídio" celular e pode ser despertada em diversas situações fisiológicas, por exemplo, quando ocorre em células que não têm mais utilidade, durante a embriogênese, ou um mecanismo de autodefesa, quando células infectadas por patógenos ou com alterações genéticas se autodestroem (RUBIN et al, 2006).

A apoptose das células da cóclea pode ser motivada pela formação de complexos entre a cisplatina e o DNA da célula lesada, impedindo a progressão normal do ciclo celular (DEVARAJAN et al, 2002). Ainda, o estresse oxidativo induzido pela droga desencadeia uma cascata de reações intracelulares que culmina na apoptose (RAVI, SOMANI e RYBAK, 1995).

As teorias sobre a gênese do estresse oxidativo pela cisplatina incluem o dano ao DNA, a interferência com o sistema de defesa antioxidante da glutationa ou o aumento da peroxidação de lipídios, o que leva a um aumento na entrada de cálcio e apoptose das células da cóclea (GARCÍA-BERROCAL et al, 2007).

As características morfológicas e bioquímicas da apoptose envolvem fragmentação nuclear, condensação da cromatina, encolhimento celular, "borbulhamento" da superfície celular com manutenção da integridade da membrana, formação de corpos apoptóticos e proteólise (degradação de proteínas por enzimas). Os restos da célula são fagocitados por células vizinhas ou por macrófagos (HUANG et al, 2000).

Há alguns anos as proteases intracelulares específicas pertencentes à família das caspases são investigadas como efetoras cruciais da apoptose (ADAMS e CORY, 1998).

As caspases (<u>cysteine-aspartic-acid-proteases</u>) são proteases baseadas em cisteína capazes de clivar outras proteínas depois de um resíduo de ácido aspártico (STRASSER, O'CONNOR e DIXIT, 2000) e são sintetizadas como precursores inativos denominados zimogênios (pró-caspase) (HENGARTNER, 2000). A família das caspases pode ser dividida

funcionalmente em caspases iniciadoras e caspases efetoras, dependendo da ordem em que são ativadas durante a apoptose. As iniciadoras incluem as caspases 8 e 9; as efetoras incluem as caspases 3, 6 e 7, dentre outras (KUMAR, ABBAS e FAUSTO, 2005).

As pró-caspases são ativadas em caspases por clivagem proteolítica quando a célula recebe um sinal de morte (BOATRIGHT e SALVESEN, 2003). Uma vez ativadas, atuam em um efeito cascata, ou seja, as caspases iniciadoras ativam as caspases efetoras que, por sua vez, atuam na fragmentação do DNA (SHARIFIA et al, 2009).

O processo apoptótico pode ser desencadeado por duas vias, uma extrínseca (citoplasmática) e outra intrínseca (mitocondrial), ambas convergentes para a ativação das caspases efetoras (GRIVICICH, REGNER e ROCHA, 2007). Além disso, tais vias podem ser classificadas de acordo com o tipo de pró-caspase que é ativada. Na via extrínseca, a ativação da pró-caspase 8 (iniciadora) resulta da sinalização do receptor de morte celular, como Fas e TNFR1 (tumor necrosis factor receptor 1). Por outro lado, na via intrínseca, a ativação da pró-caspase 9 (iniciadora) é dependente principalmente da via de sinalização mitocondrial regulada por membros da família Bcl-2 (HARRIS e THOMPSON, 2000). A família Bcl-2 é composta por 25 membros anti e pró-apoptóticos (BORNER, 2003). Essas proteínas estão localizadas no lado externo da membrana mitocondrial, no envelope nuclear e no retículo endoplasmático das células (LORO, VINTERMYR e JOHANNESSEN, 2003).

A ativação dos membros pró-apoptóticos da família Bcl-2, como Bax, pode desencadear uma sequência de eventos que levam a alterações na permeabilidade da membrana mitocondrial com liberação de citocromo c (proteína ativadora de caspase) para o citoplasma, que se liga a outra proteína: o fator ativador da protease na apoptose 1 (Apaf-1), formando um complexo proteico — apoptossomo — que irá ativar a pró-caspase 9 (GOLDSTEIN et al, 2000). Uma vez ativadas, ambas as caspases 8 e 9 participam de uma cascata de eventos que culmina na ativação da caspase 3, que cliva vários substratos resultando em fragmentação do DNA e alterações morfológicas celulares características de apoptose (THORNBERRY e LAZEBNIK, 1998). Em contrapartida, a proteína Bcl-2, membro anti-apoptótico da família Bcl-2, favorece a sobrevida celular impedindo o escape do citocromo c para o citoplasma, possivelmente pela formação de heterodímeros com moléculas pró-apoptóticas, como a Bax (AMARANTE-MENDES e GREEN, 1999), impedindo a

formação de poros na membrana mitocondrial externa e, assim, inibindo a apoptose (TAYLOR, et al, 2008).

A diminuição da transcrição da proteína anti-apoptótica Bcl-2 e o aumento da transcrição da pró-apoptótica Bax são mediados pelo gene p53. Este é um gene supressor de tumor que é acumulado na célula quando o DNA é danificado, causando a suspensão do ciclo celular na fase G1 (produção de enzimas necessárias para a produção de DNA, outras proteínas e RNA) e proporcionando o reparo do DNA. Porém, se este reparo falhar, o p53 desencadeia a apoptose estimulando a transcrição de proteínas pró-apoptóticas e diminuindo a transcrição de proteínas anti-apoptóticas (KUMAR, ABBAS e FAUSTO, 2005).

A disfunção mitocondrial que deflagra o processo apoptótico pela via intrínseca pode ser causada por sinais de estresse intracelular resultante de lesão do DNA, toxinas, estresse oxidativo, entre outros (PARONLIN e REASON, 2001).

Devarajan et al (2002) confirmaram o envolvimento das vias extrínseca e intrínseca na apoptose induzida pela cisplatina em modelo de células auditivas cultivadas *in vitro*. Também Liu et al (1998) e Cheng et al (2005) demonstraram o papel da apoptose como mecanismo de morte celular pela cisplatina. Alam et al (2000) identificaram células apoptóticas em todas as estruturas da cóclea após a administração de cisplatina, incluindo células ciliadas externas e internas, células de sustentação, gânglio coclear, estria vascular e ligamento espiral. O aumento da expressão da proteína Bax e diminuição da Bcl-2 encontrado no estudo sugere a importância da família de proteínas Bcl-2 no controle da apoptose em consequência da cisplatina.

4.2 Otoproteção da N-acetilcisteína e o papel da enzima glutationa peroxidase

A irreversibilidade da perda auditiva causada pela exposição à cisplatina despertou o interesse de pesquisadores no sentido de viabilizar uma droga que, administrada concomitantemente à cisplatina, causasse um efeito protetor nas células da orelha interna.

As células apresentam defesa antioxidante contra os radicais livres, incluindo enzimas de detoxificação e varredores exógenos de radicais livres, como as vitaminas. As

principais enzimas que convertem os radicais livres em moléculas menos reativas são a superóxido dismutase, catalase e GSH-Px (STRAYER e RUBIN, 2012).

Os otoprotetores exógenos, incluindo antioxidantes contendo tiol (compostos que contém enxofre), agem de forma precoce limpando os radicais livres e impedindo o início da via de morte celular. São exemplos: tiossulfato de sódio, D- ou L-metionina, dietilditiocarbamato, ácido metilbenzoico, ácido lipoico, N-acetilciteína, trioponina, glutationa ester e amifostina (RYBAK e WHITWORTH, 2005). Rybak et al (2009) referem que a alta afinidade do enxofre com a platina constitui a base para os compostos contendo tiol serem amplamente utilizados em pesquisas envolvendo a toxicidade da cisplatina.

O mecanismo de ação dos otoprotetores pode ser por meio da interação direta com a cisplatina; deslocamento da platina do seu sítio tóxico; prevenção da interação entre a platina e a enzima superóxido dismutase e impedimento da formação de radicais livres intracelulares (SMOORENBURG et al, 1999). Alguns otoprotetores são incompatíveis com a cisplatina uma vez que reduzem o seu potencial antineoplásico. Dickey et al (2005) sugerem que a via e o momento de administração do quimioterápico e do otoprotetor devem ser diferentes na tentativa de manter a eficácia antitumoral.

Em contato com a cisplatina, as CCEs são submetidas a um estresse oxidativo gerado pelo excesso de EROs intracelular, os quais interagem com os fosfolípides da membrana destas células, causando peroxidação aldeído lipídica. Portanto, para que ocorra a otoproteção deve haver a prevenção da formação de oxigênio reativo ou a neutralização dos produtos tóxicos da peroxidação aldeído lipídica, ou ainda um bloqueio aos danos às células sensoriais que levam à apoptose (HUANG et al, 2000).

Desde o estudo de Feghali et al (2001), o efeito otoprotetor da NAC foi evidenciado em células ciliadas e neuronais (*in vitro*). Este medicamento é um agente mucolítico bem conhecido que é utilizado no tratamento de bronquite crônica e também como um antídoto contra a intoxicação por paracetamol (HOLDINESS, 1991).

A NAC é um tiol de baixo peso molecular que, por si só, possui ação antioxidante (WEIBROUM et al, 2000), mas também é precursora na síntese da glutationa intracelular, a qual atua como um "sequestrador" endógeno de radicais livres (OKADA et al, 1997). Esta enzima está presente no citoplasma e na mitocôndria da célula (STRAYER e RUBIN, 2012).

Por não cruzar a barreira hematoencefálica, acredita-se que a NAC não interfira na eficácia do tratamento de tumores do sistema nervoso central (MULDOON et al, 2000). *In vitro*, a NAC bloqueia a apoptose provocada pela cisplatina (WU, MULDOON e NEUWELT, 2005) e essa proteção química pode ser obtida sem interferência no efeito antitumoral (MULDOON et al, 2000; NEUWELT et al, 2004). O mecanismo de proteção da NAC pode ser devido à ligação direta com a molécula de platina, produzindo um complexo inativo (DICKEY et al, 2004).

...a estrutura de sua molécula permite-lhe, além disso, atravessar facilmente as membranas celulares. No interior da célula, a acetilcisteína é desacetilada, ficando assim disponível a L-cisteína, aminoácido indispensável para a síntese da glutationa (GSH). A GSH é um tripeptídio extremamente reativo que se encontra difundido por igual nos diversos tecidos dos organismos animais e é essencial para a manutenção da capacidade funcional e da integridade da morfologia celular, pois é o mecanismo mais importante de defesa intracelular contra os radicais oxidantes (tanto exógenos como endógenos) e contra numerosas substâncias citotóxicas. A acetilcisteína exerce um papel de importância fundamental na manutenção de níveis apropriados de GSH, contribuindo para a proteção das células contra agentes nocivos que, através da espoliação da GSH, exerceriam integralmente sua ação citotóxica (Bula de remédio-Acetilcisteína-EMS- propriedades farmacodinâmicas, 2013).

A glutationa é um tripeptídeo presente em todas as células dos mamíferos e apresenta um papel importante em diversos processos celulares, incluindo a detoxificação de xenobióticos e proteção contra EROs (MEISTER, 1991).

A glutationa desempenha um papel crítico de manter os grupos tióis das proteínas em um estado reduzido e capazes de se ligar à cisplatina, e de proteger contra o estresse oxidativo através da desintoxicação dos oxidantes. A glutationa pode anular toxinas exógenas como a cisplatina através da formação de complexos. Os íons de platina que entram na célula se unem preferencialmente à glutationa e à metalotioneína¹, ambos presentes em concentração milimolar no citoplasma. A formação destes complexos limita a quantidade de droga disponível para a ligação ao DNA. Portanto, a depleção de glutationa mitocondrial deixa o DNA desprotegido contra o dano pela cisplatina (GARRIDO et al, 2008).

¹ Metalotioneína é uma proteína de baixo peso molecular presente no citoplasma do córtex renal e fígado. É rica em resíduos de cisteína e faz ligações seletivas a metais pesados (DEMACHKI e BACCHI, 1998).

Além de ter função otoprotetora, a NAC previne a perda de peso causada pela cisplatina, possivelmente pela redução na toxicidade do trato gastrointestinal (DICKEY et al, 2004).

Em ratos tratados com cisplatina, a ototoxicidade está associada à diminuição da atividade da enzima GSH-Px e glutationa redutase, e aumento na atividade da enzima superóxido dismutase e catalase, sugerindo haver um aumento da geração de EROs cóclea com o sistema antioxidante prejudicado (RAVI, SOMANI e RYBAK, 1995; RYBAK, WHITWORTH e SOMANI, 1999).

Na cóclea, os diferentes tipos de células não compartilham da mesma vulnerabilidade às lesões causadas pelas EROs. Duas particularidades estão relacionadas aos danos causados pela cisplatina: primeiro, as CCEs da base da cóclea são intrinsecamente mais suscetíveis aos danos causados pelos radicais livres do que as CCEs do ápice; segundo, as células de sustentação têm considerável maior capacidade de sobrevivência do que as células sensoriais. Segundo Sha et al (2001), os níveis de glutationa são mais elevados nas CCEs do ápice da cóclea comparados às CCEs da base, o que sugere uma suscetibilidade diferencial à ação das EROs. Em 1996, Usami et al já citavam que o mecanismo de proteção promovido por antioxidantes celulares endógenos como a glutationa e enzimas como a superóxido dismutase ou GSH-Px, fornecem uma defesa primária contra os radicais livres e que este mecanismo de proteção pode ser distribuído diferentemente entre as células da cóclea.

4.3 Emissões Otoacústicas evocadas produto de distorção (EOAPD) e Potencial Evocado Auditivo de Tronco Encefálico (PEATE)

O termo 'emissões otoacústicas' é utilizado para descrever os sons captados no canal auditivo externo e que são gerados pela atividade fisiológica da cóclea. Sua presença no meato acústico é a evidência da transmissão retrógrada da energia vibracional da cóclea para a orelha externa (KEMP, 1978; KEMP, 1980).

As emissões otoacústicas (EOAs) são respostas de frequências específicas e geradas somente em bandas de frequências nas quais as células ciliadas externas da cóclea estão normais ou próximas do normal, simultaneamente fornecendo informações sobre diferentes partes da cóclea (SOUSA et al, 2008).

Foram primeiramente observadas por Kemp em 1978, que as definiu como a liberação de energia sonora na cóclea que se propaga na orelha média até alcançar o meato acústico externo. É um teste não invasivo que pode detectar precocemente alterações funcionais da audição decorrentes de agentes ototóxicos. Esta relação se constitui porque as drogas ototóxicas exercem seus efeitos nocivos sobre as CCEs, e as emissões otoacústicas são dependentes da integridade das CCEs (HALL, 2000).

As EOAs são tradicionalmente classificadas conforme a ocorrência de estimulação externa, sendo denominadas espontâneas (EOAE) quando são captadas na ausência de estimulação; transientes (EOAT) quando são respostas obtidas a partir de breve estimulação da cóclea utilizando-se cliques ou *toneburst*; e produto de distorção (EOAPD), cujas respostas captadas representam sinais sonoros de fraca intensidade após a estimulação por dois tons puros (f1 e f2) (DURANTE, 2011).

Garcia, Iório e Petrilli (2003) referem que o teste de EOAPD é a forma mais eficaz de monitoramento auditivo em pacientes sob tratamento quimioterápico quando a audiometria tonal liminar não pode ser realizada.

Em modelos animais, em especial, as EOAPD são utilizadas como método de avaliação funcional da audição, pois possibilitam avaliar frequências agudas até 8 KHz, enquanto as emissões otoacústicas transientes (EOAT) avaliam somente até 4-5 KHz (SISTO et al, 2007). Em ratos Wistar, estão presentes nas frequências entre 1 e 6 KHZ (LOPEZ-GONZALEZ et al, 2000), entre 3 e 8 KHz (YAZICI et al, 2012), e entre 1,5 e 12 KHz (ÖZKIRIS et al, 2013).

As EOAPD são evocadas por dois tons puros apresentados simultaneamente, e isso se baseia no fato de que a cóclea funciona como um sistema não linear, ou seja, quando dois tons puros são percebidos, ocorre a produção de outros tons ou produtos de distorção com frequências que não estavam no estímulo utilizado para evocá-las (SOUSA et al, 2008).

Os estímulos utilizados para evocar as EOAPD são chamados de frequências primárias f1 e f2, com f1 mais baixa e f2 mais alta (f2>f1). A distância entre elas deve ter a razão de f2/f1=1,22 para gerar um produto ideal de distorção. Na clínica, utiliza-se o produto de

distorção de frequência 2f1-f2 por serem as EOA de maior amplitude na cóclea humana. As emissões ocorrem na região de máxima vibração das ondas f1 e f2 próximas de f2, ou seja, a emissão registrada reflete a condição da cóclea na região próxima a f2, sendo esta a frequência de referência para EOAPD-*GRAM*, que tem como característica a intensidade constante dos estímulos. As intensidades são denominadas L1 e L2 para as frequências primárias f1 e f2, respectivamente (BROWN e KEMP, 1984).

Estes parâmetros também são utilizados em pesquisas com modelos animais (HYPPOLITO et al 2003; ILHA et al, 2007; KASSE et al, 2008; FREITAS, 2006; FREITAS et al, 2009a; FREITAS et al, 2009b).

A análise pode ser feita a partir da relação entre o nível da emissão em relação ao nível de ruído registrado, considerando-se presença de EOAPD quando esta relação sinal/ruído está acima de 6 dB (SOUSA et al, 2008).

A sensibilidade das EOAPD na ototoxicidade por cisplatina em ratos foi avaliada por Freitas et al (2009). Os autores citam que as EOA e os potenciais evocados auditivos de tronco encefálico (PEATE) são os métodos ultimamente mais empregados para estudo da ototoxicidade por cisplatina em roedores.

O PEATE, por sua vez, é um potencial de curta latência amplamente utilizado na prática clínica por apresentar reprodutibilidade e geradores neurais bem definidos (MATAS e MAGLIARO, 2011). É analisado a partir da formação de sete ondas, sendo utilizado geralmente o estímulo clique, cuja energia sonora está mais concentrada na faixa de freguência de 2000 a 4000 Hz (PERSON et al, 2005).

Tendo sua aplicação clínica a partir da década de 80 (HALL, 2000), Moller et al (1981) propuseram a classificação dos sítios geradores das ondas do PEATE em humanos, sendo: onda I na porção distal ao tronco encefálico, onda II na porção proximal ao tronco encefálico, onda III no núcleo coclear, onda IV no complexo olivar superior, onda V no lemnisco lateral, onda VI no colículo inferior e onda VII no corpo geniculado medial. O diagnóstico leva em consideração o valor das latências absolutas e latências interpicos das ondas I, III e V, e o limiar eletrofisiológico é obtido a partir do menor valor de intensidade no qual se observa a presença da onda V. Com este método é possível inferir sobre o limiar de audição psicoacústico, uma vez que este é diretamente proporcional ao limiar eletrofisiológico, além disso,

pode-se estabelecer a presença ou ausência de lesões da via auditiva ao nível de tronco encefálico pela análise do tempo de condução do estímulo entre locais mais proximais e distais da via auditiva retrococlear (FREITAS, 2006).

Em roedores, os prováveis geradores das ondas são: onda I - nervo auditivo, onda II - núcleo coclear, onda III - complexo olivar superior, onda IV- lemnisco lateral e colículo inferior, onda V - corpo geniculado medial e radiações talamocorticais (HENRY, 1979).

Diferentemente do parâmetro em humanos, a pesquisa do limiar eletrofisiológico em ratos leva em consideração a menor intensidade de estímulo em que se evidencia a presença da onda II, já que esta onda é a última a desaparecer com a diminuição do estímulo sonoro (FREITAS, 2006).

FREITAS et al (2009a) referem que o PEATE é mais sensível do que as EOAPD na detecção da ototoxicidade por cisplatina em ratos.

Existe variabilidade nos parâmetros de execução deste exame. No quadro a seguir estão expostas as diferenças de parâmetros adotados na pesquisa do PEATE em roedores e em humanos. Foram inseridas pesquisas experimentais cujos animais foram expostos à cisplatina.

Parâmetro	Roedores	Humanos	
Local dos eletrodos	Implantado (1), subdérmico (2-5), superfície (6)	Superfície (7-9)	
Tipo de estímulo / polaridade	Clique não filtrado (1), clique de rarefação (5,6), clique (3), tone burst (2-5)	Clique alternado (7), clique de rarefação (8)	
Número de aquisições	512 (1) , 500 a 1000 (3), 1024 (4), 700 (5), 1000 (6)	2048 (7), 2000 (8)	

Velocidade de apresentação	10/s (1), 19,3/s (4), 15/s (5), 21,1/s (6)	19/s (7), 19,1/s (8,9)
Janela de análise	12 ms (4), 15ms (5,6)	10ms (8,9)
Filtro (banda passante)	32-3200 Hz (1); 20-5000 Hz (3); 30-1500 Hz (4); 0-3000 Hz (5)	100-3000 Hz (8); 100-1500 Hz (9)
Onda analisada para obtenção do limiar eletrofisiológico	II (1,2,5), III (2)	V (7-9)

Quadro 1 - Comparação dos parâmetros do PEATE utilizados em roedores e humanos.

⁽¹⁾ AMSALLEM e ANDRIEU-GUITRANCOUT (1985); (2) KAMIMURA et al (1999); (3) HATZOPOULOS et al (2002); (4) DICKEY et al (2004); (5) FREITAS (2006); (6) ZUCKI (2013); (7) ESTEVES et al (2009); (8) MATAS, HATAIAMA e GONÇALVES (2011); (9) MATAS e MAGLIARO (2011).

5 MATERIAL E MÉTODOS

Esta pesquisa foi desenvolvida na Faculdade de Medicina de Ribeirão Preto-USP (FMRP-USP), no período de novembro de 2013 a março de 2014.

Foram realizados dois experimentos, denominados de A e B. Com o primeiro, o objetivo foi analisar o comportamento clínico e a função auditiva dos ratos frente ao otoprotetor e a uma subdose de cisplatina. Estes animais foram submetidos ao teste de EOAPD e PEATE, antes e depois da administração das drogas. Os animais do segundo experimento foram submetidos a uma dose 2,6 vezes maior de cisplatina para a pesquisa da via de modulação da apoptose, e a uma dose triplicada de NAC para o estudo do mecanismo de otoproteção; além do estudo do comportamento clínico e auditivo funcional. As particularidades metodológicas de cada experimento estão detalhadas no item 5.7 deste capítulo.

5.1 Delineamento

Esta pesquisa é do tipo experimental, de caráter prospectivo, multicêntrico e com grupo controle. Os fatores de estudo foram a função auditiva e a análise da expressão da enzima GSH-Px e da proteína Bcl-2 nas células ciliadas externas de ratos sob efeito de cisplatina e/ou NAC. Os desfechos principais foram a verificação da condição auditiva e a expressão dos marcadores.

5.2 Aspectos éticos

O manuseio dos animais se deu conforme as normas de ética para pesquisa em modelos animais, com cuidados especiais para a utilização do menor número destes e para

manejo da dor e sofrimento. Todos os procedimentos realizados estiveram de acordo com o preconizado pela Lei Arouca (Lei nº 11.794, de 8 de outubro de 2008), que dispõe sobre procedimentos e métodos de eutanásia² em animais entre outras providências, e pela Sociedade Brasileira de Ciência em Animais de Laboratório (SBCAL/COBEA, 2011). O projeto foi submetido à aprovação pela Comissão de Ética em Experimentação Animal da FMRP-USP, tendo sido aprovado sob número de protocolo 103/2012 (Anexo 1).

5.3 População e amostra

A população deste estudo foi constituída por ratos Wistar machos (*Rattus norvegius* - linhagem Wistar) selecionados do Biotério Central da FMRP-USP, com peso variando entre 240 e 300g, submetidos a um ciclo claro-escuro de 12/12 horas (período claro iniciado às 7h), mantidos em temperatura (19 a 23ºC) e umidade (55% + - 15%) controladas e com livre acesso à água e alimento.

5.4 Processo de amostragem

5.4.1 Cálculo do tamanho da amostra

A Lei federal nº 11.794, de 8 de outubro de 2008, sobre os procedimentos para o uso científico de animais, estabelece, no seu Artigo 14, Inciso 4º: "O número de animais a serem utilizados para a execução de um projeto e o tempo de duração de cada experimento será o mínimo indispensável para produzir o resultado conclusivo, poupando-se, ao máximo, o animal de sofrimento". Ainda, o Ofício Circular nº 002/2009/ Gerência Geral de Toxicologia

² Eutanásia, do grego "eu" – bom - e "thanatos" – morte: constitui-se no modo humanitário de matar o animal, sem dor e com mínimo desconforto. Este termo foi adotado conforme recomendado pelas 'Diretrizes da prática de eutanásia do CONCEA' (2013).

da Agência Nacional de Vigilância Sanitária, recomenda, no mínimo, o número de cinco animais para estudos experimentais.

Considerando estes critérios e, também, a ação sistêmica das drogas (o que permite a análise de ambas as cócleas), para o experimento A foram selecionados 19 animais, sendo 15 incluídos em dois grupos experimentais e quatro em dois grupos controles. Para o experimento B, foram selecionados 16 animais, sendo 10 divididos em dois grupos experimentais e seis em dois grupos controles.

5.4.2 Critérios de inclusão

Foram incluídos nos experimentos os animais com:

- peso entre 240 e 300 gramas;
- Reflexo de Preyer presente (Jero, Coling e Lalwani, 2001);
- presença de EOAPD em todas as frequências estudadas (1000, 2000, 4000 e 8000 Hz) em ambas as orelhas (somente no experimento A);
 - limiar eletrofisiológico obtido por PEATE de até 25 dB NA em ambas as orelhas.

5.4.3 Critérios de exclusão

Foram excluídos da amostra os animais que, à visualização do meato acústico externo, apresentaram:

- sinais de otite externa ou média aguda;
- cerúmen de difícil remoção;
- conduto auditivo muito estreito que impedisse a colocação da sonda para a realização dos testes funcionais de EOAPD e PEATE.

5.5 Variáveis em estudo

As variáveis estudadas foram:

- relação sinal-ruído das EOAPD por frequência em ambas as orelhas;
- limiar eletrofisiológico do PEATE em ambas as orelhas;
- condição anatômica das CCEs;
- expressão da enzima GSH-Px;
- expressão da proteína Bcl-2.

5.6 Materiais

5.6.1 Drogas e anticorpos utilizados

A seguir estão descritas as drogas administradas nos animais, bem como os anticorpos utilizados no protocolo de imunofluorescência.

- Cisplatina

- Experimento A: Fauldcispla® solução injetável Libbs Farmacêutica Ltda.
- Administração: 3mg/Kg/dia
- Experimento B: Tecnoplatin® solução injetável Eurofarma Laboratórios Ltda.
- Administração: 8mg/Kg/dia

- N-acetilcisteína

- Experimento A: Fluimucil® xarope Zambon Laboratórios Farmacêuticos Ltda.
- Administração: 100mg/Kg/dia
- Experimento B: Acetilcisteína Laboratório EMS
- Administração 300mg/Kg/dia

Por não terem sido encontrados na literatura pesquisada estudos com administração via oral de NAC em ratos, foi selecionada uma dose que não ultrapassasse à DL50, sendo esta indicada na bula do medicamento:

A acetilcisteína caracteriza-se por uma toxicidade particularmente baixa. Por via oral, a DL50 é superior a 10 g/Kg, tanto no camundongo como no rato.

- Solução salina fisiológica 0,9%

- Cloridrato de Cetamina

Ketamin® 50mg/ml - Laboratório Cristália

- Cloridrato de Xilasina

Dopaser® 20mg/ml - Laboratório Hertape Calier

Para a anestesia e analgesia dos animais foi utilizada a combinação de cloridrato de cetamina 10% (Ketamin® 50mg/ml, Laboratório Cristália) e cloridrato de xilazina (Dopaser® 200mg Laboratório Hertape Calier) na proporção de 2:1, respectivamente, via intramuscular, na dose de 10 a 15 ml para cada 100g de peso do animal. Os mesmos foram pesados diariamente para o ajuste das doses.

- <u>Anticorpos para imunofluorescência</u>: Abcam[®], importado por Biogen Comercial e Distribuidora Ltda
 - anticorpo policional de coelho anti Bcl-2 (apresentação 1 ml), diluição 1:100
 (uma unidade do anticorpo diluído em 100 μL de BSA 1% com PBS 0,1 molar);
 - anticorpo policional de coelho anti glutationa peroxidase 1 (apresentação 100 μg);

anticorpo secundário policional de cabra anti IgG - H&L (Alexa Fluor® 488),
 diluição 1:1000 (uma unidade do anticorpo diluído em 1000 μL de BSA 1% com PBS 0,1 molar);

• anticorpo secundário policional de cabra anti IgG - H&L (Alexa Fluor® 594), diluição 1:250 (uma unidade do anticorpo diluído em 250 μL de BSA 1% com PBS 0,1 molar).

5.7 Grupos de estudo (n= número de ratos)

Os experimentos A e B diferenciaram-se conforme: a) o objetivo de cada estudo, b) o tipo de avaliação a que os animais foram submetidos e c) as doses de cisplatina e NAC utilizadas (Quadro 2).

Foi denominado período experimental aquele compreendido entre o primeiro e o último dia de administração das drogas, sendo de cinco dias para o experimento A e de três dias para o B. Os experimentos não foram realizados concomitantemente, sendo o experimento A realizado anteriormente ao B.

Os animais do experimento A realizaram os exames de otoscopia, EOAPD e PEATE 24h antes da primeira dose das drogas e 24h depois da última dose (no sexto dia). A cisplatina foi aplicada em uma subdose na intenção de assegurar a sobrevivência dos animais até o final da pesquisa. Foram aleatoriamente delineados em:

5.7.1 Grupo A1: controle negativo (n=2)

Ratos tratados com solução fisiológica 0,9% via intraperitoneal no mesmo volume correspondente à dose de cisplatina (3mg/Kg/dia) durante cinco dias consecutivos.

5.7.2 Grupo A2: controle positivo (n=2)

Ratos tratados com 100mg/Kg/dia de NAC via oral por gavagem durante cinco dias consecutivos.

5.7.3 Grupo A3: ototóxico (n=8)

Ratos tratados com 3mg/Kg/dia de cisplatina via intraperitoneal durante cinco dias consecutivos.

5.7.4 Grupo A4: ototóxico com otoproteção (n=7)

Ratos tratados com 100 mg/Kg/dia de NAC via oral por gavagem, uma hora antes da administração de 3 mg/Kg/dia de cisplatina via intraperitoneal, durante cinco dias consecutivos.

Os animais do experimento B realizaram os exames de otoscopia e PEATE 24h antes e 24h depois do período de três dias e receberam dose ototóxica de cisplatina, além de terem suas cócleas removidas e analisadas por meio de MEV e o tecido coclear ter sido submetido à imunofluorescência para investigação dos marcadores celulares. Foram aleatoriamente delineados em:

5.7.5 Grupo B1: controle negativo (n=3)

Ratos tratados com solução fisiológica 0,9% via intraperitoneal no mesmo volume correspondente à dose de cisplatina (8mg/Kg/dia) durante três dias consecutivos.

5.7.6 Grupo B2: controle positivo (n=3)

Ratos tratados com 300 mg/Kg/dia de NAC via oral por gavagem durante três dias consecutivos.

5.7.7 Grupo B3: ototóxico (n=5)

Ratos tratados com 8 mg/Kg/dia de cisplatina via intraperitoneal durante três dias consecutivos.

5.7.8 Grupo B4: ototóxico com otoproteção (n=5)

Ratos tratados com 300 mg/Kg/dia de NAC via oral por gavagem, uma hora antes da administração via intraperitoneal de 8 mg/Kg/dia de cisplatina, durante três dias consecutivos.

Experimento A				Experime	nto B		
(período experimental = 5 dias)			(perío	do experim	ental = 3 di	as)	
			Obje	etivo			
Avaliar o comportamento clínico e função auditiva com uma subdose de CDDP.			Avaliar o comportamento clínico, a função auditiva, o mecanismo de otoproteção da NAC e a via de modulação da apoptose com uma dose ototóxica de CDDP.			teção da otose com	
			Avaliações	realizadas			
Otos	Otoscopia / EOAPD / PEATE			Otoscopia / PEATE / MEV / imunofluorescência			/
			Divisão d	os grupos			
A1	A2	А3	A4	B1	B2	В3	B4
Solução fisiológica	NAC	CDDP	NAC 100mg	Solução fisiológica	NAC	CDDP	NAC 300mg
(mesmo	100mg	3mg	+	(mesmo	300mg	8mg	+
volume da	_		CDDP	volume da			CDDP
CDDP)			3mg	CDDP)			8mg

Quadro 2 - Delineamento dos grupos de estudo. CDDP = cisplatina (*Cis*-diaminodicloroplatina II); NAC = N-acetilcisteína, EOAPD = emissões otoacústicas evocadas produto de distorção; PEATE = potencial evocado auditivo de tronco encefálico; MEV = microscopia eletrônica de varredura.

5.8 Descrição dos procedimentos utilizados para a coleta de dados

5.8.1 Reflexo de Preyer

O reflexo de Preyer consiste na eliciação da reação de sobressalto em roedores mediante um estímulo sonoro, como o bater de palmas ou a apresentação de um som metálico. Ao apresentar o estímulo, observa-se a reação corporal e a movimentação do pavilhão auricular. A pesquisa deste reflexo é útil na identificação da perda auditiva profunda (Jero, Coling e Lalwani, 2001), à semelhança do reflexo cócleo-palpebral em humanos.

5.8.2 Avaliação fisiológica da audição por Emissões Otoacústicas Evocadas Produto de Distorção (EOAPD)

Para verificar a integridade funcional das CCEs, foram coletadas as EOAPD dos animais do experimento A antes e depois do período experimental de cinco dias. O produto de distorção utilizado para análise foi o que ocorreu na relação de 2f1-f2, na qual existe a razão 1,22 entre as frequências f2/f1.

As f2 pesquisadas no *Dp-gram* foram 1105 Hz, 2211 Hz, 4416 Hz e 8837 Hz, com L1=L2= 70 dBNPS. Para facilitar a leitura, as frequências foram descritas como 1000, 2000, 4000 e 8000 Hz.

A EOAPD foi considerada presente quando a relação sinal-ruído, calculada pela diferença em decibel entre a resposta das EOAPD e o ruído, foi maior do que 6 dB.

Este exame foi realizado no equipamento Smart DPOEA da *Intelligent Hearing Systems* - Miami-Flórida (E.U.A.), em ambiente silencioso e dentro de uma caixa com isolamento acústico (Figura 2).

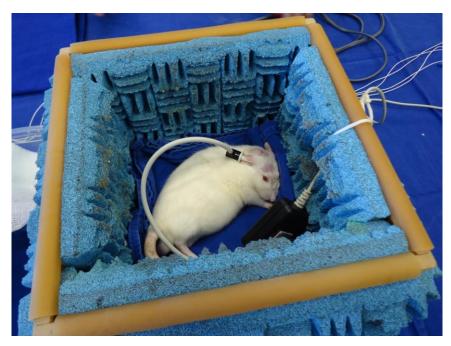


Figura 1 - Imagem demonstrativa da realização da EOAPD em rato.

5.8.3 Avaliação eletrofisiológica da audição por Potencial Evocado Auditivo de Tronco Encefálico (PEATE)

Para a obtenção do limiar eletrofisiológico por meio do PEATE foi utilizado o equipamento Smart EP 3.86USBez (*Intelligent Hearing Systems*), com eletrodos de superfície e sondas de espuma. A aquisição foi ipsilateral, com tempo de análise de 12 ms e amostra de 1000 promediações, com replicação. O estímulo utilizado foi o *click* de 27.7/s emitido por fones de inserção modelo Ear Tone 3A, na polaridade alternada. Os filtros utilizados tiveram uma banda passante entre 50 e 1500 Hz. Os estímulos foram iniciados em 90 dBNA e diminuídos progressivamente até a menor intensidade de estímulo na qual se evidenciava a onda II. Em roedores, a onda II apresenta maior robustez sendo, por isso, utilizada para determinar o limiar eletrofisiológico (FREITAS, 2006).

Os eletrodos de superfície foram posicionados no crânio do animal previamente sedado com cloridrato de cetamina e xilasina. Ressalta-se que esta medicação não interfere na obtenção do PEATE, pois este é um potencial exógeno.

Foi realizada tricotomia do crânio, limpeza da pele com esfoliante e aplicação de pasta eletrolítica nos eletrodos, os quais foram posicionados da seguinte maneira: eletrodo ativo na fronte, eletrodos de referência no lóbulo direito e esquerdo e eletrodo terra no vértex do crânio (Figura 3).

O critério de alteração auditiva foi determinado pelo aumento significativo do limiar eletrofisiológico entre o pré e pós-tratamento.

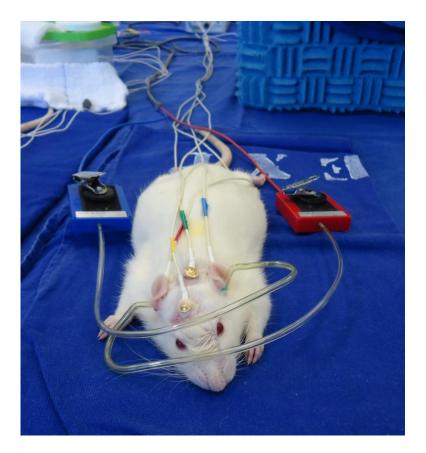


Figura 2- Imagem demonstrativa da realização do PEATE em rato.

5.8.4 Análise anatômica das células ciliadas externas por Microscopia Eletrônica de Varredura (MEV)

Para a análise anatômica das CCEs do órgão de Corti, uma cóclea de um rato de cada grupo foi preparada para ser analisada ao microscópio eletrônico de varredura. As mesmas

foram dissecadas, parcialmente preparadas e fixadas pela base em um porta-espécime cilíndrico de metal com pasta condutiva de carbono (Figura 4). As estruturas foram então cobertas por uma fina camada de ouro de 24 quilates através do processo de evaporização com o equipamento BAL-TEC – SCD 050 – Sputter Coater (Balzers, Liechtenstein), tornandose eletricamente condutivas.

Terminados os processos de preparação das estruturas, as mesmas foram levadas para análise à MEV com o equipamento JEOL Scanning Electron Microscope – JSM 5200, localizado no Laboratório Multiusuário de Microscopia Eletrônica, FMRP-USP.

Como ratos possuem cóclea com duas voltas e meia, considerou-se como parâmetro da análise anatômica o terço médio da espira basal e da espira 2 (ou espira média). A espira apical foi excluída por apresentar um desarranjo natural do padrão 'W' dos estereocílios das CCEs, o que dificultaria a análise estrutural.

A condição de integridade ou lesão das CCEs foi definida pela análise dos estereocílios das mesmas. Células que apresentaram estereocílios com forma e disposição perfeitas foram consideradas íntegras (normais). Células com estereocílios ausentes, disformes ou em padrão de desarranjo foram consideradas lesadas (HYPPOLITO et al, 2003; 2005).

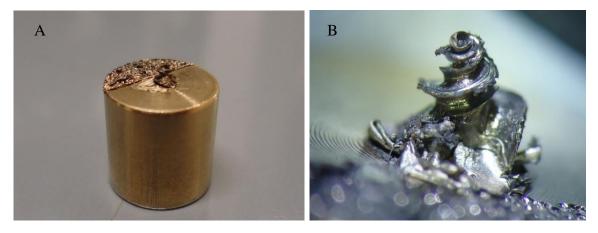


Figura 3 - A: cóclea de rato fixada pela base em um porta-espécime cilíndrico de metal; B: visualização da cóclea ao microscópio óptico.

5.8.5 Preparação histológica

A dissecção das cócleas foi realizada no Laboratório de Cirurgia Experimental e a preparação histológica do material foi realizada no Laboratório Multiusuário de Histotecnologia, ambos na FMRP-USP.

Logo após a realização do PEATE, com os animais ainda anestesiados, foi aplicada uma dose letal de tiopental (Thionembutal®) e então realizada a decapitação. As bulas timpânicas foram removidas do segmento cefálico com uma tesoura de dissecção colocada posteriormente na coluna cervical, fazendo-se um corte longitudinal e mediano no crânio. Usando as mãos e tendo o conduto auditivo externo como orientação, as bulas foram localizadas e removidas, expondo-se as cócleas. Com auxílio de microscópio óptico, estas tiveram suas janelas oval e redonda rompidas e seu ápice perfurado para que fosse injetado solução de fixação de glutaraldeído 3% (Figura 5, seta), sendo as mesmas mantidas nesta solução por 24h a 4°C. Então as cócleas receberam banhos de tampão fosfato (phosphate buffered saline - PBS; fosfato de sódio 100 Mm, NaCl 150 Mm, pH 7,4) para limpeza celular e foram submetidas à microdissecção (redução óssea mantendo os limites da cóclea). Depois as amostras foram descalcificadas em solução de ácido etilenodiamino tetra-acético (EDTA, Laboratório Merck, Darmstadt, Alemanha) 8%, NaOH 0,55g (Laboratório Merck, Darmstadt, Alemanha) e água destilada 100 ml. Após a descalcificação, o material foi desidratado em concentrações crescentes de álcool etílico (50%, 70%, 80%, 90%, 95% e álcool absoluto) e recebeu três banhos de 20 minutos de etanol a 100%, deixando-se as estruturas imersas no último banho à temperatura ambiente por 12 horas. Depois de desidratado, o mesmo foi submetido à diafanização com banhos de xilol. Em seguida, para eliminar completamente o xilol e facilitar a infiltração da parafina, o material foi passado em duas trocas de parafina fundida na temperatura de 60°C. Então, foi realizada a inclusão em parafina de maneira orientada, sendo as cócleas posicionadas para serem seccionadas ao micrótomo de forma longitudinal, ou seja, paralelos ao modíolo, numa espessura de 6 micra.

Depois de obtidas as secções seriadas do tecido na profundidade do modíolo (no mínimo três secções de cada cóclea), estas foram dispostas sobre a lâmina de vidro com água destilada em sua superfície. Em seguida, a lâmina foi colocada em platina aquecida para que o tecido pudesse distender e então esta ser levada à estufa aquecida a 60°C. Após, as lâminas foram submetidas ao protocolo de imunofluorescência.

Figura 4 - Bula timpânica de rato com orifício no ápice da cóclea para injeção de solução fixadora (seta).

5.8.6 Imunofluorescência

A técnica de imunofluorescência foi utilizada para marcar a enzima GSH-Px e a proteína Bcl-2, sendo realizada no Laboratório Multiusuário de Histotecnologia da FMRP-USP

O preparo das lâminas seguiu o seguinte protocolo: 1) dois banhos de 10 minutos de xilol para eliminação da parafina; 2) hidratação com concentrações decrescentes de álcool etílico (álcool absoluto, 95%, 70%, 50%) e água destilada; 3) imersão em tampão citrato pH6 durante uma hora em banho-maria; 4) três banhos de cinco minutos com água destilada; 5) um banho de 30 minutos em tampão fosfato (PBS) e glicina; 6) bloqueio de uma hora em soro albumina bovina (BSA 2%) e Tween 20; 7) incubação *overnight* do anticorpo primário em câmara escura e úmida; 8) cinco banhos de cinco minutos em PBS, com as lâminas protegidas da luz; 9) incubação com anticorpo secundário durante uma hora em câmara escura e úmida; 10) cinco banhos de cinco minutos em PBS, com as lâminas protegidas da luz. Em seguida as lâminas foram cobertas com lamínula e armazenadas em geladeira. No dia seguinte foi dado início à análise ao microscópio confocal.

Para descartar a possibilidade de marcação inespecífica do anticorpo secundário, realizou-se um controle em que não foi incubado o anticorpo primário.

5.8.7 Microscopia Confocal

A análise das secções e aquisição das imagens de microscopia confocal foi realizada com o microscópio confocal Leica SP5 DM4000 B Led e software |Leica LAS - AF Lite, localizado no Laboratório Multiusuário de Microscopia Confocal, FMRP-USP.

5.9 Logística

5.9.1 Experimento A

Primeiramente, no Biotério Central da FMRP-USP, os animais foram selecionados conforme o peso e a presença do reflexo de Preyer. No dia seguinte, depois de mantidos em repouso auditivo por 24 horas, foram submetidos à anestesia e analgesia via intramuscular, à realização da otoscopia e à pesquisa de EOAPD e PEATE. Houve, então, a formação dos grupos, sendo os ratos aleatoriamente separados em gaiolas e marcados com ácido pícrico para diferenciação no seu respectivo grupo.

No dia seguinte foi dado início ao protocolo de administração das drogas e da solução fisiológica. Durante o período experimental de cinco dias, o horário inicial do experimento e a sequência de procedimentos foram respeitados: primeiramente os animais foram pesados e foi calculada a dose da cisplatina e da NAC. Os primeiros grupos a serem manipulados foram os grupos A2 e A4, que receberam NAC via oral por gavagem. Depois de uma hora, os grupos A3 e A4 receberam a dose de cisplatina via intraperitoneal e, por último, o grupo A1 recebeu a dose de solução fisiológica 0,9% via intraperitoneal.

Vinte e quatro horas depois da última aplicação das drogas e da solução fisiológica, portanto no sexto dia, os animais foram novamente anestesiados e analgesiados, sendo submetidos à otoscopia para excluir aqueles que tivessem adquirido doença de orelha externa e/ou média. Em seguida realizaram novamente os testes auditivos.

5.9.2 Experimento B

Os procedimentos no experimento B obedeceram à mesma sequência do experimento A. No entanto, a pesquisa da função auditiva foi por meio de PEATE, o período experimental foi de três dias e os animais foram eutanasiados por dose letal de tiopental (Thionembutal®) e decapitados. As bulas timpânicas foram removidas e preparadas para MEV e para imunofluorescência, conforme o protocolo de cada grupo.

5.9.3 Fluxograma - Experimento A

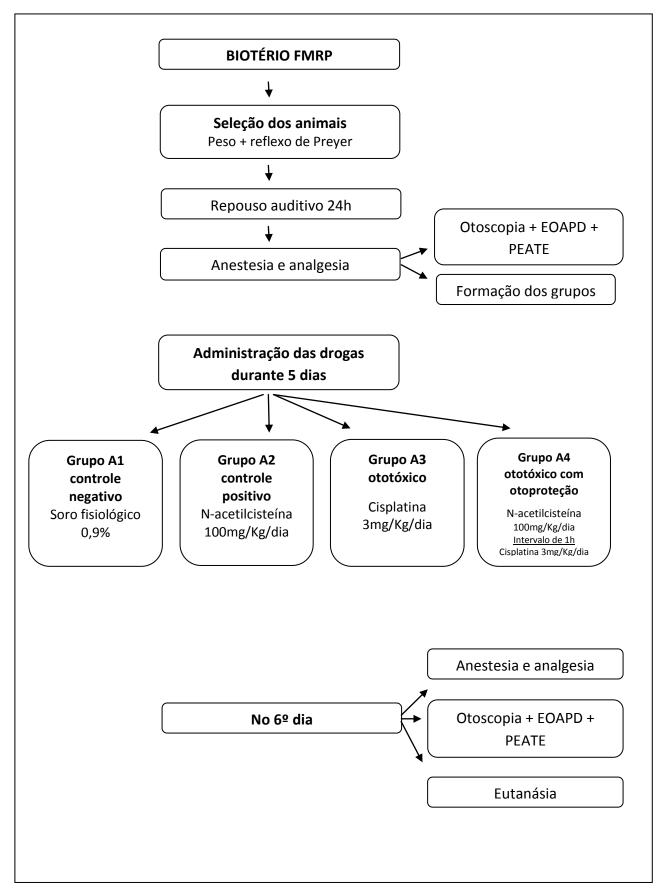


Figura 5 - Fluxograma da sequência de procedimentos realizados no experimento A.

5.9.4 Fluxograma – Experimento B

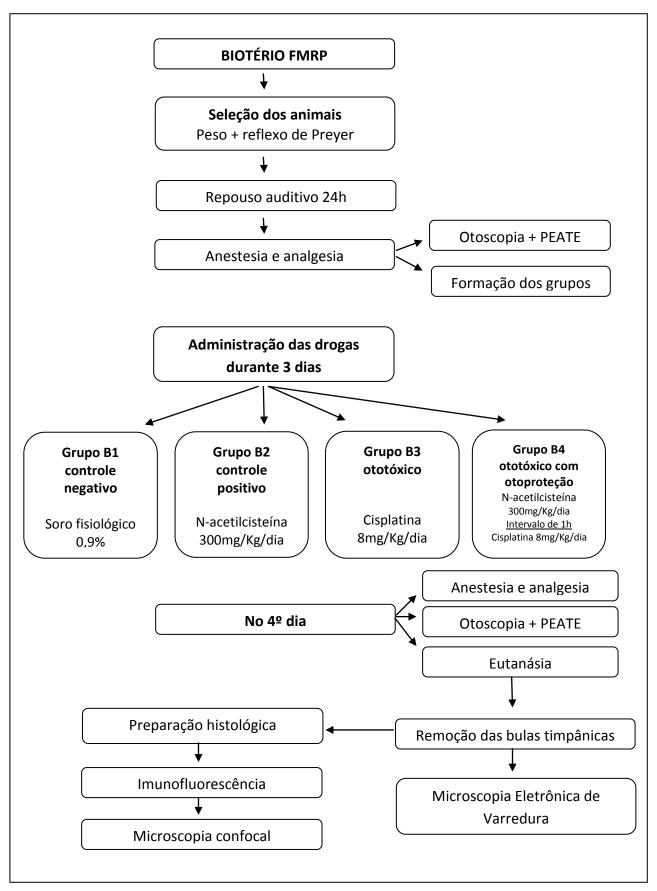


Figura 6 - Fluxograma da sequência de procedimentos realizados no experimento B.

5.10 Metodologia estatística

Os resultados das EOAPD e do PEATE dos grupos controles A1, A2, B1 e B2 estão expostos de forma descritiva. Nos grupos experimentais A3 e A4, para comparar as médias da relação sinal-ruído das EOAPD em cada frequência, antes e após o tratamento, foi aplicado o Teste t de Student ou o teste de Wilcoxon, de acordo com a normalidade dos dados. Da mesma forma foi procedido nas análises envolvendo os resultados do limiar eletrofisiológico obtido pelo PEATE.

Para a comparação das médias da relação sinal-ruído das EOAPD entre os quatro grupos do experimento A, foi realizada Análise de Variância (ANOVA).

Na comparação entre os valores do limiar eletrofisiológico pré e pós-tratamento para orelhas diferentes nos grupos A3 e A4, B3 e B4, foi utilizado o teste U de Mann-Whitney.

Quando houve agrupamento das orelhas direita e esquerda para a comparação entre os quatro grupos do mesmo experimento, foi utilizado o teste de Kruskall-Wallis.

A análise estatística foi processada pelo software SPSS 16.0 e o critério de determinação de significância adotado foi o nível de 5% em todas as análises.

6 RESULTADOS

Neste capítulo, primeiramente, estão expostos os resultados do comportamento clínico e avaliação funcional da audição obtida por EOAPD e PEATE, referentes ao experimento A. Em seguida, estão apresentados os resultados do comportamento clínico e dos procedimentos realizados nos animais do experimento B: avaliação funcional da audição por meio de PEATE, avaliação anatômica das CCEs com MEV e imunomarcação da GSH-Px e Bcl-2 por imunofluorescência.

O comportamento clínico foi avaliado, principalmente, a partir da variação do peso dos animais.

6.1. Resultados do experimento A

Dos 19 animais incluídos, um foi a óbito antes do final do experimento e outro foi excluído por apresentar otite média. Ambos faziam parte do grupo A3. Dessa forma, os grupos ficaram assim divididos: A1 (n=2); A2 (n=2); A3 (n=6); A4 (n=7).

6.1.1 Avaliação do comportamento clínico

No decorrer do experimento foram observados sinais de toxicidade sistêmica. Em todos os animais do grupo A3 os sinais foram de queda de pêlos, diarreia e perda de peso. No grupo A4 todos manifestaram perda de peso e dois animais tiveram diarreia. Nos grupos A1 e A2 nenhum destes sinais foi observado.

Tabela 1- Média e desvio padrão do peso (em gramas) em função dos dias nos grupos A1, A2, A3 e A4.

	DIAS					
Grupos	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6
	Média (DP)					
A1	269 (9,90)	284 (11,31)	287 (9,90)	295 (9,90)	303 (12,73)	321 (12,72)
A2	257 (1,41)	274 (8,49)	278 (8,49)	290 (14,14)	300 (11,31)	311 (12,73)
А3	268 (17,20)	256 (14,64)	248 (17,52)	234 (16,30)	223 (19,74)	209 (17,82)
A4	274 (9,93)	270 (10,16)	260 (10,80)	244 (10,80)	229 (11,00)	213 (12,37)

DP - desvio padrão.

Com os resultados da Tabela 1, verificou-se um aumento de peso de 19% nos animais do grupo A1 e de 21% nos animais do grupo A2, entre o primeiro e o sexto dia do experimento. Já os animais dos grupos A3 e A4 tiveram igualmente uma redução no peso de 22%.

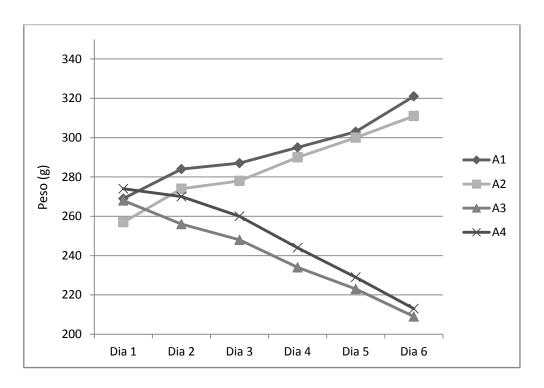


Figura 7 - Variação média do peso (em gramas) dos animais dos quatro grupos do experimento A, entre o primeiro e o sexto dia do experimento.

6.1.2 Avaliação funcional da audição

6.1.2.1 Emissões otoacústicas evocadas produto de distorção - EOAPD

Todos os animais apresentaram resposta ao exame de EOAPD (Figuras 9, 10, 11 e 12). O traçado do *DP-GRAM* apresentou maior amplitude nas frequências de 1000 e 2000 Hz, diminuindo em 4000 e 8000 Hz, conforme exemplos expostos neste item.

Tabela 2 – Média e desvio padrão da relação sinal-ruído (em dB) das EOAPD do grupo A1 por frequência e orelha, antes e após o tratamento (n=2).

Orollo / Fraguência /Uz)	Pré-tratamento	Pós-tratamento
Orelha / Frequência (Hz)	Média (DP)	Média(DP)
Orelha direita		
1000	62,0 (1,41)	52,0 (16,97)
2000	44,0 (1,41)	45,5 (3,53)
4000	27,0 (1,41)	26,5 (2,12)
8000	27,0 (1,41)	18,5 (13,43)
Orelha esquerda		
1000	65,5 (0,70)	45,0 (21,21)
2000	43,5 (2,12)	47,0 (2,82)
4000	26,5 (2,12)	23,5 (2,12)
8000	15,5 (4,94)	21,5 (10,60)

DP – desvio padrão.

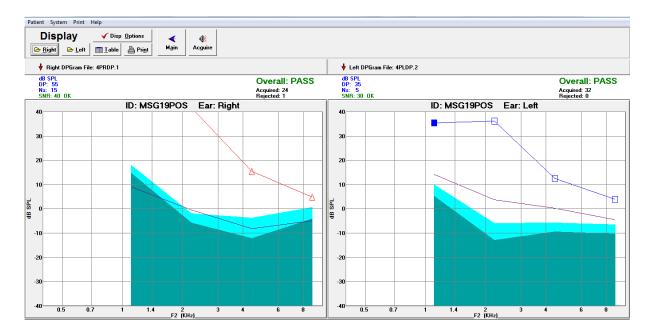


Figura 8 - Exemplo de resultado de EOAPD de rato do grupo A1. Observa-se presença de resposta em todas as frequências.

Tabela 3 – Média e desvio padrão da relação sinal-ruído (em dB) das EOAPD do grupo A2 por frequência e orelha, antes e após o tratamento (n=2).

Ovelles / Francis (III-)	Pré-tratamento	Pós-tratamento
Orelha / Frequência (Hz)	Média (DP)	Média
Orelha direita		
1000	62,5 (2,12)	61,5 (2,12)
2000	41,5 (4,94)	44,0 (2,82)
4000	27,0 (7,07)	23,5 (2,12)
8000	29,0 (16,97)	24,0 (8,48)
Orelha esquerda		
1000	64,5 (0,70)	44,0 (29,69)
2000	38,5 (6,36)	41,0 (8,48)
4000	27,0 (2,82)	16,5 (0,70)
8000	18,0 (2,82)	24,0 (22,62)

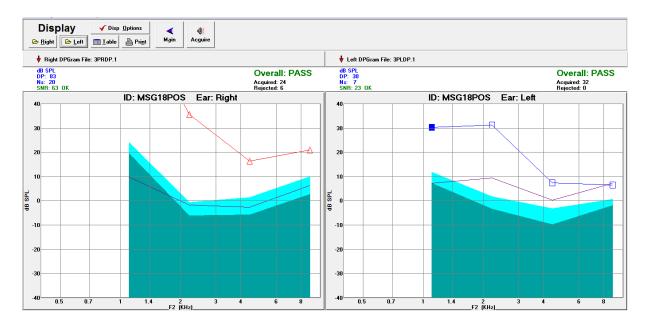


Figura 9 - Exemplo de resultado de EOAPD de rato do grupo A2. Observa-se presença de resposta em todas as frequências.

Tabela 4 — Comparação entre as médias dos valores da relação sinal-ruído (em dB) das EOAPD do grupo A3 por frequência e orelha, antes e após o tratamento (n=6).

Ouelles / Fue au âu sie	Pré-tratamento	Pós-tratamento		
Orelha / Frequência	Média (DP)	Média (DP)	p-valor	
Orelha direita				
1000	48,83 (20,62)	61,67 (3,33)	0,138	
2000	31,83 (11,08)	39,83 (6,91)	0,263	
4000	22,00 (8,48)	27,83 (5,56)	0,123	
8000	29,00 (19,27)	31,00 (18,36)	0,685	
Orelha esquerda				
1000	49,33 (16,98)	63,67 (1,51)	0,100	
2000	42,33 (4,80)	43,00 (0,89)	0,752	
4000	26,17 (3,25)	25,83 (4,71)	0,913	
8000	29,33 (15,93)	22,67 (13,88)	0,132	

DP – desvio padrão; p-valor obtido pelo teste t de Student.

A Tabela 4 apresenta os resultados da comparação entre as médias dos valores da relação sinal-ruído dos ratos do grupo experimental A3. Observa-se que nenhum dos resultados apresentou diferença significativa entre o pré e o pós-tratamento.

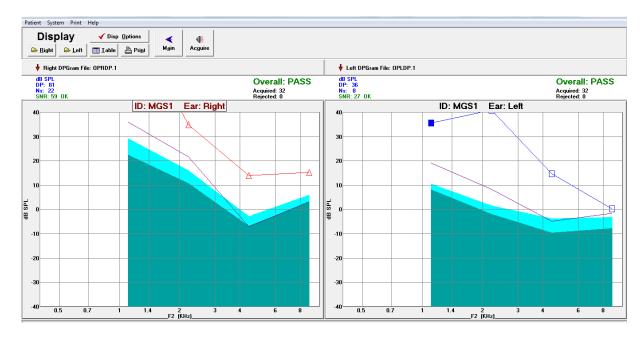


Figura 10 - Exemplo de resultado de EOAPD de rato do grupo A3. Observa-se presença de resposta em todas as frequências.

Tabela 5 - Comparação dos valores médios da relação sinal-ruído (em dB) das EOAPD do grupo A4 por frequência, antes e após o tratamento (n=7).

Orelha / Frequência	Pré-tratamento	Pós-tratamento	n volor
	Média (DP)	Média (DP)	p-valor
Orelha direita			
1000	38,43 (18,20)	61,14 (4,63)	0,042*
2000	35,57 (4,43)	38,00 (1,91)	0,140+
4000	22,00 (5,19)	19,29 (4,27)	0,395+
8000	32,57 (12,80)	25,43 (13,40)	0,071+
Orelha esquerda			
1000	60,29 (9,39)	61,86 (8,99)	0,735**
2000	40,43 (8,58)	40,57 (5,53)	0,963+

4000	27,29 (5,22)	23,57 (2,99)	0,236 ⁺
8000	35,29 (11,50)	29,71 (14,94)	0,236**

DP – desvio padrão; * significância estatística pelo teste de Wilcoxon; **Teste de Wilcoxon; [†] Teste t pareado.

Observa-se na Tabela 5 a existência de diferença estatística significativa entre os valores para a orelha direita na frequência de 1000 (p=0,042), quando comparados os momentos antes e depois do tratamento.

A relação sinal-ruído maior do que 6 dB no teste de EOAPD indica presença de resposta, dessa forma, esta diferença estatística observada em nada altera a interpretação do resultado do exame após o tratamento. O que indicaria a ototoxicidade seria a diminuição da relação sinal-ruído, o que ocorreu nas frequências de 4000 e 8000 Hz em ambas as orelhas, porém de forma não significativa estatisticamente.

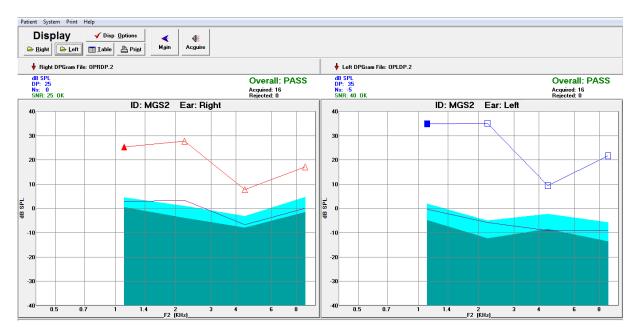


Figura 11 - Exemplo de resultado de EOAPD de rato do grupo A4. Observa-se presença de resposta em todas as frequências.

Tabela 6 - Comparação das médias da relação sinal-ruído (em dB) por frequência obtidas no pré e pós-tratamento nos quatro grupos do experimento A, agrupando-se as orelhas direita e esquerda (n=17).

Frequência (Hz)	A1	A2	А3	A4	р-			
	Média (DP)	Média (DP)	Média (DP)	Média (DP)	valor			
	Pré-tratamento							
1000	63,75 (2,22)	63,50 (1,73)	49,08 (18,01)	49,36 (17,95)	0,230			
2000	43,75 (1,50)	40,00 (4,97)	37,08 (9,82)	38,00 (7,03)	0,492			
4000	26,75 (1,50)	27,00 (4,39)	24,08 (6,50)	24,64 (5,71)	0,739			
8000	21,25 (7,27)	23,50 (11,79)	29,17 (16,86)	33,93 (11,78)	0,307			
		Pós-trat	amento					
1000	48,50 (16,20)	52,27 (19,94)	62,67 (2,67)	61,50 (6,88)	0,039*			
2000	46,25 (2,75)	42,50 (5,45)	41,42 (4,98)	39,29 (4,20)	0,069			
4000	25,00 (2,45)	20,00 (2,24)	26,83 (5,02)	21,43 (4,18)	0,012*			
8000	20,00 (10,03)	24,00 (13,95)	26,83 (16,12)	27,57 (13,82)	0,807			

DP – desvio padrão; *significância estatística. Teste de Análise de Variância (ANOVA).

A partir da Tabela 6 observa-se a existência de diferença estatisticamente significativa no pós-tratamento para as frequências de 1000 e 4000 Hz. Na frequência de 1000 Hz, a diferença encontrada está entre os grupos A1 (controle negativo) e A3 (ototóxico), sendo que o grupo ototóxico tem uma média maior que o grupo controle negativo. Na frequência de 4000 Hz, a diferença está entre os dois grupos experimentais A3 e A4, com o primeiro apresentando valor maior que o segundo. Também aqui a relação sinal-ruído se manteve acima de 6 dB em todas as frequências, não havendo, portanto, indicação de lesão de CCEs.

6.1.2.2 Potencial evocado auditivo de tronco encefálico - PEATE

Tabela 7 - Média e desvio padrão do limiar eletrofisiológico (em dBNA) obtidos no pré e póstratamento, por orelha, nos grupos A1 (n=2) e A2 (n=2).

Ouelles treteres ate	A1	A2
Orelha - tratamento	Média (DP)	Média (DP)
OD – pré	20,00 (0,00)	15,00 (7,07)
OD – pós	30,00 (14,14)	17,5 (10,60)
OE – pré	20,00 (0,00)	22,5 (3,53)
OE – pós	40,00 (14,14)	22,5 (3,53)

OD – orelha direita; OE – orelha esquerda.

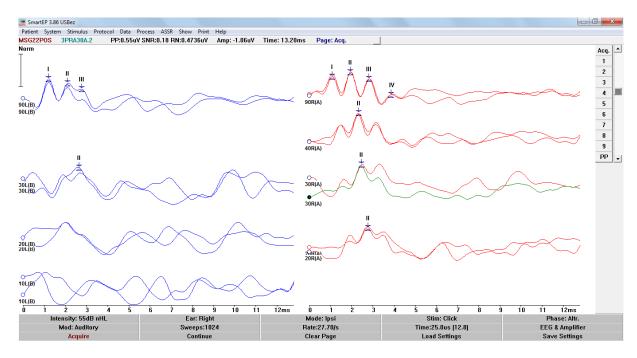


Figura 12 - Exemplo de resultado do PEATE em rato do grupo A1. Limiar eletrofisiológico da onda II na orelha direita em 20 dBNA e na orelha esquerda em 30 dBNA.

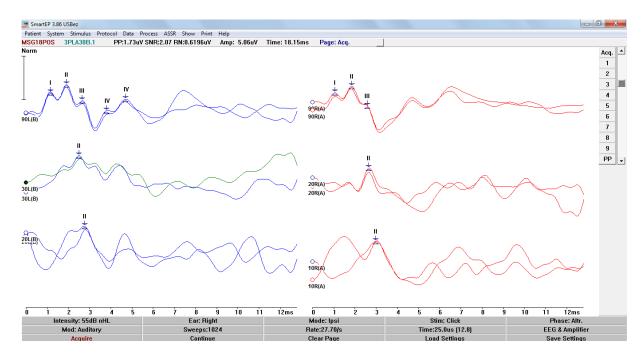


Figura 13 - Exemplo de resultado do PEATE em rato do grupo A2. Limiar eletrofisiológico da onda II na orelha direita em 10 dBNA e na orelha esquerda em 20 dBNA.

Tabela 8 - Comparação dos valores médios do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-tratamento, por orelha e entre as orelhas direita e esquerda, no grupo A3 (n=6).

Ovalla	Pré-tratamento	Pós-tratamento	
Orelha	Média (DP)	Média (DP)	p-valor
OD	21,67 (4,08)	33,33 (5,16)	0,038*+
OE	23,33 (5,16)	31,67 (14,72)	0,102+
p-valor	0,931**	0,429++	

DP – desvio padrão; OD – orelha direita; OE – orelha esquerda; *significância estatística; *p-valor obtido pelo teste de Wilcoxon; **p-valor obtido pelo teste U de Mann Whitney.

Com a Tabela 8 observa-se que existiu diferença significativa no limiar eletrofisiológico da orelha direita entre o pré e o pós-tratamento, uma vez que o p-valor (p=0,038) é menor que o nível de significância de 5%. Na orelha esquerda, houve aumento na média do limiar entre o pré e pós-tratamento, porém de forma não significativa. Isso possivelmente tenha ocorrido devido ao aumento da variabilidade (desvio padrão), sendo

necessário, para a comprovação da diferença estatística entre as médias, um maior tamanho amostral.

Na comparação entre as orelhas direita e esquerda conforme o momento do tratamento, não foi encontrada diferença estatisticamente significante.

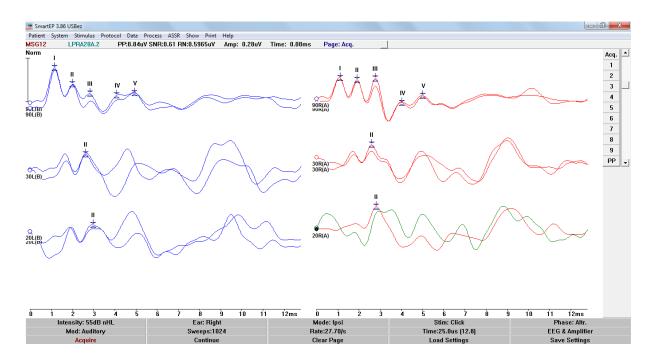


Figura 14 - Exemplo de resultado do PEATE em rato do grupo A3. Limiar eletrofisiológico da onda II na orelha direita e esquerda em 20 dBNA.

Tabela 9 - Comparação dos valores médios do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-tratamento, por orelha e entre as orelhas direita e esquerda, no grupo A4 (n=7).

Orelha	Pré-tratamento	Pós-tratamento	p-valor
	Média (DP)	Média (DP)	
OD	22,86 (4,88)	26,43 (7,48)	0,094 ⁺
OE	22,14 (6,99)	27,14 (7,56)	0,038*+
p-valor	0,997**	0,902**	

DP – desvio padrão; OD – orelha direita; OE – orelha esquerda; *significância estatística; *p-valor obtido pelo teste de Wilcoxon; **p-valor obtido pelo teste U de Mann Whitney.

Na Tabela 9 verifica-se diferença significativa na orelha esquerda entre o pré e o póstratamento. Na comparação entre as orelhas não foi encontrada diferença estatisticamente significante.

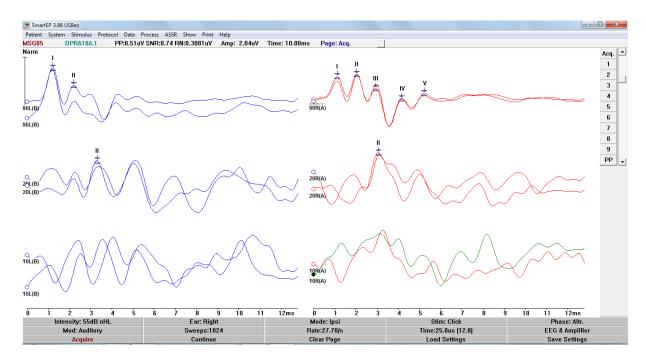


Figura 15 - Exemplo de resultado do PEATE em rato do grupo A4. Limiar eletrofisiológico da onda II na orelha direita e esquerda em 20 dBNA.

Tabela 10 - Comparação dos valores médios do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-tratamento do experimento A, por grupo, agrupando-se as orelhas direita e esquerda.

Tratamento	A1	A2	А3	A4	p-valor
	Média (DP)	Média (DP)	Média (DP)	Média (DP)	
PRÉ	20,00 (0,00)	18,75 (6,29)	22,50 (4,52)	22,50 (5,80)	0,587
PÓS	35,00 (12,91)	20,00(7,07)	32,50(10,55)	26,79 (7,23)	0,065

p-valor obtido pelo teste Kruskall-Wallis.

A Tabela 10 expõe os resultados da comparação entre os quatro grupos do experimento A, com o agrupamento das orelhas direita e esquerda. Observa-se que não

houve diferença estatisticamente significante entre os quatro grupos avaliados para o pré e o pós-tratamento.

6.2 Resultados do experimento B

Dos 16 animais incluídos no experimento B, dois foram a óbito depois da terceira dose de cisplatina, sendo um pertencente ao grupo B3 e outro ao grupo B4. Os grupos ficaram assim divididos: B1 (n=3); B2 (n=3); B3 (n=4); B4 (n=4).

6.2.1 Avaliação do comportamento clínico

Também neste experimento foram observados sinais de toxicidade sistêmica de queda de pêlos, diarreia e perda de peso, presentes nos animais dos grupos experimentais B3 e B4.

Tabela 11 - Média e desvio padrão do peso (em gramas) em função dos dias nos grupos B1, B2, B3 e B4.

	DIAS				
Grupos	Dia 1	Dia 2	Dia 3	Dia 4	
	Média (DP)	Média (DP)	Média (DP)	Média (DP)	
B1	283 (16,29)	289 (17,47)	307 (19,63)	318 (17,44)	
B2	287 (11,02)	286 (14,42)	301 (18,04)	314 (21,07)	
В3	287 (19,70)	277 (13,11)	260 (10,58)	242 (10,75)	
В4	291 (4,43)	275 (8,72)	260 (8,23)	244 (12,75)	

DP- desvio padrão.

Entre o primeiro e o quarto dia do experimento, houve um aumento de peso de 12,4% no grupo B1 e de 9,4% no grupo B2. Já para os grupos experimentais B3 e B4 houve uma redução no peso de 16% (Tabela 11).

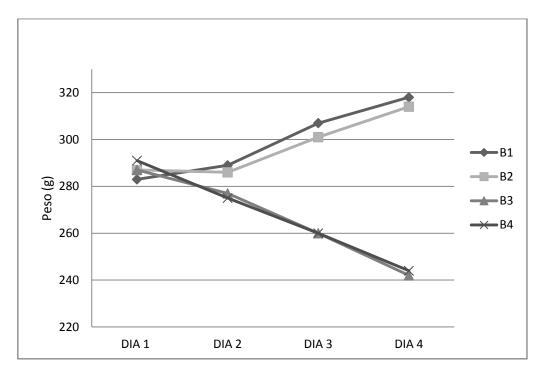


Figura 16 - Variação média do peso (em gramas) dos animais dos quatro grupos do experimento B, entre o primeiro e o quarto dia do experimento.

6.2.2 Avaliação funcional da audição

6.2.2.1 Potencial evocado auditivo de tronco encefálico (PEATE)

Tabela 12 – Média e desvio padrão do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-tratamento, por orelha, nos grupos B1 (n=3) e B2 (n=3).

Orelha – Momento	B1	B2	
Orema – Momento	Média (DP)	Média (DP)	
OD – pré	20,00 (0,00)	20,00 (0,00)	
OD – pós	20,00 (0,00)	23,33 (5,77)	

OE – pré	16,66 (5,77)	20,00 (10,00)	
OE – pós	13,33 (5,77)	23,33 (5,77)	

OD – orelha direita; OE – orelha esquerda, DP – desvio padrão.

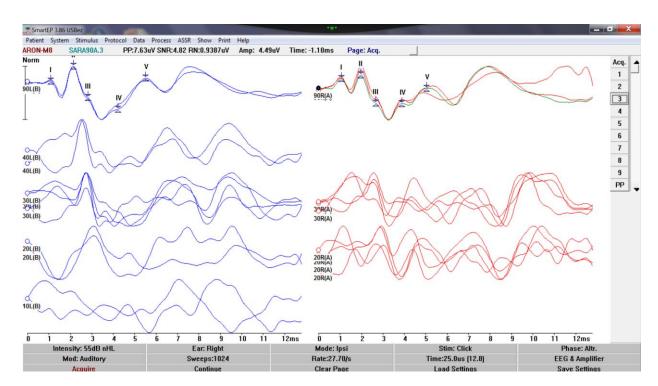


Figura 17 - Exemplo de resultado do PEATE em rato do grupo B1. Limiar eletrofisiológico da onda II na orelha direita e esquerda em 20 dBNA.

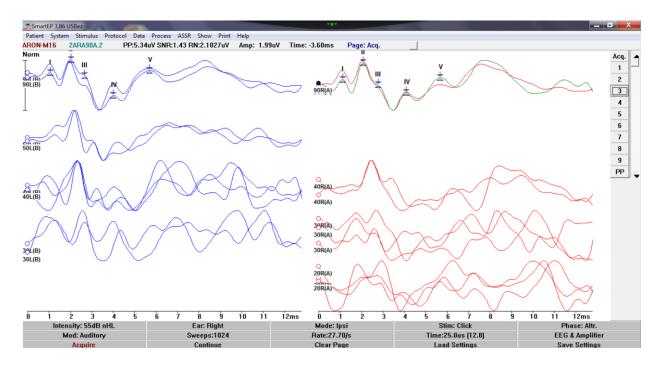


Figura 18 - Exemplo de resultado do PEATE em rato do grupo B2. Limiar eletrofisiológico da onda II na orelha direita em 20 dBNA e na orelha esquerda em 30 dBNA.

Tabela 13 - Comparação dos valores do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-tratamento em cada orelha e entre as orelhas direita e esquerda, no grupo B3 (n=4).

Ovelha	Pré-tratamento	Pós-tratamento	n valor	
Orelha	Média (DP)	Média (DP)	p-valor	
OD	20,00 (0,00)	23,75 (4,79)	0,180 ⁺	
OE	22,50 (5,0)	23,75 (4,79)	0,317 ⁺	
p-valor	0,686**	1,00**		

DP – desvio padrão; OD – orelha direita; OE – orelha esquerda; [†]p-valor obtido pelo teste de Wilcoxon; **p-valor obtido pelo teste U de Mann Whitney.

Observa-se que não foi encontrada diferença estatisticamente significativa tanto na comparação entre o pré e o pós-tratamento de cada orelha, como na comparação entre as orelhas direita e esquerda (Tabela 13).

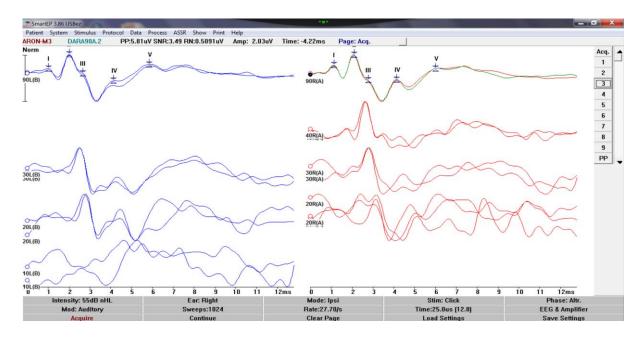


Figura 19 - Exemplo de resultado do PEATE em rato do grupo B3. Limiar eletrofisiológico da onda II na orelha direita e esquerda em 20 dBNA.

Tabela 14 - Comparação dos valores do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-tratamento em cada orelha e entre as orelhas direita e esquerda, no grupo B4 (n=4).

Ovelha	Pré-tratamento	Pós-tratamento	n volon	
Orelha	Média (DP)	Média (DP)	p-valor	
OD	17,50 (5,00)	32,50 (5,00)	0,059 ⁺	
OE	22,50 (5,00)	30,00 (14,14)	0,180 ⁺	
p-valor	0,343**	0,486**		

DP – desvio padrão; OD – orelha direita; OE – orelha esquerda; [†]p-valor obtido pelo teste de Wilcoxon; **p-valor obtido pelo teste U de Mann Whitney.

Com a Tabela 14 verifica-se que tanto a orelha direita quanto a esquerda não apresentaram aumento significativo no limiar eletrofisiológico após o tratamento. Porém, ressalta-se que a média da orelha direita teve um aumento de 85,7%. Na comparação entre as orelhas também não foi houve diferença significativa.

Da mesma forma como ocorreu no grupo A3 do experimento A, na orelha esquerda houve aumento na média do limiar entre o pré e pós-tratamento, porém de forma não

significativa, possivelmente devido ao aumento da variabilidade. A comprovação da diferença estatística entre as médias necessitaria de uma amostra maior.

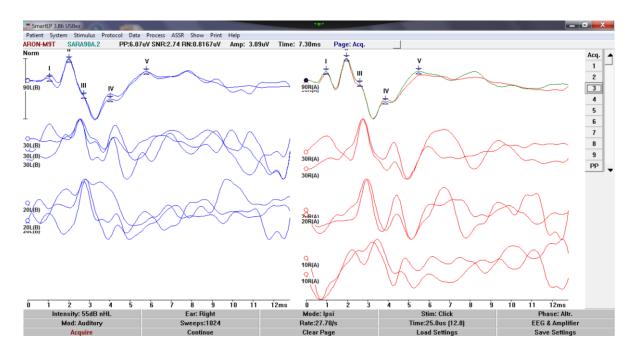


Figura 20 - Exemplo de resultado do PEATE em rato do grupo B4. Limiar eletrofisiológico da onda II na orelha direita e esquerda em 20 dBNA.

Tabela 15 - Comparação dos valores do limiar eletrofisiológico (em dBNA) obtidos no pré e pós-tratamento do experimento B, por grupo, agrupando-se as orelhas direita e esquerda.

Momento	B1	B2	В3	B4	p-valor
	Média (DP)	Média (DP)	Média (DP)	Média (DP)	
PRÉ	18,33 (4,08)	20,00 (6,32)	21,25 (3,54)	20,00 (5,34)	0,726
PÓS	16,67 (5,16)	23,33 (5,16)	23,75 (4,43)	31,25 (9,91)	0,011*

^{*} significância estatística, p-valor obtido pelo teste Kruskall- Wallis.

Com os resultados da Tabela 15 constata-se diferença estatisticamente significativa no pós-tratamento entre o grupo controle negativo (B1) e o grupo experimental B4, sendo os valores do segundo significativamente superiores aos do primeiro.

6.2.3 Microscopia eletrônica de varredura

6.2.3.1 Grupo B1 – Controle negativo (soro fisiológico 0,9%)

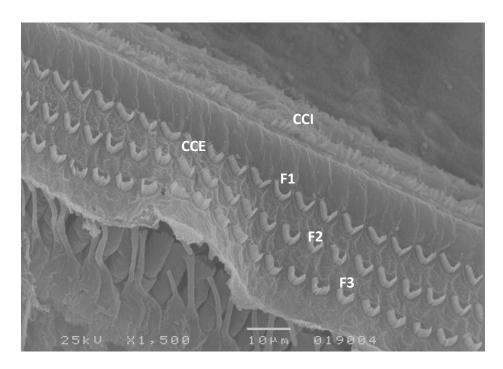


Figura 21 - Fotomicrografia de Microscopia Eletrônica de Varredura do órgão de Corti de rato do grupo B1, mostrando o terço médio da espira basal. CCI: células ciliadas internas (estereocílios); CCE: células ciliadas externas (estereocílios); F1: primeira fileira; F2: segunda fileira; F3: terceira fileira. Observa-se manutenção da arquitetura ciliar nas três fileiras de CCE. Aumento de 1500x.

6.2.3.2 Grupo B2 – Controle positivo: N-acetilcisteína (300mg/Kg/dia)

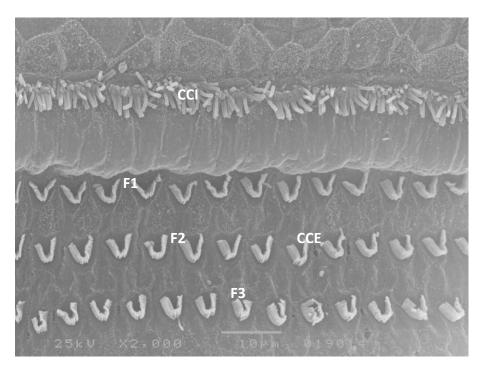


Figura 22 - Fotomicrografia de Microscopia Eletrônica de Varredura do órgão de Corti de rato do grupo B2, mostrando o terço médio da espira basal. CCI: células ciliadas internas (estereocílios); CCE: células ciliadas externas (estereocílios); F1: primeira fileira; F2: segunda fileira; F3: terceira fileira. Observa-se manutenção da arquitetura ciliar nas três fileiras de CCE. Aumento de 2000x.

6.2.3.3 Grupo B3 – Ototóxico: Cisplatina (8mg/Kg/dia)

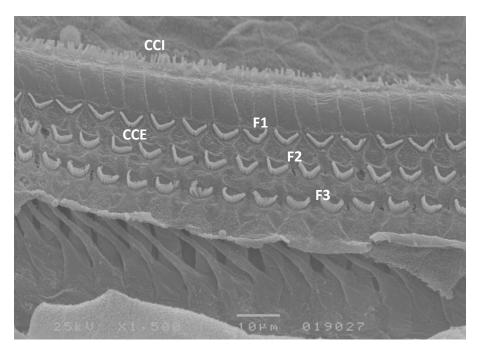


Figura 23 - Fotomicrografia de Microscopia Eletrônica de Varredura do órgão de Corti de rato do grupo B3, mostrando o terço médio da espira basal. CCI: células ciliadas internas (estereocílios); CCE: células ciliadas

externas (estereocílios); F1: primeira fileira; F2: segunda fileira; F3: terceira fileira. Observa-se manutenção da arquitetura ciliar nas três fileiras de CCE. Aumento de 1500x.

6.2.3.4 Grupo B4 – Ototóxico com otoproteção: N-acetilcisteína (300mg/Kg/dia) e cisplatina (8mg/Kg/dia)

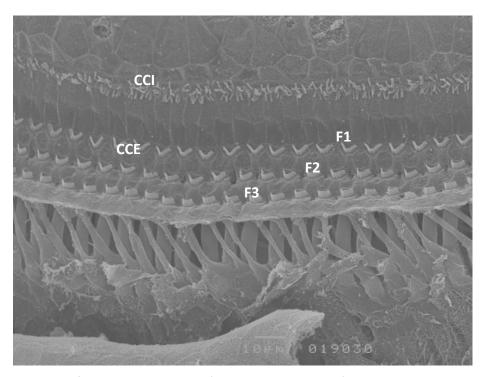


Figura 24 - Fotomicrografia de Microscopia Eletrônica de Varredura do órgão de Corti de rato do Grupo B4, mostrando o terço médio da espira basal. CCI: células ciliadas internas (estereocílios); CCE: células ciliadas externas (estereocílios); F1: primeira fileira; F2: segunda fileira; F3: terceira fileira; C: corpo celular. Observa-se manutenção da arquitetura ciliar nas três fileiras de CCE. Aumento de 1000x.

6.2.4 Imunofluorescência

Os resultados da imunofluorescência foram analisados por dois examinadores independentes e estão descritos de forma qualitativa e por grupo, conforme as variáveis estudadas: enzima GSH-Px e proteína Bcl-2. Ambos foram revelados utilizando anticorpos secundários conjugados com Alexa Fluor® 488, portanto, a imunomarcação ocorreu na coloração verde. Para marcar a membrana plasmática foi utilizado anticorpo secundário

82

conjugado com Alexa Fluor® 594, sendo esta visualizada na coloração vermelha, no entanto,

imagens exclusivas de membrana plasmática não foram inseridas no estudo. A fluorescência

azul indica o núcleo celular marcado com corante DAPI.

O grupo B1 - controle negativo - foi o parâmetro de comparação para os demais

grupos. Dessa forma, nos grupos B2, B3 e B4, a avaliação da expressão da GSH-Px e da Bcl-2

foi determinada pelo aumento da intensidade de coloração verde por todo citoplasma da

célula. A expressão foi ainda classificada como granular quando a coloração apresentava-se

na forma de pontos do neuroepitélio.

Durante a análise da secção longitudinal do tecido coclear ao microscópio confocal,

foi selecionada a espira média para utilizar objetiva de maior aumento e visualizar o órgão

de Corti, uma vez que esta se mostrou estruturalmente mais preservada.

Ao final deste capítulo, foi inserida uma composição de imagens com o resultado da

imunofluorescência das duas variáveis nos quatro grupos estudados.

6.2.4.1 Grupo B1 – Controle negativo (soro fisiológico 0,9%)

6.2.4.1.1 GSH-Px

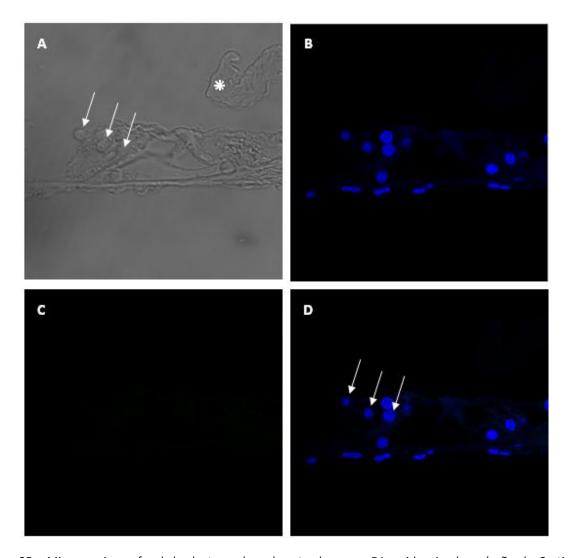


Figura 25 - Microscopia confocal do ducto coclear de rato do grupo B1, evidenciando o órgão de Corti. A: imagem em campo claro para orientação visual das células do órgão de Corti; asterisco: membrana tectória retraída; B: núcleos celulares marcados com DAPI (azul); C: células imunomarcadas com anti-glutationa peroxidase revelado com Alexa 488 (verde); D: sobreposição de imagens (B+C); setas: núcleos das CCE (objetiva 63x, zoom 2.0).

Na Figura 25 observa-se a disposição dos núcleos das CCEs (setas). Em 25C existe marcação ausente da enzima GSH-Px. A figura 25D será o parâmetro para a comparação do resultado da imunofluorescência desta enzima com os demais grupos.

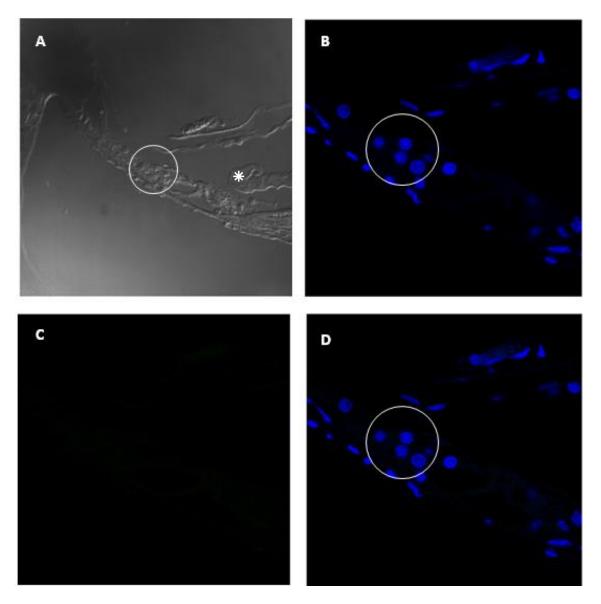


Figura 26 - Microscopia confocal do ducto coclear de rato do grupo B1, evidenciando órgão de Corti. A: imagem em campo claro para orientação visual das células ciliadas externas (CCE), asterisco: membrana tectória retraída (objetiva 63x); B: núcleos celulares marcados com DAPI (azul); C: células imunomarcadas com anti-Bcl-2 revelado com Alexa 488 (verde); D: sobreposição de imagens (B+C); círculo: região das CCE (objetiva 63x, zoom 2.0).

Na imagem acima é possível observar ausência de marcação da proteína Bcl-2. A figura 26D será o parâmetro para a comparação do resultado da imunofluorescência da proteína Bcl-2 com os demais grupos.

6.2.4.2 Grupo B2 – Controle positivo: N-acetilcisteína (300mg/Kg/dia)

6.2.4.2.1 GSH-Px

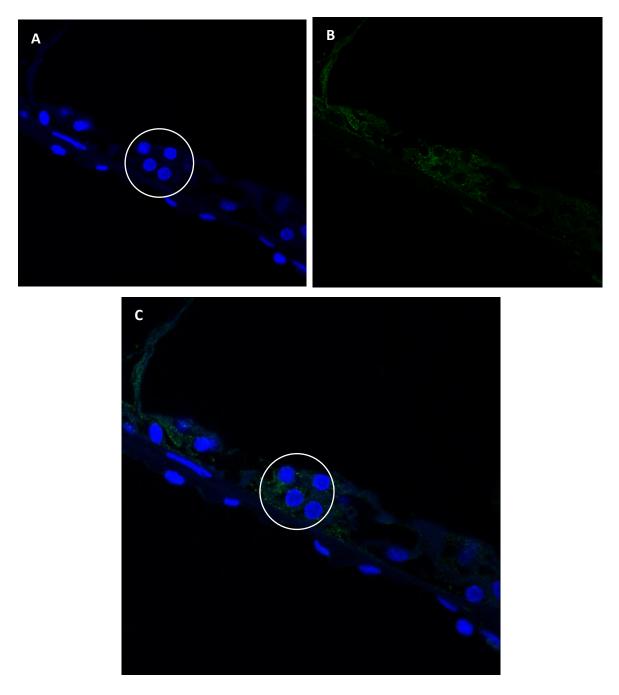


Figura 27 - Microscopia confocal do ducto coclear de rato do grupo B2, evidenciando o órgão de Corti. A: núcleos celulares marcados com DAPI e círculo indicando os núcleos das CCE (azul); B: células imunomarcadas com anti-glutationa peroxidase revelado com Alexa 488 (verde); C: sobreposição de imagens (A+B) (objetiva 63x, zoom 2.0).

Na Figura 27 verifica-se a ocorrência de marcação granular (pontos verdes intensos) da GSH-PX no citoplasma das CCEs.

6.2.4.2.2 Bcl-2

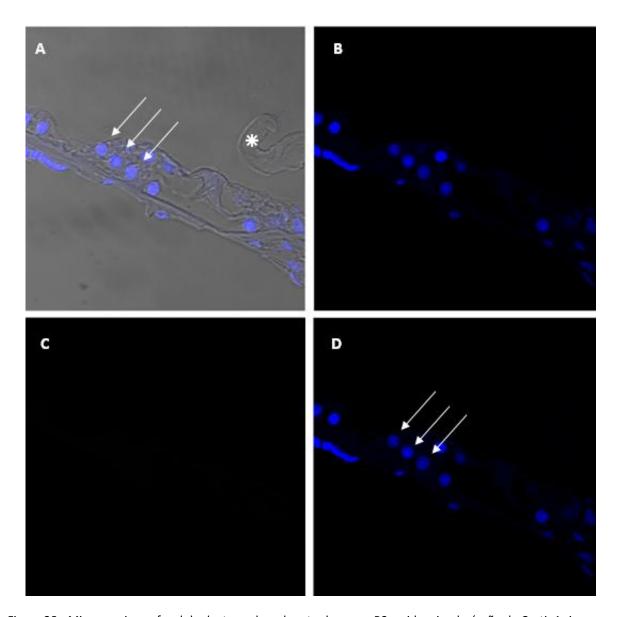


Figura 28 - Microscopia confocal do ducto coclear de rato do grupo B2, evidenciando órgão de Corti. A: imagem em campo claro com núcleos marcados com DAPI (azul), asterisco: membrana tectória retraída; B: núcleos marcados com DAPI (azul); C: células imunomarcadas com anti-Bcl-2 revelado com Alexa 488; D: sobreposição de imagens (B+C); setas: núcleos das CCEs (objetiva 63x, zoom 2.0).

Neste grupo, que recebeu dose exclusiva de NAC, houve marcação negativa para a proteína Bcl-2 (Figura 28).

6.2.4.3 Grupo B3 – Ototóxico: Cisplatina (8mg/Kg/dia)

6.2.4.3.1 GSH-Px

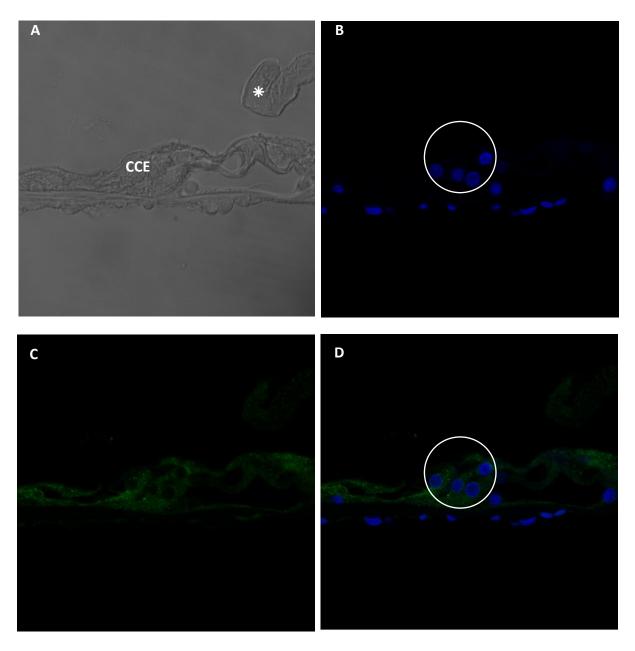


Figura 29 - Microscopia confocal do ducto coclear de rato do grupo B3, evidenciando o órgão de Corti. A: imagem em campo claro para orientação visual das células ciliadas externas (CCE); asterisco: membrana tectória retraída; B: núcleos celulares marcados com DAPI (azul); C: células imunomarcadas com anti-glutationa peroxidase revelado com Alexa 488 (verde); D: sobreposição de imagens (B+C); círculo: núcleos das CCE (objetiva 63x, zoom 2.0).

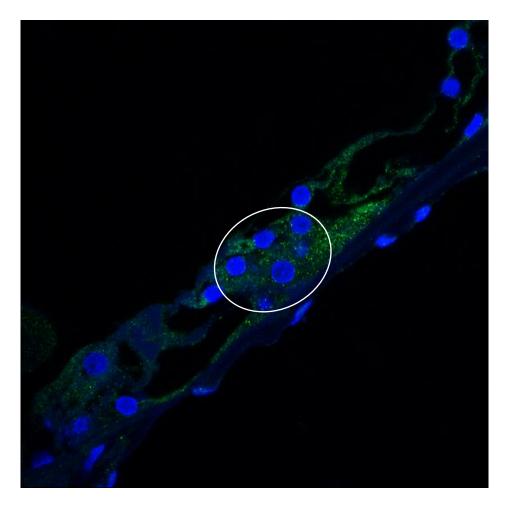


Figura 30 - Microscopia confocal do ducto coclear de rato do grupo B3, evidenciando órgão de Corti. Sobreposição de imagens (DAPI + anticorpo anti-glutationa peroxidase revelada com Alexa 488). Círculo indicando os núcleos das CCEs (objetiva 63x, zoom 2.0).

As Figuras 29 e 30 mostram a marcação positiva em quantidade e intensidade da coloração verde, indicando a expressão da enzima GSH-Px no citoplasma celular.

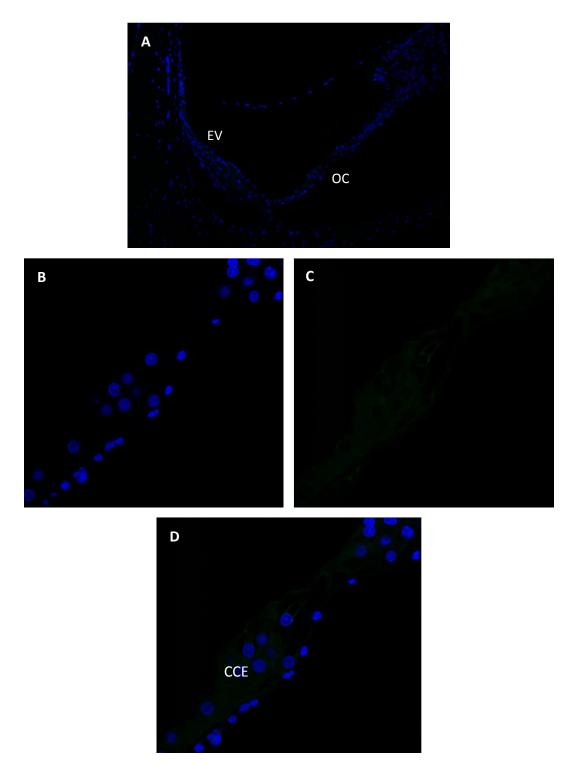


Figura 31 - Microscopia confocal do ducto coclear de rato do grupo B3, evidenciando o órgão de Corti. A: ducto coclear, EV: estria vascular, OC: órgão de Corti; B: núcleos celulares marcados com DAPI (azul); C: células imunomarcadas com anti-Bcl-2 revelado com Alexa 488 (verde); D: sobreposição de imagens (B+C), CCE: células ciliadas externas (objetiva 63x, zoom 2.0).

A Figura 31 (C e D) mostra marcação negativa para o anticorpo anti-Bcl-2 no grupo

6.2.4.4 Grupo B4 – Ototóxico com otoproteção: N-acetilcisteína (300mg/Kg/dia) e cisplatina (8mg/Kg/dia)

6.2.4.4.1 GSH-Px

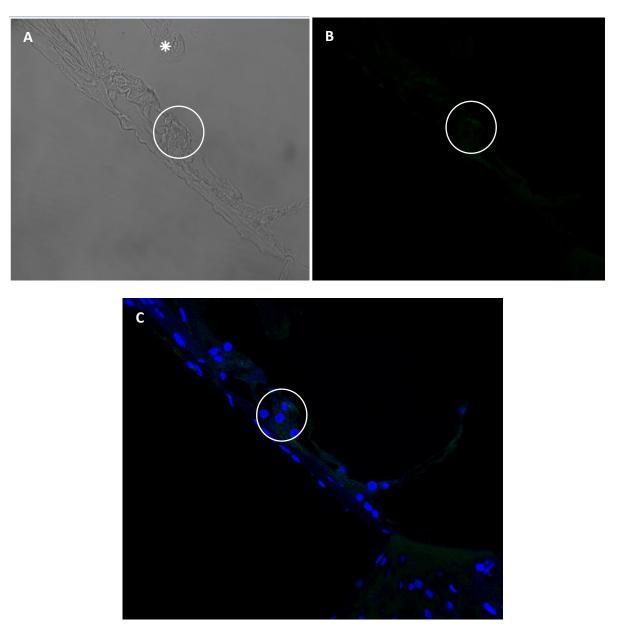


Figura 32 - Microscopia confocal do ducto coclear de rato do grupo B4, evidenciando o órgão de Corti. A: imagem em campo claro para orientação visual das células do órgão de Corti; círculo: CCE; asterisco: membrana tectória retraída; B: células imunomarcadas com anti-glutationa peroxidase revelado com Alexa 488 (verde); C: sobreposição de imagens (núcleos em azul marcados com DAPI + B) (objetiva 63x).

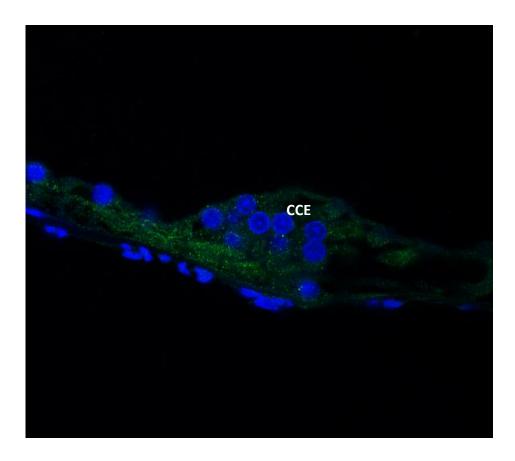


Figura 33 - Microscopia confocal do ducto coclear de rato do grupo B4, evidenciando o órgão de Corti; CCE:células ciliadas externas. Sobreposição de imagens (núcleos marcados com DAPI + anticorpo antiglutationa peroxidase revelado com Alexa 488) (objetiva 63x, zoom 2.0).

Nas Figuras 32 e 33 observa-se a marcação granular intensa (pontos verdes mais intensos) da GSH-Px no citoplasma celular.

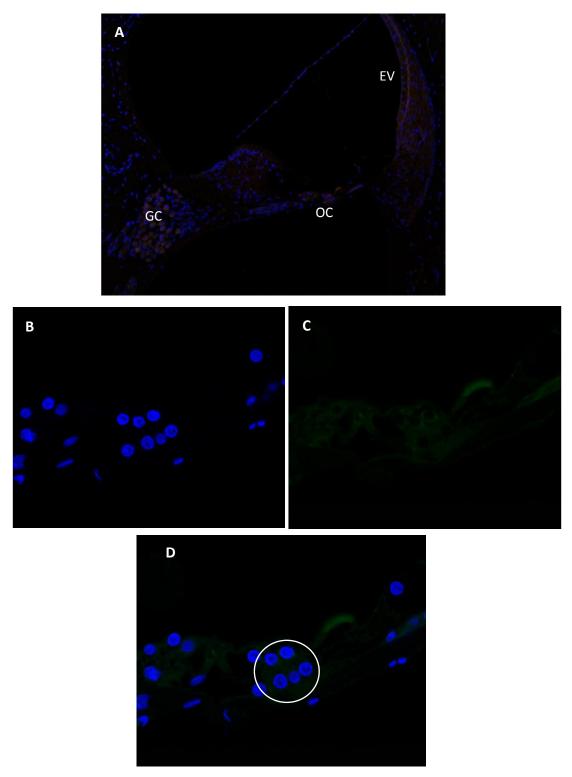


Figura 34 - Microscopia confocal do ducto colear de rato do grupo B4, evidenciando o órgão de Corti. A: ducto coclear em objetiva 20x, GC: gânglio coclear, EV: estria vascular, OC: órgão de Corti. B: núcleos celulares marcados com DAPI (azul); C: células imunomarcadas com anti-Bcl-2 revelado com Alexa 488 (verde); D: sobreposição de imagens (B+C); círculo: CCE. (objetiva 63x, zoom 2.0).

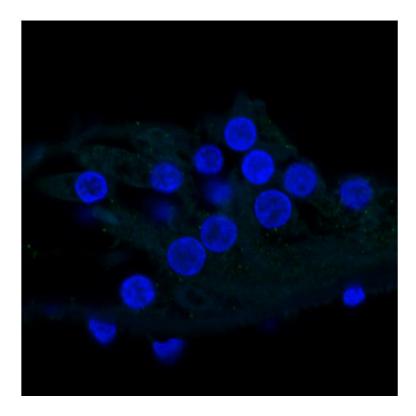


Figura 35 - Microscopia confocal do ducto colear de rato do grupo B4, evidenciando o órgão de Corti. Sobreposição de imagens: núcleos celulares marcados com DAPI (azul) e células imunomarcadas com anti-Bcl-2 revelado com Alexa 488 (verde) (objetiva 63x, zoom 4.0).

As Figuras 34 e 35 evidenciam a ausência de marcação do anticorpo anti-Bcl-2 para o grupo B4 em distâncias focais diferentes.

6.2.4.5 Resultado da imunomarcação da enzima GSH-Px nos quatro grupos do experimento B.

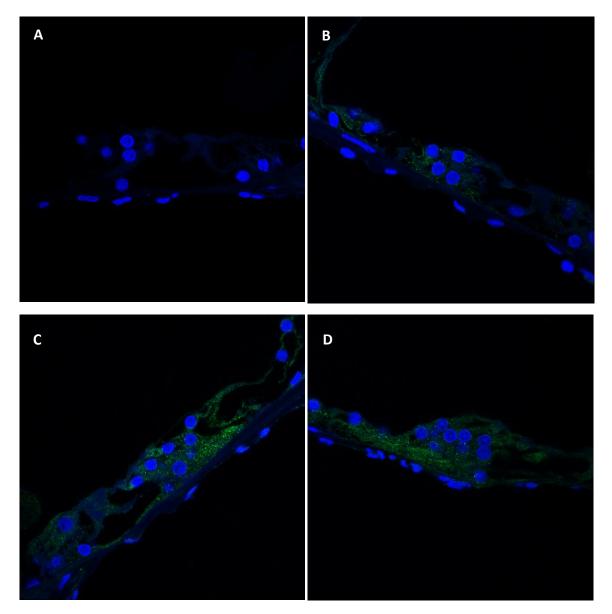


Figura 36 - Composição de imagens do órgão de Corti de ratos dos quatro grupos, referente à imunomarcação da enzima glutationa peroxidase. Sobreposição de imagens: núcleos celulares marcados com DAPI (azul) e células imunomarcadas com anti-glutationa peroxidase revelada com Alexa 488 (verde); A: grupo B1; B: grupo B2; C: grupo B3; D: grupo B4 (objetiva 63x, zoom 2.0).

6.2.4.6 Resultado da imunomarcação da proteína Bcl-2 nos quatro grupos do experimento B.

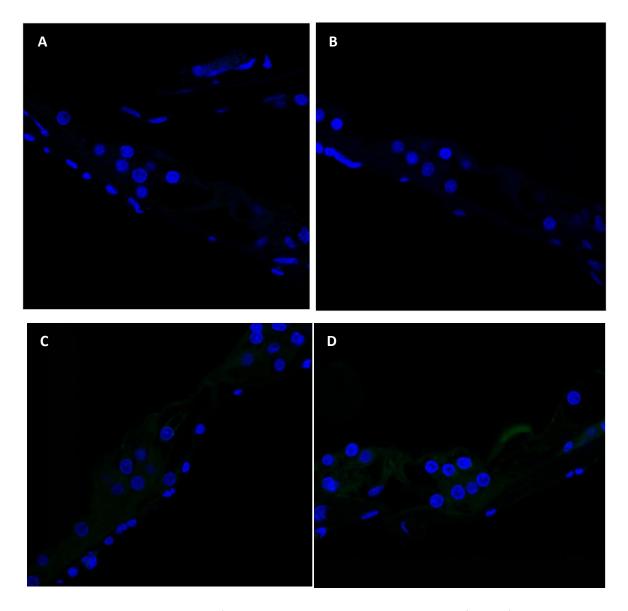


Figura 37 - Composição de imagens do órgão de Corti de ratos dos quatro grupos, referente à imunomarcação da proteína Bcl-2. Sobreposição de imagens: núcleos celulares marcados com DAPI (azul) e células imunomarcadas com anti-Bcl-2 revelado com Alexa 488 (verde). A: grupo B1; B: grupo B2; C: grupo B3;D: grupo B4 (objetiva 63x, zoom 2.0).

7 DISCUSSÃO

No presente estudo foi analisada a expressão intracelular da enzima GSH-Px e da proteína Bcl-2, que são marcadores celulares para eventos de otoproteção e ototoxicidade. Ambos desempenham um importante papel no sistema de defesa celular. O primeiro tem função antioxidante, combatendo a formação de radicais livres; e o segundo tem função anti-apoptótica. A análise destes marcadores foi comparada com o resultado das avaliações anatômica e funcional.

Este capítulo foi redigido em subitens conforme o assunto a ser discutido, porém, considerando a necessidade de conectar os resultados dos diferentes exames, os conteúdos dos subitens se fundem em diversos momentos.

7.1 Resultados clínicos

7.1.1 Variação de peso, vias de administração e efeitos da dose

Alguns sinais de toxicidade sistêmica foram observados no decorrer da pesquisa, como queda de pêlos, diarreia e perda de peso, estando presentes nos ratos expostos à cisplatina.

O comportamento clínico foi avaliado a partir da variação do peso dos animais, sendo observada semelhança neste comportamento em ambos os experimentos A e B desde o primeiro dia de exposição às drogas. Enquanto os animais dos grupos controles negativo (A1 e B1) e positivo (A2 e B2) começaram a ganhar peso, os animais dos grupos experimentais (A3, A4, B3 e B4) começaram a perder peso.

No grupo A1 o aumento de peso foi de 19% (Tabela 1) e no grupo B1 foi de 12,4% (Tabela 10). Diferença de valores explicada pelo tempo transcorrido em cada experimento, ou seja, os animais do experimento A permanecerem vivos por mais tempo e, consequentemente, se alimentaram por mais tempo.

Analisando as variações de peso entre os grupos controles negativo e positivo de cada experimento, concluiu-se que a NAC não interferiu nos resultados clínicos dos animais ao final da pesquisa. Isso porque, embora o grupo A2 tenha aumentado de peso comparado ao grupo A1 (21% e 19%, respectivamente, Tabela 1), este aumento foi discreto e essa situação não ocorreu entre os grupos B2 e B1 (9% e 12%, respectivamente, Tabela 11). Dickey et al (2004) citam que a NAC previne a perda de peso pela redução na toxicidade do trato gastrointestinal, porém este resultado não foi observado nesta pesquisa.

Os grupos ototóxico e ototóxico com otoproteção, em cada experimento, tiveram o mesmo índice de perda de peso, sendo de 22% nos grupos A3 e A4 (Tabela 1) e de 16% nos grupos B3 e B4 (Tabela 11). Também a partir destes resultados considerou-se que a NAC não tenha promovido proteção sistêmica a ponto de atenuar as manifestações clínicas causadas pela a cisplatina.

De forma geral, atribuiu-se as diferenças nas variações de peso entre os animais dos experimentos A e B ao período experimental de cada um.

Freitas (2006) também encontrou redução do peso dos animais expostos à cisplatina em relação ao grupo controle, o que ocorreu a partir do primeiro ou do segundo dia de experimento para as doses cumulativas de 16 mg/Kg e 24mg/Kg. A perda de peso média para a dose de 24 mg/Kg foi em torno de 12% no terceiro dia e 11% no quarto dia, valores semelhantes aos 16% aqui encontrados para a dose de 24mg/Kg (grupo B3). Kamimura et al (1999), após três dias da administração de 16 mg/Kg de cisplatina em ratos, verificaram perda de peso média de 24,5%.

Diferentemente deste estudo, Campbell et al (1996) verificaram que o uso de otoprotetor associado à cisplatina (300 mg/Kg de D-metionina³ associado a 16mg/Kg cisplatina) proporcionou melhores condições clínicas, com significativa menor perda de peso e com os animais visivelmente mais ativos do que aqueles tratados unicamente com cisplatina.

No estudo de Dickey et al (2004), a NAC protegeu parcialmente contra a perda de peso causada pela cisplatina quando aplicada 15 minutos antes desta.

Para se alcançar a ototoxicidade desejada em estudos experimentais com cisplatina, deve-se levar em conta a combinação efetiva entre a via de administração da droga e a dose da mesma, além da aplicação concomitante do otoprotetor. Neste estudo, optou-se por um

_

³ D-metionina é um composto sulfurado (que contém enxofre) com afinidade de ligação à cisplatina.

intervalo de uma hora entre a aplicação da NAC e da cisplatina para evitar a interação imediata entre as drogas. Além disso, conforme indicado pelo fabricante do medicamento (ACETILCISTEÍNA-EMS, 2013), por via oral a NAC é rapidamente absorvida pelo trato gastrointestinal e inicia sua ação dentro de uma hora após sua administração.

Com relação à via de acesso da cisplatina, optou-se pela injeção intraperitoneal pela facilidade de aplicação e por ser a via utilizada em estudos que comprovaram a toxicidade coclear em ratos (KALKANIS, WHITWORTH, RYBAK, 2004; LYNCH et al, 2005; FREITAS, 2006). A seleção da dose utilizada constituiu um fator determinante para que se pudessem contemplar os objetivos da pesquisa, sendo também feita a partir de estudos consultados (FREITAS, 2006; YAZICI et al, 2012). No entanto, apesar de utilizar metodologia equivalente, respeitando a dose diária e o ciclo de tratamento, não foram evidenciadas lesões nas CCEs na mesma intensidade e importância que os estudos de referência, possivelmente pelo momento precoce em que os animais foram eutanasiados, uma vez que as lesões causadas pela cisplatina podem acontecer tardiamente à exposição, dentro de horas ou até dias após o tratamento (RYBAK et al, 2009).

O estudo de Dickey et al (2004) apresentou evidências de que o pré-tratamento com 400 mg/Kg de NAC via intravenosa 15 minutos antes de 6 mg/Kg de cisplatina via intra-arterial (carótida externa direita) pode prevenir a ototoxicidade, verificado pelos limiares do PEATE. Resultado semelhante foi encontrado em outros grupos do mesmo estudo que receberam NAC 30 minutos antes e quatro horas depois da cisplatina. Estes achados sugerem maior eficácia do acesso arterial das drogas à cóclea, no entanto, pela necessidade intubação, demanda um preparo laboratorial maior e com maiores recursos do que a via intraperitoneal.

7.1.2 Avaliação funcional da audição

Diversos estudos obtiveram resultados os quais permitiram afirmar que os testes de EOAPD e PEATE são métodos úteis na identificação de ototoxicidade por cisplatina em modelos animais (RYBAK et al, 1999; 2000; ALAM et al, 2000; DICKEY et al, 2004; LYNCH et al, 2005; FREITAS et al, 2009a, 2009b; HUANG et al, 2007; HYPPOLITO et al, 2003; 2005;

KASSE et al, 2008; PAKSOY et al, 2011; YAZICI et al, 2012; ÖZKIRIS et al; 2013; OZTURK et al, 2013), sendo, por isso, ambos os métodos incluídos na metodologia desta pesquisa. Associado a isso, em humanos, os prejuízos da cisplatina sobre a cóclea são detectados pelas EOAPD antes mesmo da audiometria tonal liminar (OZTURAN et al, 1996).

Quanto ao protocolo de realização das EOAPD, existe pouca variabilidade na aplicação em estudos experimentais. O que variou na literatura consultada foi a intensidade de f1 e f2, que foi fixa a 70 dBNPS para ambas as frequências, como nos estudos em ratos de Freitas (2006), Yazici et al (2012) e Özkırıs et al (2013), ou de 65 dBNPS para f1 e 55 dBNPS para f2 nos estudos em cobaias de Hyppolito et al (2005) e Kasse et al (2008). O protocolo aplicado nesta pesquisa atendeu ao critério de manutenção de intensidade fixa a 70 dBNPS para f1 e f2. As f2 pesquisadas no *DP-gram* foram 1105 Hz, 2211 Hz, 4416 Hz e 8837 Hz para uma relação sinal/ruído ≥ 6dB.

Com metodologia análoga à aqui aplicada, Freitas et al (2009a) administraram 8 mg/Kg de cisplatina durante três dias consecutivos em ratos Wistar. Dose suficiente para causar diminuição significativa da amplitude das EOAPD em todas as frequências estudadas (3, 4, 6 e 8 KHz) e aumento significativo do limiar médio eletrofisiológico do PEATE, tanto no grupo avaliado no terceiro quanto no quarto dia de experimento. Porém, no mesmo estudo, as EOAPD não foram capazes de identificar ototoxicidade com a dose de 16mg/Kg. Da mesma forma, Yazici et al (2012) encontraram diminuição significativa da amplitude das EOAPD (3, 4, 6 e 8 KHZ) aplicando 8 mg/Kg de cisplatina durante três dias consecutivos em ratos Wistar. Özkiris et al (2013) constataram a eficácia das EOAPD no diagnóstico da ototoxicidade, uma vez que encontraram redução estatisticamente significante na amplitude das mesmas em todas as frequências testadas (1,5; 2; 3; 4; 5; 6; 7; 8; 10 e 12 Khz) após 15 dias da aplicação de dose única de 12 mg/Kg de cisplatina em ratos Sprague-Dawley. Ressalta-se que, nos estudos citados, o parâmetro de análise das EOAPD foi a amplitude e não a relação sinal-ruído. A análise da relação sinal-ruído foi adotada no presente estudo por ser este o critério de diagnóstico da função coclear.

Ao final do tratamento, não foi verificada diminuição significativa da relação sinalruído em nenhum dos dois grupos experimentais A3 e A4 (Tabelas 4 e 5). Este achado permite concluir que não houve alteração funcional das CCEs detectável por EOAPD após o tratamento com cisplatina para a dose e posologia utilizadas. No que se refere ao limiar eletrofisiológico obtido pelo PEATE em ratos, Hatzopoulos et al (2002) consideram a onda III como a de maior visibilidade. Já Amsallem e Andrieu-Guitrancout (1985), Kamimura et al (1999) e Freitas (2006) tomaram por base a onda II na pesquisa do limiar, uma vez que esta foi a de maior amplitude e a última a desaparecer com a diminuição da intensidade do estímulo sonoro. Em concordância, aqui também a onda II foi a mais robusta e a que evidenciou o limiar eletrofisiológico.

Quanto aos resultados do PEATE nos animais do experimento A, foram encontrados valores estatísticos significativamente mais elevados após o tratamento nos grupos A3 e A4, em uma das orelhas (Tabelas 8 e 9, respectivamente). A partir destes resultados, duas conclusões puderam ser obtidas: a) a ocorrência de ototoxicidade por cisplatina mesmo com administração de uma dose considerada baixa (3mg/Kg/dia), e b) a insuficiente ação da NAC como otoprotetor, já que o grupo A4 apresentou resultado auditivo semelhante ao grupo A3. Ainda, o PEATE foi mais sensível do que as EOAPD para detectar alteração funcional da audição frente à cisplatina, uma vez que não houve redução significativa da relação sinal-ruído das EOAPD depois da exposição à droga, porém houve aumento do limiar eletrofisiológico. Conclusão também obtida no estudo de Freitas et al (2009a).

No experimento B, não foi encontrada diferença estatisticamente significativa nos valores do limiar eletrofisiológico por meio de PEATE entre o pré e pós-tratamento em todos os grupos estudados. No entanto, foi verificado um aumento de 85,7% na média dos limiares para a orelha direita no grupo B4 (Tabela 14), o que pode ser explicado pelo aumento da variabilidade nesta orelha (desvio padrão), o que, para sua comprovação, necessitaria de um maior tamanho amostral.

Diferentemente da hipótese de que o grupo B3 teria um aumento no limiar auditivo eletrofisiológico, uma tendência a este resultado foi observada no grupo B4, embora sem diferença estatística significativa. Além do que, com o agrupamento das orelhas houve um aumento do limiar eletrofisiológico no grupo B4 quando comparado ao grupo B1 (Tabela 15). Este resultado indica que a NAC não interferiu nos limiares eletrofisiológicos auditivos neste experimento, seja pela dose utilizada ou pelo tempo de tratamento padronizado para este experimento.

Resultados diferentes foram encontrados em outros estudos com otoprotetores. Dickey et al (2004) avaliaram o efeito otoprotetor da NAC à ototoxicidade por cisplatina em ratos Long-Evans. Os animais foram tratados com infusão intra-arterial, via carótida externa

direita, com 6mg/Kg de cisplatina. A NAC foi administrada via intravenosa na dose de 400 mg/Kg aos 15 e 30 minutos antes da infusão de cisplatina e também 4 horas depois. O PEATE com estímulo *tone burst* nas frequências de 4, 8, 12, 16 e 20 KHz foi realizado antes do tratamento e sete dias depois. O grupo que recebeu NAC 15 minutos antes da cisplatina foi o que apresentou maior otoproteção, com menor perda de audição. Os demais grupos que receberam NAC também apresentaram menor perda de audição quando comparados ao grupo que recebeu apenas cisplatina. Ressaltam-se as diferenças metodológicas com o presente estudo, seja na via de administração das drogas, que pode ter ocasionado uma ação mais direta e imediata sobre o órgão de Corti, e análise pelo PEATE por tone burst, com avaliação de frequências mais graves.

Lynch et al (2005) estudaram a otoproteção do Alopurinol⁴, um inibidor da enzima xantina oxidase⁵, e do ebselen⁶ contra a ototoxicidade pela cisplatina (dose única de 16 mg/Kg via intraperitoneal) em ratos Fischer. A associação destes compostos, administrados uma hora antes da cisplatina, ofereceu proteção à cóclea uma vez que promoveu menor aumento dos limiares eletrofisiológicos do PEATE e, histologicamente, houve menor lesão das CCEs e menor edema na estria vascular.

Alguns otoprotetores são incompatíveis com a cisplatina, pois reduzem o seu potencial antineoplásico. Porém, segundo alguns estudos, este não é o caso da NAC (MULDOON et al, 2000; WU, MULDOON e NEUWELT, 2005; NEUWELT et al, 2004, DICKEY et al, 2004). Dickey et al (2005) sugerem que a via e o momento de administração do quimioterápico e do otoprotetor devem ser diferentes na tentativa de manter a eficácia antitumoral. Neste estudo, o objetivo foi de contemplar esta situação para posteriores estudos translacionais em humanos e também de compreender o mecanismo de otoproteção da NAC na via antioxidativa celular. A NAC foi, então, administrada via oral por gavagem uma hora antes da cisplatina via intraperitoneal. Não foi possível constatar a ocorrência de um efeito otoprotetor pela avaliação eletrofisiológica e microanatômica, mostrada pela manutenção da citoarquitetura ciliar das CCEs à MEV em todos os grupos de estudo (Figuras 21, 22, 23 e 24).

⁴ Alopurinol é uma substância antioxidante, cujo mecanismo consiste na inibição da enzima xantina oxidase e na captura do radical hidroxila.

-

⁵ A enzima xantina oxidase é uma das principais enzimas envolvidas na formação de EROs (ANDRADE et al, 2004).

⁶ Ebselen é um composto sintético análogo à glutationa peroxidase, com propriedades antioxidantes.

Outra via de administração deste otoprotetor foi testada por Riga et al (2013) em 20 pacientes sob tratamento quimioterápico com cisplatina. A NAC foi aplicada de forma transtimpânica em uma orelha (com a orelha contralateral utilizada como controle) antes da aplicação intravenosa de cisplatina. Dessa forma, a orelha média foi preenchida com NAC e esta atingiu orelha interna por difusão através da janela redonda. Por meio de audiometria tonal, realizada antes e depois do tratamento, foi verificada piora significativa no limiar auditivo da frequência de 8000 Hz nas orelhas controle, ou seja, expostas à cisplatina. Já nas orelhas tratadas com NAC, não foi encontrada esta diferença no limiar auditivo. Assim, os autores concluíram que esta é uma estratégia viável e eficaz de prevenção à ototoxicidade da cisplatina.

Analisando os resultados do PEATE nos dois experimentos A e B, concluiu-se que uma subdose num período mais prolongado (grupos A3 e A4) causou maior alteração funcional do que uma dose alta em menos tempo (grupos B3 e B4), isto é, o tempo foi fator determinante para a ocorrência da ototoxicidade, à semelhança do que foi observado quanto à toxicidade sistêmica.

A dose de 8mg/Kg/dia de cisplatina administrada no experimento B não provocou alteração auditiva significativa detectável ao PEATE, tampouco houve alteração anatômica observável à MEV, já que estes grupos apresentaram manutenção da arquitetura ciliar nas três fileiras de CCEs (Figuras 21, 22, 23 e 24). No entanto, levando-se em consideração o importante prejuízo auditivo encontrado do grupo B4, tanto na análise por orelha (Tabela 14) quanto na análise das orelhas agrupadas (Tabela 15), observou-se que as alterações funcionais se manifestaram antes das alterações anatômicas.

7.2 Avaliação anatômica das CCEs

Os ratos do experimento B tiveram suas cócleas analisadas por MEV para que se pudessem verificar as condições anatômicas das CCEs após o tratamento com cisplatina e NAC. Este método fornece uma fácil visualização do arranjo ciliar, sendo utilizado em diversos estudos sobre a ototoxicidade por cisplatina em roedores (CHURCH et al, 1995;

CAMPBELL et al, 1996; KAMIMURA, WHITWORTH e RYBAK, 1999; HYPPOLITO et al, 2003; LI et al, 2004; KALKANIS, WHITWORTH e RYBAK, 2004; ILHA et al, 2007; KASSE et al, 2008).

Em todas as cócleas analisadas, constatou-se manutenção da arquitetura ciliar nas três fileiras de CCEs, ou seja, os tratamentos administrados neste experimento não causaram danos anatômicos visíveis à MEV.

Não foram encontrados na literatura consultada estudos que abrangessem especificamente a MEV como método de avaliação da otoproteção da NAC à cisplatina. Dessa forma, outras substâncias otoprotetoras são citadas a seguir.

Utilizando PEATE e MEV como métodos de avaliação da otoproteção da D-metionina à ototoxicidade por cisplatina em ratos Wistar, Campbell et al (1996) encontraram resultados distintos aos desta pesquisa. Foram estudados cinco grupos com cinco animais cada, incluindo o grupo controle tratado com 16 mg/Kg de cisplatina por infusão, um grupo controle não tratado (solução salina), e três grupos que receberam, respectivamente, 75, 150 e 300 mg/Kg de D-metionina por injeção intraperitoneal 30 minutos antes da infusão de cisplatina. A contagem das CCEs foi normal na espira apical, sem diferença entre os grupos. Nas espiras média e basal, somente o grupo controle tratado apresentou alteração significativa quando comparado ao grupo controle não tratado. Dos três grupos que receberam pré-tratamento com D-metionina, a espira basal foi mais prejudicada do que a espira média. O estudo mostrou que 300 mg/Kg de D-metionina administrada 30 minutos antes de 16 mg/Kg de cisplatina forneceu otoproteção completa, indicada pelos resultados histológicos e pelo PEATE.

Kamimura et al (1999) e Kalkanis, Whitworth e Rybak (2004) administraram 16 mg/Kg de cisplatina por infusão intraperitoneal durante 30 minutos em ratos, encontrando um grau severo de lesão na primeira fileira das CCEs da espira basal da cóclea à MEV, assim como Hyppolito et al (2003; 2005) encontraram lesão com ausência de cílios nas três fileiras de CCEs da espira basal e desarranjo ciliar das CCI em cobaias tratadas com 8mg/Kg de cisplatina por oito dias. Huang, Whitworth e Rybak (2007) expuseram ratos Wistar a uma dose de 13 mg/Kg de cisplatina e 200 mg/Kg de extrato de Ginkgo Biloba, administrados separados ou simultaneamente. A observação à MEV mostrou lesão severa nos estereocílios das CCEs da espira basal da cóclea nos ratos tratados com cisplatina, enquanto no grupo tratado com ambas as substâncias, as células permaneceram intactas.

Como visto, a ototoxicidade se manifesta com diferentes doses de cisplatina utilizando-se diferentes vias de administração, sendo identificada por MEV. No entanto, neste estudo, a dose de 8mg/Kg durante três dias consecutivos não foi suficiente para desencadear alteração anatômica nas CCEs.

7.3 Imunofluorescência

7.3.1 Otoproteção da NAC e via de modulação da apoptose: enzima GSH-Px e proteína Bcl-2

A partir do método aqui empregado, verificou-se ausência de imunomarcação da enzima GSH-Px no grupo controle negativo (B1) (Figuras 25 e 36A), o que era presumível já que havia condição de integridade celular. No grupo B2, em que os animais receberam 300 mg/Kg/dia de NAC e, portanto, uma condição também de integridade celular, em uma avaliação qualitativa, observou-se imunomarcação positiva da GSH-Px com aspecto granular em todas as amostras analisadas, demonstrando a capacidade da NAC em motivar a síntese desta enzima (Figuras 27 e 36B).

Nos grupos experimentais houve imunomarcação expressiva da GSH-Px nas CCEs, tanto no grupo B3, que recebeu cisplatina exclusiva (Figuras 29, 30 e 36C), como no grupo B4, que recebeu NAC associada à cisplatina (Figuras 32, 33 e 36D).

A ausência de imunomarcação da enzima GSH-Px nos grupos B1 e B2 e a imunomarcação positiva da GSH-Px, verificada qualitativamente pelo aspecto granular em todas as amostras analisadas para os grupos B3 e B4, sugerem que a própria cisplatina desencadeia a expressão desta enzima antioxidante intracelular, indicando que as CCEs possuem a capacidade para ativar seu sistema antioxidante endógeno.

Ravi, Somani e Rybak (1995) induziram a ototoxicidade em ratos administrando diferentes doses de cisplatina. Comparando com o grupo controle, os autores verificaram que a ototoxicidade da cisplatina estava associada à diminuição da atividade da enzima GSH-Px e glutationa redutase. Também encontraram, três dias após a administração da cisplatina, aumento na atividade da enzima superóxido dismutase e catalase, sugerindo haver um

aumento da geração de EROs cóclea, e acúmulo de malaondialdeído, um indicador de peroxidação lipídica.

Rybak, Whitworth e Somani (1999) verificaram diminuição significativa da atividade da GSH-Px no tecido coclear de ratos após o tratamento com cisplatina (16 mg/Kg), o que difere do resultado encontrado no grupo B3 deste estudo com a dose de 8 mg/Kg/dia, durante 3 dias. No entanto, neste mesmo estudo, os animais que receberam diferentes doses do antioxidante ácido alfa lipoico⁷ (25, 50 e 100 mg/Kg) 30 minutos antes da dose de cisplatina, manifestaram aumento significativo da GSH-Px. Assim, é possível inferir que a expressão da GSH-Px pode estar associada à dose de cisplatina empregada no tratamento, possibilitando que o processo de lesão celular encontre-se em um estágio inicial, onde o sistema de defesa endógeno das CCE ainda esteja atuando efetivamente, inclusive possibilitando a reversão espontânea do efeito ototóxico, quando cessado o estímulo com potencial lesivo, dose dependente.

Não houve diferença na imunomarcação da GSH-Px entre os grupos B3 e B4, contudo, Rybak e Whitworth (2005) citam que os otoprotetores exógenos, incluindo antioxidantes contendo tiol (compostos que contém enxofre), agem de forma precoce "sequestrando" os radicais livres e evitando o início da via de morte celular, como é o caso da NAC. Rybak et al (2009) referem que a alta afinidade do enxofre com a platina constitui a base para os compostos contendo tiol serem amplamente utilizados em pesquisas envolvendo a toxicidade da cisplatina.

Neste estudo, foram analisadas as CCEs do terço médio da espira basal ou da espira média da cóclea, por ser a região mais preservada de artefatos mecânicos. Por isso, não foi possível fazer um comparativo entre a imunomarcação da GSH-Px destas células com as do ápice da cóclea. No entanto, sabe-se que as CCEs da base da cóclea apresentam menores níveis de glutationa comparados às CCEs do ápice, o que lhes confere maior suscetibilidade aos danos causados pelos radicais livres (SHA et al, 2001).

Quanto à expressão da proteína Bcl-2, houve ausência de imunomarcação em todos os grupos estudados (Figuras 26, 28, 31 e 34), sugerindo que na dose de cisplatina de 8 mg/kg/dia durante 3 dias, a possibilidade de ativação da via apoptótica intrínseca pode estar permissiva ao desencadeamento da cascata apoptótica (TAYLOR, et al, 2008; AMARANTE-MENDES e GREEN, 1999). Outra possibilidade a ser discutida é que a eutanásia dos animais

⁷ O ácido alfa lipoico é um antioxidante não enzimático de baixo peso molecular (NORDBERG e ARNÉR, 2001).

ocorreu em um momento prévio ao desencadeamento da lesão ototóxica dada a integridade celular e ausência de alteração auditiva conforme o desenho metodológico utilizado. Uma maior exposição à droga, com a eutanásia ocorrendo em um estágio mais avançado de ototoxicidade, poderia acarretar uma diminuição ou ausência da expressão da proteína Bcl-2 no grupo B3 e um aumento da expressão da mesma no grupo B4, como apontado no estudo de Alam et al (2000). Para determinar os mecanismos de morte celular pela cisplatina na cóclea, os autores investigaram a expressão das proteínas pró-apoptótica Bax e antiapoptótica Bcl-2 em gerbos (esquilos da Mongólia). Os animais também realizaram avaliação funcional da audição por meio de EOAPD. A cisplatina foi aplicada de forma intraperitoneal na dose de 4 mg/Kg/dia durante cinco dias consecutivos. Depois de 24 horas, as cócleas foram coletadas e preparadas para imunohistoquímica. A marcação para Bcl-2 foi detectada no órgão de Corti, na estria vascular e no gânglio coclear. Após o tratamento com cisplatina, a expressão da proteína Bax aumentou em todas as regiões da cóclea. Já a imunorreatividade da Bcl-2 diminuiu, sendo esta redução significativa no órgão de Corti da espira basal e média, nas células do gânglio coclear da espira basal e nas células da estria vascular das três espiras. Estes resultados sugerem um papel fundamental da família de proteínas Bcl-2 na regulação da morte celular por apoptose decorrente de cisplatina.

Ainda, diminuição da expressão da Bcl-2 e aumento da expressão da Bax em células ciliadas da cóclea foi um resultado encontrado em gerbos idosos (ALAM et al, 2001), evidenciando a relação entre a presbiacusia e o desequilíbrio entre proteínas pró e antiapoptóticas.

A família de proteínas Bcl-2 é composta por membros anti e pró-apoptóticos (BORNER, 2003) e está envolvida com a via intrínseca / mitocondrial do processo de apoptose (HARRIS e THOMPSON, 2000). A proteína Bcl-2, que leva o mesmo nome da família a qual pertence, tem função anti-apoptótica, para tanto, localiza-se estrategicamente na membrana mitocondrial externa da célula (LORO, VINTERMYR e JOHANNESSEN, 2003) impedindo que o citocromo c se desloque da mitocôndria para o citoplasma e desencadeie uma sequência de eventos que irão ativar a caspase 9, culminando na morte celular (GOLDSTEIN et al, 2000). O que provoca o deslocamento do citocromo c para o citoplasma é a formação de poros na membrana mitocondrial causados por proteínas pró-apoptóticas. Então, a proteína Bcl-2 favorece a sobrevida celular impedindo o escape do citocromo c por fazer um tamponamento dos poros e, possivelmente, por formar heterodímero com

moléculas pró-apoptóticas (AMARANTE-MENDES e GREEN, 1999). Devarajan et al (2002) expuseram, por meio de cultura, as células da cóclea à cisplatina e observaram translocação da proteína Bax (pró-apoptótica) do citoplasma para a mitocôndria. Observação similar aconteceu no estudo de Wang et al (2004) em células ciliadas de ratos tratados com cisplatina.

Associando os resultados das diferentes avaliações realizadas, pode-se inferir que uma dose cumulativa de 24mg/Kg de cisplatina não alterou a condição anatômica das CCEs nem a condição funcional da via auditiva, mas induziu uma resposta celular intrínseca de aumento dos níveis de GSH-Px e não expressão da Bcl-2, que foi independente do estímulo pela NAC.

8 COMENTÁRIOS CONCLUSIVOS

Comparando ambos os experimentos desta pesquisa sob o ponto de vista clínico, os resultados mais ostensivos foram encontrados no experimento A. Os animais dos grupos A3 e A4 foram os que mais perderam peso e os do grupo A2 foram os que mais ganharam peso. Situações vinculadas à diferença de tempo transcorrido em cada experimento (A e B). Ainda, os limiares eletrofisiológicos aumentaram significativamente nos grupos A3 e A4, em pelo menos uma das orelhas.

Considerou-se a hipótese de que a eutanásia dos animais tivesse ocorrido de forma precoce, quando a ototoxicidade ainda estivesse em um estágio inicial. Porém, se o período da pesquisa fosse prolongado, haveria a possibilidade dos animais irem a óbito em decorrência das condições clínicas inerentes ao uso da cisplatina.

No que se refere aos marcadores celulares elegidos para o estudo da otoproteção da NAC e via de modulação da apoptose, verificou-se expressão da GSH-Px nas CCEs dos animais expostos à cisplatina, à NAC e também a ambos; e ausência de expressão da proteína Bcl-2 em todos os grupos. Estes resultados mostram que a célula reagiu à toxicidade da cisplatina lançando mão do seu sistema de defesa antioxidante sem ainda ativar moléculas que agem evitando a morte por apoptose. Constatou-se, da mesma forma que a literatura consultada, que a ototoxicidade da cisplatina está relacionada com a formação de radicais livres intracelulares.

Quanto à ação do otoprotetor, verificou-se que a NAC motiva a síntese da GSH-Px e sua atuação pode ser detectada antes do surgimento da lesão. Porém, a partir da metodologia aplicada, considerou-se que a otoproteção pela NAC não foi confirmada. Depois de triplicar a dose de NAC nos animais do experimento B, ainda assim houve aumento dos limiares eletrofisiológicos no grupo B4. Além disso, como não foi verificada diferença sobressalente na imunomarcação da GSH-Px entre os grupos B3 e B4 (ototóxico e ototóxico com otoproteção, respectivamente), concluiu-se que a NAC, por si só, não foi suficiente para despertar o mecanismo de defesa intracelular.

De forma geral, considerando o tratamento padronizado neste experimento e associando os resultados das diferentes avaliações realizadas, a dose de cisplatina administrada no experimento B não foi tóxica a ponto de provocar alteração funcional e/ou

anatômica, no entanto, foi capaz de despertar uma resposta celular intrínseca de defesa, aumentando os níveis de GSH-Px, de forma independente à presença da NAC.

Em humanos, a ação otoprotetora da NAC foi confirmada com sua aplicação *in loco*, ou seja, diretamente na orelha interna através da janela redonda. No entanto, considerando os aspectos éticos de pesquisa realizada em humanos, os efeitos colaterais e o desconforto causado por esta via de administração (dor, otite média, etc), considera-se importante a realização de mais estudos investigando a ação da NAC com diferentes doses e aplicada de forma oral, atingindo o organismo de forma sistêmica e, subsequentemente, a orelha interna.

Os resultados desta pesquisa poderão servir de parâmetro para estudos futuros sobre a ototoxicidade da cisplatina e substâncias otoprotetoras. Considera-se fundamental explorar todas as informações daqui extraídas para que se possa repensar e projetar novas práticas com otoprotetores.

9 CONCLUSÕES

A partir da análise dos resultados concluiu-se que:

- o comportamento clínico, avaliado pela variação de peso, foi semelhante nos grupos controles, com aumento de peso; e nos grupos experimentais, com perda de peso. As diferenças nas variações de peso entre os experimentos A e B ocorreram em função do tempo de cada pesquisa;
- a condição funcional da via auditiva foi mais prejudicada quando os animais foram expostos a uma dose menor de cisplatina durante um período mais prolongado;
- foi verificada integridade anatômica das CCEs em todos os animais expostos à dose de 8 mg/Kg/dia de cisplatina e/ou 300mg/Kg/dia de NAC;
- houve imunomarcação da enzima GSH-Px nas CCEs em todas as amostras de cujos animais foram expostos à dose de 8 mg/Kg/dia de cisplatina e/ou 300mg/Kg/dia de NAC;
- houve ausência de imunomarcação da proteína Bcl-2 nas CCEs em todas as amostras de cujos animais foram expostos à dose de 8 mg/Kg/dia de cisplatina e/ou 300mg/Kg/dia de NAC;
- sob as condições de tratamento aplicadas, a via de modulação da apoptose e o mecanismo de otoproteção da NAC nas CCEs de ratos tratados com cisplatina está relacionada com a expressão da enzima GSH-Px e ausência da expressão da proteína Bcl-2.

10 REFERÊNCIAS BIBLIOGRÁFICAS

ACETILCISTEÍNA: xarope. Responsável técnico Ronoel Caza de Dio. Hortolândia-São Paulo: EMS, 2013. Bula de remédio.

ADAMS, J.M.; CORY, S. The Bcl-2 protein family: arbiters of cell death. **Science**, v. 281, p. 1233-1236, 1998.

ALAM, S.A et al. Cisplatin-induced apoptotic cell death in Mongolian gerbil cochlea. **Hear Research**, v. 141, p. 28-38, 2000.

ALAM, S.A.; OSHIMA, T.; SUZUKI, M. The expression of apoptosis-related proteins in the aged cochlea of Mongolian gerbils. **Laryngoscope**, v. 111, p. 528-534, 2001.

AMARANTE-MENDES, G.P.; GREEN, D.R. The regulation of apoptotic cell death. **Brazilian Journal Medical Biological Research**, v. 32, p. 1053-1061, 1999.

AMSALLEM, P.; ANDRIEU-GUITRANCOUT, J. Experimental study of ototoxicity of cisplatin. **Annales d'oto-laryngologie et de chirurgie cervico-faciale**, v. 102, p. 365-372, 1985.

BEATTIE, R.C.; BARR, T., ROUP, C. Normal and hearing-impaired word recognition scores for monosyllabic words in quiet and noise. **British Journal of Audiology**, v. 31, n. 3, p. 153-164, 1997.

BOATRIGHT, K.M.; SALVESEN, G.S. Mechanisms of caspase activation. **Current Opinion in Cell Biology**, v. 15, p. 725-731, 2003.

BOOTHROYD, A. Developmental factors in speech recognition. **International Journal of Audiology**, v. 9, p. 30-38, 1970.

BORNER, C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. **Molecular Immunology**, v.39, p. 615-647, 2003.

BRASIL. Lei nº 11.794, de 8 de outubro de 2008. Regulamenta o inciso VII do § 1º do art. 225 da Constituição Federal, estabelecendo procedimentos para o uso científico de animais; revoga a Lei nº 6.638, de 8 de maio de 1979; e dá outras providências.

BROWN, A.M.; KEMP, D.T. Suppressibility of the 2f, - f2 stimulated acoustic emissions in gerbil and man. **Hearing Research**, v.13, p. 29-37, 1984.

CAMPBELL, K.C.; RYBAK, L.P.;, MEECH, R.P.; HUGHES, L. D-methionine provides excellent protection from cisplatin ototoxicity in the rat. **Hearing Research**, v. 102, n. 1-2, p. 90-98, 1996.

CAMPBELL, K.C.M.; KALKANIS, J.; GLATZ, R. Ototoxicity: mechanisms, protective agents and monitoring. **Current Opinion Otolaryngology Head Neck Surgery**, v. 8, p. 436-440, 2000.

CARDINAAL, R.M., et al. Dose-dependent effect of 8-day cisplatin administration upon themorphology of the albino guinea pig cochlea. **Hearing Research**, v. 144, p. 135-146, 2000.

CASARES, C. et al. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal model. **European Archives of Otorhinolaryngology**, v. 269, p. 2455-2459, 2012.

CATERINA, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. **Nature**, v. 389, p. 816–824, 1997.

CHENG, P.W. et al. Correlation of increase activities of Na+, K+-ATP-ase and Ca2+-ATPase with the reversal of cisplatin ototoxicity induced by D-methionine in guinea pigs. **Hear Research**, v. 205, p. 102-109, 2005.

CHURCH, M.W., et al Kaltenbach JA, Blakley BW, Burgio DL. The comparative effects of thiossulfate of sodium, diethylditiocarbamate, fosfomycin and WR-2721 on ameliorating cisplatin-induced ototoxicity. **Hear Research**, v. 86, n. 1-2, p. 195-203, 1995.

CONSELHO NACIONAL DE CONTROLE DE EXPERIMENTAÇÃO ANIMAL – CONCEA. Diretrizes da prática de eutanásia do CONCEA. Brasília-DF, 2013. 54 p. Disponível em www.cobea.org.br/arquivo/download?ID ARQUIVO=36

DEMACHKI, S.; BACCHI, C.E. Metalotioneínas e neoplasias humanas. **Jornal Brasileiro de Patologia**, v. 34, n. 1, p. 48-54, 1998.

DEVARAJAN, P. et al. Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. **Hear Research**, v. 174, n. 1-2, p. 45-54, 2002.

DICKEY, D.T., et al. Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. **Hear Research**, v. 193, n. 1-2, p. 25–30, 2004.

DICKEY, D.T., et al. Protection against cisplatin-induced toxicities by *N*-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. **Journal of Pharmacology and Experimental Therapeutics**, v. 314, n. 3, p. 1052–1058, 2005.

DURANTE, A.S. Emissões otoacústicas. In: BEVILACQUA, M.C. et al (Org.). **Tratado de Audiologia**. São Paulo: Santos Editora, 2011. cap 10, p.145-158.

ESHRAGHI, A.A.; BUBLIK, M.; VAN DER WATER, T.R. Mechanisms of chemotherapeutic-induced hearing loss and otoprotection. **Drug Discovery Today: Disease Mechanisms**, v.3, n.1, p. 125-130, 2006.

ESTEVES, M.C.B.N., et al. Estudo das latências das ondas dos potenciais auditivos de tronco encefálico em indivíduos normo-ouvintes. **Brazilian Journal of Otorhinolaryngology**, v. 75, n. 3, p. 420-425, 2009.

EVANS, P.; HALLIWELL B. Free radicals and hearing. Cause, consequence, and criteria. **Annals New York Academy of Sciences**, v. 884, p. 19-40, 1999.

FEGHALI, J.G.; LIU, W.; VAN DE WATER, T.R. L-N-acetyl-cysteine protection against cisplatin-induced auditory neuronal and hair cell toxicity. **Laryngoscope**, v. 111, p. 1147-1155, 2001.

FETONI, A.R. et al. Protective effects of N-acetylcysteine on noise induced hearing loss in guinea pigs. **Acta Otorhinolaryngologica Italica**, v. 29, p. 70-75, 2009.

FREEMAN, B.A.; CAPO, J.D. Biology of disease: free radical and tissue injury. **Laboratory Investigation**, v.47, p. 412-426, 1982.

FREITAS, M.R. Caracterização morfofuncional da ototoxicidade por cisplatina em ratos: avaliação do papel da apoptose e da otoproteção por amifostina. 2006. 169f. Tese (Doutorado em cirurgia) Universidade Federal do Ceará, Fortaleza.

FREITAS, M.R., et al. Avaliação da sensibilidade das emissões otoacústicas produtos de distorção e dos potenciais auditivos evocados de tronco encefálico na ototoxicidade por cisplatina em ratos. **Brazilian Journal of Otorhinolaryngology,** v. 75, n. 4, p.476-484, 2009(a).

FREITAS, M.R. et al. O papel da apoptose na ototoxicidade por cisplatina em ratos. **Brazilian Journal of Otorhinolaryngology**, v. 75, n. 5, p. 745-752, 2009(b).

GARCIA, A.P.; IÓRIO, M.C.M.; PETRILLI, A.S. Monitoramento da audição de pacientes expostos à cisplatina. **Brazilian Journal of Otorhinolaryngology**, v. 69, p. 215-221, 2003.

GARCÍA-BERROCAL J. R., et al. The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. **British Journal of Pharmacology**, v. 152, p. 1012-1020, 2007.

GARETZ, S.L;. ALTSCHULER, R.A.; SCHACHT, J. Attenuation of gentamicin ototoxicity by glutathione in the guinea pig in vivo. **Hearing Researc**h, v.77, p. 81-87, 1994.

GARRIDO, N., et al. Cisplatin-mediated impairment of mitocondrial DNA metabolism inversely correlates with glutathione levels. **Biochemical Journal**, v.414, p. 93-102, 2008.

GOLDSTEIN, J.C. et al. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. **Nature Cell Biology**, v. 2, p. 156–162, 2000.

GRIVICICH, I.; REGNER, A.; ROCHA, A.B. Morte celular por apoptose. **Revista Brasileira de Cancerologia**, v.53, n. 3, p.335-343, 2007.

GUTTERIDGE, J.M.; HALLIWELL, B. Antioxidants: molecules, medicines and myths. **Biochemical and Biophysical Research Communications**, v. 393, n. 4, p. 561-564, 2010.

HALL, J.W. **Handbook of otoacoustic emissions**. 3rd ed. Canada: Singular Thompson Learning, 2000, cap 1, p.27.

HALLIWELL, B. Free radicals and other reactive species in disease. Encyclopedia of life science. Nature Publishing Group / www.els.net, 2001.

HARRIS, M.H.; THOMPSON, C.B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. **Cell Death Differentiation**, v. 7, p. 1182-1191, 2000.

HATZOPOULOS, S. et al. Ototoxic effects of cisplatin in a Sprague-Dawley rat animal model as revealed by ABR and transiently evoked otoacoustic emission measurements. Hearing **Researc**h, v. 170, p. 70-82, 2002.

HENGARTNER, M.O. The biochemistry of apoptosis. Nature, v. 407, p. 770-776, 2000.

HENRY, K.R. Auditory brainstem volume-conducted responses: origins in laboratory mouse. **Journal of American Auditory Society,** v. 4, n. 5, p 173-178, 1979.

HOLDINESS, M. Clinical pharmacokinetics of N-acetyl-cysteine. **Clinical Pharmacokinet**, v.20. p. 123-134, 1991.

HUANG, T. et al. Oxidative stress-induced apoptosis of cochlear sensory cells: otoprotective strategies. **International Journal of Developmental Neuroscience**, v. 18, p. 259-270, 2000.

HUANG, X.; CRAIG A. WHITWORTH, C.A.; RYBAK, L.P. Ginkgo Biloba Extract (EGb 761) protects against cisplatin-induced ototoxicity in rats. **Otology & Neurotology**, v. 28, p. 828-833, 2007.

HYPPOLITO, M.A. et al Ototoxicidade da cisplatina e otoproteção pelo extrato de ginkgo biloba às células ciliadas externas: estudo anatômico e eletrofisiológico. **Brazilian Journal of Otorhinolaryngology,** v. 69, n. 4, p. 504-511, 2003.

HYPPOLITO, M.A. et al. Otoproteção da amifostina aos efeitos ototóxicos da cisplatina: estudo em cobaias albinas por emissões otoacústicas produtos de distorção e microscopia eletrônica de varredura. **Brazilian Journal of Otorhinolaryngology**, v. 71, n. 3, p. 168-273, 2005.

IKEDA, K.; SUNOSE, H.; TAKASAKA, T. Effects of free radicals on the intracellular calcium concentration in the isolated hair cell of the guinea pig cochlea. **Acta Otolaryngologica**, v. 113, p. 137–141, 1993.

ILHA, L.; et al. Ototoxicidade induzida pela cisplatina em cobaias: efeito dose-dependente: avaliação funcional. **Acta ORL**, v. 25, n. 2, p. 112-118, 2007.

JAKOBY, W.B. The glutathione S-transferases: a group of multi-functional detoxification proteins. **Advances in Enzymology**, v. 46, p. 383-414, 1978.

JERO, J.; COLING, D.E.; LALWANI, A.K. The use of Preyer's reflex in evaluation of hearing in mice. **Acta Otolaryngologica**, v. 121, n. 5, p. 585-589, 2001.

JORDAN, J.; SCHWADE, N.D.; TRUELSON, J.M. Fosfomycin does not inhibit the tumoricial efficacy of cisplatinum. **Laryngoscope**, v.109, n. 8, p. 1259-1262, 1999.

KALKANIS JG, WHITWORTH CA, RYBAK LP. Vitamin E Reduces Cisplatin Ototoxicity. **Laryngoscope**. v. 114, n. 3, p. 538-542, 2004.

KAMIMURA, T.; WHITWORTH, C.A.; RYBAK, L,P. Effect of 4-methylthiobenzoic acid on cisplatin-induced ototoxicity in the rat. **Hearing Research**, v. 131, p. 117-127, 1999.

KASSE, C.A. et al. Ototoxicidade e otoproteção. **Brazilian Journal of Otorhinolaryngology**, v. 4, p. 105-115, 2008.

KEMP, D.T. Stimulated acoustic emissions from within the human auditory system. **Journal of the Acoustic Society of America,** v. 64, n. 5, p. 1386-1391, 1978.

KEMP, D.T. Towards a model for the origin of cochlear echoes. **Hearing Research**, v. 2, p. 533-548, 1980.

KUMAR, V.; ABBAS, A.K.; FAUSTO, N. Adaptação, dano e morte celular. In: ROBBINS e COTRAN: **Patologia: Bases patológicas das doenças**. 7 ed. Rio de Janeiro: Elsevier, 2005. p.11-48.

LEE, J.E. et al. Mechanisms of apoptosis induced by cisplatin in marginal cells in mouse stria vascularis. **ORL: Journal for Otorhinolaryngology and its Related Specialties**, v. 66, p. 111–118, 2004.

LEHNINGER, A.L. **Princípios de bioquímica**. 3. ed. São Paulo: Sarvier, 2002. 975 p.

LI, Y.; WOMER, R.B.; SILBER, J.H. Predicting cisplatin ototoxicity in children: influence of age and the cumulative dose. **European Journal of Cancer**, v. 40, p. 2445-2451, 2004.

LIU, W. et al. Caspase inhibitors prevent cisplatin-induced apoptosis of auditory sensory cells. **Neuroreport**, v. 9, n. 11, p. 2609-2614, 1998.

LORO, L.L.; VINTERMYR, O.K.; JOHANNESSEN, A.C. Cell death regulation in oral squamous cell carcinoma: methodological considerations and clinical significance. **Journal of Oral Pathology & Medicine**, v. 32, n. 3, p. 125-138, 2003.

LYNCH, E.D. et al. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. **Hearing Research**, v. 201, p. 81–89, 2005.

LOPEZ-GONZALEZ, M.A., et al. Ototoxicity caused by cisplatin is ameliorated by melatonin and other antioxidants. **Journal of Pineal Research**, v. 28, n. 2, p. 73-80, 2000.

MATAS, C.G.; MAGLIARO, F.C.L. Introdução aos Potenciais Evocados Auditivos e Potencial Evocado Auditivo de Tronco Encefálico. In: BEVILACQUA, M.C., et al (Org.). **Tratado de Audiologia**. Santos: Livraria Santos Editora Ltda, 2011. cap 12, p. 181-196.

MATAS, C.G.; HATAIAMA, N.M.; GONÇALVES, I.C. Estabilidade dos potenciais evocados auditivos em indivíduos adultos com audição normal. **Revista da Sociedade Brasileira de Fonoaudiologia**, v.16, n.1, p.37-41, 2011.

McKEAGE, M.J. Comparative adverse effect profiles of platinum drugs. **Drug Safety**, v.13, p. 228–244, 1995.

MEISTER, A.; ANDERSON, M.E. Glutathione. **Annual Review of Biochemistry**, v.52, p. 711-760, 1983.

MOLLER, A.R.; et al. Intracranially recorded responses from the human auditory nerve: new insights into the origin of brain stem evoked potentials (BSEPs). **Electroencephalography and Clinical Neurophysiology**, v. 52, n 1, p. 18-27, 1981.

MUKHERJEA, D. et al. Short interfering RNA against Transient Receptor Potential Vanilloid-1 attenuates cisplatin-induced hearing loss in the rat. **The Journal of Neuroscience**, v. 28, n. 49, p. 13056–13065, 2008.

MULDOON, L.L. et al. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. **Clinical Cancer Research**, v. 6, p. 309-315, 2000.

NEUWELT, E.A. et al. Bone marrow chemoprotection without compromise of chemotherapy efficacy in a rat brain tumor model. **Journal of Pharmacology and Experimental Therapeutics**, v. 309, p. 594–599, 2004.

NORDBERG, J.;, ÁRNER, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. **Free Radical Biology and Medicine**, v.31, p.1287-1312, 2001.

OFÍCIO CIRCULAR nº 002/2009/ Gerência Geral de Toxicologia da Agência Nacional de Vigilância Sanitária.

OKADA, Y. et al. Accumulation of platelets in rat syngeneic lung transplants: a potential factor responsible for preservation-reperfusion injury. **Transplantation**, v. 64, n. 6, p. 801-806, 1997.

OSTHOFF, K.S. et al. Oxidative stress and signal transduction. **International Journal for Vitamin and Nutrition Research**, v. 67, p. 336-342, 1997.

ÖZKIRIS, M., et al. The effects of lycopene on cisplatin-induced ototoxicity, **European Archives of Otorhinolaryngology**, v.270, p. 3027-3033, 2013.

OZTURAN O, et al. Monitoring of cisplatin ototoxicity by distortion-product otoacoustic emissions. **Auris Nasus Larynx**, v. 23, p. 147–151, 1996.

OZTURK, M., et al. Possible protective effect of sertraline against cisplatin-induced ototoxicity: an experimental study. **The ScientificWorld Journal**, p.1-5, 2013.

PAKSOY, M., et al. The protective effects of intratympanic dexamethasone and vitamin E on cisplatin-induced ototoxicity are demonstrated in rats. **Medical Oncology**, v. 28, p. 615-621, 2011.

PARONLIN, M.B.; REASON, I.J. Apoptosis as a mechanism of tissue injury in hepatobiliary diseases. **Archives for Gastroenterology**, v. 38, n. 2, p. 138-144, 2001.

PERSON, O.C., et al. A utilização dos potenciais evocados auditivos como método diagnóstico em medicina. **Arquivos Médicos do ABC**, v. 30, n. 1, p. 5-10, 2005.

PIERSON, M.G.; GRAY, B.H. Superoxide dismutase activity in cochlea. **Hear Research**, v.6, p. 141–151, 1982.

PIGEOLET, E. et al. Glutathione peroxidase, superoxide dismutase and catalase inactivation by peroxides and oxygen derived free radical. **Mechanisms of Ageing and Development**, v. 50, p. 283-297, 1990.

POIRRIER, A.L., et al. Oxidative Stress in the Cochlea: An Update. **Current Medicinal Chemistry**, v. 17, n. 31, p. 1-14, 2010.

RAMÍREZ-CAMACHO, R., et al. Supporting cells as a target of cisplatin-induced inner ear damage: therapeutic implications. **Laryngoscope**, v. 114, p. 533-537, 2004.

RAVI, R.; SOMANI, S.M.; RYBAK, L.P. Mechanism of cisplatin ototoxicity: antioxidant system. **Pharmacology & Toxicology**, v. 76, p. 386-394, 1995.

RIGA, M.G.; et al. Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: a feasible method with promising efficacy. **American Journal of Clinical Oncology**, v. 36, p. 1-6, 2013.

ROSS, D.; MOLDEUS, P. Antioxidant defense systems and oxidative stress. In: VIGO-PELFREY, C. **Membrane lipid oxidation**. 1 ed. Boca Raton: CRC Press,1991. p.151-70.

RUBIN, E. et al. **Patologia: bases clinicopatológicas da medicina**. 4 ed. São Paulo:Guanabara-Koogan. 2006.

RYBAK, L.; WHITWORTH, C.; SOMANI, S. Application of antioxidants and others agents to prevent cisplatin ototoxicity. **Laryngoscope**, v. 109, p. 1740-1744, 1999.

RYBAK, L.P. et al. Effect of protective agents against cisplatin ototoxicity. **American Journal of Otolaryngology**, v.21, p. 513-520, 2000.

RYBAK, L.P.; KELLY, T. Ototoxicity: bioprotective mechanisms. **Current Opinion in Otolaryngology & Head and Neck Surgery**, v. 11, p. 328-333, 2003.

RYBAK, L.P.; WHITWORTH, C.A. Ototoxicity: therapeutic opportunities. **Drug Discovery Today**, v. 10, n. 19, p. 1313-1321, 2005.

RYBAK, L.P. et al. Mechanisms of cisplatin induced ototoxicity and prevention. **Hear Research**, v. 226, p. 157–167, 2007.

RYBAK, L.P. Mechanisms of cisplatin ototoxicity and progress in otoprotection. **Current Opinion in Otolaryngology & Head and Neck Surgery,** v. 15, p. 364-39, 2007.

RYBAK, L.P. et al. Cisplatin ototoxicity and protection: clinical and experimental studies. **The Tohoku Journal of Experimental Medicine**, v. 219, p. 177-186, 2009.

SHA, S.H. et al. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. **Hearing Research**, v. 155, p. 1-8, 2001.

SHARIFIA, A.M. et al. Involvement of caspase-8, 9, and -3 in high glucose-induced apoptosis in PC12 cells. **Neuroscience Letters**, v. 459, p. 47–51, 2009.

SIMON, T. et al. The incidence of hearing impairment after successful treatment of neuroblastoma. **Klinishe Padiatrie**, v. 214, n. 4, p. 149-152, 2002.

SISTO, R.; et al. Otoacoustic emission sensitivity to low levels of noise-induced hearing loss. The Journal of Acoustical Society of America, v. 122, n. 1, p. 387-401, 2007.

SOUSA, L.C.A.; et al. Eletrofisiologia da audição e emissões otoacústicas. Princípios e aplicações clínicas. São Paulo: Tecmedd, 2008. 372 p.

SMOORENBURG, G.F. et al. Protection and spontaneous recovery from cisplatin-induced hearing loss. **Annals of the New York Academy of Sciences**, v. 884, p. 192-210, 1999.

STAVROULAKI, P. et al. Evoked otoacoustic emissions – an approach for monitoring cisplatin induced ototoxicity in children. **International Journal of Pediatric Otorhinolaryngology**, v. 59, p. 47-57, 2001.

STRAYER, D.S.; RUBIN, E. Cell adaptation, cell injury and cell death. In: RUBIN, R.; STRAUER, D.S. Rubin's **Pathology: clinicopathologic foundations of medicine**. 6 ed. Philadelphia: Lippincott Williams & Wilkins, 2012, cap 01, p 01-46.

STRASSER, A.; O'CONNOR, L.; DIXIT, V.M. Apoptosis signaling. **Annual Review of Biochemistry**, v. 69, p. 217-245, 2000.

TAYLOR, R.C. et al. Apoptosis: controlled demolition at the cellular level. **Nature Review Molecular Cell Biology**, v. 9, n. 3, p. 231-241, 2008.

THORNBERRY, N.A.; LAZEBNIK, Y. Caspases: enemies within. **Science**, v. 281, p. 1312-1316, 1998.

USAMI, S.; HJELLE, O.P.; OTTERSEN, O.P. Differential cellular distribution of glutathione - an endogenous antioxidant - in the guinea pig inner ear. **Brain Research**, v. 743, p. 337-340, 1996.

VAN RUJVEN, M.W.M. et al. Immunohistochemical detection of platinated DNA in the cochlea of cisplatin-treated guinea pigs. **Hearing Research**, v. 203, p. 112-121, 2005a.

VAN RUIJVEN, M.W.M., et al. Cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study. **Hearing Research**, v. 205, p. 241–248, 2005.

WANG J, et al. Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. **Cancer Research**, v. 64, p. 9217-9224, 2004.

WANG, D.; LIPPARD, S.J. Cellular processing of platinum anticancer drugs. **Nature Reviews**, v.4, p. 307-320, 2005.

WEIBROUM, A.A. et al. N-acetyl-L-cisteine for preventing lung reperfusion injury after liver ischemia-reperfusion. **Transplantation**, v. 69, n. 5, p. 853-859, 2000.

WU, Y.J.; MULDOON, L.L.; NEUWELT, E.A. The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. **Journal of Pharmacology and Experimental Therapeutics**, v. 312, n. 2, p. 424–431, 2005.

YAZICI, Z.M. et al. Reduction of cisplatin ototoxicity in rats by oral administration of pomegranate extract. **European Archives of Otorhinolaryngology**, v. 269, p. 45-52, 2012.

ZHENG, J. et al. Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of Corti. **Journal of Neurophysiology**, v. 90, n. 1, p. 444–455, 2003.

ZUCKI, F. Potencial evocado auditivo de tronco encefálico e análise proteômica em ratos expostos a chumbo e suplementados com ferro. 2013. 174 p. Tese (Doutorado em Ciências) – Universidade de São Paulo, Bauru, 2013.

11 ANEXO

Anexo 1 - Aprovação da Comissão de Ética em Experimentação Animal

UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO

Comissão de Ética em Experimentação Animal

3602-3301

CERTIFICADO

Certificamos que o Protocolo para Uso de Animais em Experimentação nº 103/2012, sobre o projeto intitulado "Mecanismos de (oto)proteção intracelular da N-acetileisteina na via auditiva de ratos tratados com cisplatina.", sob a responsabilidade do Professor Doutor Miguel Ângelo Hyppolito está de acordo com os Principios Éticos na Experimentação Animal adotado pelo Colégio Brasileiro de Experimentação Animal (COBEA) e foi APROVADO em reunião de 27 de agosto de 2012.

(We certify that the protocol n° 103/2012, about "Intracellular Otoprotection Mechanismos to Nacetyleysteine in the Inner Ear of Ruts treated with cisplatin", agrees with the ETHICAL PRINCIPLES IN ANIMAL RESEARCH adopted by Brazilian College of Animal Experimentation (COBEA) and was approved by the College of Medicine of Ribeirão Preto of the University of São Paulo – Ethical Commission of Ethics in Animal Research (CBTEA) in 08/27/2012.

Ribeirão Preto, 27 de agosto de 2012.

Prof. Dr. Omero Benedicto Poli-Neto
Presidente da Comissão de Ética em
Experimentação Animal