Mostrar registro simples

dc.creatorSalomón, Yamil Lucas de Oliveira
dc.date.accessioned2022-06-20T18:48:10Z
dc.date.available2022-06-20T18:48:10Z
dc.date.issued2020-08-28
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/24906
dc.description.abstractThe potential of pecan pericarp (Carya illinoensis), Pacara Earpod tree seed residues (Enterolobium contortisilquum), and ironwood seed residues (Caesalpinia leiostachya) were evaluated for the removal of crystal violet (CV) and basic fuchsin (BF) dyes through continuous and batch adsorption system. The biosorbents were called pecan pericarp powder (PPP), pacara ear pod seed residues (PETS) and ironwood seed waste (IWS). The PPP biosorbent was used to remove the CV dye and the PETS and IWS biosorbents were tested to remove BF. The morphological characteristics of the materials present rough surfaces and different sizes. Also, the biosorbents showed functional groups associated with cellulose, lignin, and hemicellulose. The ideal dosage was 0.05 g / 100 mL in PPP and 1 g L-¹ for PETS and IWS. The best pH was set at 8.5 for CV biosorption in PPP, and pH 9.0 for PETS and IWS biosorption in BF. The kinetic profile was better adjusted for the general order model, and the balance was reached quickly in the first 5 min for the different initial concentrations of the CV. In PETS and IWS kinetics, the pseudo-second order model was considered more appropriate to describe BF biosorption. The PPP balance curves in CV were best described by the Langmuir model, with a maximum biosorption capacity of 642 mg g-¹, reaching 328 K. The Langmuir and Tóth models were the best to represent the balance curves for BF in PETS and IWS, respectively. The isotherm experiments showed maximum capacities of 166.858 mg g-¹ (PETS) and 110.317 mg g-¹ (IWS), with an initial concentration of 500 mg L-¹ at 328 K. The thermodynamics was favorable and endothermic for PPP and for the biosorbents PETS and IWS the process was spontaneous, endothermic and favorable. In the simulated effluent experiment, color removals were 94.1% with PPP, 66% with PETS, and 54% with IWS. Finally, the materials were tested in a fixed bed. For the PPP biosorbent, the column operated for 52.5 hours at a height of 25 cm, and the models suitable for describing the dynamic curves were the models of Thomas, Bohart-Adams, and Yoon-Nelson. The PETS and IWS biosorbents were also used in a fixed bed, reaching break times of 710 and 415 minutes, with a biosorption capacity of 124.5 mg g-¹ and 76.5 mg g-¹, respectively. Therefore, materials plant residues can be used as effective biosorbents for the treatment of aqueous effluents containing the dyes CV and BF in a continuous and batch system.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiosorventepor
dc.subjectVioleta cristalpor
dc.subjectFucsina básicapor
dc.subjectAdsorçãopor
dc.subjectEfluente simuladopor
dc.subjectLeito fixopor
dc.subjectBiosorbenteng
dc.subjectCrystal violeteng
dc.subjectBasic fuchsineng
dc.subjectAdsorptioneng
dc.subjectSimulated effluenteng
dc.subjectFixed bed operationeng
dc.titlePotencial de biossorventes de baixo custo na remoção dos corantes violeta cristal e fucsina básica em sistema contínuo e descontínuo de adsorçãopor
dc.title.alternativePotential of low-cost biosorbents in the removal of crystal violet and basic fuchsin dyes in a continuous and discontinuous adsorption systemeng
dc.typeDissertaçãopor
dc.description.resumoO potencial do pericarpo da noz-pecã (Carya illinoensis), os resíduos da semente de orelha de macaco (Enterolobium contortisilquum) e resíduos da semente de pau ferro (Caesalpinia leiostachya) foram avaliados para a remoção dos corantes violeta cristal (VC) e fucsina básica (FB) através do sistema contínuo e descontínuo de adsorção. Os biosorventes foram denominados de pó do pericarpo da noz-pecã (PPP), resíduos da semente de orelha de macaco (RSOM) e resíduos da semente de pau ferro (RSPF). O biossorvente PPP foi utilizado na remoção do corante VC e os biossorventes RSOM e RSPF testados na remoção de FB. As características morfológicas dos materiais apresentam superfícies rugosas e de diferentes tamanhos. Além disso, os biossorventes apresentaram grupos funcionais associados à celulose, lignina e hemicelulose. A dosagem ideal foi de 0,05 g/100 mL em PPP e 1 g L-¹ para o RSOM e RSPF. O melhor pH foi definido em 8,5 para a biossorção do VC no PPP, e pH de 9,0 para a biossorção de RSOM e RSPF em FB. O perfil cinético foi melhor ajustado para o modelo de ordem geral, sendo o equilíbrio alcançado rapidamente já nos primeiros 5 min para as diferentes concentrações iniciais do VC. Na cinética de RSOM e RSPF o modelo de pseudo-segunda ordem foi considerado mais adequado para descrever a biossorção da FB. As curvas de equilíbrio de PPP em VC foram melhor descritas pelo modelo de Langmuir, com capacidade máxima de biossorção de 642 mg g-¹, sendo alcançada em 328 K. Os modelos de Langmuir e Tóth foram os melhores para representar as curvas de equilíbrio para a FB no RSOM e RSPF, respectivamente. Os experimentos de isoterma apresentaram capacidades máximas de 166,858 mg g-¹ (RSOM) e 110,317 mg g-¹ (RSPF), com concentração inicial de 500 mg L-¹ a 328 K. A termodinâmica foi favorável e endotérmica para PPP e para os biossorventes RSOM e RSPF o processo foi espontâneo, endotérmico e favorável. No experimento de efluente simulado as remoções de cor foram de 94,1% com PPP, 66% com RSOM e 54% com RSPF. Por fim, os materiais foram testados em leito fixo. Para o biossorvente PPP, a coluna operou durante 52,5 horas com altura de 25 cm, e os modelos adequados para descrever as curvas dinâmicas foram os modelos de Thomas, Bohart-Adams e Yoon-Nelson. Os biossorventes RSOM e RSPF também foram utilizados em leito fixo, atingindo tempos de ruptura de 710 e 415 minutos, com capacidade de biossorção de 124,5 mg g-¹ e 76,5 mg g-¹, respectivamente. Portanto, os materiais provenientes de resíduos vegetais podem ser utilizados como biossorventes eficazes para o tratamento de efluentes aquosos contendo os corantes VC e FB em sistema contínuo e descontínuo.por
dc.contributor.advisor1Piccilli, Daniel Gustavo Allasia
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3858010328968944por
dc.contributor.advisor-co1Georgin, Jordana
dc.contributor.referee1Mallmann, Evandro Stoffels
dc.contributor.referee2Oliveira, Jivago Schumacher de
dc.creator.Latteshttp://lattes.cnpq.br/6179729787101588por
dc.publisher.countryBrasilpor
dc.publisher.departmentEngenharia Ambientalpor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Ambientalpor
dc.subject.cnpqCNPQ::ENGENHARIASpor
dc.publisher.unidadeCentro de Tecnologiapor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International