
 

 

FEDERAL UNIVERSITY OF SANTA MARIA 

CENTER OF RURAL SCIENCES 

GRADUATE PROGRAM IN SOIL SCIENCE 

 

 

 

 

 

 

 

André Carnieletto Dotto 
 

 

 

 

 

 

 

 

 

SOIL VIS-NIR SPECTROSCOPY: PREDICTIVE POTENTIAL AND 

THE DEVELOPMENT OF A GRAPHICAL USER INTERFACE IN R 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

Santa Maria, RS 

2017 

 

 



 

 

André Carnieletto Dotto 

 

 

 

 

 

 

 
SOIL VIS-NIR SPECTROSCOPY: PREDICTIVE POTENTIAL AND THE 

DEVELOPMENT OF A GRAPHICAL USER INTERFACE IN R 

 

 

 

 

 

 

 

Thesis submitted to the Graduate Program in 

Soil Science, Area of concentration Physical 

and Morphogenetic Processes of Soil, at 

Federal University of Santa Maria (UFSM, 

RS), as a partial requirement to obtain the 

degree of Doctor in Soil Science. 

  

 

 

 

 

 

 

 

 

 

Advisor: Prof. Dr. Ricardo Simão Diniz Dalmolin 

 

 

 

 

 

 
 

 

 

 

Santa Maria, RS 

 

2017 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
___________________________________________________________________ 

© 2017 

All copyrights reserved to André Carnieletto Dotto. The reproduction of parts or all of this work can only be done 

by quoting the source. 

Address: Universidade Federal de Santa Maria, Centro de Ciências Rurais, Av. Roraima, n. 1000, Prédio 42, sala 

3314, Camobi, Santa Maria, RS, Brazil. CEP: 97105-900 Fone +55 (55) 3220-8157;  

E-mail: andrecdot@gmail.com 

  



 

 

 

 

  



 

 

 

DEDICATION 

 

 

 

 

 

 

 

 
To my family! 

Your support, encouragement and constant love 
have sustained me throughout my life! 

  

 



 

 

ACKNOWLEDGEMENTS 

 

Firstly, I would like to express my sincere gratitude to my advisor Prof. Ricardo S. D. 

Dalmolin and co-advisor Prof. Alexandre ten Caten for the continuous support on my research, 

for their patience, motivation, and immense knowledge.  

Besides my advisors, I would like to thank the rest of my thesis examining committee: 

Prof. Suzana R. Araujo, Dr. Gustavo de M. Vasques, and Dra Ândrea M. P. Franco for their 

insightful comments and ideas. 

My sincere thank also goes to Prof. Sabine Grunwald, who provided me an opportunity 

to join their team as exchange student. Without her precious guidance, it would not be possible 

to conduct my split-site PhD abroad.  

Heartfelt thanks go out to my girlfriend Daiana for all your love, support and patience 

when I needed it most. To our loving dogs, Chokito e Milka, for the comfy company.  

Also, I thank my friends in the University of Florida, In particular, Wade for the 

friendship and fishing, Carla for the beers, Kay for the patience and kindness, Chong for the 

Chinese food and partnership, Yiming for the advises and chats, Hamza for the wild talks, and 

Betty for the advices. 

I thank my fellow labmates Jean, Gabriel, Pedro, Taciara, Luciano, Ismael, Vicente, 

Lucas, Walquiria, Boing, Bruno, Luis for the help in soil samples collection and lab analysis, 

for the stimulating discussions, for the friendship, and for all the fun we have had in the last 

four years. Especial thanks to my fellow Diego for helping me to develop Alrad Spectra. I also 

thank my Japanese friend Takao for the partnership overseas and experiences exchanged.  

Thank CAPES for funding my Doctoral Scholarship. To the secretary of Graduate 

Program in Soil Science Heverton for all the assistance. To all those people who were not 

mentioned here, you have also contributed in different ways to accomplish this thesis. 

Last but not the least, I would like to thank my family: my parents, brother, sisters, 

brother-in-law, sister-in-law, nephew and niece for your love, support and encouragement 

throughout these years, for giving me strength to continue studying and for being part of my 

life. 

This accomplishment would not have been possible without you all. Thank you. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

“Change will not come if we wait for some other person or some other time. 

We are the ones we've been waiting for. We are the change that we seek.” 

Barack Obama 

 

 

 “Live as if you were to die tomorrow. Learn as if you were to live forever.” 

Mahatma Gandhi 

  



 

 

RESUMO 

 

 

ESPECTROSCOPIA DO SOLO NO VIS-IR: POTENCIAL PREDICTIVO E 

DESENVOLVIMENTO DE UMA INTERFACE GRÁFICA DE USUÁRIO EM R 

 

 

Autor: André Carnieletto Dotto 

Orientador: Ricardo Simão Diniz Dalmolin 

 

 
Esta tese apresenta um estudo da técnica de espectroscopia do visível ao infravermelho próximo aplicado à 

predição de propriedades do solo. O proposito foi de desenvolver informações quantitativas sobre o solo, devido 

à demanda do mapeamento digital de solos, monitoramento ambiental, produção agrícola e aumento das 

informações espaciais do solo. A espectroscopia surge como uma alternativa para revolucionar a monitorização 

do solo, permitindo uma amostragem rápida, de baixo custo, não destrutiva, ambientalmente amigável, 

reprodutível e repetitiva. Para melhorar a eficiência da predição do solo usando dados espectrais, várias técnicas 

de pré-processamento espectral e modelos multivariados foram explorados. Uma interface gráfica de usuário 

(GUI) no R, denominada Alrad Spectra, foi desenvolvida para realizar pré-processamento, modelagem 

multivariada e predição usando dados espectrais. Os objetivos foram: i) predizer as propriedades do solo para 

melhorar a informação do solo usando dados espectrais, ii) comparar os desempenhos dos pré-processamentos 

espectrais e métodos de calibração multivariada na predição do carbono orgânico do solo, iii) obter predições 

confiáveis do carbono orgânico do solo, e iv) desenvolver uma interface gráfica de usuário que realize o pré-

processamento espectral e a predição do atributo solo usando dados espectroscópicos. Um total de 595 amostras 

de solo foram coletadas na região central do estado de Santa Catarina, Brasil. A reflectância espectral do solo foi 

obtida utilizando um espectrorradiômetro FieldSpec 3 com uma alcance espectral de 350-2500 nm com 1 nm de 

resolução espectral. Os resultados da tese demonstraram o grande desempenho da predição de propriedades do 

solo usando espectroscopia do vísivel ao infravermelho próximo. As propriedades do solo que estão diretamente 

relacionadas aos cromóforos, como o carbono orgânico, apresentaram predições superiores comparados com o 

tamanho de partículas. O pré-processamento espectral aplicado nos espectros do solo contribui para o 

desenvolvimento de um modelo de predição de alto nível. Comparando diferentes técnicas de pré-processamento 

espectral para a predição de carbono orgânico revelou que as técnicas de pré-processamento de correção de 

dispersão apresentaram resultados de predição superiores em comparação com as técnicas de derivação espectrais. 

Na técnica de correção de dispersão, a remoção do contínuo é o pré-processamento mais adequado a ser usado 

para a predição de carbono. Na modelagem de calibração, com exceção da floresta aleatória, todos os métodos 

apresentaram uma elevada predição, sendo destaque o método máquina de vetores de suporte. A metodologia 

sistemática aplicada neste estudo pode melhorar a confiabilidade da estimativa do carbono orgânico ao examinar 

como as técnicas de pré-processamento espectral e métodos multivariados afetam a performance da predição 

usando a análise espectral. O desenvolvimento da GUI de fácil utilização pode beneficiar um grande número de 

usuários, os quais podem tirar proveito desta análise quimiométrica. Alrad Spectra é a primeira GUI desse tipo e 

a expectativa é que esta ferramenta possa expandir a aplicação da técnica de espectroscopia. 

 

 

Palavras-chave: Alrad Spectra, técnica de espectroscopia, espectros de solo, análise quimiométrica, GUI de fácil 

utilização. 

 

  



 

 

ABSTRACT 

 

 

SOIL VIS-NIR SPECTROSCOPY: PREDICTIVE POTENTIAL AND THE 

DEVELOPMENT OF A GRAPHICAL USER INTERFACE IN R 
 

 

Author: André Carnieletto Dotto 

Advisor: Ricardo Simão Diniz Dalmolin 

 

 
This thesis presents a study of Visible Near-infrared spectroscopy technique applied to predict soil properties. The 

purpose was to develop quantitative soil information due to the demand of digital soil mapping, environmental 

monitoring, agricultural production and for increasing spatial information on soil. Soil spectroscopy emerge as an 

alternative to revolutionize soil monitoring, allowing rapid, low-cost, non-destructive samples sampling, 

environmental-friendly, reproducible, and repeatable analysis. To improve the efficiency of soil prediction using 

spectral data, several spectral preprocessing techniques and multivariate models were exploited. A graphical user 

interface (GUI) in R, named Alrad Spectra, was developed to perform preprocessing, multivariate modeling and 

prediction using spectral data. Hereby, the objectives were: The objectives were: i) to predict soil properties to 

improve soil information using spectral data, ii) to compare the performance of spectral preprocessing and 

multivariate calibration methods in the prediction of soil organic carbon, iii) to obtain reliable soil organic carbon 

prediction, and iv) to develop a graphical user interface that performs spectral preprocessing and prediction of the 

soil property using spectroscopic data. A total of 595 soil samples were collected in central region of Santa Catarina 

State, Brazil. Soil spectral reflectance was obtained using a FieldSpec 3 spectroradiometer with a spectral range 

of 350–2500 nm with 1 nm of spectral resolution. The outcomes of the thesis have demonstrated the great 

performance of predicting soil properties using Vis-NIR spectroscopy. Apparently, soil properties that are directly 

related to the chromophores such as organic carbon presented superior prediction statistics than particle size. 

Spectral preprocessing applied in the soil spectra contribute to the development of high-level prediction model. 

Comparing different spectral preprocessing techniques for soil organic carbon (SOC) prediction revealed that the 

scatter–corrective preprocessing techniques presented superior prediction results compared to spectral derivatives. 

In scatter–correction technique, continuum removal is the most suitable preprocessing to be used for SOC 

prediction. In the calibration modeling, excepting for random forest, all of methods presented robust prediction, 

with emphasis on the support vector machine method. The systematic methodology applied in this study can 

improve the reliability of SOC estimation by examining how techniques of spectral preprocessing and multivariate 

methods affect the prediction performance using spectral analysis. The development of easy-to-use graphical user 

interface may benefit a large number of users, who will take advantage of this useful chemometrics analysis. Alrad 

Spectra is the first GUI of its kind and the expectation is that this tool can expand the application of the 

spectroscopy technique.  

 

 
Keywords: Alrad Spectra, spectroscopy technique, soil spectra, chemometrics analysis, user-friendly GUI. 
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1 INTRODUCTION 

 

Soil is a natural source of organic and inorganic material that covers the earth's surface 

being an open and heterogeneous system with complex processes and mechanisms of 

formation. Due to this, soils present great variability in chemical, physical and biological 

composition. The soil provides a multiplicity of ecosystem functions, goods and services 

supporting and regulating life on the planet (MONTANARELLA et al., 2015). Consequently, 

the preservation and sustainable management of soils is crucial to prevent the major soil threats 

that endanger humanity such as food security, climate change, environmental degradation, 

water scarcity, and biodiversity (SANCHEZ et al., 2009).  

The preservation and sustainable management of soils involves a number of factors, 

including access to soil information. The demand of quantitative information for soil mapping 

purposes, environmental monitoring, agricultural production and especially for increasing 

spatial information on soil is increasing (HARTEMINK; MINASNY, 2014). For Sanchez et al. 

(2009) the demand for up-to-date and relevant soil information is growing, but exchanging such 

information among the science community remains challenging. 

The necessity to increase soil information requires complex methodical approaches with 

an excessive number of parameters to measure. At present, soil analyses, carried out in routine 

laboratories, are being discussed by soil scientists. This is due to the fact that the methodologies 

being used exposed problems related to the costs of analysis, production of chemical residues 

generated by the standard analysis and the time required for the processing of soil samples 

(SOUSA JUNIOR; DEMATTÊ; ARAÚJO, 2011). 

One of the challenges is to propose a technique that has the potential to revolutionize 

soil monitoring, allowing rapid, low-cost, non-destructive sampling, environmental-friendly, 

reproducible, and repeatable analysis (VISCARRA ROSSEL et al., 2006). Visible and Near-

Infrared (Vis-NIR) reflectance spectroscopy emerges as an alternative method to satisfy these 

needs (STEVENS et al., 2013). In addition, there is no use of environmentally harmful chemical 

reagents. The technique is mainly used in the laboratory in controlled environment (VASQUES; 

GRUNWALD; SICKMAN, 2008), but field measurement has been developed to allow direct 

and rapid soil information (HARTEMINK; MINASNY, 2014). Soil spectroscopy is about the 

identification and analysis of the interaction of wavelengths with soil properties. The technique 

allows the characterization of a series of soil properties simultaneously with only a single 

spectral sample scan. In this context, Vis-NIR spectroscopy can be used to identify specific soil 

features in the spectral curves and estimate important soil properties (STONER; 
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BAUMGARDNER, 1981). Different soil properties such as particle size, moisture, mineralogy 

and organic matter can influence the absorption of electromagnetic radiation causing variation 

of the reflectance (DALMOLIN et al., 2005; DEMATTÊ et al., 2004). The technique can be 

used to predict important soil attributes such as soil organic matter, minerals, texture, nutrients, 

water, pH, and heavy metals (STENBERG et al., 2010).  

To improve the efficiency of soil prediction using spectral data, several spectral 

preprocessing techniques have been exploited. These techniques have been applied to transform 

soil spectra, remove noise, emphasize features, and extract useful information for quantitative 

predictive models. The most utilized spectral preprocessing includes smoothing, normalization, 

scatter correction, and derivatives (RINNAN; BERG; ENGELSEN, 2009). The selection and 

performance of these spectral preprocessing in soil prediction are diverse according to many 

studies. Hence, there is a need to explore and assess a wide range of spectral preprocessing in 

order to compare their predictive performance in the same soil dataset. 

Regarding the predictive performance, a proper modeling approach is needed. Several 

multivariate calibration methods have been successfully applied with the intention of 

developing a faster and high–quality model for soil property prediction. Among the methods, 

partial least–squares regression (PLSR) stands out as the most common calibration method. 

Moreover, other methods have gained emphasis such as support vector machine (SVM), 

random forest (RF), artificial neural network (ANN), Bayesian model averaging (BMA), 

weighted average partial least squares (WAPLS), and Gaussian process regression (GPR). 

Besides these, multiple linear regression (MLR) and principal components regression (PCR) 

have presented significant prediction results. The idea to compare well-known and alternatives 

methods can provide an extensive assessment in the selection of the most accurate model. More 

efforts should be focused on revealing the potential of these methods in soil analysis. The 

evaluation of an extensive variety of multivariate statistics would be capable of improving the 

model prediction based on Vis–NIR spectroscopy and would allow a systematic methodology 

development for imminent usage in spectral analysis laboratories. 

Soil properties prediction studies based on Vis-NIR spectroscopy presented a 

considerable increase in the last decades (BELLON-MAUREL; MCBRATNEY, 2011). 

According to Nocita et al. (2015) this growth is due to the minor sample preparation, more 

applicability under field condition and Vis-NIR instruments are more widespread than mid-

infrared. For Viscarra Rossel et al. (2016) soil spectroscopy has grown considerably over the 

past 30 years because of the development of new spectrometers, new technologies that use 

microelectromechanical structures, thin film filters, lasers, light emitting diodes, optical fiber 
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assemblies, high performance detector arrays, producing miniaturized hand-held instruments 

that are rugged and cheap. The authors suggested that continual improvements in computing 

and statistics have helped to extract useful information from the spectra and to improve our 

understanding of soil.  

Along with the expansion of this technique came the need to popularize the 

computational processes involving all stages for soil spectra analyses and simplify the 

interaction of statistical programs. According to Valero-Mora and Ledesma (2012) graphical 

user interfaces (GUI) improved the usability of computer program applications and are the most 

common way of interacting with a computer. The statistical analysis implemented in R 

programing language (R CORE TEAM, 2016) are operated by a typed language via a command 

line interface. Writing up commands can be time-consuming and for occasional users of 

statistical application the amount of effort needed for learning programing language will not 

pay the price. Therefore, a GUI in R that handles spectral preprocessing and modeling methods 

in order to predict soil properties can be developed. The GUI may be the cutting-edge for 

adoption and expansion of soil spectroscopy technique. 

Definitively, soil spectroscopy technique can be considered an alternative to improve 

soil analyses that are currently carried out in routine laboratory by conventional methods 

(MINASNY; MCBRATNEY, 2008). It seems that the implementation of Vis–NIR 

spectroscopy in soil laboratories is a matter of time. Thereby, the hypothesis of this study is that 

the assessment of different methodological procedures can increase the prediction performance 

of soil properties using Vis-NIR spectroscopy. The objectives are: i) to predict soil properties 

to improve soil information using spectral data, ii) to compare the performance of spectral 

preprocessing and multivariate calibration methods in the prediction of soil organic carbon, iii) 

to obtain reliable soil organic carbon prediction, and iv) to develop a graphical user interface 

that performs spectral preprocessing and prediction of the soil property using spectroscopic 

data.  

This thesis was submitted to the Graduate Program of Soil Science, Federal University 

of Santa Maria (UFSM). In the third year, I accomplished the split-site PhD at the University 

of Florida, USA. This study was financed by three resources. The doctoral scholarship was 

financed by the Coordination for the Improvement of Higher Education Personnel (CAPES), 

by the Brazilian National Council for Scientific and Technological Development (CNPq), and 

by the Foundation for Funding in Research and Innovation of Santa Catarina State (FAPESC), 

Ministry of Education, Brazil.  
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Soil samples were collected over an area of about 1,800 km2 in central region of Santa 

Catarina State, Brazil. A total 595 soil samples were collected, wherein 539 followed the depths 

specifications of 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm from Globalsoilmap.net 

(ARROUAYS et al., 2014) and 56 samples derived from soil horizons of 11 profiles. Soil 

samples represented the prominent soil types of the region. The Oxisols are predominant in the 

area showing an advanced degree of weathering and developing deep soils. Furthermore, in 

some steep areas, younger and shallower soils, such as Entisols and Inceptisols, are found in a 

complex relief. The soil chemical (organic carbon) and physical analyzes (particle size) were 

realized at Pedology Laboratory, UFSM. The spectral scans were carried out at GeoCis 

Laboratory, Soil Science Department, ESALQ/University of Sao Paulo (USP). 

The thesis was elaborated in sections divided into introduction, three scientific articles, 

discussion and conclusion. The title of the articles are as follows: 1) Two preprocessing 

techniques to reduce model covariables in soil property predictions by Vis-NIR spectroscopy; 

2) Comparing the capability of preprocessing techniques and multivariate methods to predict 

soil organic carbon using spectroscopic data; and 3) Alrad Spectra: a graphical user interface in 

R to perform preprocessing, multivariate modeling and prediction using spectroscopic data. The 

discussion section explores the importance that soil spectroscopy has been gaining among the 

researchers and shows a perspective of the pathways that this theme should trail, besides 

guiding future studies and demands. 
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2 ARTICLE 1: Two preprocessing techniques to reduce model covariables in soil 1 

property predictions by Vis-NIR spectroscopy1 2 

 3 

Abstract 4 

Proximal sensing provides an alternative method to physical and chemical laboratory soil 5 

analyses. The aim of this study is to predict SOC, clay, sand, and silt content using reduced 6 

spectral features as covariables selected by two spectral preprocessing. A total of 299 soil 7 

samples were collected in Santa Catarina state, Brazil. Two preprocessing techniques, detrend 8 

transformation and continuum removal (CR), were applied to isolate particular absorption 9 

features in the reflectance spectrum. Two techniques were used to select the spectral features 10 

in the spectrum: hand and mathematical selection. Partial least squares regression (PLSR) and 11 

Support vector machines (SVM) were applied to predict the soil properties. The reduction of 12 

predictor covariables by hand selection technique contributed in developing a high-level 13 

prediction model for SOC. PLSR and SVM presented no statistical difference between the 14 

RMSE results, except for clay content, where SVM presented superior performance. The 15 

preprocessing techniques were statistically identical based on RMSE results. Overall, the 16 

prediction of SOC, clay, sand and silt presented suitable results using reduced spectral features 17 

as covariables in modeling process. 18 

Keywords: Visible-near infrared spectroscopy, continuum removal, detrend, band ratio. 19 

 20 

2.1.INTRODUCTION 21 

 22 

Soil is one of the most important components of environmental resources and it has an 23 

enormous influence on agricultural productivity (Lal and Moldenhauer, 1987). Soil information 24 

is necessary to make decisions concerning management practices, food security (Andrews et 25 

al., 2004), and soil security (Koch et al., 2013; McBratney et al., 2014). Soil organic carbon 26 

(SOC) and particle size modulate nutrient supply, water holding capacity, soil structure 27 

aggregation, and erosion prevention. Moreover, SOC has a significant impact on the global 28 

carbon cycle as well as climate change (Janzen, 2004), and is recognized as a key component 29 

of well-functioning ecosystems (Stockmann et al., 2015). 30 

                                                           
1 Article was submitted to Soil and Tillage Research. 



17 

 

To develop a faster and more accurate method for SOC and particle size analysis, 31 

proximal sensing has been successfully applied to predict these parameters (Conforti et al., 32 

2015; Knox et al., 2015; Ramirez-Lopez et al., 2013). The visible-near infrared (Vis-NIR) 33 

reflectance region (350–2500 nm) stands out for its applicability to measure and predict a wide 34 

variety of properties of soil samples (Dalmolin et al., 2005; Viscarra Rossel et al., 2006). Vis-35 

NIR uses spectral reflectance to identify properties without any interaction with objects and has 36 

the advantages of extensive soil sample volume analysis, non-intrusiveness, timeliness, and 37 

affordability (Viscarra Rossel et al., 2006). In addition, soil sample preprocessing is fast, 38 

without the use of environmentally harmful chemical reagents (McBratney et al., 2006; Viscarra 39 

Rossel and Behrens, 2010). This new soil analysis approach can be considered an alternative to 40 

improve the conventional methods of analysis carried out in the laboratory (Minasny and 41 

McBratney, 2008).  42 

In the new concept of digital soil morphometrics (Hartemink and Minasny, 2014), the 43 

application of tools, such as proximal soil sensing and techniques for measuring and quantifying 44 

soil attributes, help enhance pedological understanding. Consequently, spectral reflectance has 45 

been applied in soil survey, mapping, and quantitative soil property characterization. Various 46 

research teams have used preprocessing and regression analysis to predict various soil 47 

properties, but no single preprocessing method stood out as the best performing one among 48 

these studies (Araújo et al., 2014; Knox et al., 2015; Ramirez-Lopez et al., 2013; Stevens et al., 49 

2010; Terra et al., 2015; Vasques et al., 2008; Viscarra Rossel and Behrens, 2010). Despite 50 

these advances, research gaps exist regarding new modeling techniques that have the potential 51 

to improve the predictive capabilities using proximal sensing.  52 

Relating spectral data to a specific soil property requires a mathematical model. This 53 

task is not simple because many factors can influence soil spectroscopy. Soil spectra are 54 

complex, and soil attributes interact in complex ways, masking correlations between specific 55 

spectral reflectance signatures and a specific soil property. Furthermore, the process is 56 

complicated because only overtones of the native chemical structures of soil constituents are 57 

found in the Vis-NIR spectrum. According to Wight et al. (2016), impacts from specific soil 58 

characteristics on NIR performance are not well understood. These authors created an 59 

association of artificial soils based on primary soil characteristics, where a single optimized 60 

NIR model's predictive capability was compared by each soil characteristic subset. They 61 

concluded that the type of organic matter can affect NIR’s predictive ability and, depending 62 

upon the accuracy chosen, it may be possible to separate sample populations into categories 63 

based on the nature of the organic substrate. In addition, Wight et al. (2016) suggested that 64 
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texture is the principal characteristic that interferes with the model’s accuracy, and it affects the 65 

spectral reflectance in the entire region of the Vis-NIR. According to Ben-Dor et al. (1997), soil 66 

organic matter influences all of the Vis-NIR spectral region and customizes the shape and the 67 

albedo of the spectral curve. 68 

Recently, preprocessing techniques have been utilized to transform soil spectral data, 69 

remove noise, accentuate features, and detect patterns, including smoothing, detrending, 70 

derivatives, averaging, normalization, scatter correction, non-linear transformations, and 71 

absorbance transformation. In Vasques et al. (2008), thirty pre-processing transformations were 72 

compared to predict soil carbon, e.g., Savitzky–Golay smoothing, averaging, normalization by 73 

the range, Norris Gap Derivative, Savitzky–Golay derivatives, and standard normal variate. To 74 

select spectral features of interest and make the spectra suitable for modeling by reducing the 75 

spectral covariates, detrend, continuum removal (CR) and band ratio (BR) preprocessing 76 

techniques were applied. These preprocessing can be used to interpret and extract information 77 

from spectral reflectance sets and to identify spectral features related to specific soil properties. 78 

Detrend is applied for removing baseline of the signals. CR, proposed by Clark and Roush 79 

(1984), consists of removing the continuous features of the spectra and is often used to isolate 80 

specific absorption features present in the spectrum to minimize the noise partially. The 81 

continuum is represented by a mathematical function used to separate and highlight specific 82 

absorption bands of the reflectance spectrum (Mutanga et al., 2005). BR is used to emphasize 83 

how two wavelengths affect each other. This preprocessing has the advantage of combining 84 

information from two prominent bands and it is an approach used to reduce the size of spectral 85 

data.  86 

For soil property predictions from Vis-NIR spectra, a mathematical analysis is required 87 

to quantify each specific soil property. Generally, the most frequently used multivariate 88 

methods are partial least square regression (PLSR) (Chacón Iznaga et al., 2014; Conforti et al., 89 

2015; Knox et al., 2015) and support vector machines (SVM) (Ramirez-Lopez et al., 2013; 90 

Terra et al., 2015). One obstacle related to soil spectra and soil property characterization is the 91 

complexity of soil components shown in the spectra (Ge et al., 2011; Wight et al., 2016). To 92 

solve this problem, SVM and PLSR methods were applied in this study. SVM is a non-93 

parametric data mining method, and PLSR is the most common multivariate calibration model. 94 

SVM and PLSR have already shown good results in soil properties predictions (Araújo et al., 95 

2014; Conforti et al., 2015; Knox et al., 2015; Kuang et al., 2015; Nawar et al., 2015; Stevens 96 

et al., 2010; Terra et al., 2015). Viscarra Rossel and Behrens (2010) compared the predictions 97 

using SVM and PLSR for SOC and clay content (n = 1104) using Vis-NIR spectroscopy. The 98 
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authors presented the best number of wavelet coefficients to use in the regressions, showing 99 

that 72 coefficients produced the smallest RMSE when used to predict SOC, and 132 100 

coefficients for clay content. The number of coefficients can be reduced based on BR and CR 101 

preprocessing to maintaining the robustness of prediction accuracy. 102 

The motivation to undertake this study comes from different sources. First, there is a 103 

lack of studies applying spectral feature selection in order to reduce spectral covariables and 104 

improve soil property prediction. Second, the selection of spectral features facilitates 105 

understanding and reduces the multicollinearity of hyperspectral data. Third, there are few soil 106 

spectroscopy studies in Brazil. The objective is to predict SOC, clay, sand, and silt content using 107 

reduced spectral features as covariables selected by two spectral preprocessing.  108 

 109 

2.2.MATERIAL AND METHODS 110 

 111 

2.2.1.Study site and sample collection 112 

Soil samples were collected in an area of about 1700 km2 in the region within the 113 

watershed of the Marombas River in the central region of Santa Catarina state, Brazil. A total 114 

of 299 soil samples were collected following the GlobalSoilMap (Arrouays et al., 2014) depths 115 

specifications of 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm along with additional 116 

samples from profile horizons. The study area presented similar soils due to the homogeneity 117 

of the parent material, which were predominantly basalt rocks from a landscape dominated by 118 

a smooth relief plateau and few areas with sedimentary rock. According to the Köppen climate 119 

classification, the study area has a humid subtropical climate (Cfa). These factors have led to 120 

an advanced degree of weathering and the development of deep soils, such as Oxisols, which 121 

were predominant in the area and showed high concentrations of iron oxides. Low clay content 122 

values were measured in sandy soils, which were often characterized by intense water erosion 123 

and low SOC content caused by unsustainable agricultural practices. Moreover, soil samples 124 

with very low sand content were mostly associated with Oxisols. Furthermore, in some slope 125 

areas, it is possible to find shallow soils, such as Entisols and Inceptisols. The prominent land 126 

uses in this region were forest, grassland, and agriculture. 127 

 128 

2.2.2.Soil analysis in the laboratory 129 

The soil samples were sieved (2 mm) and dried at 45 °C (for 72 h) adopting the standard 130 

Brazilian soil analysis method (Donagemma et al., 2011). The soil particle size was determined 131 

according to the Pipette method using NaOH dispersant (Donagemma et al., 2011). The SOC 132 
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was determined by total organic carbon content using the Mebius method in the digestion block 133 

(Yeomans and Bremner, 1988). Using this method, the soil organic matter is oxidized with a 134 

mixture of K2Cr2O7 0.167 mol L-1 and concentrated H2SO4, and the excess of dichromate is 135 

titrated with ferrous ammonium sulfate. The reduced dichromate during the reaction with the 136 

soil corresponds to organic carbon in the sample. 137 

 138 

2.2.3.Spectral reflectance measurements  139 

The spectral reflectance of soil samples was obtained using a FieldSpec 3 140 

spectroradiometer (Analytical Spectral Devices, Boulder, USA) with a spectral range of 350–141 

2500 nm and a spectral resolution of 1 nm. To carry out the spectral measurements, soil samples 142 

were distributed homogeneously in petri dishes. The spectral sensor that was used captured the 143 

light through a fiber optic cable allocated 8 cm from the sample surface. The sensor reading 144 

area was approximately 2 cm2 and the lighting was provided by two external halogen lamps of 145 

50 W. The lamps were positioned at a distance of 35 cm from the sample (non-collimated rays 146 

and zenithal angle of 30°) and between them at an angle of 90°. A Spectralon standard white 147 

plate was scanned every 20 min for calibration. For each sample, two replications (one 148 

involving a 180° turn of the petri dish) were obtained. Each spectrum was averaged from 100 149 

readings over 10 s. Mean values of two replicates were adopted for each subsample. 150 

 151 

2.2.4.Spectral preprocessing 152 

Soil spectral data were smoothed by the Savitzky–Golay first-order polynomial across 153 

a moving window of five bands (Savitzky and Golay, 1964) to reduce the noise. The first order 154 

detrending transformation was used to remove the baseline of the signals in the spectral data 155 

(Barnes et al., 1989) and isolate particular absorption features. The detrend function, which is 156 

recommended only when the overall signal is dominated by backgrounds that are generally of 157 

the same shape, is recommended to be utilized prior to the multivariate analysis (Barnes et al., 158 

1989). The CR was used to isolate particular absorption features in the reflectance spectra 159 

(Clark and Roush, 1984). CR allowed the normalization of the spectra and thereby facilitated 160 

the identification of significant absorption features that ranged across the Vis-NIR spectrum. 161 

The CR of the particular absorption feature was calculated by subtracting the band depth (BD) 162 

value at a particular wavelength (λ) from 1 (i.e. CR = BD (λ) – 1). Detrend and CR were 163 

performed in R programing language (R Core Team, 2016) by prospectr package. BR was 164 

determined by the differences between a pair of spectral bands (e.g., first spectral band divided 165 
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by second, second spectral band divided by third and so on). BR was applied after spectral 166 

features selection by detrend (Det+BR) and CR preprocessing (CR+BR).  167 

The selection of spectral bands or spectral peaks were achieved by two techniques: hand 168 

selection (by observing the shapes, peaks, valleys of the preprocessed spectra with pedological 169 

knowledge) and mathematical selection (automated; computerized selection in R). The criterion 170 

used to define the spectral features by hand selection came from the need to consider the entire 171 

region of the spectrum and to associate the specific spectral bands with the soil characteristics. 172 

The hand selection technique elected spectral bands associating the iron oxide features at 412, 173 

448, and 476 nm; the water, hydroxyl, and clay mineral absorption at 1400, 1900, and 2200 nm, 174 

respectively; additional bands associated with organic matter around 750, 1650, 2200, 2400, 175 

2350 nm were also considered.  176 

The mathematical selection method looked for peaks in spectrometry data. A peak is a 177 

local maximum above a user defined noise threshold. The mathematical selection estimated and 178 

removed the baseline of spectrum by applying the ‘SNIP’ method. This baseline estimation is 179 

based on the ‘Statistics-sensitive Non-linear Iterative Peak clipping’ algorithm (SNIP) 180 

described in Ryan et al. (1988). This technique was applied by detectPeaks function in 181 

MALDIquant R package. The whole spectra (entire region of Vis-NIR) of detrend and CR 182 

preprocessing were used as control treatment in the modeling process. 183 

 184 

2.2.5.Statistical analysis 185 

Descriptive statistics (fBasics R package) were calculated to summarize the data set, 186 

and the coefficient of variation (CV) provided the variation of the data. The descriptive statistic 187 

was performed in the R programming language. The Levene's test (Levene, 1960) (car R 188 

package) was used to verify the assumption that variances are equal across training and 189 

validations groups with significance level of 5%. The independent t-test was used to determine 190 

whether a statistically significant difference exists between the means in the two unrelated 191 

groups (training and validation sets). The SVM regression analysis (e1071 R package) applied 192 

is a non-parametric statistical data mining method that belongs to the statistical learning theory 193 

(Ivanciuc, 2007). In SVM regression analysis, a training model of a sample set (training set) is 194 

performed. The procedure is to find a functional model that predicts correctly new cases that 195 

are not yet presented with SVM previously. SVM is a group of supervised learning methods 196 

that can be applied to classification or regression analysis, with several applications in many 197 

scientific areas (Ivanciuc, 2007). PLSR (pls R package) is a method that models linear 198 

relationships and is one of the most widely applied methods to predict soil properties from 199 
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spectral data. PLSR is based on a projection of the predictor x and response y variables into a 200 

set of latent variables and corresponding scores, minimizing the dimensionality of the data 201 

while maximizing the covariance between x and y variables (Wold et al., 2001). To compare 202 

the modeling performance of both spectral bands selection techniques, the Scott Knott test (5%) 203 

was applied. The whole spectra were used as control treatment. RMSE values were considered 204 

in order to verify the statistical difference of hand selection, mathematical selection techniques, 205 

and whole spectra. Scott Knott test was also applied in order to verify the statistical difference 206 

between preprocessing. Scott Knott test was carried out by ScottKnott R package.  207 

 208 

2.2.6.Model training and validation 209 

A total of 299 soil samples were randomly split into training set [~70%] (n = 209) and 210 

validation set [~30%] (n = 90). The fit and accuracy assessment of the models used the 211 

following validation parameters: Coefficient of determination (R2), root mean square error of 212 

prediction (RMSE). 213 

 214 

2.3.RESULTS AND DISCUSSION  215 

 216 

2.3.1.Exploratory results 217 

Considering the training and validation set, only clay showed a negatively skewed 218 

distribution, with means of 59.56% and 57.53%, respectively (Table 1). The minimum and 219 

maximum described the variation in the soil data sets. Generally, higher SOC values appeared 220 

in Inceptisols and lower values in Oxisols. In addition, the SOC decreased with increasing 221 

depth. The combination of high altitude and low temperature frequently promotes accumulation 222 

of carbon in these soils due to the low decomposition of organic matter. The clay content 223 

showed the lowest CV, which denotes that the variation from the mean indicates low data 224 

dispersion. SOC and silt content showed intermediate dispersion, and sand content exhibited 225 

extreme data dispersion (i.e., a high CV). The results of the predictive models confirm the same 226 

trend due to the CV in the descriptive statistics. The Levene's test indicated the homogeneity of 227 

variance between training and validation sets for SOC (p-value = 0.357), along with clay (p-228 

value = 0.943), sand (p-value = 0.847), and silt (p-value = 0.452). Since p-values are much 229 

higher than the significance level of 5%, the variances have no significant difference. This 230 

similarity between sets indicates that the random split represents the study population. 231 

 232 

 233 
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2.3.2.Predictive performance of PLSR and SVM 234 

The predictive statistics of all models for the soil properties are shown in Table 2. In 235 

this table, the models results are placed in ascending order of RMSE. SOC content showed high 236 

accuracy, indicating a strong linear relationship between the measured and predicted variables. 237 

The models of SOC prediction showed a Rval
2  and RMSEval ranging from 0.68 and 0.56% to 238 

0.90 and 0.32%, respectively. The greater predictive performance was achieved by PLSR with 239 

CR preprocessing using the whole spectra. Among the 20 SOC predictive models, 11 presented 240 

an Rval
2  higher than 0.81. The statistical difference between the prediction results of PLSR and 241 

SVM are revealed in Table 3. The Scott Knott test (5%) presented the mean comparison test of 242 

RMSE values for both methods. This test showed that there is no statistical difference between 243 

the RMSE values of PLSR and SVM models for SOC prediction. The mean values of RMSE 244 

are practically identical: 0.45% and 0.44%, for PLSR and SVM, respectively. This result 245 

demonstrated that both multivariate methods are suitable for SOC prediction. On the other hand, 246 

there is no right number of spectral bands to estimate soil properties because each soil has a 247 

particular spectral reflectance signature and thereby distinct spectral bands will be selected in 248 

model building.  249 

These results are comparable to studies in the literature. Stevens et al. (2010) applied 250 

SVM to predict SOC in Luxembourg using different soil types (clay, silty–clay, silt, sandy–251 

loam, and sand), and their validation results were slightly higher (R2 = 0.84), but with an 252 

identical RMSE (0.43%). In Australia, a study presented by Viscarra Rossel and Behrens 253 

(2010), the SVM produced the highest fitted model (R2 = 0.84) and lowest error (RMSE = 254 

0.92%) for SOC estimation. The similar performance of the SVM model may be attributed to 255 

the similarity of the sample observations used in their study with a total of 302 (201 for training 256 

and 101 for validation). Chacón Iznaga et al. (2014) used SVM to predict organic matter within 257 

a field in the central region of Cuba and found high R2 = 0.92 and RMSE = 0.14%. The 258 

performance in the current study showed that SOC can be properly estimated by using 259 

supervised learning models. In Ramirez-Lopez et al. (2013), the SVM prediction results for 260 

modeling organic carbon using Vis-NIR spectra (not continuum removed reflectance) were 261 

moderate (Rval
2  = 0.54) for a regional soil spectral library with a low RMSEval = 0.27% when 262 

compared to the results in this study. Large datasets have typically larger variances; therefore, 263 

well-performing models are more difficult to develop. According to Guerrero et al. (2015), 264 

small, rather than large, spectral libraries for local scale SOC assessment provide accurate 265 

predictions for effective model performance. Steffens and Buddenbaum (2013) presented SVM 266 
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models that produced results for a concentration of SOC with R2 = 0.97 and RMSE = 1.13% to 267 

provide laboratory imaging spectroscopy of soil profiles from Munich, Germany.  268 

The predictive performance of clay content presented a Rval
2  and RMSEval ranging from 269 

0.42 and 8.96% to 0.62 and 6.84%, respectively (Table 2). The best model was achieved by 270 

SVM with detrend preprocessing using the whole spectra. Scott Knott test showed that there is 271 

statistical difference between the RMSE values of PLSR and SVM models for clay prediction 272 

(Table 3). Clay content was the only soil property where the performances of PLSR and SVM 273 

presented statistical difference. SVM presented higher predictive performance for clay 274 

compared to PLSR. RMSE mean value for SVM models was 7.68% and 8.58% for PLSR. 275 

Higher performances to predict clay content using SVM were achieved by Viscarra Rossel and 276 

Behrens (2010) (R2 = 0.84, RMSE = 7.63%). This achievement was attributed to the 277 

substantially larger soil sample sets located in different regions in Australia, including a diverse 278 

number of soil classes (n = 1104), which was three times larger compared to the present study. 279 

In addition, Kovačević et al. (2010) achieved high-quality results by applying SVM to predict 280 

clay content in eastern Serbia (R2 = 0.76 and normalized root mean squared deviation = 0.11%), 281 

although with a small data set (n = 151). Terra et al. (2015) used Vis-NIR reflectance and SVM 282 

to predict various soil properties in the Midwest and Southeast regions of Brazil, such as particle 283 

size, chemical properties that include macro and micronutrients, and iron oxides. The authors 284 

achieved high-quality predictions for clay (Rval
2  = 0.86, RMSEval = 95.34 g kg-1) and sand 285 

contents (Rval
2  = 0.89, RMSEval = 22.16 g kg-1). These high-quality results are associated with 286 

the correlation among clay activity and other soil properties. According to Stevens et al. (2013), 287 

variations in clay content induce large differences in the spectral shape with non-variation of 288 

SOC content.  289 

The lowest predictive performance was achieved for sand content. The inferior model 290 

result showed a Rval
2  of 0.13 and RMSEval of 6.97% while the superior showed a Rval

2  of 0.33 291 

and RMSEval of 6.00%, which can be considered a low result (Table 2). Scott Knott test showed 292 

that there is no statistical difference between the RMSE values of PLSR and SVM models for 293 

sand prediction (Table 3). The mean values of RMSE were 6.44% and 6.64%, for PLSR and 294 

SVM, respectively. The R2 had the lowest value among all four modeled soil properties. This 295 

result may have occurred due to the soil classes being mostly composed of Oxisols, which has 296 

a relatively low sand fraction (Table 1). Kovačević et al. (2010) applied the SVM to estimate 297 

soil properties in eastern Serbia and the performance for sand content was greater compared to 298 



25 

 

this study (R2 = 0.59), with a normalized root mean squared deviation of 0.14%. The high CV 299 

value for sand may also explain the relatively large uncertainty in the prediction of sand content. 300 

The predictive performance of silt content was considered moderate with a Rval
2  and 301 

RMSEval ranging from 0.40 and 7.67% to 0.56 and 5.26%, respectively (Table 2). The higher 302 

model was found applying PLSR with CR preprocessing using hand selected spectral bands. In 303 

the Scott Knott test (Table 3) there is no statistical difference between the RMSE values of 304 

PLSR and SVM models for silt prediction. The mean values of RMSE were 6.53% and 6.90%, 305 

for SVM and PLSR, respectively. There are some caveats to silt content, which is not directly 306 

measured by the pipette method, and occasionally, the silt value adds up the clay and sand error 307 

measurement. 308 

The distinctive parent material found in the area of study (sedimentary and basalt rocks) 309 

may have affected the performance for clay, sand, and silt. At sites characterized as Oxisols 310 

because of the increased iron oxide concentration, the depth of absorption from 390 to 550 nm 311 

also increased (Ben-Dor, 2002; Summers et al., 2011). The influence of iron oxide on the 312 

reflectance spectra in the visible spectral region may have masked or decreased the inference 313 

of some soil properties, such as particle size content.  314 

The SVM acceptance in soil properties estimation has increased in recent years (Araújo 315 

et al., 2014; Ramirez-Lopez et al., 2013; Terra et al., 2015) and has generated more accurate 316 

calibration results than PLSR in some studies (Thissen et al., 2004; Viscarra Rossel and 317 

Behrens, 2010). In Nawar et al. (2015), the results for PLSR with different preprocessing 318 

transformation showed a low R2 between 0.33 ≤ 0.52 (RMSE 0.42% ≥ 0.36%) for organic 319 

matter. In this same study, for clay content the R2 fluctuated between 0.14 to 0.82. On the other 320 

hand, PLSR can also provide satisfactory results. Kuang et al. (2015), compared the 321 

performance of PLSR prediction models for SOC and clay content and found that R2 ≤ 0.81 322 

and RMSE ≥ 1.46% for SOC and R2 ≤ 0.81 and RMSE ≥ 1.04% for clay.  323 

For quite a long time, the most widely used regression method applied to predict soil 324 

properties from spectral data was PLSR. Wold et al. (2001) drew our attention to PLSR in 325 

handling numerous and collinear variables and to investigate more compounded problems. 326 

However, PLSR models are not designed for the complexity of chemical and biological 327 

systems. They are also not often used to screen out latent variables that are not useful in 328 

explaining the response. In Gomez et al. (2008), PLSR showed better performance when there 329 

was no well-identified spectral feature for the property of interest (clay and calcium carbonate).  330 

 331 

 332 
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2.3.3.Performance of spectral band selection techniques 333 

The two techniques of spectral band selection, represented by hand selection and 334 

mathematical selection, were analyzed by its potential to reduce the covariables for modeling 335 

procedure. In detrend preprocessing, 13 spectral bands were selected by hand selection and only 336 

8 by mathematical selection (Fig. 1). On the other hand, in CR preprocessing, 11 spectral bands 337 

were selected by hand selection and by mathematical selection (Fig. 2). For detrend 338 

preprocessing the mathematical selection reduced 5 spectral bands and for CR preprocessing 339 

the number of spectral bands selected were identical.  340 

For SOC prediction, the results of RMSE values showed statistical difference between 341 

spectral band selection techniques and whole spectra (Fig. 3). The models applying the whole 342 

spectra achieved the best performance in SOC prediction with a mean RMSE value of 0.35%. 343 

Among hand and mathematical, the first selection presented lower mean of RMSE value of 344 

0.42%, and the second showed mean of RMSE value of 0.52%. The results of RMSE values 345 

for clay content were statistically identical regardless the spectral band selection or whole 346 

spectra used. The prediction models using whole spectra presented a mean RMSE value of 347 

7.93% (Fig. 3). Hand selection showed best performance compared to mathematical selection 348 

for clay prediction with a mean RMSE value of 7.99% and 8.36%, respectively. The results of 349 

sand content showed that the RMSE value for whole spectra was statistically different from 350 

hand and mathematical selection techniques. The mean RMSE values were 6.21%, 6.54% and 351 

6.70% for whole spectra, hand and mathematical selection, respectively (Fig. 3). For silt 352 

content, hand selection presented statistical difference in RMSE value from whole spectra and 353 

mathematical selection technique. The silt content was the only soil property where the hand 354 

selection presented the best RMSE results. The mean RMSE value of hand selection, whole 355 

spectra and mathematical selection was 6.20%, 6.82% and 7.17%, respectively (Fig.3). 356 

The models using all Vis-NIR spectral region (whole spectra) showed superior 357 

performance for SOC, clay and silt content. The reduction of spectral bands revealed that the 358 

predictive performances of all soil properties were greater for hand selection technique. The 359 

mathematical spectral band selection, in which the bands were selected by automated approach 360 

presented poor prediction for all soil properties. This is because mathematical selection does 361 

not take into consideration the preeminent spectral features to predict soil properties. 362 

Selecting the spectral bands by observing the shapes of the preprocessed spectra with 363 

pedological knowledge led to better prediction results. The reduction of spectral bands in the 364 

Vis-NIR spectrum by hand selection technique increased the predictive performance of models 365 

by choosing spectral regions that are associated with specific soil characteristics.  366 
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Important spectral bands chosen by hand selection were located in the near infrared 367 

region. Generally, the spectral features are linked with important spectral active soil 368 

components, for example, mineralogy, texture, and iron content (Stevens et al., 2013). 369 

Furthermore, the two spectral bands selection techniques shared several wavelengths, 370 

particularly near 1400 nm and 1900 to 2400 nm, which confirmed that these wavelengths in the 371 

near infrared spectral region provide valuable contribution for soil property estimations.  372 

The spectral bands selection techniques reduced the spectral feature space from 2150 373 

possible spectral bands to distill distinct spectral features before linking them to the soil 374 

property of interest. The spectral features selected by hand selection technique had a 375 

considerably higher estimation performance of SOC content compared to textural properties. 376 

Many of the spectral bands were likewise selected in the present study in accordance with the 377 

spectral bands indicative of specific soil constituents documented in the literature. The spectral 378 

bands at 1414 nm and 1920 nm were related to the vibration activity of the hydroxyl group in 379 

water molecules (Ben-Dor, 2002). These spectral bands may be indicative of the insufficient 380 

air-drying in green houses. According to Ben-Dor (2002), the spectral regions of 1300–1450 381 

nm, 1850–1950 nm, and 2200–2400 nm are linked to clay minerals. According to Chang et al. 382 

(2001), these are the most predominant spectral bands to predict clay content. However, the 383 

equivalent spectral bands selected for both clay and SOC could have under-fitted the model 384 

estimation for clay since the SOC could have masked or diminished the clay content. Xie et al. 385 

(2012) presented five wavelength ranges that had major contributions to predict organic matter 386 

in the NIR region: 1386–1401 nm, 2133–2138 nm, 2175–2194 nm, 2229–2273 nm, and 2315–387 

2327 nm. In addition, soil organic matter also showed correlation bands in the visible region 388 

(400–750 nm) (Stenberg et al., 2010), where a total of seven spectral features were selected. 389 

Some auxiliary spectral features at near infrared were also selected by hand selection.  390 

In hyperspectral data, reduction techniques have promulgated to filter out the most 391 

important features. However, the least number of spectral bands have affected model 392 

performance. This can be credited to great capacity of multivariate methods, such as PLSR and 393 

SVM, in estimating attributes based on the spectral behavior. In the study of Üstün (2003), 394 

SVM outperformed PLSR if there is no wavelength selection applied. For Üstün (2003), SVM 395 

has some advantages in comparison with PLSR: i) it finds a general solution and thus avoids 396 

overtraining; ii) it gives a solution which is sparse and; iii) it is able to model non-linear 397 

relations. However, SVM also has a disadvantage such as high computation time in case of a 398 

large data set, which leads to a time-consuming optimization. 399 

 400 
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2.3.4.Performance of preprocessing techniques 401 

The RMSE result for each soil property revealed that there was no statistical difference 402 

between the four preprocessing techniques applied (Fig. 4). However, CR preprocessing 403 

yielded the lowest RMSE results for SOC, clay and silt content. CR was the most reliable 404 

preprocessing method for estimating the soil properties, and overall, provided better estimations 405 

than detrend preprocessing.  406 

Recent worldwide publications are targeting the CR as a preprocessing technique to 407 

estimate soil properties, especially for SOC. The content of SOC had a huge impact on CR 408 

absorption feature since soils with high SOC indicate a decrease in albedo across the entire Vis-409 

NIR spectrum (Ben-Dor, 2002). Stenberg (2010) used CR to examine the effect of soil moisture 410 

content on Vis-NIR spectra. The results revealed that the CR technique was effective in 411 

distinguishing wet and dry soils. In addition, dry soils resulted in deeper absorption features 412 

along with high amounts of clay. The CR approach presents the advantage of addressing 413 

specific absorptions features as covariables derived from reflectance measurements. 414 

Furthermore, preprocessing contributed in the reduction of multicollinearity; otherwise, the 415 

variance of the coefficients may be very large and the model might apply unnecessary 416 

information. The results in the present study confirmed that CR preprocessing contributed in 417 

selecting the most significant bands to estimate the soil properties. Nawar et al. (2016) revealed 418 

that for SOC and clay the best predictive results were found by applying continuum removal 419 

preprocessing transformation (R2 = 0.85, RMSE = 0.19% for SOC and R2 = 0.90, 5.32% for 420 

clay). The appropriate selection of explanatory variables (spectral bands) in the CR 421 

preprocessing was essential to improve the modeling performance and reduce the complexity 422 

of the models.  423 

 424 

2.4.CONCLUSIONS 425 

 426 

Overall, the prediction of SOC, clay, sand and silt presented suitable results using 427 

reduced spectral features as covariables in modeling process. SOC presented a high–level 428 

prediction model. The results for clay and silt content showed moderate performances, as 429 

opposed to sand content, which showed inferior performance. The hand selection technique 430 

showed superior performance in predicting soil properties due to the pedological knowledge, 431 

which can associate the spectral features with specific soil characteristics. The predictive 432 

performances of PLSR and SVM multivariate methods showed that there was no statistical 433 

difference between the RMSE results, except for clay content, where SVM presented superior 434 
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performance. These was no statistical difference between preprocessing techniques in 435 

predicting SOC, clay, sand, and silt. However, CR preprocessing presented the lowest RMSE 436 

results compared to detrend, CR+BR and detrend+BR.  437 

The main strength of spectral band selection techniques was their effectiveness in 438 

reducing predictor covariables, which enhances interpretability and transparency of models. 439 

Both techniques contributed by highlighting the bands and features produced by optically active 440 

soil components. The selection of spectral bands from entire spectra region accomplished 441 

reliable outcomes. This study confirmed the high potential of using spectral preprocessing 442 

techniques to estimate soil properties and examining the metrological quality of soil properties 443 

from Vis-NIR spectral data. The predictive model performances are influenced by the 444 

multivariate method, spectral preprocessing, homogeneity of soil samples, and type of 445 

estimated soil properties. The authors suggest that, selecting spectral features is an imminent 446 

choice for developing prediction models in upcoming studies.  447 

Further studies have to consider that there is no optimal or ‘best’ amount of spectral 448 

bands to estimate soil properties because each soil has distinct spectral reflectance signatures. 449 

These alternatives for spectral features selection accentuated soil features and detected patterns 450 

of individual soil spectral data. Modeling strategies that differ in their capabilities to extract 451 

pedological characteristics from the Vis-NIR spectra need to be carefully considered in future 452 

studies. 453 
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Table 1 633 

Descriptive statistics of soil properties for the training and validation. 634 

  Training set (%)  Validation set (%) 

  SOC Clay Sand Silt  SOC Clay Sand Silt 

Observations 209 209 209 209  90 90 90 90 

Minimum 0.17 20.94 1.00 16.54  0.38 25.41 1.56 18.39 

Maximum 4.83 78.48 35.48 77.99  4.21 75.85 32.15 72.94 

1st quartile 1.06 53.63 2.98 26.61  1.35 51.35 3.58 29.71 

3rd quartile 2.46 68.28 9.95 38.06  2.66 66.22 8.43 39.74 

Mean 1.84 59.56 7.51 32.94  2.04 57.53 7.70 34.77 

Median 1.68 59.57 4.80 31.04  2.20 57.89 5.37 34.47 

St. error of mean 0.07 0.77 0.46 0.67  0.10 1.17 0.76 0.92 

Skewness 0.44 -0.65 1.80 1.47  0.00 -0.39 2.02 0.84 

Kurtosis -0.39 0.44 3.11 3.96  -0.74 -0.35 3.50 2.61 

CV (%) 55 19 89 30  46 19 93 25 

  635 
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Table 2 636 

Predictive performance of soil properties for the validation set. 637 

Soil 

Property Method Preprocessing 

Technique of spectral 

band selection Rval
2  RMSEval(%)* 

SOC 

PLSR CR W.S. 0.90 0.32 

SVM CR H.S. 0.87 0.35 

PLSR Det W.S. 0.86 0.36 

SVM Det W.S. 0.86 0.36 

SVM CR W.S. 0.86 0.36 

PLSR CR H.S. 0.83 0.41 

SVM CR+BR H.S. 0.81 0.42 

PLSR Det+BR H.S. 0.81 0.42 

SVM Det H.S. 0.81 0.42 

PLSR Det H.S. 0.81 0.42 

SVM Det+BR H.S. 0.81 0.43 

PLSR CR+BR H.S. 0.79 0.46 

SVM Det+BR M. 0.76 0.48 

SVM Det M. 0.73 0.50 

PLSR Det+BR M. 0.72 0.50 

PLSR Det M. 0.72 0.51 

SVM CR+BR M. 0.69 0.53 

PLSR CR+BR M. 0.69 0.54 

PLSR CR M. 0.68 0.54 

SVM CR M. 0.68 0.56 

Clay 

SVM Det W.S. 0.62 6.84 

SVM CR W.S. 0.58 7.18 

SVM CR H.S. 0.56 7.21 

SVM CR+BR H.S. 0.56 7.30 

PLSR CR H.S. 0.52 7.46 

SVM CR M. 0.52 7.70 

SVM CR+BR M. 0.52 8.03 

SVM Det H.S. 0.47 8.04 

SVM Det+BR H.S. 0.48 8.08 
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SVM Det M. 0.47 8.08 

Clay 

SVM Det+BR M. 0.44 8.31 

PLSR CR+BR H.S. 0.45 8.33 

PLSR CR M. 0.42 8.45 

PLSR CR+BR M. 0.42 8.47 

PLSR Det+BR H.S. 0.40 8.72 

PLSR Det W.S. 0.41 8.74 

PLSR Det H.S. 0.40 8.75 

PLSR Det M. 0.35 8.93 

PLSR Det+BR M. 0.35 8.94 

PLSR CR W.S. 0.42 8.96 

Sand 

PLSR CR W.S. 0.33 6.00 

PLSR Det W.S. 0.26 6.15 

SVM CR+BR H.S. 0.25 6.26 

SVM CR W.S. 0.25 6.28 

PLSR Det+BR H.S. 0.22 6.36 

SVM Det W.S. 0.25 6.41 

PLSR Det H.S. 0.19 6.45 

PLSR CR+BR H.S. 0.18 6.46 

PLSR CR H.S. 0.17 6.50 

SVM CR+BR M. 0.20 6.52 

PLSR Det+BR M. 0.16 6.57 

PLSR CR+BR M. 0.14 6.62 

PLSR CR M. 0.13 6.66 

PLSR Det M. 0.13 6.67 

SVM CR H.S. 0.17 6.68 

SVM CR M. 0.14 6.70 

SVM Det H.S. 0.16 6.79 

SVM Det+BR H.S. 0.16 6.81 

SVM Det M. 0.13 6.93 

SVM Det+BR M. 0.13 6.97 
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Silt 

PLSR CR H.S. 0.56 5.26 

SVM CR H.S. 0.57 5.35 

SVM CR+BR H.S. 0.54 6.06 

SVM Det W.S. 0.50 6.17 

SVM CR W.S. 0.50 6.20 

PLSR Det+BR H.S. 0.46 6.51 

SVM Det+BR H.S. 0.45 6.54 

SVM Det H.S. 0.44 6.54 

PLSR CR+BR H.S. 0.44 6.67 

PLSR Det H.S. 0.44 6.71 

SVM CR+BR M. 0.40 6.82 

SVM CR M. 0.39 6.92 

PLSR CR M. 0.34 7.05 

PLSR CR+BR M. 0.32 7.16 

PLSR Det W.S. 0.41 7.23 

PLSR Det+BR M. 0.31 7.23 

SVM Det+BR M. 0.32 7.28 

SVM Det M. 0.31 7.41 

PLSR Det M. 0.28 7.46 

PLSR CR W.S. 0.40 7.67 

*Sorted by ascending order of RMSE. M: mathematical selection, H.S.: hand selection, W.S: 638 

whole spectra, CR: continuum removal, Det: detrend, BR: band ratio, PLSR: Partial least square 639 

regression, SVM: Support vector machine. 640 

  641 
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Table 3 642 

Statistical difference between the prediction results of PLSR and SVM methods for each soil 643 

property. 644 

 Method Mean of RMSEval(%) Scott Knott test (5%) 

SOC 
SVM* 0.44 a 

PLSR* 0.45 a 

Clay 
SVM 7.68 a 

PLSR 8.58 b 

Sand 
PLSR 6.44 a 

SVM 6.64 a 

Silt 
SVM 6.53 a 

PLSR 6.90 a 

*PLSR: Partial Least Square Regression, SVM: Support Vector Machine. 645 

  646 
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 647 

Fig. 1. Spectral curves of detrending transformation and its baseline removed in the visible-648 

near infrared spectrum (average of 299 soil samples). Hand selection has 13 spectral bands and 649 

mathematical selection has 8 spectral bands. 650 

  651 
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 652 

Fig. 2. Spectral curves of continuum removed preprocessing and its baseline removed in the 653 

visible-near infrared spectrum (average of 299 soil samples). Hand selection has 11 spectral 654 

bands and mathematical selection has 11 spectral bands. 655 

  656 
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Fig. 3. Statistical difference between spectral band selection techniques. In the graphics are the 657 

mean, maximum and minimum values of RMSE. Letters represent the results of Scott Knott 658 

test (significance level of 5%). M: mathematical selection, H.S.: hand selected, W.S: whole 659 

spectra. 660 
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Fig. 4. Statistical difference between preprocessing techniques. In the graphics are the mean, 662 

maximum and minimum values of RMSE. Letters represent the results of Scott Knott test 663 

(significance level of 5%). CR: continuum removal, Det: detrend, BR: band ratio. 664 

  665 



44 

 

3 ARTICLE 2: Comparing the capability of preprocessing techniques and multivariate 1 

methods to predict soil organic carbon using spectroscopic data 2 2 

 3 

Abstract  4 

Soil organic carbon (SOC) represents a crucial role as an ecosystems indicator and are 5 

recognized as a source in the global carbon cycle. Its quantification requires a method a non–6 

intrusiveness, affordable, and less time-consuming. Visible and near infrared (Vis–NIR) 7 

reflectance spectroscopy has demonstrated its applicability to predict SOC over the years. There 8 

is a need to assess the predictive performance of SOC combining linear modeling, 9 

nonparametric, data mining and learning algorithms approaches all in a single study with 10 

several preprocessing as input data. The aims of study are: i) to evaluate the potential of Vis–11 

NIR spectroscopy to predict SOC, ii) to compare the predictive capability between the 12 

preprocessing techniques, and iii) to assess the modeling performance of wide range of 13 

multivariate methods. Soil sampling was conducted over an area of about 1,800 km2 in central 14 

region of Santa Catarina State, Brazil, where a total of 595 soil samples were collected. Based 15 

on the SOC prediction performance of preprocessing techniques, they can be divided into two 16 

categories: scatter–correction techniques and spectral derivatives. Models using scatter–17 

corrective preprocessing presented superior prediction compared from spectral derivatives 18 

group. In scatter–correction group, continuum removal is the most suitable preprocessing to be 19 

used for SOC prediction. In the modeling performance, excepting for RF, all of methods 20 

presented robust prediction. The highest model accuracy for SOC prediction was found 21 

applying WAPLS method and NBR preprocessing (R2 = 0.82, RMSE = 0.48%, RPIQ = 3.18). 22 

The systematic methodology applied in this study can improve reliability for SOC 23 

determinations by examining how techniques of preprocessing and multivariate methods affect 24 

spectral analyses.  25 

Keywords: Spectroscopy technique, modeling, prediction, soil property.  26 

 27 

3.1.INTRODUCTION 28 

 29 

Soil organic carbon (SOC) represents a fundamental and crucial role as an ecosystems 30 

indicator and it is a key component of Soil Quality concept (Andrews et al., 2004) and more 31 

                                                           
2 Article was submitted to Geoderma Regional. 
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recently for Soil Security framework (McBratney et al., 2014). Additionally, SOC pools are 32 

recognized as a source in the global carbon cycle (Lal, 2004). This soil property is one of the 33 

most important constituents of the soil due to its capacity to affect plant growth as a font of 34 

energy and nutrients. SOC is effective to make management decisions and to inspect the 35 

changes in different land use. Due to the importance of SOC, the digital soil mapping (DSM) 36 

approach has given considerable attention to this soil fraction (Grimm et al., 2008; Grunwald, 37 

2009). DSM requires high accuracy, sample density and promptness of SOC measurement.  38 

However, accurate estimations in a complex environment are not easy to make. 39 

Quantification of SOC demands an alternative technique, which should be capable of dealing 40 

with extensive volume analysis, non–intrusiveness, affordable, and less time–consuming 41 

(Minasny and McBratney, 2008; Viscarra Rossel et al., 2006). Visible and near infrared (Vis–42 

NIR) reflectance spectroscopy has been applied frequently in soil analysis and has demonstrated 43 

its applicability to predict SOC and a variety of other soil properties accurately over the last 44 

years (Bellon-Maurel and McBratney, 2011; Viscarra Rossel et al., 2006).  45 

To improve the efficiency of SOC prediction using Vis–NIR spectral data, several 46 

spectral preprocessing techniques have been introduced. Spectral preprocessing techniques 47 

have been used to transform soil spectra, remove noise, emphasize features, and extract useful 48 

information for quantitative predictive models. Preprocessing of the spectra include smoothing, 49 

normalization, scatter correction, continuum removal, and derivatives. The preprocessing 50 

techniques can be divided into two groups, scatter–corrections and spectral derivatives (Rinnan 51 

et al., 2009). Scatter–corrections group is represented by continuum removal, normalization by 52 

range, standard normal variate, and multiplicative scatter correction. Spectral derivatives 53 

preprocessing includes Savitzky–Golay and Norris–Williams derivatives. The performances of 54 

both preprocessing groups in soil properties prediction are varied according to the studies. For 55 

instance, Ben-Dor et al. (1997) applied first and second derivative to investigate the reflectance 56 

spectra of organic matter regarding the possible changes occurred during a biological 57 

decomposition process. The authors assumed the use of spectral derivation enhanced weak 58 

spectral features and extracted hidden information. Vasques et al. (2008) compared thirty 59 

preprocessing including Savitzky–Golay and Norris–Williams derivatives, Kubelka–Munk 60 

transformation, reflectance to absorbance transformation, baseline offset, standardizations, and 61 

normalizations. Overall, the authors found the results considering Savitzky–Golay derivatives 62 

consistently improved the SOC prediction. Similar outcome was achieved in Peng et al. (2014), 63 

exploring the effects of eight spectra preprocessing techniques in 298 heterogeneous soil 64 

samples from different Provinces in China. Their results indicated that the selection and 65 
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distribution of the model variables were affected by different preprocessing and Savitzky–66 

Golay derivative obtained a better result in the model development. Stevens et al. (2010) applied 67 

absorbance, first and second Norris–Williams derivatives, Savitzky–Golay smoothing and 68 

derivatives, Whittaker smoothing, standard normal variate, detrending, and a combination of 69 

the previous with the objective to map SOC. Muñoz and Kravchenko (2011) included Savitzky–70 

Golay derivatives, standard normal variate and mean centering preprocessing to predict SOC 71 

using three sources of auxiliary information under low carbon contents from Alfisols located in 72 

southeast Michigan. The authors concluded no improvements in calibration accuracy were 73 

observed when using preprocessing transformations. Nawar et al. (2016) compared the 74 

performance of three regression methods subjecting the spectra to seven preprocessing 75 

techniques to assess organic matter and clay content in the salt–affected soils from northern 76 

Sinai, Egypt, and the best predictions were obtained with continuum removed preprocessing.  77 

Besides finding the best preprocessing, another choice facing researches is regarding the 78 

proper multivariate modeling approach. In fact, a satisfactory preprocessing technique should 79 

always be considered in relation to the forthcoming modeling stage. In order to develop a faster 80 

and high–quality model, several multivariate methods for SOC prediction have been 81 

successfully utilized. Partial least–squares regression (PLSR) (Wold et al., 1984) is, by far, the 82 

most common multivariate calibration method. PLSR has been applied in the SOC prediction 83 

by many studies. (Conforti et al., 2015; Knox et al., 2015; Kuang et al., 2015; Viscarra Rossel 84 

and Behrens, 2010). Moreover, other methods have shown important results as in principal 85 

components regression (PCR) (Kendall, 1957) and multiple linear regression (MLR). Non–86 

parametric data mining method, such as, support vector machine (SVM) (Cortes and Vapnik, 87 

1995) and the ensemble learning method, random forest (RF) (Breiman, 2001) are recently 88 

gaining ground as multivariate methods to predict SOC. Besides these methods, a new set of 89 

machine learning algorithms are being introduced into pedometric approach. Bayesian model 90 

averaging (BMA) (Raftery, 1995) is a probabilistic model that represents a set of random 91 

variables and their conditional independencies, and has been applied in the study of Leon and 92 

Gonzalez (2009) for SOC prediction. Ramirez-Lopez et al. (2013) and Gholizadeh et al. (2016) 93 

suggested the weighted average partial least squares (WAPLS) (Shenk et al., 1998) as a 94 

memory–based learning multivariate method to prediction SOC. WAPLS remind the human 95 

cognitive process, remembering and memorizing previous situations, adapting them for solving 96 

the problem by examining the probability. Another learning machine approach is Gaussian 97 

process regression (GPR) (Williams and Barber, 1998), which operates the input data into a 98 

high dimensional feature space defined by a kernel function. Artificial neural network (ANN) 99 
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(McCulloch and Pitts, 1943) is a learning algorithm that is inspired by the structure and 100 

functional aspects of biological neural networks. ANN has prominent studies on soil properties 101 

prediction and some on SOC prediction, for instance, in Kuang et al. (2015) and Were et al. 102 

(2015). These data mining approaches have been underutilized and for this reason more efforts 103 

should be taken to reveal the potential of these methods in soil applications. 104 

Comparing the performances of preprocessing techniques and multivariate methods 105 

become complicated and disorganized by the fact of the studies are spread and conducted in 106 

dissimilar areas, with distinct soil samples, soil types, spectral range, spectral data acquisition, 107 

and different measurement units. Few studies have explored simultaneously in the same 108 

database many forms of preprocessing and modeling methods. There is a need to assess the 109 

predictive performance of SOC combining linear modeling, nonparametric, data mining and 110 

learning algorithms approaches all in a single study with several preprocessing as input data. 111 

The combination of a wide variety of preprocessing and multivariate statistics will allow 112 

a systematic methodology for SOC prediction, with the advance of comparing the predictive 113 

performances in the same dataset. The aims of the present study are: i) to evaluate the potential 114 

of Vis–NIR spectroscopy to predict SOC, ii) to compare the predictive capability between the 115 

preprocessing techniques, and iii) to assess the modeling performance of wide range of 116 

multivariate methods. 117 

 118 

3.2.MATERIAL AND METHODS 119 

 120 

3.2.1.Study area 121 

Soil samples represented the prominent soil types extending over an area of about 1,800 122 

km2 in central region of Santa Catarina State, Brazil (Fig. 1). The study area presents similar 123 

soils due to the homogeneity of parental material which is predominantly basalt from a 124 

landscape dominated by a smooth relief plateau. According to the Köppen climate 125 

classification, the study area has a humid subtropical climate (Cfa) with an elevation around 126 

1,000 meters. The Oxisols are predominant in the area showing an advanced degree of 127 

weathering and developing deep soils. Furthermore, in some steep areas, younger and shallower 128 

soils, such as Entisols and Inceptisols, are found in a complex relief. 129 

 130 
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 131 

Figure 1. Soil sampling sites and municipalities located in central region of Santa Catarina 132 

State, Brazil.  133 

 134 

3.2.2.Data collection and soil analysis 135 

A total of 595 soil samples were collected, wherein 539 followed the depths 136 

specifications of 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm from Globalsoilmap.net 137 

(Arrouays et al., 2014) and 56 samples derived from 11 profiles. Soil samples were dried (at 138 

45°C for 72 hours) and then grounded and sieved (2 mm mesh). Total organic carbon content 139 

was determined by wet combustion method using the Mebius method in the digestion block 140 

(Yeomans and Bremner, 1988). Using this method, soil organic matter is oxidized with a 141 

mixture of K2Cr2O7 0.167 mol L-1 and concentrated H2SO4, and the excess of dichromate is 142 

titrated with ferrous ammonium sulfate. The reduced dichromate during reaction with soil 143 

corresponds to organic carbon in the sample. 144 

 145 

3.2.3.Training and validation sets  146 

Seventy percent of the dataset has been chosen by random sampling and used into 147 

training set (n = 417). The remainder thirty percent was used into validation set (n = 178). To 148 

not put in doubt the reliability of splitting sets, the homogeneity of these two sets were assessed 149 

by Levene's test. The Levene's test was applied to verify the assumption of variances were equal 150 
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across random selection of training and validations groups. Violin graphic showed a density 151 

and descriptive statistics of SOC for training and validation sets.  152 

 153 

3.2.4.Spectral reflectance measurements  154 

Spectral reflectance of soil samples was obtained using a FildSpec 3 spectroradiometer 155 

(Analytical Spectral Devices, Boulder, USA) with a spectral range of 350–2500 nm and a 156 

spectral resolution of 1 nm. To carry out the spectral measurements, soil samples were 157 

distributed homogeneously in petri dishes. The spectral sensor, which was used captured the 158 

light through a fiber optic cable allocated 8 cm from the sample surface. The sensor scans an 159 

area of approximately 2 cm2 and light source was provided by two external halogen lamps of 160 

50 W. Lamps were positioned with a distance of 35 cm from the sample (non–collimated rays 161 

and zenithal angle of 30°) and between them an angle of 90°. A Spectralon® standard white 162 

plate was scanned every 20 minutes for the calibration. For each sample, two replications (one 163 

involving a 180° turn of the petri dish) were obtained. Each spectrum was averaged from 100 164 

readings over 10 seconds. Mean values of two replicates were used for each sample. 165 

 166 

3.2.5.Spectral preprocessing techniques  167 

Spectral preprocessing techniques consist in a variety of mathematical procedures for 168 

transforming the reflectance measurements before the usage in calibration models. The spectra 169 

preprocessing has potential to remove physical variability due to light scattering and enhance 170 

features of interest (Rinnan et al., 2009). The preprocessing techniques were selected following 171 

the best results from Cambule et al. (2012), Knox et al. (2015), McDowell et al. (2012), Nawar 172 

et al. (2016), Peng et al. (2014), Stevens et al. (2013), and Vasques et al. (2008). The 173 

preprocessing includes smoothing, averaging, derivatives, normalizations, scatter corrections, 174 

and absorbance transformations. Preprocessing techniques were applied to the soil reflectance 175 

curves in the range of 350–2500 nm. Seven forms of spectra preprocessing were used to develop 176 

models for SOC predicting. The first one was used as ‘control treatment’, where the raw 177 

reflectances were only smoothed (SMO) across a moving window of 9 nm. SMO was 178 

considered here as a preprocessing even if no transformation was implemented in spectral data. 179 

Subsequent, the following preprocessing were applied into raw reflectance. Next six 180 

preprocessing were Savitzky–Golay first derivative using a first order polynomial with a search 181 

window of 9 nm (SGD), normalization by range (NBR), standard normal variate (SNV), 182 

multiplicative scatter correction (MSC), continuum removed reflectance (CRR), and lastly, 183 

transformation to absorbance and then application of Savitzky–Golay first derivative using a 184 
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first order polynomial with a search window of 5 nm (ASG). The SMO, CRR, SGD, ASG, and 185 

SNV preprocessing were carried out using prospectr package (Stevens and Ramirez-Lopez, 186 

2013). MSC and NBR were carried out using pls (Mevik et al., 2013) and clusterSim package 187 

(Walesiak and Dudek, 2016), respectively. Principal component analysis (PCA) (stats package, 188 

R Core Team, 2016) was used as a tool to explore the preprocessing and discover important 189 

characteristics of the spectral preprocessing. To compare the treatment means the Scott–Knott 190 

test (Scott and Knott, 1974) was applied. It is a hierarchical clustering algorithm used as an 191 

exploratory data analysis tool. Scott–Knott test was carried out by ScottKnott package 192 

(Jelihovschi et al., 2014). 193 

 194 

3.2.6.Multivariate methods 195 

In order to evaluate the predictive performance of the preprocessing, nine multivariate 196 

methods were implemented. Each type of method (e.g., PLSR, WAPLS) has specific and 197 

different required parameters that control how the relationship between input variables and 198 

outcomes is defined. These parameters were manually optimized to generate the best fit possible 199 

between variables and outcomes. All modeling were conducted using R programming language 200 

(R Core Team, 2016). Following are the multivariate methods and the corresponding R package 201 

applied: PLSR and PCR implemented in the pls package (Mevik et al., 2013), MLR in stats 202 

package (R Core Team, 2016), SVM in e1071 package (Meyer, 2001), RF in randomForest 203 

package (Liaw and Wiener, 2002), BMA in BMA package (Raftery et al., 2015), WAPLS in 204 

resemble package (Ramirez-Lopez and Stevens, 2016), GPR in kernlab package (Karatzoglou 205 

et al., 2004), and ANN in elmNN package (Gosso, 2012). The seven spectral preprocessing 206 

were used as independent variable for each model developed. 207 

In order to illustrate the total number of publications, considering the nine multivariate 208 

methods in the last ten years, a search was made into Scopus database selecting articles that 209 

have applied spectroscopy to predict soil properties. To support the selection of the best choice 210 

method to SOC prediction the time–consuming (in minutes) to generate each model was 211 

assessed. Running time for each model was calculated in R by system.time command and then 212 

the average for each method was considered. Personal computer with a 3.60 GHz Intel Core i7 213 

processor, 16 GB RAM, and Windows 10 operating system was used to run the models. 214 

Three statistics measure were used in the multivariate methods to evaluate the fitted 215 

model: Coefficient of determination (R2) (Eq. 1), root mean square error (RMSE) (Eq. 2), and 216 

ratio of performance to interquartile range (RPIQ) (Eq. 3). R2 is the percent of variance 217 

explained by the model. R2 measure is, by far, the most widely used and reported measure of 218 
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error and goodness of fit. RMSE is commonly used to measure the difference between predicted 219 

and observed values from the fitted model. It is easily interpreted statistic, since it has same 220 

data units. RPIQ is based on quartiles, which better represents the spread of the population. 221 

According to Bellon-Maurel et al. (2010), soil sample sets often show a skewed distribution, 222 

and not a normal distribution. For this reason, the RPIQ index explains the spread of the dataset 223 

better by using interquartile distance. 224 

 225 

R2 = 
∑ (ŷi − ȳi)

2n
i=1

∑ (yi − ȳi)2
n
i=1

                                                                                                                              (1) 226 

RMSE = √
1

n
∑(ŷi − yi)2
n

i=1

                                                                                                                   (2) 227 

RPIQ =
(Q3 − Q1)

RMSE
                                                                                                                                (3) 228 

 229 

where ŷ is the predicted values, ȳ is the mean of observed values, y is the observed values, n is 230 

the number of samples with i equal to 1, 2, … n, IQ is the difference between the third and first 231 

quartiles (Q3 – Q1), Q1 is the value found in 25% of the samples, and Q3 is the value found in 232 

75% of the samples. 233 

 234 

3.3.RESULTS AND DISCUSSION 235 

 236 

3.3.1.Descriptive and inferential statistics 237 

Considering the density of training and validation sets, more than 50% of total SOC 238 

values is placed among 1% to 3% (Fig. 2). The data presented a widespread variation with 239 

maximum and minimum SOC values of 0.02 and 6.87%, respectively. Model prediction is 240 

potentially influenced by the high variation of data. Standard deviation indicated this tendency. 241 

The large variation of SOC content was expected based on wide depths layers collected in this 242 

study ranging from 0–5 to 100–200 cm. The highest SOC values occurred in soils with forest 243 

at upper depth of 0–5 cm. These soils constantly receive replacement of organic material, which 244 

promotes the accumulation of carbon due to low decomposition of organic matter conditioned 245 

by high altitude and low temperature of the area. The lowest SOC values were found in the 246 

100–200 cm depths, where storage of carbon in soils is reduced. Levene’s test achieved a p–247 

value of 0.205 for the homogeneity of variances tests between training and validation datasets. 248 
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Since p–value is much higher than significance level of α = 0.05, the hypothesis of equal 249 

variance is not rejected, and so there was no significant difference between variances. This 250 

similarity between the training and validation sets is revealing the randomly split groups are 251 

statistically similar and further multivariate analysis is suitable. 252 

 253 

 254 

Figure 2. Density of training and validation sets. Dark area indicates inter–quartile range and 255 

white dot indicates median value of dataset. The p–value of Levene’s test = 0.205 (significance 256 

level of α = 0.05).  257 

 258 

3.3.2.Characteristics of soil spectral reflectance curves 259 

Diversity of soils is represented by spectral reflectance curve forms. The raw spectral 260 

reflectance (Fig. 3a) illustrated the curves by its shape and the presence or absence of absorption 261 

bands. Categorization of soil reflectance has important implications for soil genesis, 262 

classification, and survey (Stoner and Baumgardner, 1981). Assessment of spectral curves 263 

provides a tool for qualitative description of Vis–NIR soil reflectance. This descriptive soil 264 

information is important for initial characterization and discrimination. 265 

The spectral reflectance curve of each soil sample is characterized by the variability of 266 

its soil properties. Soil samples showed the presence of distinguished soil reflectance curve 267 

forms that were associated with different shapes and absorption bands. This distinction is 268 

mainly due to organic matter content and iron oxides content in these soils. Observing Fig. 3a, 269 
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there is a predominance of very low reflectance. The majority of soils samples present high 270 

content of iron oxides conducting to a low reflectance. According to Stoner and Baumgardner 271 

(1981), characteristic shape between 450 and 850 nm indicated the presence of iron oxides 272 

(mainly goethite and hematite), absorption at 1400 nm and 1900 nm was due to water molecule 273 

vibrations and OH groups, and absorption at 2200 nm indicated the presence of kaolinite. 274 

The large amount of soil samples exhibited a low overall reflectance (Fig. 3a). Based 275 

on Stoner and Baumgardner (1981), these soils belong to a particular type of spectral curves 276 

designated iron–dominated form with high iron content and fine texture. This trend was found 277 

in the current study, where reflectance decreases in wavelength beyond 750 nm and absorption 278 

in the middle infrared wavelengths is so strong that the water absorption bands are almost 279 

undetectable. Few amount of soil samples presented the type of spectral curves called minimally 280 

altered with low organic and medium iron content, according to Stoner and Baumgardner 281 

(1981). These curves are characterized by overall high reflectance and a convex curve shape. 282 

Moreover, strong water absorption bands at 1400 and 1900 nm are noticeable.  283 

Characteristic soil spectral reflectance curves influence the subsequent model 284 

prediction. Large number of spectral curves with low reflectance intensity can reproduce a more 285 

efficient model performance for soils with high iron content and fine texture. On the other hand, 286 

little amount of high reflectance soils, in which present low organic and medium iron content, 287 

can lead to poor performances for this soil types.  288 
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Figure 3. Illustration of Vis–NIR spectral curves of preprocessing for all soil samples. a) SMO: 289 

smoothed across a moving window of 9 nm, b) CRR: continuum removed reflectance, c) NBR: 290 

normalization by range, d) SNV: standard normal variate, e) MSC: multiplicative scatter 291 

correction, f) SGD: Savitzky–Golay first derivative using a first order polynomial with a search 292 

window of 9 nm, g) ASG: transformation to absorbance and then application of Savitzky–Golay 293 

first derivative using a first order polynomial with a search window of 5 nm. 294 

 295 

 296 

 297 

 298 
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3.3.3.Influence of preprocessing techniques in the performance of SOC models 299 

 300 

3.3.3.1.Two groups of preprocessing techniques 301 

Spectroscopic measurements can be used to provide a quantitative estimate of most 302 

abundant minerals present in soil. In order to enhance the spectral features and fitting the best 303 

relationship with a soil property of interest preprocessing techniques were employed. Although, 304 

a vast diversity in preprocessing techniques and variations between selected preprocessing can 305 

be observed. In order to emphasize the variation and reveal strong patterns in the seven 306 

preprocessing principal component analysis (PCA) was utilized. PCA is a technique often used 307 

to explore and visualize correlated data. In Fig. 4, each color represents the seven spectral 308 

preprocessing in a multidimensional space projected by first and second principal components 309 

(PC1 and PC2, respectively). PCA captured the variation occurred in preprocessing. SGD and 310 

ASG were grouped together while CRR, NBR and SNV were far–off the symmetric center. The 311 

PC1 explain 82.6% of total variance and certain preprocessing are associated suggesting SGD, 312 

ASG, MSC, SMO, and SNV are correlated. However, in PC1 is noticeable the SGD and ASG 313 

are almost in same position, different from other preprocesses. NBR and CRR are grouped 314 

together while SNV are separated in PC2. The finding supports that there are two different 315 

preprocessing groups and modeling performance of SOC are affected by this grouping.  316 

Preprocessing techniques are divided into two categories: scatter–correction techniques 317 

and spectral derivatives. First group of scatter–corrective preprocessing techniques includes 318 

CRR, MSC, SNV, and NBR. Spectral derivatives group is represented by SGD and ASG. The 319 

performance of models obtained by methods using scatter–corrective preprocessing was 320 

superior compared from spectral derivatives group. The scatter–correction preprocessing 321 

techniques are designed to reduce physical variability (undesirable scatter effect) and to 322 

compare individual features of each element from a common baseline (Rinnan et al., 2009). 323 

This group represents powerful preprocessing techniques, which isolates and removes 324 

complicated effects caused by physical phenomena, where soil chemical effects can be more 325 

easily modeled. 326 

Regarding the spectral derivatives group, these preprocessing have the ability to remove 327 

both additive and multiplicative effects in spectra. First derivative, applied in the current study, 328 

removes the baseline and is estimated by the difference between two subsequent spectral 329 

measurement points (Rinnan et al., 2009). Two different preprocessing, SGD and ASG, were 330 

used to reduce the signal–to–noise ratio in spectra using Savitzky–Golay derivation. Derivative 331 

is calculated at the center of each point fitting a polynomial in a symmetric window on raw 332 
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spectra. This operation is applied to all points in spectra, sequentially. Estimation of derivatives 333 

operates by a moving–window, where only a local part of spectra is used at time to compute 334 

the derivative. That is one distinction from scatter–corrective preprocessing, which can be 335 

performed on entire window. 336 

 337 

 338 

Figure 4. Principal component analysis of seven preprocessing techniques. 339 

 340 

Scatter–correction preprocessing group has developed significant improvement over 341 

Vis–NIR spectral models. The performance assessment of scatter–correction preprocessing 342 

fluctuated within models. In validation, values R2 fitted varied from 0.54 up to 0.82, while 343 

RMSE varied from 0.77% to 0.48% (Table 1). CRR was ranked the best preprocessing in three 344 

multivariate methods (PLSR, PCR, and RF) achieving the lowest RMSE values. SNV 345 

preprocessing produced highest performance for two methods (MLR and GPR), along with 346 

NBR (WAPLS and ANN). Following, MSC appeared ranked as best preprocessing for only 347 

one method (BMA).  348 

The best performance was found for CCR regarding the performance of models using 349 

scatter–correction preprocessing to predict SOC. CRR technique proposed by Clark and Roush 350 

(1984), consists of removing the continuous features of spectra and is often used to isolate 351 
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specific absorption features present in spectrum. Continuum is represented by a mathematical 352 

function used to separate and highlight specific absorption bands of reflectance spectrum 353 

(Mutanga et al., 2005). The technique of making a continuum, or hull, is similar to fitting a 354 

rubber band over the original spectrum. The spectrum is normalized by setting the value of the 355 

hull to 100% reflection, where first and last values of continuum removed spectrum are equal 356 

to 1. The strength of CRR is to enhance absorption depths by correcting apparent shifts caused 357 

by wavelength dependent scattering. 358 

Subsequent scatter–correction technique is SNV preprocessing. SNV achieved the 359 

higher prediction for two methods, which were MLR and GPR. This preprocessing has been 360 

proposed for removing the multiplicative interference of particle size by simple rotation and 361 

offset correction of spectra (Barnes et al., 1989). As observed in Fig. 3d, the similarity between 362 

SNV and MSC is obvious. Signal–correction concepts behind SNV are the same as for MSC 363 

except, where a common reference signal is not required, which is observed in reflectance 364 

values. SNV is designed to operate based on centering the underlying linear slope of each 365 

individual sample spectrum (Barnes et al., 1989). Moreover, SNV can be noisy sensitive in 366 

spectrum. Instead of using average and standard deviation as correction parameters, it considers 367 

to use each observation on its own isolated from remainder dataset.  368 

NBR preprocessing presented the best model result for WAPLS and ANN methods, 369 

both machine learning algorithms. In NBR, normalization means adjusting values measured on 370 

different scales to a common scale. Simple normalization of each sample is a common approach 371 

to multiplicative scaling problem. NBR preprocessing refers to the creation of shifted and scaled 372 

versions of spectral data, where these normalized values eliminate scattering effects (Rinnan et 373 

al., 2009). If the relationship between variables is the most important aspect of spectral data, 374 

then normalization is recommended.  375 

The final scatter–corrections addressed is MSC preprocessing. MSC achieved the best 376 

prediction result only for BMA method. Nonetheless, in BMA method four scatter–corrections 377 

preprocessing presented a concentrated performance with a slight higher result for MSC. The 378 

purpose of MSC is to eliminate scatter errors, in order to linearize spectral data and decrease 379 

noise variance (Geladi et al., 1985). In MSC each spectrum is corrected so that all spectral 380 

samples appear to have the same scatter level. It has been demonstrated that, MSC and SNV 381 

spectra preprocessing are closely related and differences in prediction ability between these 382 

methods seems to be quite small. 383 

Spectral derivatives preprocessing achieved greatest performance only for SGD in SVM 384 

method. ASG and SMO preprocessing never attended the best model performance in any 385 
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method. Besides that, SMO preprocessing figured in the lowest model performance for three 386 

methods (SVM, RF, and GPR). Interesting finding occurred in the results of SVM and RF 387 

modeling. In both methods, spectral derivatives preprocessing (SGD and ASG) reached the 388 

highest performances. The results obtained by two spectral derivatives preprocessing 389 

performances with SVM and RF are in accordance with Vasques et al. (2008). The authors 390 

investigated several multivariate methods including two supervised machine learning 391 

(committee trees and regression trees) to assess soil carbon in Florida, USA. Among thirty 392 

spectral preprocessing tested, spectral derivatives preprocessing presented the highest 393 

predictive performance for both SVM and RF. Both methods are classified as supervised 394 

learning algorithms, which SVM is machine learning and RF is ensemble learning. In addition, 395 

the two algorithms demonstrate efficiently modeling on large datasets, model accuracy is 396 

maintained when there is missing data or outliers, in regression they do not predict beyond the 397 

range of response values in training data, they underestimate the high values and overestimate 398 

the low values, and they are theoretically difficult to analyze (Breiman, 2001; Ivanciuc, 2007; 399 

Mountrakis et al., 2011; Viscarra Rossel and Behrens, 2010). 400 

SMO preprocessing frequently generated low accuracy performance regardless of 401 

method employied. SMO always figured in the bottom three lowest preprocessing (Table 1). 402 

Nawar et al. (2016) obtained similar results where no preprocessing was used for organic matter 403 

prediction. Earlier studies has shown calibration models, in which spectra were not 404 

preprocessed, are more sensitive to changes compared to models for which preprocessing was 405 

applied (Moros et al., 2009).  406 

 407 

3.3.3.2.Performance of best preprocessing technique  408 

CRR was considered the most robust spectral preprocessing based on predictive 409 

performance for SOC. CRR presented the higher performance for PLSR, PCR, and RF methods 410 

(Table 1). Considering all prediction methods, this preprocessing always appeared among the 411 

top four best results. This result demonstrates CRR is suitable preprocessing for SOC prediction 412 

with Vis–NIR spectral data. CRR has also been successfully used in some other studies, for 413 

instance, to estimate soil color (Viscarra Rossel et al., 2009), clay content (Lagacherie et al., 414 

2008; Nawar et al., 2016; Viscarra Rossel et al., 2009), organic matter (Nawar et al., 2016; Xie 415 

et al., 2012), soil organic carbon (Nocita et al., 2014), soil heavy metals (Gholizadeh et al., 416 

2015; Vašát et al., 2014; Xie et al., 2012), soil macro and micro nutrients (Vašát et al., 2014), 417 

and soil nitrogen content (Zhang et al., 2016). Application of CRR preprocessing also can be 418 

found to characterize world's soil in global spectral library (Viscarra Rossel et al., 2016), to 419 
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estimate tropical pasture quality (Mutanga et al., 2005), and even in another planet, as in 420 

elemental concentration estimation on Mars (spectrometer installed at the robotic rover 421 

Curiosity) (Wang et al., 2014). Nocita et al. (2014) applied CRR to predict SOC content by 422 

diffuse reflectance spectroscopy from soil samples collected all over the European Union. The 423 

authors conclude SOC predictions of mineral soils were more accurate when sand content was 424 

added to soil spectra as covariables. Nawar et al. (2016) found similar trend results for CRR 425 

preprocessing considering organic matter prediction. In this study, the authors tested different 426 

multivariate approaches (e.g. PLSR and SVM) in seven types of spectra preprocessing and 427 

results are shown as follows. For PLSR, validation models applying CRR were the best among 428 

all preprocessing (R2 = 0.79, RMSE = 0.28%) followed by SMO (R2 = 0.59, RMSE = 0.38%) 429 

and Savitzky–Golay first derivative preprocessing (R2 = 0.50, RMSE = 0.42%). These 430 

outcomes are similar in pattern to those obtained by the current study for PLSR modeling (Table 431 

1). In SVM modeling, Savitzky–Golay first derivative preprocessing generated the highest 432 

prediction result (R2 = 0.75, RMSE = 0.26%) followed by CRR (R2 = 0.65, RMSE = 0.29%) 433 

and SMO (R2 = 0.51, RMSE = 0.35%). These tendency is in accordance with this study, which 434 

for SVM result the best preprocessing was found for SGD and ASG (both applied Savitzky–435 

Golay first derivative) followed by CRR.  436 

The improved performance of CRR preprocessing technique can be attributed to 437 

effective noise removal, reduction of physical variability between samples, providing a more 438 

consistent definition of band depth (Clark and Roush, 1984). Further advantages of continuum 439 

removal are that this technique can be used to analyze the absorption features and to correct 440 

band minimum to the true band center (Clark and Roush, 1984). This technique can be used to 441 

normalize absorption features and to emphasize reflectance features of spectrum curves. CRR 442 

preprocessing should be taken into consideration for SOC content prediction regardless the 443 

multivariate method applied to model adjustment. 444 

 445 

3.3.4.Influence of multivariate methods in the performance of SOC prediction 446 

PLSR is the most suitable method for spectral modeling (Viscarra Rossel et al., 2009). 447 

To demonstrate that, a search was conducted into a scientific citation database to compare the 448 

volume of multivariate methods published in the last ten years applying spectroscopy to predict 449 

soil properties (Fig. 5). The high frequency of publications with PLSR method, over the years, 450 

has proven its application in predicting soil properties keeping its use around 65% of all 451 

published papers in the last ten years. PCR method has shown a good amount of publications, 452 

especially between 2006 until 2011, and is the second most used method over the last years. 453 
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The remaining methods exhibited quite a few volumes of publications, particularly for data 454 

mining algorithms. Over the last five years, the usage of these methods has growing and 455 

attracting attention of pedometric community. A positive aspect that drew attention was the 456 

quantitatively increase of total publications regarding soil property prediction by spectral data, 457 

confirming the growth of chemometrics prediction in a recent period.  458 

 459 

 460 

Figure 5. Publications of multivariate methods in the last ten years applying spectroscopy to 461 

predict soil properties. TP is the total number of publications per year. BMA, WAPLS and GPR 462 

were grouped due to the low volume of publications. 463 

 464 

3.3.4.1. Partial least–squares regression performance 465 

The dominance of PLSR is remarkable and is an indicative of its strength in SOC 466 

prediction. Prediction accuracy and model performance from PLSR along with the eight 467 

methods are presented in Table 1. In the current study, the performance of models revealed why 468 

PLSR is the most common method. Its predictive power had a satisfactory outcome. In fact, for 469 

PLSR models, R2 values ranged between 0.67 to 0.81, RMSE values ranged from 0.67% to 470 

0.49%, and RPIQ values was ≥ 2.30. Regarding the prediction of seven preprocessing with 471 

PLSR, CRR showed reduced RMSE (0.49%) and superior R2 (0.81) and RPIQ (3.12). The 472 

results are comparable to prediction accuracy established in literature. Viscarra Rossel and 473 

Behrens (2010) applied PLSR method, amongst others, for the prediction of SOC, based on 474 

Vis–NIR spectra using a large spectral library with 1104 soil samples. Compared to this study, 475 

in Viscarra Rossel and Behrens (2010) the PLSR model prediction showed only slightly higher 476 

results (R2 = 0.82, RMSE = 0.96%). Vasques et al. (2008) compared multivariate methods for 477 
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inferential modeling of soil total carbon and the PLSR models achieving a Rv
2  of 0.82 on average 478 

of 30 spectral preprocessing. This performance is considered slightly better comparing the 479 

current PLSR result, since in Vasques et al. (2008) the 554 soil samples were transformed into 480 

logarithms before modeling. Attempting to improve the prediction performance of a large 481 

tropical Vis–NIR spectroscopic soil library from Brazil, Araújo et al. (2014) achieved a Rv
2  of 482 

0.60 and RMSEv of 0.55% for organic matter applying PLSR in 7172 soil samples. Knox et al. 483 

(2015) modeled soil carbon fractions with Vis–NIR spectroscopy in a set of 1014 soil samples 484 

collected across the state of Florida, USA. The authors applied 10 different spectral 485 

preprocessing techniques resulting in a Rv
2  of 0.80, on average, and RMSEv of 0.48 log g·kg-1 486 

for PLSR modeling. To compare the calibration of Vis–NIR spectroscopy for on–line 487 

measurement of SOC, Kuang et al. (2015) achieved similar R2 performance with PLSR in 488 

cross–validation and inferior RMSE (Rv
2  of 0.81, RMSEv of 1.99%). 489 

These literature results revealed, once more, the better performance ability of linear 490 

algorithm PLSR. The low and high results obtained in this study for SOC measurement with 491 

PLSR model was consistent and comparable to those reported above. PLSR presented suitable 492 

outcomes providing a quantitative modeling that can handle complicated relationships between 493 

predictors and responses, and moreover it can deal with complex modeling problems (Wold et 494 

al., 2001). PLSR is considerable a popular regression method applied in chemometrics since 495 

the emphasis is on predicting responses and not necessarily on trying to understand the 496 

underlying relationship between variables (Wold et al., 2001). Additionally, PLSR is a method 497 

for constructing predictive models when the factors are many and highly collinear (Wold et al., 498 

1984), which is the case of hyperspectral data.  499 

Considering PLSR is the most common method, there is a lack of studies comparing 500 

alternatives approaches. Therefore, eight additional methods were applied in order to assess the 501 

performances on SOC prediction. Each of methods achievement are discussed individually in 502 

the next sections. 503 

 504 

3.3.4.2.Principal component regression performance 505 

As previously discussed, PCR is the second most frequently method used in 506 

chemometrics predictions applying Vis–NIR spectroscopy (Fig. 5). PCR produced results 507 

equivalent to PLSR with a R2 varying from 0.66 to 0.80, RMSE from 0.66% to 0.51%, and 508 

RPIQ ≥ 2.31 (Table 1). Chang et al. (2001) achieved superior result applying PCR. The authors 509 

found a R2 of 0.87 and a RMSE of 0.78% using 726 soil samples to predict total soil carbon 510 
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from USA. Wang et al. (2015) used optical diffuse reflectance spectroscopy to predict organic 511 

matter with 155 soil samples from China. The authors adopted different spectral preprocessing 512 

from two spectrometers to find Rv
2  results ranging between 0.79 to 0.86 for organic matter 513 

prediction. PCR method indicated prominent results in mentioned literature by the fact that PCR 514 

and PLSR techniques are similar in many ways. PCR and PLSR are both methods to model 515 

response variable when there are a large number of predictor variables, and those predictors are 516 

highly correlated (Wold et al., 1984). Both methods construct new predictor variables, known 517 

as components as linear combinations of original predictor variables. Wentzell and Vega 518 

Montoto (2003) found that there were a few cases indicating higher results for PLSR over PCR, 519 

and a larger number of studies indicating no real difference performances. In their survey, the 520 

results of PCR and PLSR showed their prediction errors and number of latent variables differed. 521 

They concluded that PLSR almost always required fewer latent variables than PCR, but this did 522 

not appear to influence predictive ability. For Hemmateenejad et al. (2007) the successful of 523 

PCR and PLSR methods are related to their ability to overcome problems common to spectral 524 

data, such as collinearity, and their easy implementation due to the availability of software. 525 

 526 

3.3.4.3.Multiple linear regression performance 527 

The following method reported is MLR. Comparing multivariate methods attended, 528 

MLR accomplished fair performance for SOC prediction with a R2 ranging from 0.69 to 0.79 529 

and RMSE between 0.64% to 0.52% (Table 1). The highest model was reached with SNV 530 

preprocessing. As MLR is considered the most common form of linear regression analysis, 531 

various studies have been applying it in soil properties prediction. Comparing regression 532 

methods for the prediction of SOC in a degraded south African ecosystem, Bayer et al. (2012) 533 

achieved a Rv
2  of 0.74 and RMSEv of 0.36% with MLR model in 164 soil samples. This results 534 

are slight inferior based on the best model result for MLR by current study. Viscarra Rossel and 535 

Behrens (2010) compared different data mining algorithms for modeling soil Vis–NIR with a 536 

dataset of 1104 soil samples from Australia. The authors reached higher results with MLR 537 

predicting SOC (Rv
2  ranging between 0.81 to 0.84). One evidence that guided to increase the 538 

model performance was the large number of soil samples. Vasques et al. (2008) achieved a Rv
2  539 

ranging between 0.66 to 0.85 for MLR modeling.  540 

The results described are an indicative that MLR is still a beneficial method for SOC 541 

prediction when the choice is a statistical method that uses several explanatory variables to 542 

predict the outcome of a response variable in a simple linear model. MLR assumes the 543 
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relationships between independent variables and dependent variable are linear. Another 544 

important assumption is absence of multicollinearity thus the independent variables are not 545 

highly correlated. Further suppositions include homoscedasticity and normality. Presuming 546 

these linear regression assumptions, a robust prediction can be achieved using relatively simple 547 

algorithm. 548 

 549 

3.3.4.4.Support vector machine performance 550 

Starting from SVM, all the following methods are data mining approaches. Data mining 551 

involves methods that extract patterns from a data set applying artificial intelligence and 552 

machine learning. SVM produced a R2 and RMSE ranging from 0.74 to 0.80 and 0.59% to 553 

0.52%, respectively (Table 1). SGD preprocessing achieved the highest prediction assessment 554 

for SVM. This method has been widely implemented for solving complex regression 555 

assignments (Ramirez-Lopez et al., 2013; Terra et al., 2015; Viscarra Rossel and Behrens, 556 

2010). Viscarra Rossel and Behrens (2010) reported SVM produced a similar result compared 557 

to PLSR, whereas Stevens et al. (2013) presented higher SOC predictions for SVM (R2 from 558 

0.67 to 0.86) evaluating several data mining calibration methods on a diverse sample set of soil 559 

types in EU. Comparing spectral libraries (Vis–NIR spectroscopy) for quantitative analyses of 560 

tropical Brazilian soils, Terra et al. (2015) found low predictive result (Rv
2  = 0.65, RMSEv = 561 

0.16 g kg-1, RPIQv = 2.49) for SOC applying SVM. Ramirez-Lopez et al. (2013) compared a 562 

regional (validation set = 1050) and global soil spectral library (validation set = 900) to predict 563 

SOC with different approaches. Models with SVM obtained prediction results of R2 = 0.54 and 564 

0.57, RMSE = 0.27% and 0.93%, for regional and global soil spectral libraries, respectively. 565 

Their results showed slightly higher R2 was found for global soil spectral library. On the other 566 

hand, prediction error, RMSE, was lower for regional soil spectral library, which is attributed 567 

to the small SOC variation in regional spectral library. Araújo et al. (2014) compared the ability 568 

of multivariate models to determine organic matter from 7172 samples of seven different soil 569 

types collected from several areas of Brazil. The authors found that SVM (R2 = 0.69, RMSE = 570 

0.48%) outperformed PLSR (R2 = 0.60, RMSE = 0.55%) for organic matter prediction. They 571 

mentioned SVM managed the capability of reducing problems with heterogeneity and 572 

nonlinearity of spectral data. 573 

Results observed in literature corroborate the SVM as a very promising method for the 574 

estimation of SOC content. The greatest performance of SVM can be explained by the fact of 575 

SVM are a group of supervised learning methods, which represent an extension to nonlinear 576 

models of generalized algorithm with the capability of training nonlinear classifiers (Ivanciuc, 577 
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2007). Associated with SVM algorithm are the criteria of smaller number of support vectors 578 

yield a better model performance (Loosli et al., 2007). The reason for high performance of SVM 579 

models are related to the efficiency in modeling linear or nonlinear relationships and handling 580 

large databases. 581 

 582 

3.3.4.5.Random forest performance 583 

RF is an ensemble learning method for regression modeling. The overall predictive 584 

ability of RF models for SOC content was considered inferior. The prediction accuracy 585 

expressed a R2 ranging from 0.47 to 0.77, and RMSE ranging from 0.84% to 0.55% (Table 1). 586 

RF approach exposed the lowest model prediction compared with the other methods. To 587 

compare different algorithms for modeling soil Vis–NIR spectra, Viscarra Rossel and Behrens 588 

(2010) reached lowest results for SOC estimation with RF (R2 = 0.71, RMSE = 1.23%), which 589 

the best prediction was found for ANN. Knox et al. (2015) evaluated the potential of Vis–NIR–590 

MIR spectroscopy to predict soil carbon fractions contained 1014 soil samples collected across 591 

the state of Florida, USA. RF validation produced a R2 and RMSE ranging from 0.63 to 0.88 592 

and 0.70 to 0.38 log g·kg−1, respectively, using different spectral preprocessing applied only at 593 

Vis–NIR range. Feng et al. (2014) drew attention to the difficulty of interpreting model 594 

estimates from log–transformed data. The authors stated that estimating original observation 595 

using exponent or anti–log of sample log–transformed data can generate inaccurate estimates 596 

of the true population of original data. They suggested for many applications, rather than trying 597 

to find an appropriate statistical distribution or transformation to model the observed data, it 598 

would probably be better to abandon the classic approach and switch to modern distribution–599 

free methods.  600 

According to Hastie et al. (2009), predictive learning is an important aspect of data 601 

mining methods, which are invariant under transformations. As a result, scaling or general 602 

transformations are not an issue, and they are immune to the effects of predictor outliers. RF 603 

tends to be versatile and flexible with small or large datasets and has becoming an effective tool 604 

in prediction (Breiman, 2001). RF can be very fast to train, but quite slow to create predictions 605 

once trained. For more accurate ensembles is required more trees, which means the 606 

development of model becomes slower. In certain situations, where run–time performance is 607 

important other approaches would be preferred. Model interpretability is another issue when 608 

compared to linear models. RF models are black boxes approach that are very hard to interpret. 609 

One reason for the poor performance of RF models might be based on the high number of trees 610 
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to fit the model might cause a risk of over correlating the ensemble and causing an overfit 611 

problem. 612 

 613 

3.3.4.6.Bayesian model averaging performance 614 

BMA method provided a new approach regarding SOC prediction. Predictive 615 

performance of BMA presented a R2 and RMSE ranging from 0.68 to 0.80 and 0.65% to 0.51%, 616 

respectively (Table 1). BMA has increasingly its applications across many diverse science 617 

contexts. BMA was first used in sociology in early 80s as a model selection criterion, and since 618 

then it has been widely applied. In soil science community its applications have scarce studies, 619 

particularly for soil property prediction. Leon and Gonzalez (2009) predicted SOC using BMA 620 

considering several predictors as: loss on ignition, parent material, drainage status, type of soil 621 

horizon, clay content, and pH. Their validation analysis showed prediction accuracy for SOC 622 

was improved with the BMA approach compared to ordinary least–squares approach. Malone 623 

et al. (2014) applied BMA approach for combining digital soil property maps derived from 624 

disaggregated legacy soil class maps. The authors determined the efficacy of ensemble 625 

modeling as an useful combinatorial approach for combining digital soil property maps from 626 

Australia. Poggio et al. (2016) assessed the spatial uncertainty with the Bayesian approach 627 

modeling soil organic matter content in the Grampian region of Scotland. Similarly, Xiong et 628 

al. (2015) applied Bayesian geostatistics to assess uncertainty associated with the predictive 629 

models of SOC in Florida, USA.  630 

BMA approach are able to extract empirical relevant relationships calculating a set of 631 

‘models’ assuming that there is no single ‘model’ that describes the data process, instead keeps 632 

all ‘models’ and assigns each a weight, respectively. BMA refers to the process of averaging 633 

estimates according probability distributions, where all ‘models’ can be interpreted as proxies 634 

for some unknown underlying model (Brandl, 2008). BMA approach provided a quantitative 635 

explicit tool that can be adjustable and flexible regarding the efficiency of inputs variables to 636 

estimate SOC. The distinct advantage of BMA is express which input variable most influenced 637 

the ‘models’ via prior specification (probability) (Raftery, 1995). Additionally, the benefit of 638 

using BMA for spectral data was to access the uncertainty of each predictive variable.  639 

 640 

3.3.4.7.Weighted average partial least squares performance 641 

Overall, WAPLS produced the highest accuracy prediction model for SOC (R2 = 0.82, 642 

RPIQ = 3.18) (Table 1). The best WAPLS model returned the lowest RMSE value (0.48%) 643 

observing all RMSE returned by remainder algorithms. Ramirez-Lopez et al. (2013) drew 644 
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attention to the great potential of WAPLS in predicting soil properties in large and diverse Vis–645 

NIR datasets. The authors introduced the spectrum–based learner (SBL) technique, which is a 646 

category of WAPLS, and compared the predictive performance of this technique with other 647 

approaches including SVM and PLSR. SBL outperformed other approaches in both dataset 648 

(regional and global soil spectral libraries) producing the lowest RMSE and the highest R2 649 

prediction (RMSE = 0.25% and 0.80%, R2 = 0.59 and 0.68, for regional and global soil spectral 650 

library, respectively). The low predictive performance, compared to this study, was attributed 651 

to large spectral variation as consequence of the diversity of soil formation environments where 652 

samples were collected. Gholizadeh et al. (2016) applied WAPLS approach and other data 653 

mining algorithms (PLSR and SVM) for the prediction of soil texture using Vis–NIR spectra 654 

from Czech Republic (total of 264 samples). The results of WAPLS model outperformed 655 

predictions accuracy of three soil fractions. The authors concluded WAPLS has not yet been 656 

commonly used to predict soil properties, and such statistical method with high prediction 657 

efficiency are the ones that have the best adaptability to analyze the structure of soil data. The 658 

highest performance of WAPLS result is related to important characteristics such as, it uses 659 

multiple models generated by multiple pls components and the final predicted value is a 660 

weighted average of all the predicted values generated by the multiple pls models (Ramirez-661 

Lopez and Stevens, 2016). 662 

 663 

3.3.4.8.Gaussian process regression performance 664 

GPR is a machine learning algorithm applying the kernel function to training and 665 

predicting. The accuracy performance of GPR models produced a R2 and RMSE values ranging 666 

from 0.65 to 0.79, and 0.69% to 0.52%, respectively (Table 1). In literature, there are a lack of 667 

studies addressing GPR method for SOC prediction. Numerous applications of kernel–based 668 

algorithms have been reported in the context of optical pattern and object recognition, text 669 

categorization, time–series prediction, gene expression profile analysis (Muller et al., 2001). In 670 

machine learning, kernel methods are a class of algorithms for pattern analysis. For many 671 

algorithms that solve regression problems, the data have to be explicitly transformed into 672 

feature vector representations, in contrast, kernel methods require only a user–specified kernel. 673 

This is called ‘kernel trick’ replacing its features (predictors) by a kernel function. Several 674 

classes of kernels can be used for machine learning and the selection of kernel is critical to the 675 

success of these algorithms (Karatzoglou et al., 2004). 676 

One benefit of this algorithm is often computationally faster than the specific memory 677 

learning method. That means, applying highly complex data input should be efficient to 678 
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compute and revealing high performing kernel. Interesting research gaps in GPR method have 679 

not been sufficiently explored yet making use of kernels for regression problems. The GPR 680 

method is an alternative when working with learning algorithms, and results achieved in the 681 

current study demonstrated GPR needs to be considered as prediction method for SOC using 682 

Vis–NIR spectral data. 683 

 684 

3.3.4.9.Artificial neural network performance 685 

The final data mining approaches is ANN. For SOC prediction this method produced R2 686 

ranging from 0.64 to 0.80 and RMSE oscillated from 0.69% to 0.51% (Table 1). Evaluating 687 

prediction accuracy between all methods ANN produced reasonable outcomes. The highest 688 

model achievement (R2 of 0.80, RMSE of 0.51%, and RPIQ of 3.01), ANN cannot be 689 

considered an inferior or inaccurate result. Besides, this statement is corroborated by the 690 

suitable performances of ANN models targeting SOC prediction in several studies. According 691 

to Viscarra Rossel and Behrens (2010), ANN model returned the best prediction results for 692 

SOC (R2 = 0.89, RMSE = 0.75%) compared to PLSR, MLR, SVM, and RF, among others. 693 

However, ANN model was implemented on a reduced number of wavelet coefficients. They 694 

concluded the study by stating ANN was able to extract more relevant information when more 695 

features are used. As ANN are called ‘black box’ systems, the combination of feature selection 696 

and nonlinear modeling helped to achieve good predictions. Were et al. (2015) applied ANN 697 

algorithm for spatial prediction of SOC stocks in Eastern Mau Forest Reserve, Kenya. The 698 

authors found prediction accuracy for ANN model with R2 value of 0.61 and a RMSE value of 699 

15.46 Mg ha−1. They suggested machine learning techniques should be applied for spatial 700 

prediction of target soil variables. Kuang et al. (2015) compared ANN and PLSR model 701 

performance in cross–validation, laboratory independent validation, on–line validation and on–702 

line independent validation for SOC prediction in two farm fields in Viborg, Denmark. Models 703 

based on ANN algorithm showed a stronger prediction capability than those based on PLSR in 704 

both fields, which the highest performance was produced by ANN in cross–validation model 705 

(R2 = 0.90, RMSE = 1.50%). ANN calibration model for SOC prediction reported in Mouazen 706 

et al. (2010), with 133 soil samples collected from Belgium and northern France, produced 707 

superior accuracy (R2 = 0.84, RMSE = 0.68%) than the model obtained in the current study (R2 708 

= 0.80, RMSE = 0.51). Daniel et al. (2003) assessed the potential of ANN modeling soil organic 709 

matter from spectral range of 400 to 1100 nm in 41 soil samples located in Thailand. ANN 710 

models presented increased performance under laboratory (R2 = 0.86) then field based 711 

assessments (R2 = 0.84). 712 
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The suitable performances of ANN models might be attributed to the nature of ANN in 713 

solving nonlinear problems (Kuang et al., 2015). In ANN, the mathematical model assign 714 

weights between elements, and network structure are adjusted depending on the inputs 715 

(McBratney et al., 2003). 716 

 717 

Table 1. Performance of SOC predictive models from nine multivariate methods with the 718 

corresponding spectral preprocessing techniques. 719 

  Validation set 

Method Preprocessing R² RMSE (%)† RPIQ 

PLSR 

CRR 0.81 0.49 3.12 

NBR 0.80 0.52 2.94 

SNV 0.79 0.52 2.94 

MSC 0.78 0.54 2.84 

ASG 0.71 0.62 2.49 

SMO 0.70 0.63 2.42 

SGD 0.67 0.67 2.30 

PCR 

CRR 0.80 0.51 3.00 

NBR 0.79 0.52 2.95 

SNV 0.79 0.52 2.92 

MSC 0.78 0.54 2.86 

SMO 0.70 0.62 2.47 

ASG 0.68 0.64 2.39 

SGD 0.66 0.66 2.31 

MLR 

SNV 0.79 0.52 2.93 

CRR 0.78 0.53 2.88 

MSC 0.78 0.54 2.84 

NBR 0.77 0.56 2.75 

SMO 0.73 0.60 2.56 

ASG 0.71 0.61 2.50 

SGD 0.69 0.64 2.41 

 SGD 0.80 0.52 2.94 

 ASG 0.80 0.53 2.90 

SVM CRR 0.78 0.53 2.87 
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 NBR 0.77 0.54 2.82 

SVM MSC 0.76 0.56 2.73 

 SNV 0.75 0.56 2.72 

 SMO 0.74 0.59 2.59 

RF 

CRR 0.77 0.55 2.77 

SGD 0.74 0.60 2.58 

ASG 0.72 0.61 2.51 

SNV 0.67 0.66 2.31 

MSC 0.65 0.67 2.27 

NBR 0.54 0.77 1.99 

SMO 0.47 0.84 1.83 

BMA 

MSC 0.80 0.51 3.03 

SNV 0.79 0.52 2.97 

CRR 0.79 0.52 2.96 

NBR 0.78 0.54 2.85 

SMO 0.72 0.61 2.52 

ASG 0.71 0.61 2.51 

SGD 0.68 0.65 2.36 

WAPLS 

NBR 0.82 0.48 3.18 

CRR 0.81 0.49 3.10 

SNV 0.80 0.51 2.99 

MSC 0.80 0.51 2.98 

SMO 0.79 0.52 2.96 

ASG 0.71 0.62 2.47 

SGD 0.48 0.74 2.10 

GPR 

SNV 0.79 0.52 2.96 

MSC 0.79 0.52 2.94 

CRR 0.79 0.53 2.90 

NBR 0.78 0.53 2.89 

ASG 0.69 0.66 2.34 

SGD 0.65 0.69 2.21 

SMO 0.65 0.69 2.21 
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ANN 

NBR 0.80 0.51 3.01 

SNV 0.79 0.52 2.92 

MSC 0.75 0.56 2.73 

CRR 0.73 0.59 2.61 

ASG 0.70 0.63 2.44 

SMO 0.66 0.66 2.32 

SGD 0.64 0.69 2.22 

† Preprocessing column are ordered by decreasing predictive performance in each multivariate 720 

method. R2: coefficient of determination, RMSE: root mean square error, and RPIQ: ratio of 721 

performance to interquartile range. 722 

 723 

3.3.5.Comparing performances 724 

Comparing the RMSE means of preprocessing techniques (Fig. 6a), the Scott–Knott test 725 

showed a significant difference between two groups. First group is composed by NBR, MSC, 726 

SNV, and CRR, which are the preprocessing belonging to scatter–corrections. According to 727 

Scott–Knott test, all four scatter–corrections preprocessing presented statistically identical 728 

RMSE results. In this group, CRR achieved the best performance. Besides, CRR showed the 729 

smallest variation in maximum and minimum RMSE values, which is another indicator of great 730 

performance of this preprocessing in SOC prediction. The second group is formed by SGD and 731 

ASG (spectral derivatives group) plus the SMO preprocessing. This group presented inferior 732 

results. The poorest result was achieved by SGD, which presented the highest RMSE value, in 733 

average (0.65%).  734 

The comparison of multivariate methods is shown in Fig. 6b. The methods were divided 735 

in two groups. Excepting for RF, all of methods were classified into the same group, which 736 

were marked with the letter ‘a’ in the Scott Knott test. According to this, any of the methods 737 

classified in group are suitable and can be applied in SOC prediction, since statistically they 738 

were exactly the same. This result makes very difficult to decide which method showed better 739 

SOC predictive performance. SVM presented the lowest RMSE value in average and the 740 

maximum and minimum RMSE had the smallest scattering. This result is an indication of the 741 

great performance of SVM in predict SOC. 742 

 743 
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 744 

Figure 6. Comparison between means of preprocessing techniques (a) and multivariate 745 

methods (b). Dotted line represents maximum and minimum RMSE values. Letters represent 746 

the results of Scott–Knott test (significance level of α = 0.1). 747 

 748 

3.3.6.Time to process the models in R  749 

The best multivariate method is, presumably, the one that produces the best predictive 750 

ability with a robust accuracy result. Nonetheless, the rules to decide which method is better or 751 

which algorithm is more likely to use, it seems to be a tough decision. To complement this 752 

assessment, since the methods revealed prominent results, the time to process each model in R 753 

was calculate. In order to find which of the nine methods indicate the lowest time–consuming, 754 

the averages of seven preprocessing models were determined (Fig. 7). This procedure required 755 

to run the models in the same computer. The time to process the modeling are influenced by 756 

several factors such as, computation system, number of observations, number of variables in 757 

the prediction model, method used, etc. BMA and MLR were the more efficient being the 758 

lowest time–consuming methods, where the average modeling was processed in 0.20 and 0.33 759 

min, respectively. The next three methods, ANN, GPR, and SVM, required around 1.58 and 760 

1.69 min to process the modeling. PLSR and RF started to increase the time, requiring 2.69 and 761 
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3.52 min, respectively to process the models. The least efficient methods were PCR and 762 

WAPLS with exceedingly long computation time (7.38 and 9.37 min, respectively).  763 

The evaluation of the time consumed reveled that BMA was the most efficient method. 764 

As SVM produced great predictive performance overall (Table 1) and its time–consuming was 765 

acceptable (1.69 min), it can be considered a solid method to SOC prediction. WAPLS and 766 

PCR were the less efficient methods. However, PCR can be replaced by PLSR method since 767 

they showed similar performance for SOC prediction and PLSR took less time to process the 768 

models in R. An alternative, instead of using WAPLS, is to apply GPR, since kernel function 769 

speeds the process and the performance of models are not significantly diminished. 770 

 771 

 772 

Figure 7. Time to process the models in R. For each method, the average of seven 773 

preprocessing models was considered.  774 

 775 

3.4.CONCLUSIONS 776 

 777 

The study explored a systematic methodology in SOC prediction using Vis–NIR 778 

spectroscopic data to support the choices of spectral preprocessing and multivariate method. 779 

Regarding the preprocessing techniques, scatter–correction group (NBR, MSC, SNV, and 780 

CRR) showed improved prediction capability. Overall, continuum removal preprocessing 781 

produced the greatest predictive result, which confirms the potential of this preprocessing in 782 

predicting SOC. However, spectral derivatives preprocessing group, which include SGD and 783 

ASG, showed superior results for SVM and RF methods revealing their capability to better 784 

handle derivative transformation. In the multivariate methods, excepting for RF, all of methods 785 
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presented robust prediction. The highest model accuracy for SOC prediction was found 786 

applying WAPLS method and NBR preprocessing (R2 = 0.82, RMSE = 0.48%, RPIQ = 3.18). 787 

The systematic methodology applied in this study can improve reliability for SOC 788 

determinations by examining how techniques of preprocessing and multivariate methods affect 789 

spectral analyses. The quantification of SOC is able to boost up soil properties information and 790 

supply digital soil mapping approach into developing soil properties maps. 791 
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4 ARTICLE 3: Alrad Spectra: a graphical user interface in R to perform preprocessing, 1 

multivariate modeling and prediction using spectroscopic data3 2 

 3 

Abstract  4 

This paper describes the implementation of a R graphical user interface (GUI) named Alrad 5 

Spectra. It uses spectroscopic data to process the spectra and then generate models to predict 6 

the Y variable. The GUI was developed to accomplish tasks such as perform a large range of 7 

spectral preprocessing techniques, implement several multivariate calibration methods, 8 

statistics assessment, graphical output, validate the models using independent data sets, and 9 

predict unknown Y variables. Alrad Spectra has four main modules: Import Data, Spectral 10 

Preprocessing, Modeling, and Prediction. The capacity of performing multiple tasks, being free 11 

and open-source, easy to operate, and requiring no initial knowledge of R programming 12 

language are features that make Alrad Spectra an useful tool for general public, researches, 13 

precision agriculture managers, and for the usage in analytical laboratories. The implementation 14 

of Alrad Spectra is demonstrated by applying visible near-infrared reflectance spectroscopy for 15 

soil organic carbon prediction. 16 

Keywords: GUI; R environment; multivariate calibration; spectral preprocessing. 17 

 18 

4.1.INTRODUCTION 19 

Alrad Spectra is a graphical user interface (GUI) implemented in R programing language 20 

[1] that was developed to perform preprocessing, multivariate modeling and prediction using 21 

spectroscopic data. The features of Alrad Spectra include: i) import large database files; ii) 22 

perform a large range of spectral preprocessing and transformation techniques; iii) implement 23 

several multivariate calibration methods, which can provide well-fitted and accurate models; 24 

iv) provide statistics assessment; v) deliver graphical output; vi) validate the models using 25 

independent data sets; and vii) predict unknown Y variables. 26 

Alrad Spectra encompasses the following steps: import data file, data exploration, 27 

spectral preprocessing, modeling, and prediction. Variations in the spectral data, which are 28 

caused by chemical and physical characteristics, can be modeled in conjunction with the target 29 

information. Spectral data preprocessing is an important step in the spectra analysis, which 30 

involves specific processing on the raw data. To standardize and transform spectra, remove 31 

                                                           
3 Article was submitted to Chemometrics and Intelligent Laboratory Systems. 
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noise, emphasize features, and improve accuracy of subsequent quantitative analysis [2], in 32 

general, it is necessary to apply techniques of preprocessing. Spectral data preprocessing has 33 

been identified as an indispensable part of spectral data analysis and has shown its importance 34 

on subsequent modeling tasks. The modeling step is accomplished by applying multivariate 35 

calibration methods. They have been commonly used to construct well-fitted models to 36 

determine the chemical components of interest. The application of linear regression, ordinary 37 

least-squares regression, data mining and machine learning algorithms are examples of 38 

modeling methods used in Alrad Spectra.  39 

Alrad Spectra runs in R, which is an open-source, powerful statistical programming 40 

language that has the latest statistical techniques with thousands of add-on packages available 41 

on the download servers. The growing importance of R has been huge in the last years. For 42 

Tippmann [3], there is a trend for many academics to wean themselves off commercial software 43 

and dive in the free, open-source, and popular data-analysis tool. R has become one of the most 44 

requested statistical computing language and programming environment. The GUI in R came 45 

to supply users' needs by incorporating a user-friendly interface, in which there is no need to 46 

spend time learning how to deal with functions and its arguments, and remembering a lot of 47 

commands.  48 

For some users, the limitation of R is the implementation of functions, which must be 49 

called as text commands, and the user is required to find the proper packages that will 50 

accomplish specific tasks, recall the operations, and its argument options. To facilitate the 51 

routines for users, Alrad Spectra was developed to compensate this requirement. It has the 52 

advantages of providing a user-friendly GUI, being free and easy to operate, it requires no initial 53 

knowledge of R programming language, and it is the first of its kind in R. Plus, Alrad Spectra 54 

can process spectroscopic data from soils, water, grains, food, vegetation, etc. 55 

The aim of this paper is to describe the development of Alrad Spectra by performing 56 

spectral preprocessing, utilizing multivariate calibration modeling to predict the Y variable 57 

using spectroscopic data. The implementation of Alrad Spectra is demonstrated by using soil 58 

Visible Near-infrared (Vis-NIR) reflectance spectroscopy data to predict of soil organic carbon 59 

(SOC). The description includes data entry procedure, spectral data preprocessing, modeling 60 

process, prediction statistics assessment, and SOC prediction. 61 

 62 

4.2.SOFTWARE 63 

The Alrad Spectra runs under R version 3.0 or higher. The AlradSpectra package is 64 

sited at open source community github.com repository (<github.com/AlradSpectra>). The 65 
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devtools package is required to download and install Alrad Spectra from the source-website. 66 

The commands to install, load, and initialize AlradSpectra package in R are shown in Fig. 1. 67 

As Alrad Spectra is operated in a user-friendly graphical interface, all of the operations and 68 

parameters required for chemometric analysis can be set through the GUI. Spectral data can be 69 

loaded, saved, processed and analyzed through GUI components. Alrad Spectra combines 70 

commands, functions and packages creating an easy and interactive application freely accessed 71 

by the public (GPL-3 License).  72 

 73 

 74 

Fig. 1. Commands to install, load and initialize Alrad Spectra in R. 75 

 76 

4.3.GUI DESCRIPTION  77 

Alrad Spectra was designed using the toolkit implementation of RGtk2 package [4], 78 

which facilities the R language for programming graphical interfaces using Gtk (Gimp Tool 79 

Kit). The required packages to build Alrad Spectra for each stage are listed in Table 1.  80 

 81 

Table 1. Packages required to implement Alrad Spectra. 82 

Component R Package* Reference 

Graphical Integration 
devtools 

gWidgetsRGtk2 

[5] 

[6] 

Descriptive statistics fitdistrplus [7] 

Levene’s Test car [8] 

Plots 

ggplot2 

graphics 

gridExtra 

[9] 

[1] 

[10] 

Spectral Preprocessing 

clusterSim 

pls 

prospectr 

[11] 

[12] 

[13] 

Modeling and Prediction 
caret 

e1071 

[14] 

[15] 
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Modeling and Prediction 

elmNN 

kernlab 

pls 

randomForest 

[16] 

[17] 

[12] 

[18] 

* Package dependencies are also installed. 83 

 84 

The diagram of Alrad Spectra development showing the workflow in sequential order is 85 

illustrated in Fig. 2. Alrad Spectra interface has a main menu with four different modules, which 86 

are titled: Import Data, Spectral Preprocessing, Modeling and Prediction. The first module is 87 

used to import data, view the imported data in tabular form, view the imported spectral curves, 88 

and view the descriptive statistics and histogram of the Y variable. After importing the data, the 89 

next module performs the desired spectral preprocessing. In Modeling module, the interface 90 

automatically loads the original or the preprocessed spectra, when previously executed, 91 

allowing the selection of input data for modeling. Next, the size of validation set must be 92 

selected. After selecting the preprocessing and setting the validation set size, the user is able to 93 

split the data into training and validation groups. After splitting, the user can also test the 94 

homogeneity of variances of the groups, view descriptive statistics and view a boxplot of 95 

training and validation groups. There are six modeling methods present in Alrad Spectra. Each 96 

method offers tuning parameters. The tuning is essentially selecting the best parameters for an 97 

algorithm to optimize its modeling performance given a working environment. The Prediction 98 

module can validate the models using an independent data set and predict the Y variable using 99 

spectroscopic data only. The four main modules are described individually in the subsequent 100 

sections.  101 

 102 
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 103 

Fig. 2. Flowchart of Alrad Spectra. 104 

 105 

4.3.1.Import Data module 106 

The graphical interface of Alrad Spectra is presented in Fig. 3. The Import Data module 107 

enables the user to load data in text file (.txt) or comma-delimited values (.csv) file formats by 108 

clicking the browsing the file or typing the file path. The samples have to be placed in rows and 109 
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the variables in columns. The user needs to set the file parameters as follow: file separator 110 

(usually comma, semicolon or tab), decimal separator (dot or comma), whether the file has a 111 

header (first row has column names), write in which column the spectral data starts and ends, 112 

write the first and last wavelength of the spectrum, and lastly, indicate the column that contains 113 

the Y variable and give it a name. These parameters will be required in preprocessing and 114 

modeling processes. The ‘Import file’ runs the commands to load the data, the ‘View data’ 115 

shows the data as a table, and the ‘View imported spectra’ shows the original spectral curves, 116 

while the ‘View Y descriptive statistics’ shows the descriptive statistics of the Y variable in a 117 

text dialog (fitdistrplus package). The ‘View Y histogram’ displays a colorful histogram 118 

of the Y variable (ggplot2 package). All images can be saved using the ‘Save plot’ the plot 119 

window. 120 

 121 

 122 

Fig 3. Graphical user interface of Alrad Spectra showing the Import Data module. 123 

 124 

4.3.2.Spectral Preprocessing module 125 

The Spectral Preprocessing module will be functional only after properly data file 126 

importation in the first module. Alrad Spectra offers a total of nine preprocessing: smoothing, 127 
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binning, absorbance, detrend, continuum removal, Savitzky-Golay derivatives (SGD), standard 128 

normal variate (SNV), multiplicative scatter correction (MSC), and normalizations. They are 129 

the most commonly used preprocessing steps of spectra. In each preprocessing tab, there is a 130 

‘View spectra’ button, which allows to view the preprocessed spectral curves, which can be 131 

saved by ‘Save plot’ in the plot window. The ‘Save preprocessed spectra’ permits to save the 132 

spectral data in text file (.txt) or comma-delimited values (.csv) file formats. A selection of 133 

preprocessing contains parameters to be defined by the user. Spectral preprocessing 134 

descriptions and mathematical procedures are discussed in the next section. 135 

 136 

4.3.2.1.Smoothing 137 

It is a simple moving average of a spectral data using a convolution function [13]. The 138 

moving average is the most common smoothing in spectral data, mainly because it is the easiest 139 

and comprehensible filter. The moving average smoothing is ideal for reducing random noise 140 

while retaining a sharp step response. In this preprocessing the user is requested to choose the 141 

number of smoothing points. In the prospectr package, the smoothing is implemented by the 142 

movav function. The equation of moving average filter is written below (Eq. 1). 143 

 144 

S𝑖 = 
1

M
 ∑ 𝑥

M−1

𝑗=0

[i+j] (1) 

where, x is the original reflectance value (i = 1, 2, …, N), Si is the output signal, and M is the 145 

number of points used in the moving average. 146 

 147 

4.3.2.2.Binning 148 

Binning is a preprocessing technique used to reduce the effects of minor observation 149 

errors by computing average values of a spectral data. To perform spectral binning, the bin size 150 

has to be specified. The original spectral data values are replaced by a value representative of 151 

that interval (bin size). Spectral binning is a common technique used for high-throughput data 152 

preprocessing. The binning is implemented by the binning function in the prospectr 153 

package.  154 

 155 

 156 

 157 
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4.3.2.3.Absorbance 158 

Absorbance spectroscopy is an analytical technique based on measuring the amount of 159 

light absorbed by a sample at a given wavelength. The reflectance to absorbance transformation 160 

is obtained by running equation 2 in R console. 161 

 162 

A =  log10
1
R⁄  (2) 

where, A is the Absorbance, log10 is the logarithm base 10, and R is the Reflectance. 163 

 164 

4.3.2.4.Detrend 165 

Detrend normalizes the spectral data by applying a standard normal variate 166 

transformation followed by fitting a second-degree polynomial regression model and returning 167 

the fitted residuals [19]. Detrend is often applied to remove the effects in the cases where a 168 

constant, linear, or curved offset is present in the spectral curve. The effect of detrend is to 169 

remove low-frequency variance. Detrending in essence is equivalent to high-pass filtering. For 170 

example, the variance at low frequencies is diminished relative to variance at high frequencies. 171 

The Detrend preprocessing applies the detrend function in the prospectr package.  172 

 173 

4.3.2.5.Continuum removal (CR) 174 

The CR technique, proposed by Clark and Roush [20], consists of removing the 175 

continuous features of the spectra and is often used to isolate specific absorption features 176 

present in the spectrum to minimize the noise. The continuum is represented by a mathematical 177 

function used to separate and highlight specific absorption bands of the reflectance spectrum 178 

[21]. The CR is computed by identifying the local reflectance spectrum maxima points, and 179 

then, these points are connected by linear interpolation to form the continuum reflectance. The 180 

continuumRemoval function allows to compute the continuum removed values from 181 

prospectr package. The parameters to be defined are the number of smoothing points, order 182 

of polynomial, and order of derivative. The mathematical description of CR is presented below 183 

(Eq. 3). 184 

 185 

𝜑𝑖 = 
𝑥𝑖
𝑐𝑖
;  𝑖 =  {1, … , 𝑝} (3) 



90 

 

where, xi is the original reflectance values and ci is the continuum reflectance values at the ith 186 

wavelength of a set of p wavelengths, and φi is the final reflectance value after continuum 187 

removed. 188 

 189 

4.3.2.6.Savitzky–Golay derivative (SGD) 190 

Derivatives are a common technique performed to remove unimportant baseline signal 191 

from samples by taking the derivative of the measured responses with respect to the variable 192 

number (wavelength). This preprocessing has the ability to remove both additive and 193 

multiplicative effects in spectra. The Savitzky-Golay derivatization algorithm [22] requires 194 

selection of smoothing points (filter width), the orders of polynomial and derivative. The SGD 195 

is implemented by the savitzkyGolay function in the prospectr package. The mathematical 196 

description of SGD is given by equation 4. 197 

 198 

𝑥𝑗 =
1

N
∑𝑐ℎ

𝑚

−𝑚

𝑥𝑗+𝑚 (4) 

where, xj is the new value, N is a normalizing coefficient, m is the number of neighbor values 199 

at each side of j and ch are pre–computed coefficients, that depends on the chosen polynomial 200 

and derivative orders. 201 

 202 

4.3.2.7.Standard normal variate (SNV) 203 

SNV is frequently performed in spectral data to remove scatter. It is applied to every 204 

spectrum individually. The average and standard deviation of all points for the spectrum is 205 

calculated. Every data point of the spectra is subtracted from the mean and divided by the 206 

standard deviation. SNV is designed to operate based on centering the underlying linear slope 207 

of each individual sample spectrum (Eq. 5) [19]. The SNV is implemented by 208 

standardNormalVariate function in prospectr package. 209 

 210 

SNV =
𝑥𝑖 − 𝑥 𝑖
𝑠𝑖

 (5) 

where, xi is the original reflectance, x̅i is the mean the original reflectance, si is the standard 211 

deviation of the original reflectance. 212 

 213 

 214 
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4.3.2.8.Multiplicative scatter correction (MSC) 215 

MSC is achieved by regressing a measured spectrum against a reference spectrum and 216 

then correcting the measured spectrum using the slope and intercept of this linear fit. This 217 

preprocessing technique has proven to be effective in minimizing baseline offsets and 218 

multiplicative effect [23]. The outcome of MSC, in many cases, is very similar to SNV, except 219 

SNV corrects each spectrum individually and does not need the entire data set. The pls package 220 

includes the msc function for MSC preprocessing in R. The mathematical description of MSC 221 

is given by equation 6. 222 

 223 

𝑀𝑆𝐶 =
𝑥𝑖 − 𝑎𝑖
𝑏𝑖

 (6) 

where, xi is the original reflectance value, ai and bi are the regression coefficients for sample i. 224 

 225 

4.3.2.9.Normalization 226 

Normalization means adjusting values measured on different scales to a common scale. 227 

Simple normalization is a common approach to multiplicative scaling problem. Normalization 228 

preprocessing refers to the creation of shifted and scaled versions of spectral data, where these 229 

normalized values eliminate scattering effects [2]. If the relationship between variables is the 230 

most important aspect of spectral data, then normalization is recommended. Five types of 231 

normalization were included in Alrad Spectra: standardization, normalization in range, quotient 232 

transformation, normalization, and normalization with zero being the central point. 233 

Normalization preprocessing algorithms are implemented by data.Normalization function 234 

in clusterSim package.  235 

 236 

4.3.3.Modeling module 237 

In the Modeling module, the first step requires to select the input data for modeling 238 

process. In the combo box, will be display the imported spectral data, called Original and the 239 

spectral preprocessing names if previously performed. When the preprocessing is performed 240 

more than one times (i.e. using different parameters, when available) the preprocessed data 241 

selected in this step corresponds to the last preprocessing. After selecting the input data, the 242 

user chooses the size of the validation set, in percentage. The split data is accomplished by 243 

randomly dividing the observation samples. The selection of validation set ranges from 5% to 244 

50%. The samples that are not included in the validation are used for training the models. Only 245 

after completing the split data, the homogeneity test, descriptive statistics and boxplot can be 246 
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accomplished and the multivariate methods tab can be manipulated. Levene’s test for 247 

homogeneity of variances was implemented to verify the assumption that variances are equal 248 

across random selection of validation and training groups. The descriptive statistics and the box 249 

plot of Y variable can be visualized using their respective buttons. To perform the modeling 250 

with different preprocessing, the user must select the preprocessing of interest and repeat the 251 

split data by clicking the ‘Split data’ button. The modeling covers different methods, including 252 

multiple linear regression [24], partial least squares regression [25], support vector machines 253 

[26], random forest [27], artificial neural network [28], and Gaussian process regression [29]. 254 

In each method, tuning parameters are presented in order to achieve the best fitted model. The 255 

trainControl function in caret package generates parameters that further control how 256 

models are created, with possible values. One of these parameters are the resampling method, 257 

which is implemented to adjust the best fitted models. The resampling methods utilized are ‘cv’ 258 

(K-fold cross-validation), ‘repeatedcv’ (repeated K-fold cross-validation), ‘LOOCV’ (leave-259 

one-out cross-validation), ‘LGOCV’ (leave-group-out cross-validation), ‘boot’ (bootstrap), 260 

‘boot632’ (0.632 bootstrap), ‘oob’ (out-of-bag error estimates, only for tree models), and 261 

‘none’. For ‘LOOCV’, no uncertainty estimates are given for the resampled performance 262 

measures. The number of folds and resampling iterations controls the number of folds in ‘cv’ 263 

and number of resampling iterations for ‘boot’ and ‘LGOCV’. The number of repetition applied 264 

only to ‘repeatedcv’. The model building and estimation process is achieved by the caret 265 

package. This package has a set of functions that attempt to streamline the process for creating 266 

predictive models. The train function can be used to evaluate the effect of model performance 267 

using optimal tuning parameters [14]. Once the modeling is completed, ‘View variables 268 

importance’ shows the importance of each variable for the model in a scale of 0 to 100. The 269 

‘Prediction statistics’ shows the training and validation statistical assessments, and ‘View 270 

measured vs. predicted’ shows the scatterplot for training and validation groups with its 271 

prediction statistics. In PLSR model, the partial least squares (PLS) components vs. RMSE 272 

values figure was included. The modeling methods used in Alrad Spectra are discussed in the 273 

sections bellow. 274 

 275 

4.3.3.1.Multiple linear regression (MLR) 276 

MLR is a statistical method that uses several explanatory variables to predict the outcome 277 

of a response variable in a simple linear model [30]. MLR assumes the relationships between 278 

independent variables and dependent variable are linear. Another important assumption is 279 

absence of multicollinearity, the independent variables are not highly correlated, presence of 280 
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homoscedasticity and normality. Presuming these assumptions, a robust prediction can be 281 

achieved using a relatively simple algorithm. The tuning parameter in MLR method to be 282 

defined by the user are the band interval, resampling method, number of folds or resampling 283 

iterations, and number of repetitions. MLR is implemented by the generalized linear model with 284 

stepwise feature selection and the best fitted model is chosen by Akaike information criterion 285 

(AIC) [31]. The glmStepAIC function, in the caret package, is applied in the context of model 286 

selection to find the best fitted model involving a subset of predictors. 287 

 288 

4.3.3.2.Partial least squares regression (PLSR) 289 

PLSR can handle complicated relationships between predictors and responses, and 290 

moreover, can deal with complex modeling problems [25]. Additionally, PLSR is a method for 291 

constructing predictive models when the factors are many and highly collinear [32], which is 292 

the case of hyperspectral data. PLSR has become a popular technique used in chemometrics 293 

that is used for quantitative analysis of d reflectance spectra. [33]. The PLSR model is tuned by 294 

the caret package and the best parameters are employed to adjust the final model by the plsr 295 

function available in the pls package. In the PLSR model, the tuning parameters are resampling 296 

method, number of folds or resampling iterations, number of repetitions, and number of 297 

components to include in the model.  298 

 299 

4.3.3.3.Support vector machines (SVM) 300 

SVM are a group of supervised learning methods, which represent an extension to 301 

nonlinear models of generalized algorithm with the capability of training nonlinear classifiers 302 

[34]. Associated with SVM algorithm is the criteria of smaller number of support vectors yield 303 

a better model performance [35]. SVM models are efficient in modeling linear or nonlinear 304 

relationships and handling large databases. The caret package tunes the SVM model and the 305 

best parameters are employed to adjust the final model by svm function available in the e1071 306 

package. The tuning parameters for SVM are resampling method, number of folds or 307 

resampling iterations, number of repetitions, and Liner or Radial kernels.  308 

 309 

4.3.3.4.Random forest (RF) 310 

Random forests are a combination of tree predictors such that each tree depends on the 311 

values of a random vector sampled independently and with the same distribution for all trees in 312 

the forest [27]. RF are versatile and flexible with small or large data sets and has becoming an 313 

effective tool in prediction. Model interpretability is an issue when compared to linear models. 314 
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RF models are black boxes approach that are very hard to interpret. The tuning model is 315 

executed by the caret package, while the final model is performed by the randomForest 316 

function in the randomForest package. In Alrad Spectra, the tuning parameters for RF are: 317 

resampling method, number of folds or resampling iterations, number of repetitions, randomly 318 

selected predictors (mtry), and number of trees (ntree).  319 

 320 

4.3.3.5.Artificial neural network (ANN) 321 

In ANN, the mathematical model assigns weights between elements, and a network 322 

structure is adjusted depending on the inputs. This method implements the extreme learning 323 

machine algorithm for the single hidden layer feedforward neural networks [36]. First, it 324 

generates input weights and hidden layer bias, then calculates the output from the hidden layer 325 

based on the activation function. At the end, the trained neural network model is returned. The 326 

tuning parameters (caret package) present in the GUI for the ANN modeling are: resampling 327 

method, number of folds or resampling iterations, number of repetitions, activation function, 328 

and hidden units (number of hidden neurons). The type of activation function are: ‘purelin’ 329 

(linear), ‘radbas’ (radial basis), ‘sin’ (sine), and ‘tansig’ (tan-sigmoid). The elmtrain function 330 

in elmNN package employs the best tuned parameters and perform the final ANN model.  331 

 332 

4.3.3.6.Gaussian process regression (GPR) 333 

When the task is to predict an output value, it is possible to carry out nonparametric 334 

regression using Gaussian processes. The solution for the regression problem under a Gaussian 335 

process is to place a kernel function on each training data point [29]. Gaussian process applies 336 

a kernel function for training and predicting. In machine learning, kernel methods are a class of 337 

algorithms for pattern analysis. For many algorithms that solve regression problems, the data 338 

have to be explicitly transformed into feature vector representations. In contrast, kernel methods 339 

require only a user–specified kernel. This is called ‘kernel trick’ replacing its features 340 

(predictors) by a kernel function. Several classes of kernels can be used for machine learning 341 

and the selection of kernel is critical to the success of these algorithms [17]. In Alrad Spectra, 342 

Linear and Radial kernels are included as tuning parameters. Furthermore, the other tuning 343 

parameters are resampling method, number of folds or resampling iterations, number of 344 

repetitions, and initial noise variance. The caret package was used to train and tune the 345 

parameters for the model. The gausspr function in kernlab package performed the GPR final 346 

model. 347 
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 348 

4.3.4.Prediction module 349 

The Prediction module (Fig. 4) is implemented in order to predict the Y variable using 350 

the built models using spectroscopic data only. The prediction process requires the following 351 

conditions: file must contain only spectral data, spectral data for Prediction and Modeling must 352 

be the same length, and spectral data used in Prediction must have the same preprocessing used 353 

to build the model. The first step to perform the Prediction is to import a new data set containing 354 

the spectral data only (samples in rows and spectral variables in columns). It is possible to 355 

observe the imported data as a table in ‘View data’, and verify the spectral curves by ‘View 356 

imported spectra’. The prediction is performed by selecting the model built previously. In 357 

‘View predictions’ and ‘Save predictions’ buttons, it is possible to obtain the predicted values 358 

and save the results.  359 

 360 

 361 

Fig. 4. Graphical user interface of Alrad Spectra showing the Prediction module. 362 

 363 

 364 

 365 
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4.4.CASE STUDY 366 

4.4.1.Data set 367 

The soil spectral data example used to test Alrad Spectra consists of 595 soil samples. 368 

The soil samples were located in central region of Santa Catarina State, Brazil. The 369 

experimental data contains the value of SOC and Vis-NIR reflectance. SOC content was 370 

determined through the traditional laboratory analysis by wet combustion using the Mebius 371 

method in the digestion block [37]. Soil spectral reflectance was obtained using a FieldSpec 3 372 

spectroradiometer (Analytical Spectral Devices, Boulder, USA) with a spectral range of 400–373 

2500 nm (Vis-NIR) with 1 nm of spectral resolution. The soil data file is placed and available 374 

in the user's R library, inside AlradSpectra/exdata directory, e.g., 375 

"C:\Users\UserName\Documents\R\win-library\3.3\AlradSpectra\extdata". The first 95 soil 376 

samples were applied in Prediction module as soils with the unknown SOC value and the 377 

subsequent 500 soil samples were used in the Modeling process. The 500 samples were 378 

randomly split into 70% and 30% to train and validate the models, respectively. 379 

 380 

4.4.2.Soil spectral preprocessing  381 

The soil spectral data file was imported in Import Data module by establishing the 382 

parameters: the file separator was comma, decimal separator was dot, header was true, the 383 

spectral data started at column 4 and ended at column 2104, the spectrum number started at 400 384 

nm and ended at 2500 nm, and the Y variable was at column number 3, and was named Soil 385 

Organic Carbon (%). The Descriptive statistics of whole SOC values are shown in Table 2. The 386 

original (initial) spectral curves imported along with all spectral preprocessed curves can be 387 

visualized in Fig. 5 and evaluated qualitatively. The spectral reflectance curves showed the 388 

diversity of soils by its shape and the presence or absence of absorption bands. Categorization 389 

of soil reflectance has important implications for soil genesis, classification, and survey [38]. 390 

The smoothing preprocessing example was accomplished with 11 smoothing points. For 391 

binning preprocessing, it was applied 10 bins size. In the SGD, it was applied 5 smoothing 392 

points, first order of polynomial and first order of derivative. Normalization in range was 393 

applied in the normalization preprocessing. The absorbance, detrend, CR, SNV, and MSC 394 

preprocessing do not have parameters to be set and were also performed.  395 

 396 
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 397 

Fig. 5. The original and preprocessed spectral curves performed in Alrad Spectra. 398 

 399 
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4.4.3.Modeling and prediction of SOC 400 

A predictive model was built by each of multivariate calibration methods. The original 401 

spectral data without preprocessing plus the nine-spectral preprocessing were used as 402 

independent variables to build the models. The Levene’s test for homogeneity of variance 403 

presented a p-value of 0.918 which is greater than significance level of 5%. This result indicate 404 

that the training and validation groups were homogeneous and suitable for the modeling stage. 405 

The descriptive statistics of training and validation groups are presented in Table 2. The 406 

histogram of whole SOC values and the box plot of training and validation groups are presented 407 

in Fig. 6. 408 

 409 

Table 2. Descriptive statistics of SOC for whole, training and validation sets. 410 

SOC (%) N Min Max Mean Median Std Dev. Skewness Kurtosis 

Whole set 500 0.02 6.87 1.95 1.86 1.08 0.79 4.06 

Training set 350 0.02 6.87 1.98 1.87 1.11 0.88 4.38 

Validation set 150 0.21 4.69 1.86 1.84 1.00 0.46 2.62 

 411 

 412 

Fig. 6. Histogram (a), and box plot of training and validation groups (b) for SOC preformed in 413 

Alrad Spectra. 414 

 415 

 416 
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The prediction statistic assessment of SOC models are shown in Table 3. The results are 417 

ordered by the smallest RMSE for each method. For all models, the ‘cv’ resampling method 418 

with 10 k-folds were set as tuning parameters, expect for RF, which the resampling method was 419 

‘oob’. For the MLR models, the band interval parameter was 25 for all models. The outcomes 420 

of MLR models showed that the greatest SOC prediction was achieved when SNV 421 

preprocessing was applied, reaching a Rval
2  of 0.81, RMSEval of 0.51%, and RPIQval of 3.20. 422 

The Rval
2  of all models ranged from 0.54 to 0.81. In the PLSR models, the performances were 423 

similar than MLR, with the Rval
2  ranging from 0.56 to 0.81. The greatest SOC prediction was 424 

also achieved by SNV preprocessing once more with a Rval
2  of 0.81, RMSEval of 0.51%, and 425 

RPIQval of 2.84. In the validation performance, seven preprocessing exhibited R2 above 0.75. 426 

PLSR obtained the highest Rval
2  value over all SOC prediction model. The PLSR models were 427 

performed using 30 components. 428 

For the training set, several SVM models presented a high performance, in which most 429 

of preprocessing are considered well-fitted models with the results in predicted values similar 430 

to the observed values. For the validation set, the best performance was achieved by absorbance 431 

preprocessing with a Rval
2  of 0.78, RMSEval of 0.51%, and RPIQval of 2.55. The CR 432 

preprocessing presented the unreliable performance in SOC prediction with SVM (Rval
2  of 433 

0.61). However, in the RF models, CR preprocessing showed one of the best SOC prediction 434 

performance. The RF method showed a weak performance for original, binning, absorbance 435 

preprocessing, with a Rval
2  ranging from 0.37 to 0.43. For SVM models, the tuning parameter 436 

was Support Vector Machine with Linear Kernel, and for RF were 5 randomly predictors and 437 

500 trees.  438 

In the validation of ANN models, the preprocessing presented unreliable outcomes. The 439 

higher performance in SOC prediction was found for SNV preprocessing (Rval
2  of 0.54; RMSE 440 

of 0.71%) followed by original preprocessing (Rval
2  of 0.54; RMSE of 0.75%). The ANN model 441 

with SGD preprocessing presented the smaller SOC predictive performance (Rval
2  of 0.15; 442 

RMSE of 0.99%). In ANN models, the tuning parameters applied were ‘purelin’ activation 443 

function and 10 hidden units. GPR models can lead to substantial improvements in training the 444 

models which led to a high accuracy for training samples. However, when the model is 445 

validated the prediction statistics showed more sensible outcomes. Observing the results of 446 

validation set, the R2 value oscillated from 0.48 to 0.77, where the higher performance was 447 

achieved by absorbance preprocessing. In GPR, the tuning parameters for the modeling was 448 

composed of Linear kernel function. 449 
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    Training set   Validation set 

 Method Preprocessing  R² RMSE (%) RPIQ   R² RMSE (%)* RPIQ 

MLR 

SNV 0.84 0.43 3.24  0.81 0.51 3.20 

Smoothing 0.80 0.48 3.07  0.77 0.52 2.77 

Detrend 0.84 0.44 3.37  0.76 0.52 2.76 

CR 0.86 0.41 3.82  0.76 0.53 2.39 

Absorbance 0.84 0.43 3.58  0.76 0.53 2.59 

Normalization 0.84 0.41 3.49  0.78 0.55 2.90 

Original 0.80 0.48 3.00  0.72 0.59 2.68 

MSC 0.85 0.40 3.50  0.75 0.61 2.70 

Binning 0.63 0.65 2.18  0.57 0.71 2.19 

SGD 0.74 0.56 2.75  0.54 0.72 1.73 

PLSR 

SNV 0.84 0.42 3.47  0.81 0.51 2.84 

Detrend 0.83 0.46 3.24  0.75 0.51 2.83 

CR 0.86 0.40 3.91  0.78 0.53 3.08 

Absorbance 0.84 0.43 3.53  0.76 0.53 2.61 

Normalization 0.82 0.44 3.31  0.79 0.54 2.94 

Original 0.76 0.51 2.77  0.75 0.56 2.83 

MSC 0.85 0.40 3.72  0.76 0.57 2.55 

Binning 0.78 0.50 2.84  0.71 0.59 2.64 

Smoothing 0.79 0.50 2.96  0.70 0.60 2.41 

SGD 0.75 0.54 2.85  0.56 0.71 1.77 

SVM 

Absorbance 0.86 0.41 3.79  0.78 0.51 2.55 

SNV 0.95 0.26 5.70  0.74 0.52 2.75 

Normalization 0.94 0.26 5.81  0.75 0.53 2.48 

Original 0.80 0.48 2.98  0.74 0.56 2.81 

MSC 0.95 0.24 6.18  0.73 0.61 2.38 

Smoothing 0.80 0.51 3.04  0.68 0.62 2.03 

Binning 0.79 0.49 2.83  0.69 0.63 2.60 

Detrend 0.98 0.15 9.31  0.66 0.72 2.09 

SGD 0.99 0.10 14.16  0.53 0.77 1.93 

CR 0.99 0.10 14.27  0.61 0.85 1.61 

Table 3. The prediction statistics of SOC for each model. 
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RF 

Detrend 0.67 0.66 2.26  0.67 0.57 2.50 

CR 0.73 0.58 2.70  0.69 0.60 2.13 

SGD 0.68 0.66 2.32  0.58 0.71 1.76 

Smoothing 0.38 0.89 1.73  0.44 0.71 1.79 

SNV 0.60 0.70 2.15  0.51 0.72 1.87 

MSC 0.55 0.70 2.01  0.61 0.77 2.13 

Normalization 0.55 0.70 2.05  0.60 0.79 2.01 

Binning 0.39 0.84 1.69  0.40 0.84 1.85 

Absorbance 0.40 0.84 1.83  0.37 0.85 1.60 

Original 0.40 0.82 1.72  0.43 0.86 1.88 

ANN 

SNV 0.58 0.71 2.13  0.54 0.71 1.91 

Original 0.60 0.67 2.10  0.54 0.75 2.11 

Detrend 0.47 0.81 1.83  0.44 0.76 1.91 

Smoothing 0.43 0.86 1.80  0.40 0.76 1.67 

MSC 0.53 0.71 1.98  0.51 0.83 1.98 

Normalization 0.50 0.73 1.98  0.49 0.84 1.89 

CR 0.45 0.81 1.95  0.35 0.85 1.49 

Absorbance 0.45 0.80 1.91  0.36 0.86 1.59 

Binning 0.42 0.82 1.74  0.31 0.90 1.72 

SGD 0.19 0.98 1.57  0.15 0.99 1.27 

GPR 

Absorbance 0.85 0.42 3.69  0.77 0.52 2.65 

Normalization 0.93 0.27 5.31  0.76 0.57 2.77 

SNV 0.95 0.26 5.84  0.72 0.58 2.34 

Original 0.81 0.46 3.06  0.73 0.58 2.75 

MSC 0.92 0.29 4.87  0.76 0.59 2.81 

Detrend 0.97 0.21 7.11  0.69 0.60 2.38 

Binning 0.72 0.57 2.48  0.64 0.65 2.38 

Smoothing 0.80 0.50 3.07  0.65 0.65 1.94 

CR 0.99 0.11 14.08  0.61 0.73 1.75 

SGD 0.99 0.00 461.00  0.48 0.83 1.51 

* The results are ordered by the smallest RMSEval for each method. Multiple linear regression 450 

(MLR), partial least squares regression (PLSR), support vector machines (SVM), random forest 451 

(RF), artificial neural network (ANN), Gaussian processes regression (GPR), continuum 452 
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removal (CR), Savitzky–Golay derivative (SGD), standard normal variate (SNV), 453 

multiplicative scatter correction (MSC). 454 

 455 

The PLSR method with SNV (PLSR-SNV) spectral preprocessing yielded the greatest 456 

SOC prediction performance. The PLSR is able to show the RMSE values of all PLS 457 

components utilized to build the model (Fig. 7). The smallest RMSE was achieved with 13 PLS 458 

components, which means that this model needed 13 PLS components to achieved the best 459 

performance. The variables importance of PLSR-SNV is shown in Fig. 8a. In this figure, the 460 

importance of whole spectral variables was revealed. The most important variables in PLSR 461 

model were around 2200 nm and 1414 nm. However, there were spectral bands in the entire 462 

Vis-NIR range that presented high importance in SOC prediction. In addition, Fig. 8b provides 463 

the measured vs. predicted SOC values, with the 1:1 line for training and validation groups. 464 

The statistics assessment, R2, RMSE, and RPIQ, were displayed for training and validation 465 

groups. The closer to the 1:1 line the samples were the better was the prediction. The soil 466 

samples with high SOC content showed high dispersion in relation to 1:1 line.  467 

 468 

 469 

Fig. 7. The 30 partial least squares components vs. RMSE values of PLSR model with SNV 470 

preprocessing performed in Alrad Spectra. 471 
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 472 

 

 

Fig. 8. The variables importance (a) and measured vs. predicted SOC values and the prediction 473 

statistics for training and validation sets (b) of PLSR model with SNV preprocessing performed 474 

in Alrad Spectra. 475 

 476 

4.4.4.Predict unknown SOC 477 

To predict unknow SOC content using spectroscopic data only, a few conditions have to 478 

be accomplished as detailed in the Prediction description. The best SOC predictive model built 479 

in Modeling module was achieved by PLSR-SNV and it was selected to predict SOC of new 480 

soil samples. In this step, the 95 soil samples obtained a predicted SOC content ranging from -481 

0.21% to 3.79%. The predictions had an average SOC content of 1.88% and a standard 482 

deviation of 0.97. Prediction module offers the advantage of predict SOC using only the spectral 483 

behavior of the soil.  484 
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4.5.CONCLUSION 485 

The GUI described in this study is a user-friendly tool for chemometrics analysis using 486 

spectroscopic data. The interface offers the possibility of spectral data preprocessing, perform 487 

different modeling algorithms and predict the desired variable. In the case study, Alrad Spectra 488 

has proven to be an efficient tool in predicting soil organic carbon. All the operations can be 489 

carried out by the user without the need of R programming skills. The intentions of building 490 

Alrad Spectra were to facilitate the usage of R programming and to promote and expand the 491 

usage of reflectance spectroscopy technique. These characteristics make Alrad Spectra an 492 

useful tool for general public, researches, precision agriculture managers, and for the usage in 493 

analytical laboratories.  494 
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5 DISCUSSION 

 

Over the last 30 years, soil reflectance measurement in the laboratory has been 

increasing substantially. Studies focusing on build robust model for a given soil property has 

been developed in different regions of the globe covering various soil properties. The findings 

of articles 1 and 2 contributed to soil spectroscopy development by applying different 

combinations of preprocessing techniques and multivariate calibration methods.  

The effort dedicated over the thesis exposed the enormous potential of spectroscopic 

technique to quantify soil properties. The advantages of this technique exceeded expectations. 

Nowadays, soil spectroscopy is facing a remarkable growth. Soil properties assessment using 

standard methodologies in routine laboratory has become almost unviable. The potential of soil 

spectroscopy technique is well-known because its faster and cost-effective methods in soil 

property quantification. The members and commissions of Soil Societies should dedicate due 

attention to soil spectroscopy analyses potential.  

In this context, soil spectroscopy is established an alternative strategy using a 

chemometrics approach for soil prediction. The unification of a common protocol for soil 

spectra analyses can increase its reliability and comparability. There are no standards or 

protocols for uniform laboratory and field reflectance measurements. The lack of standards in 

this well-recognized tool to assess soil properties can yields significant problems. 

Consequently, different protocols based on the literature, experience, convenience and 

infrastructure are been established. This has becoming a considerable issue for comparing and 

sharing soil spectral data between users. Besides, the construction of soil spectral libraries can 

be affected. In the study of BEN DOR; ONG; LAU (2015), the authors proposed to establish a 

standard protocol for soil measurement in the laboratory. They confirm that the any soil 

reflectance measurement can be corrected to normalize all possible variations to a soil 

benchmark setup. For GRUNWALD; VASQUES; RIVERO (2015) the need for soil property 

data leads to a need for integration pathways fusing lab and field based soil measurements, 

proximal and remote sensor data, environmental covariates, and methods. According to the 

authors, filling existing gaps in soil data will depend on the fusion of soil environmental, 

spectral data and methods to estimate soil properties. In addition, this interdependence will 

produce spatially and temporally continuous soil maps and models across various scales. 

Initiatives like these can contribute to establish new soil spectral libraries and expand the 

existing ones. 
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Nevertheless, there is certainly still room for improvement and expansion. The 

development and adhesion of soil spectroscopy is rising in a such way that it is moving towards 

to be establish as a soil analysis technique in routine laboratories for soil management. For this 

to happen, it is necessary data harmonization addressing methods and protocols. 

Another major contribution of the thesis to promote the expansion of soil spectroscopy 

among scientists involves the development of the graphical user interface called Alrad Spectra. 

The requirement of massive R commands and codes for implementation of statistical 

procedures of both articles 1 and 2 led to the creation of this innovative tool to simplify the R 

activities. The advantages of this graphical interface are that it is a free, user-friendly tool and 

it is able to process spectral data from soils, water, grains, food, vegetation, etc. Alrad Spectra 

comes across with the intention to encourage and expand the usage of spectroscopic technique 

in R.  
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6 CONCLUSION 

 

The outcomes of the thesis have demonstrated the great performance of predicting soil 

properties using Vis-NIR spectroscopy. Apparently, soil properties that are directly related to 

the chromophores such as organic carbon presented superior prediction statistics than particle 

size. Spectral preprocessing applied in the soil spectra contributed to the development of high-

level prediction model. Comparing different spectral preprocessing techniques for SOC 

prediction revealed that the scatter–corrective preprocessing techniques presented superior 

prediction results compared to spectral derivatives. In scatter–correction technique, continuum 

removal is the most suitable preprocessing to be used for SOC prediction. In the calibration 

modeling, excepting for random forest, all of methods presented robust prediction with 

emphasis on the support vector machine. The systematic methodology applied in this study can 

improve the reliability of SOC estimation by examining how techniques of spectral 

preprocessing and multivariate methods affect the prediction performance using spectral 

analysis. The development of easy-to-use graphical user interface may benefit a large number 

of users, who will take advantage of this useful chemometrics analysis. Alrad Spectra is the 

first GUI of its kind and the expectation is that this tool can expand the application of the 

spectroscopy technique.  
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