Mostrar registro simples

dc.creatorAlmeida, Carlos Alberto Melo de
dc.date.accessioned2019-05-24T17:44:32Z
dc.date.available2019-05-24T17:44:32Z
dc.date.issued2018-11-09
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/16649
dc.description.abstractThe use of subsurface drip irrigation (SDI) has been increasing as a mean to deliver water, fertilizers and pesticides to plants, being more effective. Increasing the water use efficiency is one of the goals of irrigation management, since the water demand by human use and industry is expected to grow significantly in the near future. To achieve all the subsurface drip potential, some operational parameters optimization is required such as frequency and irrigation time, dripper flow, installation depth and spacing, as well as knowledge of the water distribution pattern. The distribution pattern and water movement can be accessed by direct measurement or by modeling. In this way, the objective of this study was to measure and simulate the water movement in a sandy loam soil, with two flows, in drip emitters installed at different depths, of a subsurface drip irrigation system. Two experiments were carried out at the experimental laboratory, located on Departamento de Engenharia Rural of Universidade Federal de Santa Maria, during 2017 and 2018 years. It was used polyethylene containers with a 380 mm diameter by a 630 mm height, filled with soil of a sandy loam texture (Rhodic Paleudalf). The sources of variation consisted of : the drip emitters installation depth (12, 24 and 36 cm deep), the irrigation management (8 hours of continuous irrigation and 12 hours intermittent irrigation), the emitters flow (0.9 and 1.8 liters hour-1). The Irrigation was performed through 16 mm self-compensating drippers, with 20 cm spacing between emitters. A set of FDR sensors, model CS616, was used to measure soil water content. The sensors were installed in the depths of 8, 18, 28, 38, 48 and 58 cm, inside the containers with soil. The Hydrus-2D numerical model was used to analyze the observed water content data and to simulate the wetting front under each emitter. The observed soil water content data were compared with those simulated using the root mean square error (RMSE), linear regression coefficient forced to the origin (bo), determination coefficient (R2) and modeling efficiency (EF) as statistical indices. The RMSE, for the emitter different depths, ranged from 0.01 to 0.06 cm3 cm-3, indicating good to very good agreement between the data observed and simulated by the model. Irrigation time influenced the infiltration and formation of the wetting front more than the emitter flow. The results simulated by the Hydrus-2D model demonstrated a linear relationship of more than 65% with the observed data, making possible its use to model water movement in subsurface drip irrigation. The observed differences between the observed and simulated data, although not significant, occurred during the first two hours of infiltration and are probably due to the effect of hysteresis or imperfect measures in the soil hydraulic conductivity.eng
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHYDRUS-2Dpor
dc.subjectDistribuição da água (wetting front)por
dc.subjectModelação da água no solopor
dc.subjectWetting fronteng
dc.subjectSoil water modelingeng
dc.titlePadrão de umedecimento e movimento da água no solo sob uma fonte pontual de irrigação no gotejamento subsuperficialpor
dc.title.alternativeWetting pattern and soil water movement under a point source subsurface drip irrigationeng
dc.typeDissertaçãopor
dc.description.resumoA irrigação por gotejamento subsuperficial (SDI) tem sido utilizada com frequência cada vez maior, como meio de fornecer água às plantas, fertilizantes e pesticidas de forma mais eficiente. Aumentar a eficiência do uso da água é uma das premissas do manejo da irrigação, visto que a demanda pela água por setores municipais e industriais deverá crescer significativamente num futuro próximo. A percepção de todo o potencial do gotejamento subsuperficial requer a otimização dos parâmetros operacionais, como a frequência e o tempo de rega, vazão do gotejador, profundidade de instalação e espaçamentos, bem como, o conhecimento do padrão de distribuição da água. O padrão de distribuição e o movimento da água podem ser obtidos por medida direta ou mediante modelação. Assim, o objetivo desse trabalho foi medir e simular o movimento da água num solo franco arenoso, com duas vazões, em emissores instalados em diferentes profundidades, em um sistema de irrigação por gotejamento subsuperficial. Dois experimentos foram conduzidos em laboratório, em área experimental do Departamento de Engenharia Rural, da Universidade Federal de Santa Maria, durante os anos de 2017 e 2018. Containers de polietileno, com diâmetro de 380 mm e altura de 630 mm, preenchidos com solo de textura franco arenosa (Argissolo Vermelho Distrófico arênico). As fontes de variação consistiram em: profundidade de instalação dos tubos gotejadores (12, 24, e 36 cm), manejo da irrigação (8 horas de irrigação contínua e 12 horas de irrigação intermitente), e vazão dos emissores (0.9 e 1.8 litros/hora). A irrigação foi realizada através de tubos gotejadores auto-compensantes de 16 mm, com espaçamento entre emissores de 20 cm. Um conjunto de sensores FDR, modelo CS616, foi utilizado para mensurar o conteúdo de água no solo. Os sensores foram instalados nas profundidades de 8, 18, 28, 38, 48 e 58 cm, dentro dos containers com solo. O modelo numérico Hydrus-2D foi utilizado para analisar os dados do conteúdo de água observado e simular a frente de avanço sob cada emissor. Os dados observados do conteúdo de água no solo foram comparados com os simulados através dos índices estatísticos erro quadrático médio (RMSE), do coeficiente de regressão forçado à origem (bo), do coeficiente de determinação (R2) e da eficiência de modelagem entre os dados observados e simulados (EF). O RMSE, para as diferentes distâncias do emissor, variou de 0.01 a 0.06 cm3 cm-3, indicando boa a muito boa concordância entre os dados observados e simulados pelo modelo. O tempo de irrigação influenciou mais o processo de infiltração e formação da frente de umedecimento que a vazão do emissor. Os resultados simulados pelo modelo Hydrus-2D demonstraram relação de linearidade de mais de 65% com os dados observados, viabilizando seu uso para modelar o movimento da água na irrigação por gotejamento subsuperficial. As diferenças verificadas entre os dados observados e simulados, ainda que não sejam significativos, ocorreram nas primeiras duas horas de infiltração e, provavelmente sejam devido ao efeito da histerese ou de medidas imperfeitas na condutividade hidráulica do solo.por
dc.contributor.advisor1Carlesso, Reimar
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4740272927848914por
dc.contributor.referee1Petry, Mirta Teresinha
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0358609083747198por
dc.contributor.referee2Michelon, Cleudson José
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7524461221954574por
dc.creator.Latteshttp://lattes.cnpq.br/9443950566154690por
dc.publisher.countryBrasilpor
dc.publisher.departmentAgronomiapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Ciência do Solopor
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLOpor
dc.publisher.unidadeCentro de Ciências Ruraispor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International