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TECHNICAL NOTE’S AIM

The aim of this technical note is to describe the Turbulent Kinetic Energy (TKE) budget equation in Mellor-1

Yamada-Nakanishi-Niino (MYNN) PBL scheme of WRF model and how they are outputted. The MYNN scheme2

is an improved version of classic Mellor-Yamada scheme (Mellor and Yamada 1982) and it is able to output the3

TKE budget equation terms on the default WRF history file. These outputs were unbalanced with the equivalent4

terms used on MYNN to integrate the TKE budget equation. It was fixed on WRF 4.2.2 version code for tests5

released on WRF 4.5 (CCPP version).6

Besides the TKE output fix, a new set of similarity relationship equations was implemented in the MYNN7

scheme to provide the lower boundary conditions for TKE budget equation terms.8

1 MYNN-EDMF’S TKE BUDGET EQUATION

In MYNN-EDMF, the Q Budget equation is given by (Nakanishi and Niino 2009; Olson et al. 2019):

∂Q
∂ t

= Trq +Psq +Pbq +Dq (1.1)

where Q = q2 = 2e is twice the TKE e, and Trq, Psq, Pbq, and Dq are the vertical transport, shear production,9

buoyancy production/destruction, and dissipation rates of Q respectively. As Q = 2e, therefore:10

∂e
∂ t

=
1
2

Trq +
1
2

Psq +
1
2

Pbq +
1
2

Dq

∂e
∂ t

= Tr +Ps +Pb +D (1.2)

where the right side of equation 1.2 has the analogous terms of 1.1 related to TKE.11

Equation 1.1 is solved using an implicit time-integration method and it is discretized as follows:

Qn+1
k+1/2−Qn

k+1/2

∆t︸ ︷︷ ︸
TKE tendency

=
∂

∂ z

[
Kn

q
∂

∂ z

(
Qn+1)]

k+1/2︸ ︷︷ ︸
Eddy difusivity

+
∂

∂ z

[
Mn (Qn+1−Qn

u
)]

k+1/2︸ ︷︷ ︸
Mass-flux transport︸ ︷︷ ︸

TKE transport

+ Pn
k+1/2︸ ︷︷ ︸

TKE turbulent
Production
Destruction

−Fn
k+1/2Qn+1

k+1/2︸ ︷︷ ︸
Dissipation rate

(1.3)

where n denotes the time index and k denotes the vertical level index. As the WRF grid is staggered, the full levels

(cell faces) are represented by the integer k index, while the half levels are represented by k+1/2 index levels (for

further details see appendix A). In equation 1.3, Q is a half level variable, while Kq and M are full level variables.

Furthermore, the first and second terms of the right side are the eddy diffusion and mass-flux Q transport terms,

P is the sum of shear and buoyancy terms, and the last term FQ is the dissipation rate. The time-integration of

equation 1.3 is solved by the following relationship:

aQn+1
k−1/2 +bQn+1

k+1/2 + cQn+1
k+3/2 = d (1.4)

where a, b, and c are the matrix elements to solve the implicit system for Qn+1
k−1/2.12
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To output all TKE budget equation terms in wrfout_d<domain>_AAAA-MM-DD_HH:mm files, it is necessary13

to use the bl_mynn_tkebudget(maxdom) variable in &physics block of namelist.input file:14

bl_mynn_tkebudget(maxdom) =

0, not outputted (default)

1, outputted

The output variables associated to TKE budget equation are:15

Table 1.1 – Summary of TKE budget equation variables outputted in wrfout_d<domain>_AAAA-MM-
DD_HH:mm files.

TKE Budget term Variable name Description
Mechanical production QSHEAR TKE Production - shear
Buoyancy production/destruction QBUOY TKE Production - buoyancy
TKE vertical transport QWT TKE vertical transport
TKE dissipation rate QDISS TKE dissipation
TKE tendency DTKE TKE tendency

In this WRF version, all outputted TKE budget variables are obtained as a “mass” grid point variable (see16

appendix A for more details).17

1.1 Production terms18

The TKE production1 terms are given by:

Ps =−
〈
u′w′

〉 ∂u
∂ z
−
〈
v′w′

〉 ∂v
∂ z

(1.5)

Pb =
g
θ0

〈
w′θ ′v

〉
(1.6)

since g = 9,81 m s−2 is the gravity acceleration and θ0 = 300 K is the reference potential temperature.19

The turbulent fluxes are evaluated from local-gradient and counter-gradient terms (Nakanishi and Niino 2009;

Olson et al. 2019):

〈
w′φ ′

〉
=−Kh,m

(
∂φ

∂ z
− γ

)
(1.7)

For the momentum fluxes, γ = 0 and Km = `qSm were considered, while for scalar fluxes Kh = `qSh was employed.

Also,
〈
w′θ ′v

〉
is divided in two terms, local (L) and a non-local (NL) (Olson et al. 2019):

〈
w′θ ′v

〉
=
〈
w′θ ′v

〉L
+
〈
w′θ ′v

〉NL (1.8)

20

1Pb is a production or destruction term depending on the static stability.

3



In equation 1.3, Pn
k+1/2 is given by:

Pn
k+1/2 = Pn

si+1/2
+Pn

bi+1/2
(1.9)

Pn
sk+1/2

=
1
2

(
Pn

sk
+Pn

sk+1

)
(1.10)

Pn
bk+1/2

=
1
2

(
Pn

bk
+Pn

bk+1

)
(1.11)

21

For k > 0:22

Psk = `kqkSmk gmk (1.12)

gmk =

(
uk+1/2−uk−1/2

)2−
(
vk+1/2− vk−1/2

)2

∆z2
k−1/2

(1.13)

Pbk =−`kqk (Shk ghk − γθ )+Pbnlk (1.14)

ghk =

(
θvk+1/2−θvk−1/2

)
∆zk−1/2

g
θ0

(1.15)

(1.16)

where Pbnlk is the non-local TKE buoyancy production/destruction. Since q is a half-level variable, qk is obtained23

by a linear interpolation of qk−1/2 and qk+1/2. Furthermore, the vertical grid spacing between full and half levels24

are given by:25

∆zk = zk+1− zk (1.17a)

∆zk+1/2 =
1
2
(∆zk +∆zk+1) (1.17b)

where zk = 0 since k = 0.26

Similarity relationships are used as lower boundary condition to obtain these terms for k = 0:27

Psk = 2
(

u3
∗

κz1/2

)
φm−Psk+1 (1.18)

Pbk = 2
(

u3
∗

κz1/2

)
ζ −Pbk+1 (1.19)

28

where u∗ is the friction velocity, ζ =
z1/2

L
is the stability parameter, L is the Monin-Obukhov length, φm is a stability29

function, z1/2 =

(
1
2

)
∆z1, and κ = 0.4 is the von Karman constant.30

The MYNN has used a Kansas-type similarity gradient function to prescribe the TKE production at the first31

vertical half level, given by (Arya 2001):32

4



φmK =

(1−amKζ )−1/4, if ζ < 0

(1+bmKζ ), if ζ ≥ 0
(1.20)

where amk = 16, bmk = 5, and ζ has it value updated inside MYNN with the surface heat flux obtained from LSM

(land-surface model), as follows:

ζ =−z1/2

 κ
g
θ0
〈w′θ ′v〉s

max(u3
∗,1×10−6)

 (1.21)

33

A new stability function was implemented in WRF 4.2.2 as a testing option and it is described in section 2. This34

new option is based on Jiménez et al. (2012) stability functions for profile relationships. This new set of equations35

working in the same ζ domain that ones used on MM5 revised and MYNN surface layer (SFCLAY) modules,36

which are compatible with MYNN PBL scheme.37

1.2 Vertical transport term38

The vertical transport term is divided in an eddy diffusivity (ED, local) and a mass-flux (MF , non-local) terms:

T n
rk+1/2

= EDn
k+1/2 + γMFMFn

k+1/2 (1.22a)

EDn
k+1/2 =

1
2∆zk

[
Kn

qk+1

∆zk+1/2

(
Qn+1

k+3/2−Qn+1
k+1/2

)
−

Kn
qi

∆zk−1/2

(
Qn+1

k+1/2−Qn+1
k−1/2

)]
(1.22b)

MFn
k+1/2 =

1
∆zk

[(
Mn

k+1

2

)
Qn+1

k+3/2 +

(
Mn

k+1−Mn
k

2

)
Qn+1

k+1/2−
(

Mn
k

2

)
Qn+1

k−1/2 +Mn
k Qn

uk
−Mn

k+1Qn
uk+1

]
(1.22c)

where γMF = 0 or 1 is a activation parameter that controls the MF term. It is changed in the namelist file trough39

the variable bl_mynn_edmf_tke(maxdom), as follows:40

bl_mynn_edmf_tke(maxdom) =

0, γMF = 0: MF term is turned off (default)

1, γMF = 1: MF term is activated

1.3 TKE dissipation rate41

The TKE dissipation rate is given by:

ε
n
k+1/2 =−

1
2

Fn
k+1/2Qn+1

k+1/2 (1.23)
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where Fn
k+1/2 =

qn
k+1/2

b1`
n
k+1/2

, b1 = 24 (Nakanishi and Niino 2009). The mixing length is a full-level variable. At half

levels, it is given by:

`n
k+1/2 =

1
2
(
`n

k + `n
k+1
)

(1.24)

42

Furthermore, for k = 0: `n
k = 0.43

2 NEW STABILITY FUNCTIONS FOR MYNN

The new gradient relationship is given by44

φα =


φαg = 1−ζ

dψαg

dζ
, if ζ < 0

φαc = 1+aαc
ζ +ζ bαc

(
1+ζ bαc

)b−1
αc−1

ζ +(1+ζ bαc)
b−1

αc
, if ζ ≥ 0

(2.1)

where α = m,h identify the function for momentum (m) and heat (h), φαg is the gradient similarity obtained from45

Grachev et al. (2000) expression for ψαg. The constants aαc and bαc are presented in table 2.1 (Cheng and Brutsaert46

2005):47

Table 2.1 – Constants used in the new gradient relationship for neutral/stable regimes.

α aαc bαc

m 6.1 2.5
h 5.3 1.1

For both stability conditions, the similarity relationship profiles used by Jiménez et al. (2012) are related to

gradient functions as follows:

ψα(ζ ) =

ζ∫
0

1−φα(ζ )

ζ
dζ (2.2)

48

The relationship between gradient and profile stability functions is used to obtain the first one for unstable

regime (ζ < 0). In this case, the profile relationship is given by (Grachev et al. 2000; Jiménez et al. 2012):

ψαg(ζ ) =
ψαK +ζ 2ψ ′αg

1+ζ 2 (2.3)

where ψαK is the Kansas-type profile relationship (Arya 2001),49
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ψαK =


2ln
(

1+ x
2

)
+ ln

(
1+ x2

2

)
−2arctan(x)+

π

2
, α = m

2ln
(

1+ x2

2

)
, α = h

(2.4)

where x = (1−aαK)
1/4, aαK = amK = ahK = 16, and ψ

′
αg is given by the following expression:

ψ
′
αg(ζ ) =

3
2

ln
(

y2
α + yα +1

3

)
−
√

3arctan

[√
3

3
(2yα +1)

]
+

√
3π

3
(2.5)

where yα = (1− rαζ )1/3, with rm = 10 and rh = 34.50

From equation 2.3:51

dψαg

dζ
=

[
d

dζ
(ψαK)+ζ

2
ψ
′
αg
(
1+ζ

2)− (ψαK +ζ
2
ψ
′
αg
) d

dζ

(
1+ζ

2)]
(1+ζ 2)2

dψαg

dζ
=

1−φαK

ζ
+2ζ ψ ′αg +ζ 2 dψ ′αg

dζ

(1+ζ 2)
(2.6)

where φαK the Kansas-type gradient similarity relationship (equation 1.20).52

Substituting the functions fα =
1
3
(
y2

α + yα +1
)

and gα =

√
3

3
(2yα +1) in ψ

′
αg it is possible to obtain the

following relationships:

ψ
′
αg =

3
2

ln( fα)−
√

3arctan(gα)+

√
3π

3
(2.7a)

dψ ′αg

dζ
=

3
2

1
fα

d fα

dζ
−
√

3
(

1
1+g2

α

)
dgα

dζ
(2.7b)

d fα

dζ
=

1
3

dyα

dζ
(2yα +1) (2.7c)

dgα

dζ
=

2
√

3
3

dyα

dζ
(2.7d)

dyα

dζ
=−rα

3
(1− rαζ )−2/3 (2.7e)

In this way, the gradient similarity relationship for ζ < 0 is obtained by substituting equations 2.5, 2.6, and 2.7 in53

equation 2.1.54

Figure 2.1 exhibits a comparison between the Kansas-type and the new gradient similarity relationships. An55

advantage of the new functions is the ζ domain for which φα(ζ ) is properly defined. In general, The Kansas-type56

functions were obtained from experimental data interpolated in −2≥ ζ ≥ 1. Thus, the new functions can be used57

in larger stability domain values.58
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Figure 2.1

The stability function option bl_mynn_stfunc is hard-coded in WRF. It must be changed near the top of the59

module_bl_mynn.F before compiling, as follows:60

bl_mynn_stfunc =

0, Kansas-type (default)

1, new option (for testing)

The default option is bl_mynn_stfunc = 1.61

A WRF STAGGERED GRID

The WRF grid is an Arakawa C grid where the center-cell grid points are called “mass points”. The face grid62

points staggered at one-half grid length from the mass points are called U, V, and W points. These faces are normal63

to these wind speed components (Skamarock et al. 2019). Figure A.1 shows a 3D view of a WRF grid cell where64

the mass and wind points are identified. The center and face points are staggered for
1
2

∆xi, where ∆xi is the mesh65

resolution in i direction, the index α +1/2 and α−1/2 denotes points that are at ±1
2

∆xi from α .66
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Figure A.1 – Representation of a WRF grid cell. The
face-yellow dots are related to wind points while the
centered-blue dot is the mass grid point.

In a vertical column of WRF grid, the TKE budget equation terms obtained on grid cell vertical faces (W points)67

are converted to centred point values by an average procedure. For any variable Ak and Ak±1, the center grid point68

value Ak±1/2 is given as follows:69

Ak± 1
2
=

Ak +Ak±1

2
(A.1)
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