Mostrar registro simples

dc.creatorLiesenfeld, Janaina
dc.date.accessioned2023-07-05T12:17:31Z
dc.date.available2023-07-05T12:17:31Z
dc.date.issued2023-05-26
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/29629
dc.description.abstractAdditive Manufacturing (AM) is a set of manufacturing processes that build objects layer by layer, adding material in a controlled manner. Unlike traditional manufacturing methods, which involve material removal. The ISO/ASTM52900 standard classifies additive manufacturing in seven different principles and within the principle of material extrusion, the Fused Filament Fabrication (FFF) stands out as the most widely used, accessible and responsible for the popularization of AM. The FFF technology uses a filament of thermoplastic material that is heated, extruded and deposited in successive layers to form a three-dimensional object. Due to the weak connection produced among the deposited filament layers, the polymeric structures manufactured by the FFF process have low resistance. To overcome this problem, it has recently been shown that performing postdeposition heat treatments promotes a reduction in internal thermal stresses and improves adhesion between layers, positively affecting the printed parts mechanical properties. In this context, annealing was performed on printed samples of Polylactic Acid (PLA) with and without graphene addition at temperatures of 90, 100 and 120 °C for 60, 120 and 240 min, aiming to evaluate the role of these parameters on the evolution of the aforementioned properties. The annealed samples had their chemical characteristics evaluated by X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) techniques; their thermal characteristics investigated by Thermogravimetric (TGA) and Differential Scanning Calorimetry (DSC) techniques; its electrical properties evaluated in terms of resistance, resistivity and conductivity; and their mechanical properties determined through tensile and bending tests, notch sensitivity test, impact test and hardness measurements. Chemical characterizations show that annealing does not change the chemical composition of the materials, but generates structural alterations, producing their crystallization. Thermal characterizations confirmed the crystallization of the materials, and indicate a slight increase on its degree of thermal stability. Electrical characterization showed that crystallization does not produce any effect on the characteristics of PLA printed without graphene, but it improves the conductivity of PLA printed with graphene. Mechanical characterization indicated that annealing increased the mechanical strength, fracture resistance, impact strength, stiffness and hardness of both materials, but reduced their plasticity. Finally, the fractography of the specimens showed that annealing has no effect on the mechanical fracture mechanisms.eng
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectManufatura aditivapor
dc.subjectPLApor
dc.subjectGrafenopor
dc.subjectRecozimentopor
dc.subjectPropriedadespor
dc.subjectAdditive manufacturingeng
dc.subjectGrapheneeng
dc.subjectAnnealingeng
dc.subjectPropertieseng
dc.titleEfeito do pós-processamento por recozimento sobre as propriedades do PLA impresso com e sem adição de grafenopor
dc.title.alternativeEffect of annealing post-processing on the properties of printed PLA with and without graphene incorporationeng
dc.typeDissertaçãopor
dc.description.resumoA Manufatura Aditiva (MA) é um conjunto de processos de fabricação que constrói objetos camada por camada, adicionando material de forma controlada. Ao contrário dos métodos tradicionais de fabricação, que envolvem a remoção de material. A norma ISO/ASTM52900 classifica a manufatura aditiva em sete princípios diferentes e dentro do princípio de extrusão de material destaca-se a tecnologia de Fabricação por Filamento Fundido (FFF) como a mais amplamente utilizada, acessível e responsável pela popularização da MA. A tecnologia FFF utiliza um filamento de material termoplástico que é aquecido, extrudado e depositado em camadas sucessivas para formar um objeto tridimensional. Devido à fraca ligação produzida entre as camadas de filamento depositadas, as estruturas poliméricas fabricadas pelo processo de FFF apresentam baixa resistência. Para contornar esse problema, recentemente foi demonstrado que a realização de tratamentos térmicos pós-deposição promove uma redução nas tensões térmicas internas e melhoria na adesão entre as camadas, impactando positivamente sobre as propriedades das peças impressas. Dentro deste contexto, foi realizado recozimento em amostras impressas de Ácido Polilático (PLA) com e sem adição de grafeno nas temperaturas de 90, 100 e 120 °C por 60, 120 e 240 min, objetivando avaliar o papel destes parâmetros sobre a evolução das propriedades supracitadas. As amostras recozidas tiveram suas características químicas avaliadas pelas técnicas de Difração de Raios X (DRX) e Espectroscopia de Infravermelho com Transformada de Fourier (FTIR); suas características térmicas investigadas pelas técnicas Termogravimétrica (TGA) e Calorimetria Diferencial de Varredura (DSC); suas propriedades elétricas avaliadas em termos de resistência, resistividade e condutividade; e suas propriedades mecânicas determinadas por meio dos ensaios de tração, flexão, sensibilidade ao entalhe, impacto e dureza. As caracterizações químicas mostram que o recozimento não altera a composição química dos materiais, porém gera alterações de ordem estrutural, produzindo a sua cristalização. As caracterizações térmicas confirmaram a cristalização dos materiais e indicam um ligeiro aumento no seu grau de estabilidade térmica. A caracterização elétrica mostrou que a cristalização não produz qualquer efeito sobre as características do PLA impresso sem grafeno, porém melhora a condutividade do PLA impresso com grafeno. A caracterização mecânica indicou que o recozimento aumentou a resistência mecânica, a resistência à fratura, a resistência ao impacto, o módulo de elasticidade e a dureza de ambos os materiais, mas reduziu a sua plasticidade. Por fim, a fractografia dos corpos de prova mostrou que o recozimento não tem efeito sobre os mecanismos de fratura mecânica PLA impresso com e sem grafeno.por
dc.contributor.advisor1Scheuer, Cristiano José
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3758860836699578por
dc.contributor.referee1Tonatto, Maikson Luiz Passaia
dc.contributor.referee2Lajarin, Sérgio Fernando
dc.creator.Latteshttp://lattes.cnpq.br/2807729654159894por
dc.publisher.countryBrasilpor
dc.publisher.departmentEngenharia Mecânicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Mecânicapor
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA MECANICApor
dc.publisher.unidadeCentro de Tecnologiapor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International