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ABSTRACT

BOOSTING SIMD BENEFITS THROUGH A RUN-TIME AND ENERGY EFFICIENT
DLP DETECTION

AUTHOR: MICHAEL GUILHERME JORDAN
ADVISOR: MATEUS BECK RUTZIG

Multimedia applications have been widely present in embedded devices. Due to their
intrinsic nature, such application domain is benefited from Data Level Parallelism (DLP). In or-
der to improve performance-energy tradeoff, current processors enable DLP by coupling SIMD
(Single Instruction Multiple Data) engines, such as Intel AVX, ARM NEON and IBM Altivec.
Special libraries and compilers are used to support DLP execution on such engines. However,
timing overhead on hand coding is inevitable since most software developers are not skilled
to extract DLP using unfamiliar libraries. Considering the auto-vectorization through compi-
ler, although improving software productivity, it breaks software compatibility. Besides, both
methods are limited to static code analysis, which compromises performance gains.

In this dissertation, we propose a runtime DLP detection named as Dynamic SIMD
Assembler (DSA), which transparently identifies vectorizable code regions to execute in the
ARM NEON engine. Due to its dynamic fashion, DSA keeps software compatibility and avoids
timing overhead on software developing process. Results show that DSA outperforms ARM
NEON auto-vectorization compiler by 32% since it applies the partial vectorization of loops and
covers wider vectorizable regions, such as Dynamic Range, Sentinel and Conditional Loops. In
addition, DSA outperforms hand-vectorized code using ARM library by 26% reducing 45% of
energy consumption with no penalties over software development time.

Keywords: DLP. SIMD. Vectorization. ARM NEON.



RESUMO

AUMENTANDO OS BENEFÍCIOS SIMD POR MEIO DE UMA DETECÇÃO DE DLP
EM TEMPO DE EXECUÇÃO E ENERGETICAMENTE EFICIENTE

AUTOR: MICHAEL GUILHERME JORDAN
ORIENTADOR: MATEUS BECK RUTZIG

Aplicações multimídia estão amplamente presentes em dispositivos embarcados. Dev-
ido à sua natureza intrínseca, este nicho de aplicação é beneficiado pelo Paralelismo a Nível de
Dados (DLP). Para melhorar a relação performance-energia, os processadores atuais habilitam
o DLP pelo acoplamento de engines SIMD (Single Instruction Multiple Data), como Intel AVX,
ARM NEON and IBM Altivec. Bibliotecas e compiladores especiais são usados para suportar
a execução de DLP nesses mecanismos. No entanto, a sobrecarga de tempo aplicada a vetoriza-
ção através de programação manual é inevitável, uma vez que a maioria dos desenvolvedores
de software não tem habilidade para extrair o DLP usando bibliotecas desconhecidas. Con-
siderando a auto-vetorização através do uso de compilador, apesar de melhorar a produtividade
de software, tal método quebra compatibilidade de software. Além disso, ambos os métodos
estão limitados à análise de código estático, o que compromete os ganhos de desempenho.

Nesta dissertação, propomos uma detecção de DLP em tempo de execução chamada
Dynamic SIMD Assembler (DSA), que identifica de forma transparente as regiões de código
que podem ser vetorizadas para serem executadas no mecanismo ARM NEON. Devido à sua
forma dinâmica, a DSA mantém compatibilidade de software e evita a sobrecarga de tempo
no processo de desenvolvimento de software. Os resultados mostram que a DSA supera a
auto-vetorização através do uso do compilador ARM NEON em 32%, pois aplica a vetorização
parcial de loops e abrange mais regiões vetorizáveis, como Loops de Tamanho Dinâmico, Loops
Sentinela e Loops Condicionais. Além disso, a DSA supera a programação manual através do
uso da biblioteca ARM em 26% reduzindo 45% do consumo de energia sem penalidades em
relação ao tempo de desenvolvimento do software.

Palavras-chave: DLP. SIMD. Vetorização. ARM NEON.
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1 INTRODUCTION

The benefits of the classical transistor shrink may cease in 2021 (COURTLAND, 2016),

along with it, the increasing number of multimedia applications has been demanding for more

and more performance. In order to provide such performance requirements considering the te-

chnological limitation, most architectural solutions attempt to exploit some inherent parallelism

available in such applications.

In this scenario, the exploitation of Data Level Parallelism (DLP) has gained increa-

sing relevance since multimedia algorithms are plentiful of Data-Parallel Statements. The DLP

can be classified as the capability of performing operations simultaneously over multiple data.

Currently, Single Instruction Multiple Data (SIMD) engines are used in market processors to

boost multimedia application performance through DLP exploitation. ARM NEON (ARM LI-

MITED, 2008), Intel SSE/AVX (LOMONT et al., 2011) and IBM Altivec (DIEFFENDORF et

al., 2000) are SIMD engines coupled to general purpose processors (GPP) with the purpose of

benefiting from the energy-performance tradeoff on data-parallel applications. The execution

of such engines is supported by vector instructions that are applied to vectorizable regions in

code. The most significant parcel of vectorizable regions is found in loop statements, which

have the property of repeating operations over multiple data. In order to convert loops to vector

instructions, SIMD engines apply vectorization techniques such as: auto-vectorization through

compiler or hand-coding vectorization. The hand-coding vectorization consists on using low-

level functions available on specific libraries to convert vectorizable regions (loops) in SIMD

instructions during programming time. Such method requires programming expertise reducing

software productivity. The auto-vectorization technique lies on converting vectorizable regions

to SIMD instructions during compile time, which does not affect software productivity since no

specific library usage is required.

Table 1 shows some factors that inhibit the automatic loop vectorization through com-

piler. Some limitations can be overcome by combining both techniques (Lines 8 and 10 - Table

1). However, loops with dynamic behavior, such as sentinel loops, dynamic ranged loops and

conditional loops, which depend on information generated during execution time, are not ef-

ficiently vectorized by such methods since both operate during programming or compile time

(statically) (Lines 4, 9 and 12 – Table 1).
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Table 1 – Factors that limit or prevent the automatic loop vectorization
Inhibiting Factor Extent to which applies

1 No vector access pattern
If variables in a loop lack a vector access pattern, the

compiler cannot automatically vectorize the loop.

2
Data dependencies between
different iterations of a loop

Where there is a possibility of the use and storage of arrays overlapping on dif-
ferent iterations of a loop, there is a data dependency problem. A loop cannot be
safely vectorized if the vector order of operations can change the results, so the

compiler leaves the loop in its original form or only partially vectorizes the loop.

3 Memory hierarchy

Performing relatively few arithmetic operations on large data sets retrieved
from main memory is limited by the memory bandwidth of the system. Most

processors are relatively unbalanced between memory bandwidth and pro-
cessor capacity This can adversely affect the automatic vectorization process.

4
Iteration count not fi-

xed at start of loop

For automatic vectorization, it is generally best to write simple lo-
ops with iterations that are fixed at the start of the loop. If a loop does
not have a fixed iteration count, automatic addressing is not possible.

5 Carry-around scalar variables
Carry-around scalar variables are a problem for automatic vectorization because
the value computed in one pass of the loop is carried forward into the next pass.

6 Pointer aliasing Pointer aliasing prevents the use of automatically vectorized code.

7 Indirect addressing
Indirect addressing is not vectorizable because the NEON unit

can only deal with vectors stored consecutively in memory.

8
Separating access to dif-
ferent parts of a struc-
ture into separate loops

Each part of a structure must be accessed within
the same loop for automatic vectorization to occur.

9
Inconsistent length of mem-
bers within a loop structure

If members of a loop structure are not all the same
length, the compiler does not attempt to use vector loads.

10 Calls to non-inline functions
Calls to non-inline functions from within a loop inhibits vectori-
zation. If such functions are to be considered for vectorization,

they must be marked with the __inline or __forceinline keywords.

11 Source code without loops
Automatic vectorization involves loop analysis.

Without loops, automatic vectorization cannot apply.

12 if and switch statements
Extensive use of if and switch statements in loop

can affect the efficiency of automatic vectorization.

Besides both methods present performance limitations due their static fashion, the au-

tomatic vectorization and hand-coding programming also require code recompilation, which

breaks binary compatibility. To overcome such limitations, Just-in-time (JIT) compiler vec-

torization approaches emerge. The JIT compiler is capable of exploiting DLP by monitoring

vectorizable regions present in a code during runtime. By its dynamic fashion, it is possible

to vectorize loops with dynamic behavior and no code recompilation is required, since a JIT

compiled code is ISA (Instruction Set Architecture) independent. However, a JIT compiled

code generation demands more time than a binary generation, which is produced by an auto-

vectorization compiler. In addition, such method requires monitor tasks to detect vectorizable

regions, which results in performance penalties.

The solution proposed in this dissertation lies on removing the dependency of static

DLP exploitation methods through an engine that is capable of exploiting DLP during execu-

tion time. In this way, we created the Dynamic SIMD Assembler (DSA). The DSA can analyze

vectorizable regions during runtime and generate SIMD instructions based on such regions.

By operating at runtime, DSA increases software productivity, keeps binary compatibility and
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embraces parallelism opportunities that have both static and dynamic behavior. Unlike a JIT

compiler approach, the DSA implies in no performance penalties, since it detects vectoriza-

ble regions parallel to the binary execution by using its own hardware. Considering the DSA

system proposed in (JORDAN, 2018), it is capable of outperforming the ARM NEON auto-

vectorization technique in 32%. When compared to the ARM NEON library usage approach

(Hand-vectorized Code), it can outperform such method by 26%. In addition, the DSA achieves

45% of energy savings over the ARM original execution.

The remaining chapters of this dissertation are based on the Integrated Scientific Arti-

cles format, where the formatting imposed by each conference will be respected. Chapter 2

presents the conceptual analysis. Chapter 3 presents the related works. In Chapter 4, the des-

cription and implementation of the DSA is addressed. Chapter 5 discusses the methodology

used to perform experiments. Scientific articles are presented during chapter 6, 7 and 8, where

the order of presentation respects the submission dates of each article. In chapter 9 there is a

discussion about the articles. Finally, the conclusion will be presented during chapter 10. It is

important to emphasize that all the articles present in this dissertation were submitted and appro-

ved in the following conferences: Improving Software Productivity and Performance through a

Transparent SIMD Execution (Chapter 6 - SBCCI), Runtime Vectorization of Conditional Code

and Dynamic Range Loops to ARM NEON Engine (Chapter 7 - SBESC) and Boosting SIMD

Benefits through Run-time and Energy Efficient DLP Detection (Chapter 8 - DATE).
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2 CONCEPTUAL ANALYSIS

This chapter provides a quantitative sight of the concepts mentioned in this work. The

section 2.1 presents all types of parallelism in which an application may present. Section 2.2

discusses Conventional SIMD Architectures. Section 2.3 presents Code Vectorization techni-

ques applied to SIMD Architectures.

2.1 ILP, TLP AND DLP EXPLOITATION

Pipelining technique (HENESSY; PATTERSON 2011) is able to overlapping the execu-

tion of instructions when they are data independent. The potential overlap among instructions

is denominated Instruction Level Parallelism (ILP) since the instructions can be executed in

parallel in order to accelerate applications. However, the study suggested by (WALL, 1991),

proves that there are acceleration bounds related with ILP exploitation. The approach takes five

processors, ranging from a best one (perfect branch predictor, perfect memory alias analysis

and perfect register renaming) to a worst one (branches always mispredicted, no alias analysis,

no register renaming). It is shown that the limits of ILP could be as high as 20 instructions per

cycle in the perfect processor, for most of the benchmarks.

To overcome such limit, many micro-architectural techniques like superscalar execution,

out-of-order execution, register renaming and speculative execution have been applied conside-

ring the hardware perspective (HENESSY; PATTERSON 2011). From the software perspective,

compile and programming techniques that involves prediction of data and control flow, loop un-

rolling and software pipelining (ALLEN et al., 2001) (AHO et. al, 2014) are constantly applied.

Thread Level Parallelism (TLP) emerged as a performance and energy alternative due to

the limits on performance gains imposed by ILP exploitation. The TLP Exploitation is achieved

when each processor executes threads of the same application over different processors using

the same or different data.

According to the Amdahl’s Law (AMDAHL, 1967), the serial portions of a program that

cannot be executed in parallel limits the speed-up provided by the TLP technique. Plenty rese-

arches (HILL et al., 2008) (SUN et al., 2010) reevaluate Amdahl’s law premise. To expand the

ILP and TLP exploitation the Data Level Parallelism (DLP) emerges.

In contrast to the TLP concept, which divides different operations to execute over the
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same or different data concurrently, the DLP is based on running the same operation over a da-

taset. DLP opportunities are mostly present in application loops, where operations are executed

multiple times over vector structures.

To improve applications performance by exploiting DLP, SIMD (Single Instruction Mul-

tiple Data) architectures, such as ARM NEON (ARM LIMITED, 2008), Intel SSE/AVX (LO-

MONT et al., 2011) and IBM Altivec (DIEFFENDORF et al., 2000), are widely present in

market processors. Such SIMD architectures are usually coupled with special vector libraries

and compilers that enable the DLP exploitation over applications.

2.2 SIMD ARCHITECTURES

Considering Patterson and Henessey’s approach (HENESSY; PATTERSON 2012), there

are three SIMD variations: Vector Architectures, SIMD Instruction Set Extensions and Graphic

Processing Units (GPUs).

2.2.1 Vector Architectures

Vector Architectures are based on applying SIMD instructions into a single processor’s

execution pipeline. Such approaches are easier to understand and compile than other SIMD

variations since there are few vector instructions that operate over a fixed data vector length and

their vector loads and stores specify regular access pattern, leading to less memory misalign-

ment issues.

However, vector architectures are considered more expensive than the SIMD Extensi-

ons, mainly due the cost of sufficient dynamic random access memory (DRAM) bandwidth,

given the general reliance on caches to meet memory performance demands on conventional

microprocessors.

Vector architectures gather sets of data scattered about memory, place them into large,

sequential register files, operate on data in those register files and then store the results back into

memory. A single instruction operates over data vectors, which results in dozens of register-to-

register operations on independent data elements. These large register files work as controlled

buffers to hide memory latency and to take advantage of the large memory bandwidth. Since

vector loads and stores are deeply pipelined, the program relies on long memory latency only

once per vector load or store and once per element load/store, thus amortizing the latency over
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multiple elements.

Figure 1 shows a comparison between Scalar and Vector Registers. As it can be seen,

Vector Registers can hold multiple elements of n-bit per register while the Scalar Register holds

a single n-bit element per register. In such case, the Scalar Register has 16 scalar registers hol-

ding 32-bit element each while the Vector Register has 16 vector registers holding 8 elements,

32-bit per element.

Figure 1 – Scalar Registers vs Vector Registers

Vector Architectures are usually composed of: Vector Functional Units, Vector Regis-

ters, Vector Load-Store units and Scalar Registers. Figure 2 presents a Vector architecture

example (VMIPS). As can be seen, the VMIPS is composed of:

• Vector Registers: VMIPS has eight vector registers holding 64 elements, 64-bit per ele-

ment. Such registers must provide enough ports to feed all the vector functional units.

The VMIPS has 16 read ports and 8 write ports that are connected to the functional unit

inputs or outputs through crossbar switches. The large number of ports is one of the

reasons of the long memory latency;

• Vector Functional Units (FUs): Each unit is fully pipelined, which means that all units

are capable of starting a new operation on every clock cycle. A control unit is needed

to detect structural and data hazards. The functional units present on the figure are the

Floating-point FUs (FP add/subtract, FP multiply, FP divide), Integer FU and Logical FU;

• Vector load/store unit: The vector memory unit load or stores a vector to or from memory.

The VMIPS vector loads and stores are also fully pipelined. In this way, words can be

moved between the vector registers and memory with a bandwidth of one word per clock

cycle (after an initial latency). This unit is also capable of handle scalar loads and stores;

• Scalar Registers: Such registers provide input data to the vector functional units. They

are also responsible for computing addresses to pass to the vector load/store unit. These



20

are the normal general-purpose and floating-point registers present in the original MIPS.

One input of the vector functional units locks scalar values as they are read out of the

scalar register file;

• Cross-bar: Responsible for connecting Vector Registers, Functional Units and Load/Store

Units.

Figure 2 – VMIPS Overview

2.2.2 SIMD Instruction Set Extensions

The SIMD Instruction Set Extensions (SIMD Extensions) are found in most modern

instruction set architectures that support multimedia applications. Considering x86 architectu-

res, the SIMD instruction extensions started with the MMX (Multimedia Extensions) in 1996,

which were followed by several SSE (Streaming SIMD Extensions) versions in the next decade.

Nowadays, such architectures are commonly seen in Intel AVX and ARM NEON instruction

set extensions.

SIMD Extensions have been coupled to general-purpose processors since many multi-

media applications do not fully explore the vector structure sizes offered by Vector Architec-

tures. By partitioning such structures, a vector engine could perform simultaneous operations
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on short vectors, offering more flexible vector operations. A vector structure of 128-bit, could

perform parallel operations over sixteen 8-bit operands, eight 16-bit operands, four 32-bit ope-

rands or two 64-bit operands. Unlike vector machines with large register files, which can hold

up to sixty-four 64-bit elements each of 8 vector registers (VMIPS), SIMD Extensions run over

fewer operands and consequently use much smaller register files.

In contrast to vector architectures, SIMD Extensions fix the number of data operands in

the opcode leading to the addition of hundreds of instructions. Vector architectures have a vector

length register that specifies the number of operands for the current operation. Besides, SIMD

Extensions do not offer the more refined addressing modes present in vector architectures. Such

particularities make it harder for the compiler to generate SIMD code and increase the difficulty

of programming for SIMD extensions.

However, besides such weaknesses, Multimedia SIMD Extensions are prominent due

to their smaller cost to add to the standard arithmetic unit. Another advantage of using SIMD

Extensions lies on the fact that a lot of memory bandwidth is needed to support a vector archi-

tecture, which many computers and embedded devices do not support. Also, the use of short,

fixed-length of SIMD extensions makes it easy to introduce flexible instructions that can be

applied to new media standards, such as instructions that consume fewer of more operands than

vector can produce or instructions that perform permutations.

An example of SIMD Multimedia Extension is the ARM NEON engine. The ARM

NEON is a solution for exploiting Data Level Parallelism on embedded devices. It works as a

co-processor, where vector statements (NEON statements) are executed in their own pipeline.

Figure 3 – ARM A8 Processor Schematic

Figure 3 presents a simple ARM A8 Processor schematic. As it can be seen, such archi-

tecture operates through the use of Instruction and Data queues to perform vector instructions
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in the ARM NEON/VFP Engine. ARM A8 has a faster pipeline than the NEON Engine, which

means that scalar instructions and vector instructions are executed over independent pipelines.

Some ARM A8/NEON Engine aspects are:

• NEON instructions execute in their own 10-stage pipeline;

• ARM can dispatch 2 NEON instruction per cycle to the Instruction Queue;

• 16-entry instruction queue holds NEON instructions until they can enter the NEON pipe-

line;

• 12-entry data queue holds operations results until they can be received by the ARM A8

general-processor;

• The ARM general-processor will not stall until the NEON queue fills or some data ha-

zard between scalar and vector instruction is found. That means that the ARM general-

processor can dispatch several NEON instructions while performing other work until the

NEON finishes its execution.

Figure 4 shows the different degrees of parallelism that can be obtained through the 128-

bit wide NEON Engine depending on the type of data involved in the SIMD instruction. As it

can be seen, we can perform up to 16 operations simultaneously with 8-bit integer data (.I8).

With 32-bit float data (.F32), only 4 operations can be performed in parallel.

Figure 4 – ARM NEON Engine
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2.2.3 Graphic Processing Units

The GPU offers higher performance potential on exploiting thread level parallelism than

traditional multicore computers since it is composed of thousands of processing elements. In

2006, NVIDIA created the Compute Unified Device Architecture (CUDA), a parallel proces-

sing technology that enables acceleration in general-purpose computing performance. With the

specific programming language CUDA C [NVIDIA 2011], it is possible to control such proces-

sing elements and, in this way, it is possible to explore not only graphical applications but also

to optimize general-purpose applications with high data-level parallelism.

Like vector architectures, GPUs work well with DLP issues. Both styles have gather-

scatter data transfer and mask registers, and GPU processors have even more registers than do

vector processors. In addition, both vector architectures and GPUs do not abstract hardware

complexity, which demands high programming expertise to generate efficient code, affecting

software productivity. Unlike most vector architectures, GPUs also rely on multithreading

within a single multithread SIMD processor to hide memory latency. Besides, the GPU has

many simple functional units and no scalar processor, opposed to a few deeply pipelined units

like a vector processor.

2.3 CODE VECTORIZATION

In 1970 decade (RUSSEL, 1977), the first computer to successfully implement a vector

processor emerged. Since then, with the multimedia applications arise, vector processors and

SIMD engines are present in most computers and embedded devices. Such processors have their

potential exploited by Code Vectorization techniques. Code Vectorization is an optimization

technique that exploits DLP through the use of SIMD instructions. Most DLP opportunities are

present in loops which operate the same instruction over multiple data. Depending the number

of data elements that can be merged into one vector operation, an application can reach high

acceleration. To enable code vectorization, SIMD engines adopt three common methods: hand-

code programming vectorization, auto-vectorization through compiler and Just-in-time (JIT)

Compiler vectorization.
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2.3.1 Hand-code Programming Vectorization

An efficient code vectorization is challenging. Hand-code programming, where the pro-

grammer directly indicates which SIMD instruction to use, demands huge effort from the pro-

grammer since most vectorization libraries are not portable when targeting different Instruction

Set Architectures (ISAs).

Figure 5 presents a Matrix Sum hand-code algorithm adapted to the NEON, SSE and

Altivec extensions. As it can be seen, such vectorization libraries do not abstract hardware

complexity, requiring a high programming expertise. In the NEON case, the 64-bit vector

registers can placed two float elements while the 128-bit vector registers of the Altivec and SSE

approaches can vectorize four float elements in parallel. Besides, each approach has its own

functions to enable the use of each SIMD Engine. To solve such complexity, auto-vectorization

techniques have been added to compilers in order to perform Code Vectorization automatically.

Figure 5 – Hand-code Programming Overview

2.3.2 Auto-vectorization Compiler

The Auto-vectorization Compiler is responsible for vectorizing loops during compile

time. Figure 6 illustrates how the Auto-vectorization Compiler works. As it can be seen, a

non-adapted code is compiled with an auto-vectorization compiler. The compilation results in
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an assembly code containing SIMD instructions (vectorizable instructions). However, although

improving software productivity, such method may reduce performance when compared with

the hand-code programming approach.

Figure 6 – Auto-vectorization Compiler Overview

(MITRA et. al, 2013) compares the performance of the auto-vectorization compiler

over the hand-code programming approach in several applications. Such comparison considers

10 different SoC scenarios. The results present speed-ups of 1.05 to 13.88 and 1.34 to 5.54

for using hand optimized SIMD intrinsic functions rather than gcc compiler auto-vectorization

for ARM and Intel platforms respectively. There are several factors which limits the compiler

auto-vectorization performance (MELNIK, 2010) (POHL et. al, 2018) (SHIN, 2007).

Some factors that inhibit the NEON Compiler auto-vectorization are (ARM Limited,

2017):

• Data dependencies between different iterations of a loop - Where there is a possibility of

the use and storage of arrays overlapping on different iterations of a loop, there is a data

dependency problem. A loop cannot be safely vectorized if the vector order of operations

can change the results, so the compiler leaves the loop in its original form or only partially

vectorizes the loop;

• Indirect addressing - Indirect addressing is not vectorizable because the NEON unit can

only deal with vectors stored consecutively in memory;

• if and switch statements - Extensive and complex use of if and switch statements can

affect the efficiency of automatic vectorization;
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• Iteration count not fixed at start of loop - For automatic vectorization, it is generally best

to write simple loops with iterations that are fixed at the start of the loop. If a loop does

not have a fixed iteration count, automatic addressing is not possible;

• Memory hierarchy - Performing relatively few arithmetic operations on large data sets

retrieved from main memory is limited by the memory bandwidth of the system. Most

processors are relatively unbalanced between memory bandwidth and processor capacity.

This can adversely affect the automatic vectorization process;

• Calls to non-inline functions - Calls to non-inline functions from within a loop inhibits

vectorization. If such functions are to be considered for vectorization, they must be mar-

ked with the __inline or __forceinline keywords;

• Inconsistent length of members within a structure - If members of a structure are not all

the same length, the compiler does not attempt to use vector loads;

• Pointer aliasing - Indirect addressing is not vectorizable because the NEON unit can only

deal with vectors stored consecutively in memory;

• Source code without loops - Automatic vectorization involves loop analysis. Without

loops, automatic vectorization cannot apply;

• Target processor - The target processor (–cpu) must have NEON capability if NEON

instructions are to be generated. For example, Cortex-A7, Cortex-A8, Cortex-A9, or

Cortex-A15.

2.3.3 Just-in-time Vectorization Compilers

Another issue that limits Hand-code Programming and Automatic-vectorization Compi-

ler approaches lies in the fact that both of them operate statically, which means that loops with

dynamic behavior or complex control flow are not efficiently vectorized. In some ISAs, such

loops can not be vectorized statically.

To solve such problem, Just-in-time (JIT) compilers have emerged (NUZMAN et al.,

2011) (NAKAMURA; SATOSHI; SHUICHI; 2011). Unlike a traditional compiler that produ-

ces an object file statically, a Just-in-time compiler operates over a code dynamically, which can

provide portability among different ISAs. Figure 7 illustrates the differences between a Just-in-

time and a Traditional Compiler operation flow.
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Figure 7 – Just-in-time and Traditional Compiler Comparison

As can be seen, the traditional compiler vectorizes an application statically and generates

a vectorized binary to a specific ISA. The JIT compiler operates over a JIT compiled code dyna-

mically, enabling vectorized binary generation to several ISAs. However, an application takes

longer time to be compiled. Besides, to detect vectorization possibilities during runtime, a JIT

compiler concurrently runs a monitor task, which cause processing demands. Such processing

needs may be unacceptable in embedded devices.

2.3.4 Critical Analysis

Table 2 compares the three cited code vectorization methods: Auto-Vectorization Com-

piler, Hand-Code Programming and Just-in-time Compiler. As can be seen, unlike the Just-in-

time approach, which operates dynamically, the Auto-Vectorization Compiler and the Hand-

Code Programming methods operate statically, which inhibits efficient vectorization of dyna-

mic vectorizable regions. Besides, the Just-in-time technique operates over a portable code,

which means that no code recompilation is needed. The Auto-Vectorization Compiler and the

Hand-Code Programming methods need code recompilation since they operate over specific

ISA binary, which breaks binary compatibility.

While the Hand-Code programming requires huge efforts from the programmer to ex-

tract an efficient code vectorization, the Auto-Vectorization compiler focuses on increasing soft-
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ware productivity by automatically extracting vectorizable regions. In such aspect, the Just-in-

time approach can increase both software productivity and performance (by its dynamic nature).

However, the code generation latency is greater than a specific ISA binary. Besides, the Just-in-

time vectorization requires a monitor task, which requires processing demands from the system.

Table 2 – Vectorization Techniques Comparison

Technique Code
Recompilation

Software
Productivity Vectorization Performance

Penalty
Hand-Code

Programming
Yes Affected Static No

Auto-Vectorization
Compiler

Yes Not Affected Static No

Just-in-time
Compiler

No Not Affected Dynamic Monitor Task

2.4 CROSS-ITERATION DEPENDENCIES

A cross-iteration dependency is found in loops that require data generated from other ite-

rations within the same loop. Such property is the main factor that inhibits a loop vectorization,

limiting the DLP exploitation in a code. Figure 8 compares a loop containing no cross-iteration

dependency (8.a) and a loop with cross-iteration dependency (8.b). As can be seen, the loop

presentend in 8.a does not need any data generated in previous loop iterations, which means

that v[0] can be executed independently of v[1] and so on. In that case, the loop vectorization

is possible. However, the loop presented in 8.b depends on data generated in previous loop ite-

rations, which means that v[i] can only be executed when v[i-1] result is ready. Consequently

the loop 8.b can not be vectorized.

Figure 8 – Cross-iteration dependency example
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3 RELATED WORKS

The SIMD vectorization is widely used in several emerging market platforms, such as

the Intel SSE, IBM AltiVec, and ARM NEON architectures. In the academic field, several

researches are exploiting Data Level Parallelism (DLP) to achieve performance improvements

and energy savings.

3.1 AUTO-VECTORIZATION COMPILER AND VECTOR LIBRARY APPROACHES

(SUI et al., 2016) improves the LLVM (Low Level Virtual Machine) compiler [3] in-

frastructure to explore vectorization opportunities by developing a more precise Loop-Oriented

Pointer Analysis (LPA) for Automatic SIMD Vectorization. This approach is able to detect

more basic blocks achieving performance improvements from 2.95% to 7.23%. However, such

an approach uses an auto-vectorization technique, which means that loops containing dynamic

behavior are not vectorized.

(ZHOU; XUE 2016) presents the Loop-Mix compiler, also implemented in the LLVM

compiler. Loop-Mix vectorizes loops regarding the data reorganization overhead caused between

mixed SIMD parallelism (inter-loops and intra-loops). The technique outperforms the Loop-

ILV [5] by 36%. Since the work is also implemented in the LLVM compiler, the binary com-

patibility is compromised, code recompilation is required and dynamic behavior loops are not

covered.

(NUZMAN; IRA; AYAL 2006) evaluates and applies a compiler outer loop vectorization

technique focusing on properties of modern SIMD architectures (Loop-ILV). It shows that even

though current optimizing compilers do not apply outer loop vectorization, they can provide

significant performance improvements over innermost loop vectorization. Loop-ILV achieves

performance improvements of 3.13 and 2.77 when coupled to a Cell BE SPU and PowerPC970,

respectively. Similar to our proposal, the authors focused on vectorizing both innermost and

outer loops but it relies on compiler support.

Being aware that most research focuses on vectorizing loops, (TIAN et al., 2012) pre-

sented a set of new C/C++ high-level extensions for SIMD programming capable of automatic

translating both functions and loops. Significant speedups (from 3.07x to 4.69x) are achie-

ved when these optimizations are applied. Similar to aforementioned related works, it relies
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on specific compiler and library to achieve performance improvements, which breaks binary

compatibility and affects SW productivity.

(BRAMAS, 2017) proposes Inastemp, a lightweight opensource C++ library that pro-

vides portable SIMD-Vectorization. This approach has the same efficiency as computing for

a specific architecture, providing vector instructions that can be used to develop hardware-

independent computational kernels. These computational kernels are portable across compilers.

Inastemp covers SSE, AVX, AVX512 and ALTIVEC/VMX instructions. While such technique

improves binary portability, it compromises software productivity since code must be adapted

with the suggested library and requires code recompilation. In addition, no performance gains

are shown by using such technique.

ARM NEON (ARM Limited, 2008) is introduced in the ARMv6 architecture. The

NEON auto-vectorization compiler generates vectorizable code by instantiating SIMD instruc-

tions. Despite the advantages of autovectorization, the static code exploitation limits the per-

formance gains since it is difficult to identify vectorizable regions of conditional statements,

function calls or even loops that contain codes between inner-loops and outer-loops. To over-

come such issues, another strategy offered by the ARM to explore the NEON engine is the use

of ARM NEON library, which transfer the vectorization task responsibility to the SW developer

which affects SW productivity.

3.2 ISA/HARDWARE MODIFICATION APPROACHES

Liquid SIMD (CLARK et al., 2007) separates the SIMD accelerator implementation

from the ISA, providing an abstraction to overcome ISA migration problems. By the use of a

special compiler the Liquid SIMD translates SIMD instructions into a virtualized representation

using the processor’s baseline instruction set. The compiler isolates portions of the application

into dataflows and converts them into architecture-specific SIMD instructions. However, the

work needs compiler changes and code recompilation, which brakes binary compatibility.

(BAGHSORKHI; NALINI; YOUFENG; 2016) proposes FlexVec architecture that com-

bines a novel partial vector code generation technique with new vector instructions to dynami-

cally adjust vector length for loop statements affected by runtime cross-iteration dependencies.

FlexVec vectorization coupled to the Intel AVX-512 ISA shows a Geomean performance im-

provement from 9% to 11%. Although it is able to perform optimizations over loops with

cross-iteration dependencies, the method breaks binary compatibility, since it is necessary a
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specific ISA adjustment and also relies on a particular compiler and library development.

(CHANG; WONYONG 2008), employed a unique memory access hardware, solving

the non-aligned and irregular data memory access operations to improve the performance of a

SIMD processor based on ARMv4 architecture. In addition, it develops an auto-vectorization

compiler, which utilizes the proposed hardware. By applying such technique, the number

of vectorized loops increases 50%, which provides 77% of performance improvement in the

MPEG2 encoder execution.

Besides the research above, many studies are also focused on applying reconfigurable

architectures, since besides exploiting ILP, they are also capable of exploring DLP. A reconfi-

gurable architecture, named as Samsung reconfigurable processor (SRP), is developed for di-

gital signal processing (KIM et al., 2012). The SRP architecture is designed to handle mobile

multimedia applications efficiently. It uses a CGRA to vectorize innermost loops by using a

conventional C/C++ programming model to annotate the code. Despite the huge chip area re-

quired to the CGRA, the SRP relies on compiler, library and ISA modifications. In addition, it

requires a design-time step to create CGRA configurations for each application which reduces,

even more, the binary compatibility and SW productivity.

3.3 JUST-IN-TIME APPROACHES

Vapor SIMD (NUZMAN et al., 2011) provides a just-in-time (JIT) compilation solution

for targeting different SIMD architectures. The Vector SIMD can combine static and dynamic

infrastructure for vectorization, focusing on the ability to revert efficiently and seamlessly to ge-

nerate scalar instructions when the JIT compiler or target platform do not support SIMD capabi-

lities and vector instructions when SIMD instructions are supported. Selftrans (NAKAMURA;

SATOSHI; SHUICHI; 2011) is capable of vectorizing automatically the x86 binary machine

code without requiring its source code, translating it into a binary code that uses SIMD units

dynamically.

Both solutions solve the problem of software productivity. However, JIT approaches

require a separate translation process to share the CPU (Monitor Task), which may be unaccep-

table in embedded systems.
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Table 3 – Related Works and Proposed Technique Characteristics

Work Code
Recompilation

Library
Development

Support

ISA
Modification

SW
Productivity

Binary
Compatibility

Dynamic
Behavior

Loops
Support

JIT
Compiler

LPA Yes No No Not Affected No No No
Loop-Mix Yes No No Not Affected No No No
Loop-ILV Yes No No Not Affected No No No

Tian et al., 2012 Yes Yes No Affected No No No
Inastemp Yes Yes No Affected No No No

ARM NEON Yes Yes No Affected No No No
Liquid SIMD Yes No No Not Affected No Yes No

FlexVec Yes Yes Yes Affected No No No
Chang;

Wonyong 2008
Yes No Yes Not Affected No No No

SRP Yes Yes Yes Affected No No No
Vapor SIMD No No No Not Affected Yes Yes Yes

Selftrans No No No Not Affected Yes Yes Yes
DSA No No No Not Affected Yes Yes No

Table 3 compares all the aforementioned works with the proposed approach. As it can

be seen, binary and software compatibility are not prioritized in most designs since they em-

ploy ISA modification or specific libraries. JIT compiler approaches, even prioritizing software

compatibility and bringing dynamic SIMD exploitation, result in processing demands from the

CPU, since they need a separate process to dynamically translate code regions.

Our work proposes a transparent Dynamic SIMD Assembler that is capable of building

SIMD instructions at runtime. The proposed approach coupled to the ARM NEON engine

provides:

• higher performance than ARM auto-vectorization method with binary compatibility since

is not necessary to recompile the source code;

• SW productivity by avoiding the use of the ARM library in the code development lifecycle

to take advantage of the NEON engine processing capabilities;

• no system overhead during DSA analysis since the DSA operates in parallel with the

ARM processor;

• flexible dynamic vectorization techniques that can be applied to any ISA.
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4 DYNAMIC SIMD ASSEMBLER

4.1 SYSTEM OVERVIEW

Figure 9 shows the overview of the Dynamic SIMD Assembler (DSA). The DSA is cou-

pled to the O3CPU processor (more details in section 4.9), which uses the ARMv7-A Instruc-

tion Set Architecture (ISA). As can be seen, the DSA consists of a SIMD instruction detection

and generation logic and two caches (DSA Cache and Verification Cache). The DSA Cache is

responsible for storing information of previously verified vectorizable loops, such as the iden-

tification of such loops and SIMD statements generated for these loops. Verification Cache

(V-Cache) stores the data memory addresses accessed by the loops (more details in section 4.4).

Figure 9 – System Overview

Figure 10 presents an overview about the DSA functionality. In the first scenario (Sce-

nario 1 - DSA Loop Analysis), the DSA and the ARMv7-A processor operate in parallel. While

the ARM processor executes the incoming instructions, the DSA works in probing mode, lo-

oking for a vectorizable loop to build SIMD instructions. During this step, NEON Engine

remains disable. If the DSA detects a vectorizable loop, the second scenario is activated (Sce-

nario 2 - DSA Loop Execution). In this scenario, the DSA disables the ARMv7-A processor

and activates the NEON Data Engine to execute the built-in SIMD (Vectorized Instructions)

statements. It is important to notice that the DSA runs in parallel with the ARMv7-A processor,

which means that the critical path of the processor is not affected by the DSA.
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Figure 10 – System Functionality Overview

4.2 DSA COVERAGE

Figure 11 presents examples of loops that can be vectorized by the DSA (Count Loop

(A), Dynamic Range Loop (B), Conditional Loop (C) and Function Loop (D)). As can be seen,

pseudocode (A) presents a simple vectorizable loop which both compiler and DSA are able

to vectorize. The pseudocode (B) has a Dynamic Range Loop, where the size of the loop is

determined by an input or computed at runtime. The pseudocode (C) has a loop that contains

conditional statements and its execution is also determined during runtime. The same analysis

can be performed on the pseudocode (D), which has a loop containing a function call that

depends on a variable computed during execution time. In this way, the pseudocodes (B), (C)

and (D) can not be efficiently vectorized by compiler auto-vectorization methods since they

depend on data computed during execution time. However, because the DSA (Dynamic SIMD

Assembler) analyzes the application code during runtime, it is able to efficiently vectorize all

the aforementioned situations.
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Figure 11 – Loop Examples

The DSA covers the vectorization of: Count Loops, Function Loops, Outer and Inner

Loops, Dynamic Range Loops and Sentinel Loops. In addition, DSA also supports partial

vectorization of loops with cross-iteration dependencies (further discussed at section 4.4).

It is important to notice that every loop type coverage implemented in the DSA was

selected based on the following works: (NAKAMURA; SATOSHI; SHUICHI; 2011), (NUZ-

MAN; ROSEN; ZAKS; 2006), (TIAN et al., 2012), (NUZMAN; ZAKS 2008) and (WU; EI-

CHENBERGER; WANG; 2005). The partial vectorization implementation was based on the

work: (BAGHSORKHI; VASUDEVAN; WU; 2016). Other state-of-the-art loop type vectori-

zation such as complex control flow loops or loops operating over misaligned data (CHANG;

SUNG 2008) are considered in our future work.

4.3 DSA OVERVIEW

The DSA detection process is based on a State Machine (SM) composed of six sta-

tes: Loop Detection, Data Collection, Dependency Analysis, Store ID/Execution, Mapping and

Speculative Execution. Each of these stages is activated in different iterations of the loop.
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Figure 12 – DSA Execution Flow

As can be seen in figure 12, the Loop Detection stage is activated at the end of the first

iteration. The Loop Detection stage is responsible for:

• detecting the presence of a loop;

• detecting the presence of conditional code and functions present within the loop;

• verifying multiple loop layers (inner-most loop and outer loops);

• accessing the DSA Cache and check if the current loop has been previously verified as

vectorizable.

The Data Collection stage is triggered during the second iteration of the loop. This stage

is responsible for:

• evaluating the loop range (number of iterations), vectorizable instructions and their ope-

rands;

• storing the addresses of data memory accesses in the Verification Cache;

• verifying the presence of a Sentinel Loop.

The Dependency Analysis stage is triggered in the third loop iteration. This stage is

responsible for:

• analyzing the cross-iteration dependency (dependencies between two or more iterations

in the same loop statement).
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The Store ID/Execution stage is triggered in the fourth loop iteration. This stage is

responsible for:

• concluding the vectorization of Count loops, Functions loops, Outer/Inner loops, Dyna-

mic Range Loops and Partial Loops;

• generating and saving the loop identification (ID) in the DSA Cache;

• allowing the partial vectorization of loops with cross-iteration dependencies (when pos-

sible);

• building SIMD instructions and activating the execution of the ARM NEON engine;

• applying Leftover techniques if necessary (further discussed in section 4.8).

The Mapping stage is only activated for Conditional loops. This stage is responsible for:

• evaluating the loop range (number of iterations);

• mapping the executed conditional code statements;

• verifying cross-iteration dependencies between iterations within each condition;

• evaluating the vectorizable instructions and their operands within each condition;

• building SIMD instructions and activating the execution of ARM NEON Engine;

• applying Leftover techniques if necessary (further discussed in section 4.8).

The Speculative Execution stage is only enabled for Conditional Loops and Sentinel

Loops. This stage is responsible for:

• selecting data generated during SIMD execution at the end of the Loop (Conditional

Loops and Sentinel Loops);

• storing the current range for Sentinel Loops (Speculative Range);

• storing mapped conditions of the Conditional Loop for further executions in the DSA

Cache;

• generating and saving the loop identification (ID) in the DSA Cache.
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4.4 CROSS-ITERATION DEPENDENCY VERIFICATION

At the memory access point of view, a cross-iteration dependency exists when the same

data memory address is accessed in different loop iteration.The DSA cross-iteration analysis

starts in the 2nd loop iteration, where the addresses of data memory accesses are saved in the

Verification Cache (VC). Even having the memory addresses in the VC and comparing them to

the memory addresses performed on every iteration, one cannot discard cross-iteration depen-

dencies in future iterations. Assuming such situation, we have implemented the Cross-iteration

Dependency Prediction.

The equations below describe the steps of the prediction process, where MRead[2] and

MRead[3] are the memory addresses accessed by a MemRead (load) instruction in the second

and third loop iterations, respectively. MRead[lastiteration] is the memory address accessed by a

load instruction in the last executed iteration (Equation 4.4), x is the interval between MRead[2]

and MRead[lastiteration] (Equation 4.1), MWrite[2] is the memory address accessed by a Mem-

Write (store) instruction in the second iteration (Equations 4.2 and 4.3), MRange is the memory

address range between the MRead[2] and MRead[3] (Equation 4.5), CID means Cross-Iteration

Dependency and NCID means No Cross-Iteration Dependency.

MRead[3] <= x <= MRead[lastIteration] (4.1)

MWrite[2] ∈ x− > CID (4.2)

MWrite[2] /∈ x− > NCID (4.3)

MRead[lastIteration] = MRead[2] + (MGap ∗ (lastIteration− 2)) (4.4)

MGap = |MRead[3] −MRead[2]| (4.5)

Considering the equations above, if the MWrite[2] is within the memory address range of

MRead[3] and MRead[lastiteration] (Equation 4.2), the loop would have a cross-iteration dependency

since the load instruction of a future loop iteration could perform a memory access in the same

memory address of the store instruction executed in the second loop iteration. The memory

address of the load instruction executed in the last iteration is predicted based on the sum of

the MRead[2] and the equation (MGap ∗ (lastIteration − 2)) (Equation 4.4). Thus, in case of

MWrite[2] is out of the memory address interval of MRead[3] and MRead[lastiteration] (Equation 4.3),

one can ensure that the loop has no cross-iteration dependency (NCID). Figure 13 illustrates an

example of how Cross-iteration Dependency Prediction (CIDP) works.
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Figure 13 – Cross-iteration Dependency Prediction

In such example, the DSA detects that there is no cross-iteration dependency between

2nd and 3rd iterations. Thus, by the end of the 3rd loop iteration, the CIDP is activated by

applying Equation 4.5 (MGap=|0x104 − 0x100| = 0x004). Using Equation 4.4, one can

calculate the memory address of the load instruction of the last iteration MRead[lastiteration] =

0x100+0x020 = 0x120. By applying Equations 4.1 and 4.2, the CIDP detects that MWrite[2] =

0x108 is within the interval (MRead[3] <= x <= MRead[lastiteration])=0x100 <= x <= 0x120),

which produces a cross-iteration dependency.

4.5 PARTIAL VECTORIZATION

Although having cross-iteration dependencies, some loops can be partially vectorized

avoiding the vectorization of iterations that produce dependencies. Figure 14 shows how the

partial vectorization works.

Figure 14 – Partial Vectorization Analysis
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As can be seen, the CIDP detects dependencies between the 2nd and 11th iterations due

to the data memory address 0x124. However, there is an interval between the 2nd to the 10th

iteration that can be vectorized. Thus, in this example, the DSA executes the Loop Analysis

from the 1st to the 4th iteration, allowing the vectorization of the 4th to the 10th iteration. Such

vectorization will generate the necessary data for the vectorization of operations from the 11th

to the 19th iteration. The same process is repeated until the end of the loop execution.

4.6 DSA - ANALYSIS AND EXECUTION

4.6.1 Count Loops

Figure 15 exemplifies the execution of the DSA considering a Count Loop. As can be

seen, the Loop Detection Stage (A) detects the loop by the end of the execution of the first ite-

ration. In the second iteration, the Data Collection stage (B) identifies the loop range (400) and

the value of the increment/decrement (i = i + 1). In addition, such stage stores the addresses of

the data memory accesses (Mem[a[i]], Mem[b[i]] and Mem[v[i]]) in the Verification Cache. In

the third iteration the Dependency Analysis Stage (C) analyses dependencies between iterations

(more detailed in 4.4). For the current example, the DSA verifies that there is no cross-iteration

dependency and triggers the Store ID/Execution Stage. Such stage builds SIMD instructions to

execute the remaining iterations in the ARM NEON Engine. The DSA needs four parameters to

generate SIMD instructions: the data type, the loop range, the operation and the ARM NEON

execution support. In such example, the parameters are: float (F.32), 400, add, 128-bit wide,

respectively. Considering these parameters, for the current example, the DSA generates an ins-

truction equivalent to the vaddq_f32 instruction of the NEON architecture (further explained in

Generating SIMD Instructions). Since the corresponding ARM NEON engine can operate 128

bits in parallel and the float type is a 32-bit wide data, the DSA divides the loop range by the

factor four, running the vaddq_f32 one hundred times, instead of executing a non-vectorizable

add operation four hundred times.
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Figure 15 – Count Loop Example

4.6.2 Function Loops

Figure 16 shows how the loops containing functions are vectorized. During the Loop

Detection Stage, the DSA keeps detecting any jumps that might occur. The DSA stores the

Jump and Return addresses in an array periodically. If there is a Branch instruction that causes

an instruction address regression, the DSA starts the Data Collection Stage. Before starting the

Data Collection Stage, the DSA verifies if the function Jump and Return addresses (Jump: 4

and Return: 5) are within the Loop Range (2 → 7). If that is the case, the loop is classified as

a Function Loop and instructions out of the loop range (11 → 12) are also verified during the

remaining stages.

Figure 16 – Function Loop Example
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4.6.3 Inner/Outer Loops

Figure 17 exemplifies the Outer Loop vectorization in the DSA. As can be seen, when

the 1st iteration of the Outer Loop is executed, only the Inner Loop is detected by the Loop

Detection Stage (A.1) since the Outer-Loop did not suffered instruction address regression. In

that case, the Inner-Loop is tagged as vectorizable and the operation is vectorized to 36 elements

(B.1, C.1, D.1). At the second time the Outer-Loop is executed, the DSA detects the presence

of this loop and verifies if there are any vectorizable loop within this loop or any instructions

between both loops. However, since the DSA still does not know the Outer Loop size, it cannot

be vectorized in this stage. Then, the Inner-Loop is detected by the DSA. Since the DSA

previously classified such loop as vectorizable, the DSA Analysis is not necessary and all the 40

elements processed are vectorized (D.1). By the end of the 2nd Outer Loop iteration the DSA

knows it will be operating for more 8 times and there are no instructions operating over a data

vector between both loops (B.2). Since there are no vectorizable instructions between the loops,

by now, the DSA considers both inner and outer loop as only one, considering the loop size as

400. Since 320 elements still need to be vectorized, the DSA starts their vectorization in the 3rd

iteration of the Outer-Loop (D.2).

Figure 17 – Outer Loop Example
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In case there are instructions between Inner and Outer Loop, we have four scenarios:

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if the inner-loop instruction depends on a data generated by an

outer-loop instruction, the Outer Loop is vectorized i times first and then the inner loop

instruction is vectorized i ∗ j times;

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if the outer loop instruction depends on a data generated by an inner

loop instruction, the Inner Loop is vectorized i ∗ j times first and then the Outer Loop

instruction is vectorized i times;

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if both loops have data dependencies between their instructions, the

outer loop is executed sequentially while the Inner Loop instruction is vectorized j times

every time the Outer Loop increases its iterations;

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if both loops have no data dependencies between their instructions,

the Outer Loop is executed i times while the Inner Loop instruction is vectorized i ∗ j

with no restriction in the execution order.

4.6.4 Conditional Loops

Some steps have been added on the DSA state machine to support loops with conditional

code. As can be seen in figure 18, during the DSA Analysis Mode (Probing Mode), we added the

stages of Mapping, which contains a Conditional Code Analysis sub-stage, and the Speculative

stage. The mapping stage (for the Conditional Loop approach) is responsible for:

• evaluating the loop range within each condition;

• evaluating the vectorizable instructions and their operands within each condition;

• mapping and verifying if every conditional statement present in loop can be vectorized;

• generating and executing SIMD instructions to the already verified conditions;

• applying leftover techniques if necessary (further discussed in section 4.8).
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The Speculative Stage (for the Conditional Loop approach) is responsible for:

• selecting data generated during the Mapping Stage at the end of the loop execution;

• storing the Conditional Loop mapping conditions to further executions.

In addition, the Loop Detection Stage has been extended. At the end of the first iteration,

it is possible to check if there is any conditional code present in the loop through the Conditional

Code Detection sub-stage.

Figure 18 – DSA Conditional Loop State Machine

As can be seen, the substage of Conditional Code Detection occurs during the Loop

Detection stage. During this stage, besides checking for jumps that can characterize a loop,

the stage is constantly analyzing jumps that may be within the range of the loop. If a loop is

found and there is a jump within the loop range, the Conditional Code Analysis phase, which

occurs during the Mapping stage, is activated. In this stage, the DSA checks if the currently

accessed condition is vectorizable. The condition is then marked as vectorizable or not. If the

DSA detects a dependency between iterations in this condition, it classifies this loop in the DSA

Cache as non-vectorizable.

As conditions are checked during loop execution, the DSA also counts and classifies

the number of conditions using their instruction addresses (discussed later in section 4.6.4.1).

While there are still pending conditions, the DSA continues looking for these and verifying if

they are vectorizable. If such a condition is vectorizable, the DSA generates instructions and

executes them. In this manner, this step is repeated until all conditions are checked. If no

conditions are pending and all conditions are vectorizable, the DSA stores the loop in the DSA
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Cache as vectorizable. Since there is no way to predict which conditional portion is executed

in further iterations, the DSA performs a Speculative Stage, which will be discussed in section

4.6.4.2.

4.6.4.1 Conditional Loops Vectorization

Figure 19 shows an example of a Conditional Loop (2 → 8 instruction addresses) con-

taining two possible conditions (A and B). In addition, the loop execution timeline is shown at

the bottom of the figure. During the first iteration (Loop Detection Stage), the presence of a

Conditional Loop is detected. At the 2nd iteration the Mapping Stage is already initialized with

some extra information collections (e.g.: loop size, start and end loop instruction addresses).

By the 2nd iteration the Conditional Code Analysis step is already activated. As can be seen in

the timeline, an instruction addressing gap is detected (from 5 → 6 (Condition A)) during the

execution of the 2nd iteration since Condition A is executed. In this way, the DSA starts the

verification to check whether the code contained in Condition A is vectorizable. Since it is the

first time the Condition A is performed, the Mapping Stage collects the data memory addresses

accessed by the condition during the 2nd iteration but still cannot predict whether the condition

is vectorizable or not.

During the 3rd iteration, Condition B is accessed. Since it is the first time the Condi-

tion B is performed, the Mapping Stage collects the data memory addresses accessed by the

condition during the 3rd iteration but still can not predict if the condition is vectorizable. At

the 4th iteration, Condition B is accessed another time and the Cross-iteration Dependency Pre-

diction (CIDP) is able to classify such iteration as vectorizable by comparing the data memory

addresses accessed during the 3rd and 4th iterations.

In the course of the 5th iteration, Condition A is accessed again. In this way, the Cross-

iteration Dependency Prediction (CIDP) is able to classify such iteration as vectorizable by

comparing the data memory addresses accessed during the 2nd and 5th iterations. From now on,

since all conditions were classified as vectorizable, there is no need to repeat the vectorization

analysis for Conditions A and B. Hence, during the 5th iteration, the DSA detects that there are

no pending conditions to be analyzed since all instruction memory addresses within the loop

have been accessed (2→ 8).
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Figure 19 – Conditional Loop Vectorization Analysis

To verify if all conditions have been parsed, an address mapping becomes necessary.

Figure 20 illustrates the mapping considering the example shown in Figure 19 (previously).

During the 2nd iteration, condition A is performed, and the Cross-iteration Prediction Analysis

begin. The DSA indexes the condition through the address of its first instruction, this infor-

mation is stored in a temporary Vector Map. In this way, Condition A is indexed by address

3 (Condition A first instruction address (3 → 5)). During the 3rd iteration, the DSA starts the

Cross-iteration Prediction Analysis for Condition B. Hence, the Condition B is indexed in the

Vector Map by the address 5 (condition B first instruction address (5→ 6)). By the 4th and 5th

iterations both conditions are classified as vectorizable. Since all instructions in the instruction

addressing range (2→ 8) were executed and analyzed, in the 5th iteration the loop information

is stored in the DSA cache. Such information is required to vectorize the loop without the need

to repeat the vectorization analysis. The information is composed of:

• Loop ID: to identify the vectorizable regions in the loop during program execution;

• Loop Size: to generate SIMD instruction during execution;

• Conditions ID: to make the speculative execution (further discussed in the sub-section

Conditional Loop SIMD Execution).
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Figure 20 – Conditional Code Loop Analysis Mapping and Data Storage

4.6.4.2 Conditional Loop SIMD Execution

Figure 21 shows a SIMD execution considering the example shown in figure 19. Since

condition B is verified as vectorizable during the 4th iteration, its instructions are vectorized

considering the range (Vectorize B - 4 → 20), generating results for 16 iterations (B - RE-

SULTS). In parallel, its execution is mapped to the Vector Map (4th Iteration - B) to later select

the results produced by each condition (speculative execution). In the 5th iteration, condition A

is executed. Since it is the first time that statement A is performed during SIMD execution, its

instructions are vectorized considering the range of the current iteration to the end of the loop

(Vectorize A - 5→ 20 iterations), generating results for the next 15 iterations (A-RESULTS). In

parallel, its execution is mapped to a Vector Map (5th Iteration - A). At the 6th iteration, since

Condition A has already been vectorized in the 5th iteration, its instructions are not executed

(Idle), and only the mapping is performed (6th Iteration - A). During the 7th iteration, Condition

B is only mapped in Vector Map (7th Iteration - B) since it was executed during the 4th itera-

tion. During the last iteration (20th iteration) condition A is performed again and, since it has

already been executed, it is only mapped (Idle) (20th Iteration - A). At the end of the loop, the

DSA analyzes the Vector Map to select only the mapped results, while the others are discarded

(Speculative Stage).
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Figure 21 – Conditional Code Loop Execution Mapping and Data Storage

4.6.4.3 Conditional Loop DSA Limitations

As explained before, the Conditional Loop SIMD Execution is based on a Speculative

Execution. The idea is that the DSA generates vector operation results in each condition without

knowing what results will be harnessed. During the Mapping Stage, every accessed condition

is mapped in a Vector Map. Such mapping is responsible for selecting the previously generated

results. However, the operation results must be kept in Vector Registers to be further selected.

The DSA is composed of 4 extra registers (called Array Maps), each one is 128-bit wide. Such

registers are reserved to conditional loop vectorizations.

Figure 22 presents the Conditional Code Loop Array Map functionality. As can be seen,

the Conditional Loop is composed of 4 conditional statements, each one with one vectorizable

instruction. Supposing all operands are 32-bit wide and we are operating over 128-bit wide

vector registers, we can vectorize 4 operands in parallel. Since the Loop Size is 8, the DSA

must execute its Mapping and Speculative logic twice. Considering that the loop was previ-

ously classified as vectorizable by the DSA Loop Analysis, during the 1st iteration, the loop

executes the condition A (Mapping Stage). In this way, the DSA vectorizes the condition A

from iterations (0 → 3). During the 2nd iteration, the loop vectorizes the condition B from
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iterations (0 → 3) using the Overlapping leftover method (further discussed at section 4.8.2).

At the 3rd iteration the condition D is executed (also applying the Overlapping method). In the

4th iteration the condition C is executed using the Single Elements leftover method (discussed

at section 4.8.1). Since we can only vectorize 4 elements in parallel, the Speculative Execution

Stage is triggered and the DSA selects the results accessed during the Mapping Stage (Vector

Map). For the next four elements (4→ 7), the same process occurs. During the 5th iteration the

condition B is vectorized from iterations (4 → 7). At the 6th and 7th iterations the condition B

is accessed again. Since it was previously vectorized, the DSA only maps the accesses to the

Vector Map. At the 8th iteration the condition D is accessed and vectorized using the Single

Elements leftover method. Since the DSA went through the iterations (4→ 7), the Speculative

Stage is triggered. In this way, the DSA selects the results accessed during the Mapping Stage

(Vector Map).

Figure 22 – Conditional Code Loop Array Map Logic

It is important to notice that the Conditional Loop vectorization is limited to the number

of Array Maps available. If the Conditional Loop presents more instructions to be vectorized

than Array Maps available, the DSA looks for ARM NEON Vector Registers available. If there
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are no Vector Registers available, the Conditional Loop is classified as non-vectorizable.

4.6.5 Sentinel Loops Vectorization

Since Sentinel Loops have their size or stop condition calculated during loop execution,

it is impossible for the DSA to know the number of times this loop will execute. To enable the

execution of Sentinel Loops the DSA:

• speculates the number of times the loop will execute based on the last loop execution;

• verifies if there is cross-iteration dependency between iterations assuming a speculative

loop size on every loop execution;

• partial vectorization is applied if the execution continues after determined speculative

final loop iteration.

Figure 23 shows the analysis and execution of a sentinel loop. The first three iterations

are responsible for checking whether there is a dependency between iterations in the loop. Since

a loop size is required to predict if there is a cross-iteration dependency between iterations and

there is no defined size for the Sentinel Loop, the DSA assumes a Speculative Range. In this

way, the DSA chooses a loop size that maximizes the use of vector units. In this example, the

DSA assumes a vector architecture of 128-bit Wide (ARM NEON 128-bit Wide) . Since the size

of the operands is 8 bits (8 bits operands), the DSA selects a speculative range of 16 (Specu-

lative Range 16) in order to use all vector units. In this way, in the 3rd iteration (Dependency

Analysis Stage), the DSA predicts that there is no dependency between iterations considering

the size 16 (Cross-iteration Prediction) and the loop can be vectorized. In the 1st execution of

the loop (Execution Stage - 4th iteration), the DSA executes the loop operation considering a

speculative size (Vectorize - 4 → 20). From the 5th iteration to the 10th, the already vectori-

zed operations are not executed (Idle) and the only instructions that are processed in the loop

are those responsible for the stopping condition calculation. When the stop condition is rea-

ched (10th iteration), the results from iterations (4 → 10) are kept, while the operation results

(11→ 20) are discarded. Since the current loop execution has 10 iterations, on the next execu-

tion the speculative range value is 16, since is the minimum operation range to be allocated at

the vector units considering an operand width of 8 bits. At the second time this loop is detected

by the DSA, in the DSA Loop Analysis Stage, it predicts that there is no cross-iteration depen-

dency. At the 4th iteration (Execution Stage), the DSA executes the loop operation considering
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the speculative loop range (Vectorize - 4 → 20). From the 5th to the 16th iteration, the already

vectorized operations are not executed. This time the loop executes until the 18th iteration (Real

Range - 18). Despite the DSA computed results from 4th to the 20th iteration, only the results

from 4th to 16th are considered, since the cross-iteration prediction was based on the range 16.

The operations of the 17th and 18th iterations are sequentially executed by the ARM Processor.

There are three Sentinel Loop predicting possibilities:

• if the loop executes a smaller number of iterations than previously performed, only the

results of the current range are saved and the previous loop range is replaced by the current

range;

• if the loop executes a greater number of times, the remaining iterations are performed

by the general purpose processor and the previous loop range is replaced by the current

range;

• if the loop executes the expected number of iterations, the speculative range is retained.
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Figure 23 – Sentinel Loop Cross-iteration Analysis and Execution

4.6.6 Dynamic Range Loop Vectorization

We consider as general Dynamic Range Loops those who have their size calculated be-

fore the loop execution. Considering that, a Dynamic Range Loop can be analyzed maintaining

the original DSA State Machine. However, it must be analyzed every time it repeats, since the

Dependency Analysis Stage needs to verify if the vectorization is feasible based on loop range.

As it can be seen in figure 24, at the 1st time the loop executes, the Dependency Analysis

Stage cannot detect any cross-iteration dependency (refer to the section 4.4). Thus, considering

the loop range 5, the DSA Loop Analysis predicts the loop as vectorizable. However, at the 2nd

time the loop executes, a cross-iteration dependency is detected at the 10th iteration (MemRead
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Access = 0x120 = MemWrite Access). Such an example shows that different loop sizes imply

in a different DSA Loop Analysis (such problem is solved by the Partial Vectorization - 2.5).

Figure 24 – Dynamic Range Loop Cross-iteration Analysis

4.7 GENERATING SIMD INSTRUCTIONS

The NEON engine execution consists of three steps: loading data to vector registers,

operating over data with NEON functional units and storing the data to memory or moving data

to scalar registers. Thus, in order to generate NEON instructions, the DSA should detect: the

Loop Size, the Vector Data, Vectorizable Instructions and Operand Types.

Figure 25 demonstrates an example of how the DSA collects data from vectorizable

regions and generates SIMD instructions. As can be seen, the present assembly is generated

from a Vector Sum. To detect Index and Stop Condition, the DSA looks for the instructions

that are responsible for incrementing the index. In such example, the respective instructions are

the ldr and str. By knowing such instructions, the DSA is able to know the registers acting as

indexes (in this case r5, r10 and r2). Along with it, the DSA detects instructions that indicate

the loop stop condition. In such example, the respective instruction is the cmp instruction which

compares the constant value present in register r4 and the memory address (index) present in

r5.
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Figure 25 – SIMD Instruction Generation Steps

To evaluate which Registers contain Data and which Registers contain Data Addresses

(Data Registers and Data Address Registers), the DSA evaluates every MemRead and Mem-

Write instruction types. In such example, r3 and r1 are used as target registers in the ldr and str

instructions, which means that they are classified as Registers containing Data. Analyzing the

Rn register in the MemRead and MemWrite, the r5, r10 and r2 can be classified as address regis-

ters. In such case, the index and address registers are the same, since the ldr and str instructions

are able to do memory operations and increment.

To detect which data type is being processed, the DSA verifies: the MemRead instruction

(e.g.: LDRB for Byte and LDR for Word), the instruction bytecode and its destiny register type

(float or int instructions). In such example, we consider 32 bits int data.

Increments, constants and operations must be detected by the DSA. To detect incre-

ments, the DSA evaluates the instructions that operate over registers containing Data Addresses.

As can be seen, the only constant present in the loop is the loop increment (#4). Considering

the operations detection, ALU type instructions that operate over Registers Containing Data,

are classified as operations by the DSA (add r3, r3, r1).

Being aware about the increment (#4), the initial index in r5 and the instruction that
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defines the stop condition, the DSA is able to determine the number of iterations (Size) (Num-

ber of SIMD Iterations). Depending the number of iterations, the DSA may assume different

instruction generations based on the leftover techniques (further discussed in section 4.8).

With the collected data, the DSA must operate over data sizes of 32 bits. Considering

the ARM NEON 128-bit wide, the DSA can execute 4 data per vector instruction (Dpv =

NEONw/Datas = 128/32 = 4, where Dpv is the amount of data per vector, NEONw is the

ARM NEON width and Datas is the operands data size). At the Store ID/Execution Stage (or

Speculative Stage), the DSA generates the SIMD instructions assuming the NEON execution

flow (Generating SIMD Instructions):

• the DSA generates the vector load instructions based on the load registers containing data

addresses (r5 and r10) and the operands data size (32 bits) (vld1.32 q8, [r5]! and vld1.32

q9, [r10]!);

• the DSA generates the SIMD operation based on the collected operations and the ope-

rands data size (32 bits) (vadd.i32 q9, q9, q8);

• the DSA generates a vector store instruction based on the store register containing data

address (r2) and the operands data size (32 bits) (vstr.32 q9, [r2]!);

• the DSA repeats the SIMD instruction generation 6 times (n = Lrange/Dvu = 24/4 = 6,

where n is the number of times the DSA must generate the SIMD instructions, Lrange re-

presents the loop range and Dvu is the amount of data which can be processed in parallel).

4.8 DEALING WITH LEFTOVERS

The NEON Engine execution generally implies on performing operations on data vec-

tors of 2, 4, 8, 16 or 32 elements. However, it is also possible to find arrays that are not multiple

of such values. In this way, the remaining elements must be processed individually. Figure 26

shows an example where there are remaining elements to be processed. As can be seen, there

are 21 elements to be processed. Assuming that, in this example, one can perform up to 8 data

per operation, the first two operations will be executed normally, whereas the third iteration

will not have enough elements (multiples) to be executed. In order to enable the vectoring of

non-multiple arrays, three techniques are implemented in the DSA: Single Elements, Overlap

and Larger Arrays. Such techniques are discussed in the following subsections.
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Figure 26 – Leftovers

4.8.1 Single Elements

The NEON instruction set provides LOAD and STORE instructions that can operate

over individual elements. Figure 27 shows how the Single Elements method works. As it can

be seen, only 2 vector operations could be executed 0 → 7 and 8 → 15 since the size of the

array is not multiple of 8. In this way, elements 16→ 20 must be loaded, processed and stored

individually.

Figure 27 – Single Elements Method

The Single Elements technique is the slowest among the three techniques mentioned,

since each element must be loaded, processed and stored individually. It is important to notice

that such method requires the execution of two loops, the first one for the execution of the

vectors and the second for the execution of the individual elements.
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4.8.2 Overlapping

The Overlapping method involves processing some elements of the array twice to cover

the operation of the remaining elements. Figure 28 shows the functionality of such method.

As shown, since the array size is not a multiple of 8, it is unfeasible to perform three vector

operations. Through the use of Overlapping, the first operation processes the data from 0 → 7

normally. However, the second instruction will repeat the operation performed on the elements

5, 6 and 7, operating over the elements 5→ 12. In this way, the last operation is performed over

8 elements 13→ 20.

Figure 28 – Overlapping Method

However, the Overlapping method is only allowed when the operations applied over

the elements do not vary the resulting array regardless of the number of times the operation is

applied. In addition, the number of elements present in the array must fill at least one vector

completely.

4.8.3 Larger Arrays

The Larger Arrays technique is based on changing the size of the array being processed.

The value of the array is raised to the next multiple value that the vector unit supports. Figure

29 shows how the Larger Arrays method works. As can be seen, in order to make the array size

(21) a multiple value for execution on the vector unit (24), three adjacent elements need to be

allocated. In this way, it was possible to use the vector engine through three operations: 0→ 7,

8→ 15 and 16→ 23.
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Figure 29 – Larger Arrays Method

However, allocating larger arrays results in greater memory occupation. Such size can

be significant depending on the number of arrays that have leftovers to execute. These new

elements at the end of the array need to be initialized to not affect the final calculation result.
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5 METHODOLOGY

We coupled the DSA to the gem5 O3CPU Model (ARMv7 ISA) to evaluate the per-

formance of the proposed approach. The gem5 simulator is a modular platform for computer-

system architecture research that enables the execution of a variety of architecture binaries with

Linux emulation. The gem5 provides us high simulation precision (tick precision), several

architectural configurations possibilities and architectural information during runtime (e.g: ins-

tructions, registers, data and instruction memory access). Figure 30 shows how the performance

results were generated. As can be seen, we extracted the results using a trace level simulation.

While the gem5 O3CPU executes benchmarks, the DSA monitors all O3CPU incoming ins-

tructions and tick information. In this way, we could check the DSA Vectorization Analysis

functionality. To evaluate the DSA Execution we detect the vectorizable regions and adjust the

timing model replacing the scalar vectorizable instructions by vector instructions. To improve

the simulation accuracy, we infer several latencies to both DSA Analysis and Execution Stages.

For the DSA Analysis we consider:

• DSA Cache Access Latency;

• Verification Cache Access Latency;

• Array Map Access Latency - (Conditional Loop);

• Partial Vectorization Latency - Multiple Cross-iteration Analysis.

For the DSA Execution we consider:

• Pipeline Flush Latency;

• Non-Vectorizable Instructions Latency;

• Load Data Vector (Scalar Register to Vector Register) Latency;

• Store Data Vector (Vector Register to Scalar Register) Latency;

• Leftover operations Latency.
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Figure 30 – DSA Simulation Model

5.1 O3CPU PROCESSOR/DSA IMPLEMENTATION

The O3CPU processor is an out-of-order model that has an ISA-independent pipeline.

However, there are parts of its implementation which are composed of specific ISA functi-

ons. Currently, the processor is compatible with the Alpha, ARM and x86 architectures. This

model was chosen because it presents a higher timing precision when compared to other simu-

lators implemented in high level (eg.: SimpleScalar, MultiSim) and also because it supports the

ARMv7-A ISA that implements vector instructions (ARM NEON).

Figure 31 illustrates the O3CPU pipeline steps and where DSA was coupled. As can

be seen, the O3CPU processor has 7 pipeline stages, since it is an out-of-order processor, the

Issue and Commit stages become present. To perform the DSA Loop Analysis Stage, the DSA

must be aware of all the incoming instructions arriving on the processor and the order such

instructions arrive. In this way, the vectorization analysis takes place during the Fetch Stage

of the O3CPU pipeline. In order to execute SIMD instructions, the DSA stalls the Fetch Step,

waits for every instruction to be flushed from the pipeline and then addresses SIMD instructions

to the Issue Stage. At the end of the SIMD execution, the Fetch Step receives the instruction

address that succeeds the last instruction address of the loop.
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Figure 31 – O3CPU - DSA Implementation

5.2 DSA AND O3CPU ENERGY RESULTS

We used the Cadence RTL Compiler and ModelSim to gather energy results from the

VHDL description of the Dynamic SIMD Assembler Analysis Stage and McPAT to gather

energy results of the O3CPU Model (ARMv7 ISA). To improve the DSA energy consumption

accuracy, we developed different scenarios based on different loop types. Figure 32 illustrates

such exploitation. Considering the Conditional Loop Execution the DSA Analysis performs the

states: Loop Detection Stage→ Data Collection Stage→ Dependency Analysis Stage→ Store

ID/Execution Stage. Unlike the Conditional Loop approach the Count Loop performs the states:

Loop Detection Stage→Mapping Stage→ Speculative Stage. As can be seen, for each scenario

different logic paths (different states) are accessed resulting in several possible energy results.
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Figure 32 – DSA Energy Analysis

5.3 SYSTEMS SETUP

We have coupled the DSA to an ARMv7 ISA processor using the O3CPU model of gem5

simulator to evaluate the proposed approach. In all articles (Sections 6,7 and 8) we considered

the same System Setup for all systems. Table 4 shows the configurations of all setups presented

in the subsequent articles.

Table 4 – Systems Setup

Configurations ARM Original
Execution

ARM NEON
DSA

ARM NEON
(AutoVec and Hand-Coded)

Processor
gem5 O3CPU

(ARMv7)
gem5 O3CPU

(ARMv7)
gem5 O3CPU

(ARMv7)
Superscalar Width 2 wide 2 wide 2 wide

CPU Clock 1GHz 1GHz 1GHz
L1 Cache 64 kb 64 kb 64 kb
L2 Cache 512 kb 512 kb 512 kb

Cache Policy LRU LRU LRU
Parallelism

(NEON)
Not Used

Type Dependent
128-bit Wide

Type Dependent
128-bit Wide

NEON Registers Not Used
Sixteen 128-bit

(Q0 - Q15)
Sixteen 128-bit

(Q0 - Q15)
DSA Cache - 8 kb -

Verification Cache - 1 kb -
Array Maps

(Conditional Loop)
- 4 (128-bit Wide) -
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It is important to notice that we coupled the same ARM NEON architecture in ARM

NEON DSA and the ARM NEON Approaches, which provides the same DLP exploitation

degree. Also, considering a conditional loop execution, the max number of array maps for the

speculative execution is 4 (128-bit Wide), which limits the number of vectorizable instructions

within conditional statements. E.g.: If a Conditional Loop has 2 conditional statements, both of

them can have 4 vectorizable instructions. In case of having unused ARM NEON registers, such

registers can be used to the speculative execution, increasing the number of allowed vectorizable

instructions.
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6 ARTICLE 1 - IMPROVING SOFTWARE PRODUCTIVITY AND PER-
FORMANCE THROUGH A TRANSPARENT SIMD EXECUTION
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Abstract— Multimedia and DSP applications have been widely present 
in embedded devices. Due to their intrinsic nature, such application 
domains are benefited from Data Level Parallelism (DLP) exploitation, 
which is mostly employed in current embedded platforms by using 
vectorization techniques extending the underlying ISA. However, such 
strategy relies on specific library which affects software productivity 
and compiler support, such as ARM auto-vectorization approach, 
which breaks binary compatibility. This work proposes a transparent 
Dynamic SIMD Assembler (DSA) that is capable of detecting 
vectorizable code regions at runtime without requiring specific library 
or compilers. As a case study, we coupled the DSA to a 128-bit wide 
ARM NEON Engine. Results show that the proposed approach shows 
performance improvements of 31% over the original execution 
(without DLP exploitation). In addition, Dynamic SIMD Assembler, 
besides keeping binary compatibility, outperforms ARM auto-
vectorization technique in 6%. 

 

Keywords— DLP, SIMD, Vectorization, ARM 

I. INTRODUCTION  

Multimedia and DSP applications are increasingly present on 
current mobile devices demanding efficient software execution to 
respect power constraints imposed by battery supply. Instruction and 
Thread-Level Parallelism are widely exploited on such platforms by 
applying aggressive superscalar execution and increasing the number 
of cores encapsulated in a single die. However, such application 
domains are not benefited, in terms of both performance and energy, 
from their exploitation due to the well-known limitation of Von 
Neumann execution model. 

Dataflow machines [13][14] and Reconfigurable Architectures 
[15][16]  have been arising to overcome Von Neumann bottleneck by 
ridding the control flow execution model. However, such architectures 
rely on a high degree of functional unit replication, which does not 
respect the energy constraints of embedded devices. 

Most market processors have been coupling vector processing units 
(i.g. IBM Altivec [8], x86 AVX [7] and ARM NEON [6]) to allow 
Single Instruction Multiple Data (SIMD) execution since such 
application domains offer great opportunities to exploit Data Level 
Parallelism (DLP). As the number of functional units required to 
employ such execution model is smaller than Dataflow machines, it is 
feasible to achieve performance improvements with low power 
consumption by merging SIMD and Von Neumann execution models. 

However, most SIMD engines rely on specific libraries, which  
increases the development process lifecycle affecting the software 
productivity. In addition, such libraries do not completely abstract the 
hardware complexity and most SW developers do not have enough 
knowledge about the architecture implementation details to exploit the 
potential of the vector processing engines.  

Automatic code vectorization techniques extract DLP by building 
SIMD instructions over vectorizable code regions to exploit vector 
processing engines at compile time. However, although keeping 

software productivity by avoiding the use of specific libraries, auto-
vectorization techniques still rely on code recompilation which breaks 
binary compatibility. In addition, such an approach is restricted to 
static code exploitation, which limits the DLP extraction since it is 
difficult to identify vectorizable regions, such as conditional 
statements, which can affect the vector processing engine utilization 
[12].  

This work proposes a transparent Dynamic SIMD Assembler 
(DSA) that is capable of exploiting DLP at runtime by identifying 
vectorizable loops to generate SIMD instructions. Unlike most market 
SIMD engines, due to its transparent fashion, the development process 
life cycle is maintained since it does not rely on specific libraries. As 
SIMD instructions are built at runtime, unlike automatic code 
vectorization techniques, binary compatibility is also maintained. 
Moreover, the dynamic nature of the proposed technique opens the 
room to achieve higher performance than static auto-vectorization 
approaches.  

This work is organized as follows. Section II presents the Related 
Work. Section III presents the Dynamic SIMD Assembler System. 
Methodology and Results are shown in Section IV. Finally, we present 
the conclusion and future works in Section V. 

II. RELATED WORK 

The SIMD vectorization is widely used in several emerging market 
platforms, such as the Intel SSE, IBM AltiVec, and ARM NEON 
architectures. In the academic field, several researches are exploiting 
Data Level Parallelism (DLP) to achieve performance improvements 
and energy savings. Sara S. Baghsorkhi [1] proposes FlexVec 
architecture that combines a novel partial vector code generation 
technique with new vector instructions to dynamically adjust vector 
length for loop statements affected by runtime cross-iteration 
dependencies. FlexVec vectorization coupled to the Intel AVX-512 
ISA shows a Geomean performance improvement from 9% to 11%. 
Although it is able to perform optimizations over loops with cross-
iteration dependencies, the method breaks binary compatibility, since 
it is necessary a specific ISA adjustment and also relies on a particular 
compiler and library development.  

Dorit Nuzman [2] evaluates and applies a compiler outer loop 
vectorization technique focusing on properties of modern SIMD 
architectures. It shows that even though current optimizing compilers 
do not apply outer loop vectorization, they can provide significant 
performance improvements over innermost loop vectorization. The 
proposal achieves  performance improvements of 3.13 and 2.77 when 
coupled to a Cell BE SPU and PowerPC970, respectively. Similar to 
our proposal, the authors focused on vectorizing both innermost and 
outer loops but it relies on compiler support. 

Being aware that most research focuses on vectorizing loops, Tian 
Xinmin [3] presented a set of new C/C++ high-level extensions for 
SIMD programming capable of automatic translating both functions 
and loops. Significant speedups (from 3.07x to 4.69x) are achieved 
when these optimizations are applied. Similar to aforementioned 
related works, it relies on specific compiler and library to achieve 



performance improvements, which breaks SW compatibility and 
affects SW productivity. 

Hoseok Chang [4], employed a unique memory access hardware, 
solving the non-aligned and irregular data memory access operations 
to improve the performance of a SIMD processor based on ARMv4 
architecture. In addition, it develops an auto-vectorization compiler, 
which utilizes the proposed hardware. By applying such technique, the 
number of vectorized loops increases 50%, which provides 77% of 
performance improvement in the MPEG2 encoder execution.  

Besides the research above, many studies are also focused on 
applying reconfigurable architectures, since besides exploiting ILP, 
they are also capable of exploring DLP. A reconfigurable architecture, 
named as Samsung reconfigurable processor (SRP), is developed for 
digital signal processing [5]. The SRP architecture is designed to 
handle mobile multimedia applications efficiently. It uses a CGRA to 
vectorize innermost loops by using a conventional C/C++ 
programming model to annotate the code.  Despite the huge chip area 
required to the CGRA, the SRP relies on compiler, library and ISA 
modifications. In addition, it requires a design-time step to create  
CGRA configurations for each application which reduces, even more, 
the binary compatibility and SW productivity.  

ARM NEON [6] is introduced in the ARMv6 architecture. The 
NEON auto-vectorization compiler generates vectorizable code by 
instantiating SIMD instructions. Despite the advantages of auto-
vectorization, the static code exploitation limits the performance gains 
since it is difficult to identify vectorizable regions of conditional 
statements, function calls or even loops that contain codes between 
inner-loops and outer-loops. To overcome such issues, another strategy 
offered by the ARM to explore the NEON engine is the use of ARM 
NEON library, which transfer the vectorization task responsibility to 
the SW developer which affects SW productivity. 

Table 1 compares all the aforementioned works with the proposed 
approach. As it can be seen, binary and software compatibility are not 
prioritized in their designs since they employ ISA modification or 
specific libraries. Our work proposes a transparent Dynamic SIMD 
Assembler that is capable of building SIMD instructions at runtime. 
The proposed approach coupled to the ARM NEON engine provides:  

 higher performance than ARM auto-vectorization method 
with binary compatibility since is not necessary to recompile 
the source code; 

 SW productivity by avoiding the use of the ARM library in 
the code development lifecycle to take advantage of the 
NEON engine processing capabilities.  

 

Table 1 – Related Works and Proposed Technique Characteristics 

 

III. SYSTEM OVERVIEW 

The proposed Dynamic SIMD Assembler (DSA) is tightly coupled 
to an ARM Cortex-A12 processor (ARMv7 ISA). Figure 1 shows the 
system overview. As it can be seen, the DSA is composed of a SIMD 
instruction logic detection and two cache memories (DSA Cache and 
Verification Cache). The DSA Cache is responsible for storing 
information about the built SIMD instructions over the vectorizable 
loops. The Verification Cache stores the addresses of data memory 
accesses performed into the vectorizable loops (more details about 
caches in Section IV).  

 

 
Figure 1 - System Overview 

      Figure 2 shows an overview of how the DSA works. In the first 
scenario (Scenario 1 – Ordinary Execution), the DSA and ARMv7 
processor operate in parallel. While the ARM Cortex-A12 processor 
executes the incoming instructions, the DSA is in a probing mode, 
searching for a vectorizable loop to build SIMD instructions. In such 
execution mode, the NEON Engine remains deactivated. If the DSA 
detects a vectorizable loop, the second scenario is triggered (Scenario 
2 – DLP Exploitation). In this scenario, the DSA deactivates the ARM 
Cortex A12 processor and activates the NEON Data Engine to execute 
the built SIMD instruction. 
 

 
Figure 2 – System Functionality Overview 

IV. DYNAMIC SIMD ASSEMBLER 

This section is divided into five subsections. Subsection A shows a 
superficial analysis of the Dynamic SIMD Assembler (DSA). 
Subsection from B to E presents a more detailed analysis of the DSA 
stages.   

A. Dynamic SIMD Assembler Overview 
As shown in Figure 3, the Dynamic SIMD Assembler (DSA) 

detection process is based on a State Machine (SM) composed of four 
stages: Loop Detection, Data Collection, Dependency Analysis, and 
Store ID/Execution. Each one of these stages is activated in different 
loop iterations.  

 
Figure 3 – State Machine of DSA  

Code Recompilation
Library Development 

Support ISA Modification SW Productivity Binary Compatibility

[1] Yes Yes Yes Affected No
[2] Yes No Yes Not Affected No
[3] Yes Yes Yes Affected No
[4] Yes No Yes Not Affected No
[5] Yes Yes Yes Affected No
[6] Yes No Yes Not Affected No

DSA No No No Not Affected Yes



As it can be seen, the state machine starts in the Loop Detection 
stage and is triggered by the end of the first loop iteration. The Loop 
Detection stage is responsible for:  

- checking the existence of innermost-loop and outer-
loops at runtime; 

- accessing the DSA cache, checking if the current loop is 
already vectorizable. 

The Data Collection stage is triggered in the second loop iteration. 
This stage is responsible for:  

- evaluating the loop range (number of iterations) 
- identifying the existence of a function call inside the 

loop; 
- storing the addresses of data memory accesses in the 

Verification Cache.  
The Dependency Analysis stage is triggered in the third loop 

iteration. This stage is responsible for: 
- analyzing the cross-iteration dependency (dependencies 

between two or more iterations in the same loop). 
The Store ID/Execution stage is triggered in the fourth loop 

iteration. This stage is responsible for: 
- generating and saving the loop identification (ID) in case 

of a vectorizable loop; 
- building SIMD instruction and activating the execution 

on NEON engine.  
Figure 4 exemplifies the execution of the DSA considering a 

vectorizable loop (vectorizable_Loop()) and a non-vectorizable loop 
procedures (non_vectorizable_Loop()).  

 

 

Figure 4 – DSA Execution 

Considering the vectorizable_loop() procedure, the Loop Detection 
stage (A) detects the loop by the end of the execution of the first 
iteration (more detailed in Section C). In the second iteration, the Data 
Collection stage (B) identifies the loop range (400) and the value of the 
increment/decrement (i = i + 1) (more detailed in Section D). In 
addition, such stage stores the addresses of the data memory accesses 
(Mem[a[i]], Mem [b[i]] and Mem[v[i]]) in the Verification Cache 
(more detailed in Section E). In the third iteration, the Dependency 
Analysis Stage (E) analyses dependencies between iterations. For the 
current example, the DSA verifies that there is no cross-iteration 
dependency and triggers the Store ID/Execution Stage. Such stage 
builds SIMD instructions to execute the remaining iterations in the 
ARM NEON engine. The DSA needs four parameters to generate 
SIMD instructions: the data type, the loop range, the operation and the 
ARM NEON execution support. In the example of Figure 4, the 
parameters are: float, 400, add, 128-bit wide, respectively. Considering 
these parameters, for the current example, the DSA generates an 
instruction equivalent to the vaddq_f32 instruction of the NEON 

architecture.  Since the corresponding ARM NEON engine can operate 
128 bits in parallel and the float type is a 32-bit wide data, the DSA 
divides the loop range by the factor four, running the vaddq_f32 one 
hundred times, instead of executing a non-vectorizable add operation 
four hundred times. 

Considering the DSA analysis over the non_vectorizable_Loop () 
procedure, the Loop Detection and Data Collection stages behave the 
same as shown in the vectorizable_Loop() procedure. However, in the 
third loop iteration, during the Dependency Analysis Stage (C), a 
cross-iteration dependency is found (v [i] = v [i-1] + b [i]) which breaks 
the DLP detection process classifying such procedure as non-
vectorizable.  

 

B. Loop Detection Stage 
Figure 5 shows the steps of the Loop Detection stage during the 

execution of the first and second iterations of the loop. The left side of 
Figure 5 shows the instruction trace that contains: the memory 
addresses of instructions (Inst. Address) and instructions descriptions 
(Instructions). The right side of the Figure shows the loop detection 
stage steps (DSA execution). 

 

 
Figure 5 – Loop Detection Stage Behavior 

A Branch-type instruction is responsible for triggering the Loop 
Detection stage. If the first instruction after a Branch (“First 
Instruction” in the example) has a memory address lower than the 
branch instruction address, the DSA identifies the beginning of a loop, 
setting its ID as the current value of the Program Counter (PC) register 
(ID = Address = 0x00000004). Whenever DSA detects a loop, the 
DSA Cache is accessed to verify if there exists a cache entry with the 
value of the current loop ID.  If DSA has already evaluated this loop 
as vectorizable, the DSA Cache would contain the ID (CACHE HIT), 
which triggers the ARM NEON execution (Generate/Activate ARM 
NEON). However, if the ID of the loop is not found at the DSA Cache 
(CACHE MISS), the Data Collection stage is triggered. 

 

C. Data Collection Stage 
Figure 6 illustrates the behavior of the Data Collection Stage, 

which is triggered after the Loop Detection Stage. Similar to Figure 5, 
the left side of Figure 6 shows the instruction trace that contains: the 
memory addresses of instructions (Inst. Address) and instructions 
descriptions (Instructions). The right side of the Figure shows the 
corresponding Data Collection stage steps (DSA execution). 

In the second loop iteration, the Data Collection gathers the 
addresses of data memory accesses (MemRead (load) and MemWrite 
(store) type instructions) performed in the Loop execution (Gather 
Memory Address) and stores them in the Verification Cache (MemRead 
→ Address = 0x100 and MemWrite → Address = 0x108).  

In addition, the Data Collection stage identifies the number of 
iterations and the value of increment/decrement of the loop. The 
number of iterations is calculated with the support of the Cmps 
instruction (Address = 0x00F), which contains, as operands, the 
increment/decrement and limit_value. 

 



 

Figure 6 - Data Collection Stage Behavior 

This stage also identifies function calls inside the loop by verifying 
the memory address gap between instructions fetched from memory. 
As it can be seen in Figure 7, the execution of a Jump  instruction 
preceded by a context switch process (Instructions -> Save Context 
and Load Context) indicates a function call (Jump1 →  Begin and 
Jump2 →  End). To be sure that the Jump instruction considers a 
function call, the DSA verifies if the target address of the Jump is out 
the loop body addressing (0x011→ 0x020). In the example of Figure 
7, the loop body comprehends memory addresses from 0x004 to 0x00F 
while the function call comprehends addresses from 0x011 to 0x020. 
The detection of function calls is mandatory to analyze cross-iteration 
dependencies since the increment/decrement register can be modified 
for an operation inside a function call.  

 
 

 
Figure 7 – Data Collection Stage  

D. Dependency Analysis Stage 
Figure 8 illustrates the behavior of the Dependency Analysis stage 

during the execution of the 3rd  loop iteration. As shown in the previous 
subsection, the Loop Stage analysis collects data in the second loop 
iteration to support cross-iteration dependency verification.  

 

 
 

Figure 8 – Dependency Analysis Stage 

If any of the data memory addresses (stored in the Verification 
Cache by the Data Collection Stage) matches with a data memory 
address accessed in the third loop iteration, a cross-iteration 
dependency is detected, and the loop cannot be vectorized. However, 
if data memory addresses stored in the second loop iteration does not 
match with the addresses performed in the third loop iteration, one 
cannot discard cross-iteration dependencies in future iterations. 
Assuming such possibility, we have implemented a cross-iteration 
dependency prediction process (Cross-iteration Prediction). The 
equations below describe such process, where 𝑀 [ ]  and 
𝑀 [ ] is the memory address accessed by a MemRead (load) 
instruction in the second and third loop iterations, respectively. 
𝑀 [ ]  is the memory address accessed by a load 
instruction in the last iteration (Equation d), x is the interval between 
𝑀 [ ]  and  𝑀 [ ]  (Equation a), 𝑀 [ ]  is the 
memory address accessed by a MemWrite (store) instruction in the 
second iteration (Equations b and c), 𝑀  is the memory address 
range between the 𝑀 [ ]  and 𝑀 [ ]  (Equation e), 𝐶𝐼𝐷  means 
Cross-Iteration Dependency and NCID means No Cross-Iteration 
Dependency. 

 
𝑀 [ ] ≤ 𝑥 ≤ 𝑀 [ ] (𝑎) 

𝑀 [ ] ∈ 𝑥 → 𝐶𝐼𝐷 (𝑏) 
𝑀 [ ] ∉  𝑥 → 𝑁𝐶𝐼𝐷 (𝑐) 

 
𝑀 [ ] = 𝑀 [ ] +  (𝑀 ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

− 2)) (𝑑) 
𝑀 = |𝑀 [ ] − 𝑀 [ ]| (𝑒) 

 
As shown in equations, if the 𝑀 [ ]  is within the memory 

address range of 𝑀 [ ]  and 𝑀 [ ]  (Equation b), the 
loop could have a cross-iteration dependency since the load instruction 
of a future loop iteration could perform a memory access in the same 
memory address of the store instruction executed in the second loop 
iteration. The memory address of the load instruction of the last 
iteration is predicted based on the sum of the 𝑀 [ ] and the equation 
(𝑀 ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 2))  (Equation e). Thus, in case of  
𝑀 [ ]  is out of the memory address interval of 𝑀 [ ]  and 
𝑀 [ ] (Equation c), one can ensure that the loop has no 
cross-iteration dependency.  

Figure 9 illustrates an example of how Cross-iteration Prediction 
works. In such example, the DSA detects that there is no cross-iteration 
dependency between 2nd and 3rd iteration. Thus, by the end of the 3rd 
loop iteration, the Cross-iteration Prediction is activated applying 
Equation “e” resulting in  𝑀 = |0𝑥104 − 0𝑥100| = 0𝑥004. This 
gap is used to calculate the memory address of the load instruction of 
the last iteration ( 𝑀 [ ] ) using Equation “d”. Such 



memory address results 𝑀 [ ] = 0𝑥100 + 0𝑥020 =

0𝑥120. By applying the Equations “a” and “b”, the Cross-iteration 
Prediction detects that the 𝑀 [ ] = 0𝑥108 is within the range of 
the addresses accessed by the MemRead (load) in the 3rd and last (10th) 
iterations (𝑀 [ ] ≤ 𝑥 ≤ 𝑀 [ ]) = 0𝑥100 ≤ 𝑥 ≤

0𝑥120), which causes a cross-iteration dependency. 
 

 
 

Figure 9  – Example of a Cross-iteration Dependency Prediction 
Process 

E. Store ID/Execution Stage 
Figure 10 illustrates the behavior of the Store ID/Execution Stage 

during the execution of 4th  loop iteration, which is just triggered if the 
loop is vectorizable. In this stage, the loop ID and the number of 
iterations are saved (Store ID) in the DSA cache. In addition, the 
corresponding SIMD instruction is generated to be executed in the 
NEON Data Engine (Generate / Activate ARM NEON).  

 

 
Figure 10 - Store ID/Execution Stage Behavior 

As explained before, The Store ID/Execution Stage uses four 
parameters, collected in the previous stages, to generate a SIMD 
instruction: the data type, the loop range, the operation, and the ARM 
NEON SIMD support. Figure 11 shows the different degrees of 
parallelism that can be obtained through the NEON 128-bit Engine 
depending on the type of data involved in the SIMD Instruction. 

 

 
Figure 11 – ARM NEON Parallelism 

V. RESULTS 

A. Methodology 
To evaluate the effectiveness of the proposed approach, we have 

coupled the DSA to the ARM Cortex A12 (ARMv7 ISA) O3 model of 
gem5 [9] simulator. To gather performance results, we have compared 
the proposed technique with an ARM Cortex A12 processor without 
DLP exploitation (ARM Original Execution) and with an ARM Cortex 
A12 processor coupled to NEON architecture (ARM NEON AutoVec) 
exploiting DLP through the support of ARM NEON auto-vectorization 
compiler. It is important to notice that we employ the same ARM 
NEON architecture in both ARM NEON AutoVec and ARM Dynamic 
SIMD Assembler, which provides the same DLP exploitation degree. 
Table 2 shows the configurations of ARM Original Execution, ARM 
NEON Dynamic SIMD Assembler, and ARM NEON AutoVec.  

 

Table 2 – Systems Setups 

 
 
We have chosen benchmarks that cover three different levels of 

DLP to evaluate the systems shown in Table 2. We have selected three 
applications with a great opportunity to exploit DLP (MM [17], RGB-
Gray [18], and Gaussian Filter [18]), an application with a medium 
opportunity to exploit DLP (Susan E [17]) and two applications with 
low opportunity to exploit DLP (Q Sort [17] and Dijkstra [17]). Finally, 
we used RTL Compiler [10] software from Cadence to gather results 
about area from the VHDL description of the ARM processor and 
Dynamic SIMD Assembler. 

B. Performance  
Figure 12 shows the performance improvements of the ARM 

NEON DSA and ARM NEON AutoVec over the ARM Original 
Execution. As it can be noticed, when the applications provide great 
opportunities to exploit DLP, the proposed technique achieves up to 
61% of performance improvements over the ARM Original Execution. 
In cases of Gaussian Filter e Susan Edges, the performance gains are 
lower since such applications provide smaller opportunities to exploit 
DLP. The proposed approach does not show performance 
improvements on Quicksort and Djikstra execution since they do not 
provide opportunities to exploit DLP. On average, the DSA provides 
performance improvements of 31% over the ARM Original Execution 
showing the importance of DLP exploitation. 

The proposed approach outperforms ARM auto-vectorization in all 
benchmarks but MM 64x64. Due to the dynamic DLP analysis of DSA, 
it achieves 20% of performance improvements over ARM auto-
vectorization technique when executing RGB-Gray. For applications 
with low DLP exploitation opportunities, our proposal maintained the 
same performance of the ARM Original Execution since DSA does not 
cause performance penalties when loops are not found. In such 
scenario, ARM NEON auto-vectorization provides performance 
penalties of 3% on Dijkstra and 1% on Q Sort. In addition, besides 
achieving 20% of performance improvements over the ARM auto-
vectorization technique, the proposed approach keeps software 



compatibility and does not affect the SW development life cycle due 
to its transparent and dynamic DLP detection. 

 

 
Figure 12 – NEON Auto-Vectorization vs. DSA Vectorization 

Performance 

C. Area 
Table 3 shows the area occupied by the ARM processor and the 

Dynamic SIMD Assembler (DSA). As it can be noticed, the logic to 
implement the DSA detection is just 2.18% of the ARM core. 
Considering the DSA and Verification Cache Memories, the total area 
overhead of the DSA system is 10.37%. 

 
Table 3 – Area overhead of DSA 

 
 

VI. CONCLUSION AND FUTURE WORK 

In this work, we have proposed a transparent Dynamic SIMD 
Assembler (DSA) that is capable of detecting vectorizable code regions 
at runtime without requiring specific libraries or compilers. The 
proposed approach shows performance improvements of 31% over the 
original execution (without DLP exploitation). In addition, Dynamic 
SIMD Assembler, besides keeping binary compatibility, outperforms 
ARM auto-vectorization technique in 6% by increasing 10.37 % of the 
chip area. Since the Dynamic SIMD Assembler is an in-progress work, 
we intend to extend the current version to support: vectorization of 
loops with conditional statements; partial vectorization of loops with 
cross-iteration dependencies; vectorization of outer-loops with data 
dependencies with inner-loops; vectorization of loops with dynamic 
range. 
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Cell Area(um) Net Area(um) Total Area(um)
ARM Core 391158 219015 610173

DSA 8667 4607 13274
Area Overhead 2,22% 2,10% 2,18%

Cell Area(um) Net Area(um) Total Area(um)
ARM Core + Caches 512912 279801 792713

DSA + Caches 53716 28520 82236
Total Area Overhead 10,47% 10,19% 10,37%
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Abstract — SIMD engines are widely present in market 
processors aiming to improve performance of applications 
through Data Level Parallelism (DLP) exploitation. However, 
most SIMD engines rely on specific libraries and compilers to 
support DLP execution, which limits DLP gains since they are 
restricted to analyze static code. Dynamic SIMD Assembler 
(DSA) [8] is capable of exploiting DLP at runtime by identifying 
vectorizable loops to generate ARM NEON SIMD instructions. 
However, its DLP coverage capability is not fully exploited, since 
portion of code that depends on runtime information, such as 
dynamic range and conditional code loops are not exploited. In 
this work, we extend the DSA coverage by coupling the 
exploitation of conditional code and dynamic range loop 
vectorization. Results show that the proposed techniques 
improve the original DSA performance in 38% considering 
benchmarks with opportunities to exploit conditional code and 
dynamic range loops. In addition, the Extended DSA, besides 
keeping software productivity and binary compatibility, 
outperforms ARM compiler auto-vectorization by 12%. 

Keywords— DLP, SIMD, Vectorization, ARM 

I. INTRODUCTION  

SIMD (Single Instruction Multiple Data) engines, such as ARM 
NEON [7], Intel SSE/AVX [9] and IBM Altivec [10], are widely 
present in market processors to improve applications performance 
by exploiting Data Level Parallelism (DLP). To exploit the potential 
of vector processing engines most techniques rely on specific 
libraries to vectorize the application code. However, it is hard to 
predict at software development time the behavior of certain 
vectorizable regions of code, making it unfeasible to extract the 
maximum available DLP using such techniques. In addition, the use 
of specific libraries increases the development process lifecycle and 
affects software productivity.  

Automatic code vectorization techniques [15] extract DLP from 
vectorizable code regions by building SIMD instructions to exploit 
vector processing engines at compile time. However, although 
keeping software productivity by avoiding the use of specific 
libraries, auto-vectorization techniques still rely on code 
recompilation which breaks binary compatibility. Also, such an 
approach is restricted to static code exploitation [12], which, similar 
to the employment of specific libraries, restricts the performance 
gains due to the low DLP coverage.  

DLP opportunities are mostly present in application loops, where 
operations are executed multiple times over vector structures. 
However, three issues prevent loop vectorization: cross-iteration 
dependences; loops with conditional codes and dynamic range loops. 
Cross-iteration dependences are intrinsically non-vectorizable due to 
the data dependencies between iterations. However, instead of 
having data dependencies, loops with conditional codes and dynamic 
range loops present control dependencies which rely on runtime 
information to be vectorized. Thus, they cannot be handle through 
special libraries and compiler auto-vectorization techniques. 
     Dynamic SIMD Assembler (DSA) [8] is capable of exploiting 
DLP at runtime by identifying vectorizable loops to generate SIMD 
instructions. Unlike most market SIMD engines, due to its 

transparent fashion, the development process life cycle is maintained 
since it does not rely on specific libraries. As SIMD instructions are 
built at runtime, unlike automatic code vectorization techniques, 
binary compatibility is also maintained. Moreover, DSA has already 
shown higher performance than ARM static auto-vectorization 
approach since it is capable of vectorizing count loops (static range 
loops), such as inner-loops and outer-loops and loops containing 
function calls at runtime [8]. However, its DLP coverage capability 
is not fully exploited, since conditional code and dynamic range 
loops are not vectorized.  

In this work, we extend DLP exploitation capability of the DSA 
by taking advantage of its intrinsic and transparent execution that 
makes it possible to evaluate loops during runtime. By analyzing 
code during runtime it is possible to extract DLP from dynamic 
behavior loops. Thus, this work extends the DSA coverage by 
proposing the exploitation of: Conditional Code and Dynamic Range 
Loop vectorization. We show that the extended DSA approach 
outperforms the auto-vectorization compiler in 12%, on average, 
maintaining software productivity and binary compatibility. 

This work is organized as follows; Section II presents the Related 
Work. Section III and IV present the Dynamic SIMD Assembler 
System. Section V presents the Conditional Code Loop and Dynamic 
Range Loop vectorization techniques. Methodology and Results are 
shown in Section VI. Finally, we present the conclusion and future 
works in Section VII. 

II. RELATED WORK 

The SIMD vectorization is widely used in several emerging 
market platforms, such as the Intel AVX, IBM AltiVec, and ARM 
NEON architectures. In the academic field, several researches are 
exploiting Data Level Parallelism (DLP) to achieve performance 
improvements and energy savings. Sui Yulei [1] improves the 
LLVM compiler [16] infrastructure to explore vectorization 
opportunities by developing a more precise Loop-Oriented Pointer 
Analysis for Automatic SIMD Vectorization. This approach is able 
to detect more than 273 vectorizable basic blocks achieving 
performance improvements from 2.95% to 7.23%. However, such 
an approach uses an auto-vectorization technique, which means that 
loops containing dynamic behavior cannot be vectorized. 

Zhou Hao [2] presents the Loop-Mix compiler, also 
implemented in the LLVM compiler. Loop-Mix vectorizes loops 
regarding the data reorganization overhead caused between mixed 
SIMD parallelism (inter-loops and intra-loops). The technique 
outperforms the Loop-ILV [4] by 36%. Since the work is also 
implemented in the LLVM compiler, the binary compatibility is 
compromised, code recompilation is required and dynamic behavior 
loops are not covered. 

Sara S. Baghsorkhi [3] proposes FlexVec architecture that 
combines a novel partial vector code generation technique with new 
vector instructions to dynamically adjust vector length for loop 
statements affected by runtime cross-iteration dependencies. 
FlexVec vectorization coupled to the Intel AVX-512 ISA shows a 
Geomean performance improvement from 9% to 11%. Although it 
is able to perform optimizations over loops with cross-iteration 
dependencies, it is not capable of vectorize Dynamic Range loops. 
Besides, the method breaks binary compatibility since it is necessary 



a specific ISA adjustment and also relies on a particular compiler 
and library development.  

Dorit Nuzman [4] proposes a compiler outer loop vectorization 
technique focusing on properties of modern SIMD architectures. It 
shows that even though current optimizing compilers do not apply 
outer loop vectorization, they can provide significant performance 
improvements over innermost loop vectorization. It shows 
performance improvements of 3.13 and 2.77 when coupled to a Cell 
BE SPU and PowerPC970, respectively. Similar to our proposal, the 
authors focused on vectorizing both innermost and outer loops but it 
relies on compiler support and cannot cover loops with dynamic 
range or conditional code. 

Being aware that most research focuses on vectorizing loops, 
Tian Xinmin [5] presented a set of new C/C++ high-level extensions 
for SIMD programming capable of automatic translating both 
functions and loops. Significant speedups (from 3.07x to 4.69x) are 
achieved when these optimizations are applied. Similar to 
aforementioned related works, dynamic behavior loops are not 
covered and it relies on specific compiler and library to achieve 
performance improvements, which breaks binary compatibility and 
affects SW productivity. 

Bramas Berenger [6] proposes Inastemp, a lightweight open-
source C++ library that provides portable SIMD-Vectorization. This 
approach has the same efficiency as computing for a specific 
architecture, providing vector instructions that can be used to 
develop hardware-independent computational kernels. These 
computational kernels are portable across compilers. Inastemp 
covers SSE, AVX, AVX512 and ALTIVEC/VMX instructions. 
While such technique improves binary portability, it compromises 
software productivity since code must be adapted with the suggested 
library and requires code recompilation. In addition, no performance 
gains are shown by using such technique. 

ARM NEON [7] is introduced in the ARMv6 architecture. The 
NEON auto-vectorization compiler generates vectorizable code by 
instantiating SIMD instructions. Despite the advantages of auto-
vectorization, the static code exploitation limits the performance 
gains since it is difficult to identify vectorizable regions of 
conditional statements, function calls or even loops that contain 
codes between inner-loops and outer-loops. To overcome such 
issues, another strategy offered by the ARM to explore the NEON 
engine is the use of ARM NEON library, which transfer the 
vectorization task responsibility to the SW developer, which affects 
SW productivity. Since both solutions evaluate static code, they 
cannot vectorize dynamic behavior loops. 

The Dynamic SIMD Assembler (DSA) [8] is capable of building 
SIMD instructions at runtime. The DSA is coupled to the ARM 
NEON engine, providing: higher performance than ARM auto-
vectorization method with binary compatibility since it is not 
necessary to recompile the source code; SW productivity by 
avoiding the use of specific libraries in the code development 
lifecycle to take advantage of the NEON engine processing 
capabilities. This approach is capable of vectorizing count loops, 
such as inner-loops and outer-loops and loops containing function 
calls at runtime. However, the runtime capabilities still opens room 
for vectorizing dynamic behavior loops, which are not supported in 
DSA implementation. 

Table 1 compares all the aforementioned works with the 
proposed approach. As it can be seen, except DSA, binary and 
software compatibility are not prioritized in all designs since they 
employ ISA modification or specific libraries. Both auto-
vectorization and techniques that use specific libraries cannot 
vectorize loops that depend on data computed at runtime (dynamic 
behavior loops) which limits their vectorization coverage. The 
extension of the DSA benefits of the runtime capabilities, expanding 
its DLP exploitation by proposing the vectorization of: 

• Dynamic Range Loop; 
• Conditional Code Loop. 

By applying both dynamic behavior loops vectorization 
techniques, the proposed approach presents performance 

improvements that outperforms the auto-vectorization compiler and 
preserves software productivity and binary compatibility as well. 

Table 1 – Related Works and Proposed Technique Characteristics 

 

III. DSA OVERVIEW 

The Dynamic SIMD Assembler (DSA) is tightly coupled to an 
ARM Cortex-A12 processor (ARMv7 ISA). Figure 1 shows the 
system overview. As it can be seen, the DSA is composed of a SIMD 
instruction logic detection and two cache memories (DSA Cache and 
Verification Cache). The DSA Cache is responsible for storing 
information about the built SIMD instructions over the vectorizable 
loops. The Verification Cache stores the addresses of data memory 
accesses performed into the vectorizable loops (more details about 
caches in Section IV).  

 
Figure 1 - System Overview 

      Figure 2 shows an overview of how the DSA works. In the first 
scenario (Scenario 1 – Ordinary Execution), the DSA and ARMv7 
processor operate in parallel. While the ARM Cortex-A12 processor 
executes the incoming instructions, the DSA is in a probing mode, 
searching for a vectorizable loop to build SIMD instructions. In such 
execution mode, the NEON Engine remains deactivated. If the DSA 
detects a vectorizable loop, the second scenario is triggered 
(Scenario 2 – DLP Exploitation). In this scenario, the DSA 
deactivates the ARM Cortex A12 processor and activates the NEON 
Data Engine to execute the built SIMD instruction. 

 
Figure 2 – System Functionality Overview 

IV. DYNAMIC SIMD ASSEMBLER  

This section is divided into two subsections. Subsection A shows 
a superficial analysis of the Dynamic SIMD Assembler (DSA). 



Subsection B shows how the DSA predicts cross-iteration 
dependencies. 

A. Dynamic SIMD Assembler Overview 
As shown in Figure 3, the Dynamic SIMD Assembler (DSA) 

detection process is based on a State Machine (SM) composed of 
four stages: Loop Detection, Data Collection, Dependency Analysis, 
and Store ID/Execution. Each one of these stages is activated in 
different loop iterations.  

 
Figure 3 – State Machine of DSA  

As it can be seen, the state machine starts in the Loop Detection 
stage and is triggered by the end of the first loop iteration. The Loop 
Detection stage is responsible for:  

- checking the existence of innermost-loop and outer-
loops at runtime; 

- accessing the DSA cache, checking if the current loop 
is already vectorizable. 

The Data Collection stage is triggered in the second loop 
iteration. This stage is responsible for:  

- evaluating the loop range (number of iterations) 
- identifying the existence of a function call inside the 

loop; 
- storing the addresses of data memory accesses in the 

Verification Cache.  
The Dependency Analysis stage is triggered in the third loop 

iteration. This stage is responsible for: 
- analyzing the cross-iteration dependency 

(dependencies between two or more iterations in the 
same loop). 

The Store ID/Execution stage is triggered in the fourth loop 
iteration. This stage is responsible for: 

- generating and saving the loop identification (ID) at 
DSA Cache in case of a vectorizable loop; 

- building SIMD instruction and activating the 
execution on NEON engine.  

Figure 4 exemplifies the execution of the DSA considering a 
vectorizable loop (vectorizable_Loop()) and a non-vectorizable loop 
procedures (non_vectorizable_Loop()).  

 
Figure 4 – DSA Execution 

Considering the vectorizable_loop() procedure, the Loop 
Detection stage (A) detects the loop by the end of the execution of 
the first iteration. In the second iteration, the Data Collection stage 
(B) identifies the loop range (400) and the value of the 
increment/decrement (i = i + 1). In addition, such stage stores the 
addresses of the data memory accesses (Mem[a[i]], Mem [b[i]] and 
Mem[v[i]]) in the Verification Cache. In the third iteration, the 
Dependency Analysis Stage (E) analyses dependencies between 
iterations (more detailed in subsection B). For the current example, 
the DSA verifies that there is no cross-iteration dependency and 
triggers the Store ID/Execution Stage. Such stage builds SIMD 
instructions to execute the remaining iterations in the ARM NEON 
engine. The DSA needs four parameters to generate SIMD 
instructions: the data type, the loop range, the operation and the 
ARM NEON execution support. In the example of Figure 4, the 
parameters are: float, 400, add, 128-bit wide, respectively. 
Considering these parameters, for the current example, the DSA 
generates an instruction equivalent to the vaddq_f32 instruction of 
the NEON architecture.  Since the corresponding ARM NEON 
engine can operate 128 bits in parallel and the float type is a 32-bit 
wide data, the DSA divides the loop range by the factor four, running 
the vaddq_f32 one hundred times, instead of executing a non-
vectorizable add operation four hundred times. 

Considering the DSA analysis over the non_vectorizable_Loop 
() procedure, the Loop Detection and Data Collection stages behave 
the same as shown in the vectorizable_Loop() procedure. However, 
in the third loop iteration, during the Dependency Analysis Stage 
(C), a cross-iteration dependency is found (v [i] = v [i-1] + b [i]) 
which breaks the DLP detection process classifying such procedure 
as non-vectorizable.  

Figure 5 shows the different degrees of parallelism that can be 
obtained through the NEON 128-bit Engine depending on the type 
of data involved in the SIMD Instruction. 

 

 

Figure 5 – ARM NEON Parallelism 

B. Cross-iteration Dependency Prediction 
A cross-iteration dependency exists when any of the data 

memory addresses accessed in a loop iteration matches with a data 
memory address accessed in a further loop iteration.  

The cross-iteration analysis is processed during the 2nd (Data 
Collection Stage) and 3rd (Dependency Analysis Stage) loop 
iterations. During the 2nd iteration all the data memory accesses are 
saved at the Verification cache. The data saved at Verification Cache 
is compared with the data accessed at the 3rd iteration. If any of the 
data memory addresses accessed at the 2nd loop iteration matches 
with a data memory address accessed in the 3rd loop iteration, a 
cross-iteration dependency is detected, and the loop cannot be 
vectorized. However, if data memory addresses of the second loop 
iteration do not match with the addresses performed in the third loop 
iteration, one cannot discard cross-iteration dependencies in future 
iterations. Assuming such possibility, we have implemented a cross-
iteration dependency prediction process (Cross-iteration 
Prediction). The equations below describe such process, where [ ]  and [ ] is the memory address accessed by a 



MemRead (load) instruction in the second and third loop iterations, 
respectively. [ ] is the memory address accessed by 
a load instruction in the last iteration (Equation 4), x is the interval 
between [ ]  and 	 [ ]  (Equation 1), [ ] 
is the memory address accessed by a MemWrite (store) instruction 
in the second iteration (Equations 2 and 3),  is the memory 
address range between the [ ]  and [ ]  (Equation 5), 

 means Cross-Iteration Dependency and NCID means No Cross-
Iteration Dependency. 																												 [ ] ≤ ≤ [ ]   (1) 																																							 [ ] ∈ → 																								    (2) 																																								 [ ] ∉ 	 → 																																	(3) 
							 [ ] = [ ] +	( ∗ ( − 2))   (4) 																								 = | [ ] − [ ]|                             (5) 

As shown in equations, if the [ ] is within the memory 
address range of [ ] and [ ] (Equation 2), the 
loop could have a cross-iteration dependency since the load 
instruction of a future loop iteration could perform a memory access 
in the same memory address of the store instruction executed in the 
second loop iteration. The memory address of the load instruction of 
the last iteration is predicted based on the sum of the [ ] and 
the equation ( ∗ ( − 2)) (Equation 5). Thus, in 
case of  [ ] is out of the memory address interval of [ ] 
and [ ] (Equation 3), one can ensure that the loop 
has no cross-iteration dependency.  

Figure 6 illustrates an example of how Cross-iteration 
Prediction works. In such example, the DSA detects that there is no 
cross-iteration dependency between 2nd and 3rd iteration. Thus, by 
the end of the 3rd loop iteration, the Cross-iteration Prediction is 
activated applying Equation 5 resulting in 	 = |0 104 −0 100| = 0 004. This gap is used to calculate the memory address 
of the load instruction of the last iteration ( [ ] ) 
using Equation 4. Such memory address 
results [ ] = 0 100 + 0 020 = 0 120 . By 
applying the Equations 1 and 2, the Cross-iteration Prediction 
detects that the [ ] = 0 108  is within the range of the 
addresses accessed by the MemRead (load) in the 3rd and last (10th) 
iterations ( [ ] ≤ ≤ [ ]) = 0 100 ≤ ≤0 120), which causes a cross-iteration dependency. 
 

 
 

Figure 6 - Example of a Cross-iteration Dependency Prediction Process 

V. CONDITIONAL CODE AND DYNAMIC RANGE LOOP 

ANALYSIS 

The compiler does not have enough information to detect and 
vectorize certain types of loop, especially those whose behavior 
depends on user inputs. At compile time, Dynamic Range loops 
cannot be vectorized, since the loop size is required beforehand to 
allocate a certain number of SIMD operations. Concurrently, 
Conditional Code Loops can hardly be vectorized at compile time, 
since the execution of conditional portions are solved at runtime. 

As it can be seen in Figure 7, the pseudocode (A) presents a 
simple vectorizable loop in which both the compiler and DSA would 
be capable of obtaining DLP. The pseudocode (B) has a dynamic 
range loop, where this size is determined by an input or even a data 
calculated at runtime. The pseudocode (C) has a loop containing 
conditional statements which the execution is also determined at 
runtime. The same evaluation can be made for the pseudocode (D) 
which has a loop containing a function call that depends on a variable 
calculated at runtime. In this way, the pseudocodes (B), (C) and (D) 
cannot be vectorized by the compiler auto-vectorization techniques 
since they depend on data manipulation at runtime. However, as the 
DSA (Dynamic SIMD Assembler) analyzes the application code at 
runtime, it is able to evaluate all aforementioned situation. Thus, the 
contribution of this work is the extension of the DSA to vectorize: 
conditional code and dynamic range loops.  

 

 
Figure 7 – Vectorizable, Dynamic Range, Conditional Code and Function 

Loops 

A. Vectorizing Conditional Code Loop 
Few steps should be added in the original DSA State Machine to 

support the vectorization of conditional code loop. As it can be seen 
in Figure 8, during the Dependence Analysis Stage, we have added 
the Conditional Coverage Stage. The Conditional Coverage Stage is 
responsible for: 

- identifying if the loop body has conditional statements; 
- verifying if the identified conditional statements can 

be vectorized. 
 

 
Figure 8 – Conditional Loop DSA State Machine 

As it can be seen in Figure 9, the first Conditional Coverage state 
is the Conditional Code Detection, that occurs during the DSA’s 
Dependency Analysis Stage (3rd Loop Iteration). In this state, we 
identify if there is a condition statement within the loop body. If there 
exists, the Conditional Code Analysis is activated. In this state, the 
DSA checks if the condition of the current iteration is vectorizable. 
The analyzed condition is then marked as vectorizable or not. If the 
DSA detects a cross-iteration dependency in this condition, it sets 
such loop in the DSA Cache as non-vectorizable.  

As the conditions are verified during the loop execution, the 
DSA also counts the number of conditions and classifies them using 
their instruction addresses (further discussed at Conditional Loop 
Vectorization Analysis subsection). While there are still pending 
conditions, the DSA continues searching for them and verifying if 



they can be vectorizable. In this way, this step is repeated until all 
conditions have been verified. If there is no pending condition and 
all detected conditions are vectorizable, the DSA saves the loop at 
the DSA Cache as vectorizable. Thus, the remaining iterations can 
be executed in a vectorized fashion during the DSA Store 
ID/Execution Stage. Since we cannot predict which condition code 
portion is executed at the remaining iterations, the DSA performs 
speculative execution (further discussed at the Conditional Code 
Loop SIMD Execution subsection).  

  
Figure 9 – Conditional Code Coverage Stage 

1. Conditional Code Loop Vectorization Analysis 

Figure 10 shows an example of a Conditional Code Loop 
(instruction addresses from 2 to 8) containing two possible 
conditions (A and B). In addition, the execution timeline of the loop 
is shown at the bottom of this Figure. During the 1st and 2nd iteration, 
the DSA’s Loop Detection Stage and Loop Analysis Stage are 
performed. At the 3rd iteration the Conditional Code Detection is 
active. The Conditional Code Detection verifies if there is any 
instruction address gap. As it can be seen in the timeline, an 
instruction address gap is detected (from 3 → 4 (Condition A)) at the 
execution of the 3rd iteration (Conditional Code Detection) since the 
condition B is executed. This gap confirms the existence of 
conditional statement within the loop. In parallel with the 
Conditional Code Loop confirmation, the DSA verifies if the 
Condition B code is vectorizable. At the 4th iteration, the Conditional 
Code Analysis is activated, there is no need to repeat the 
vectorization analysis since the Condition B is previously verified 
(at the 3rd iteration). Considering that there are still pending 
conditions since addresses from 3 → 4 were not accessed yet, the 
Conditional Code Analysis state is kept active. At the 5th iteration, 
the Condition A is executed for the first time, so the DSA verifies if 
the Condition A code is vectorizable. At the 6th iteration, the DSA 
detects that there is no pending condition to analyze since all 
instruction addresses were accessed (2 → 8) and conditions A and B 
are vectorizable, the remaining loop iterations can be executed as 
SIMD fashion.  

 
Figure 10 – Conditional Code Loop Vectorization Analysis 

To verify if all condition has been analyzed, an instruction 
address mapping becomes necessary. Figure 11 illustrates the 
analysis mapping considering the example shown in Figure 10. At 
the 3rd iteration, the condition B is executed, its instructions are 
analyzed and classified as vectorizable. The DSA indexes the 
condition by the address of its first instruction, this information is 
stored into a temporary vector map. For instance, the Condition B is 
indexed by the address 5. At the 4th iteration, the DSA has identified 
that the Condition B has already been analyzed by comparing the 
stored ID with the instruction addresses executed in this iteration. At 
the 5th iteration, condition A is executed, its instructions are 
analyzed, classified as vectorizable and stored in the vector map 
indexed by its first address (in the case 3). As all instructions in the 
loop instruction address range (2 → 8) were executed and analyzed, 
at the 6th iteration we store the loop information in the DSA Cache. 
This information is necessary to further vectorizing the loop without 
repeating the vectorization analysis. The information is composed 
of: 

- Loop ID: to identify the vectorizable loop during the 
program execution; 

- Loop Size: to generate SIMD instructions during 
execution; 

- Conditions ID: necessary to make the speculative 
execution (further discussed at Conditional Code Loop 
SIMD Execution). 

 

 
 

Figure 11 – Conditional Code Loop Analysis Mapping and Data Storage 

2. Conditional Code Loop SIMD Execution 

Figure 12 shows the SIMD Execution considering the example 
shown in Figure 10. Therefore, at the 6th iteration, the condition B is 
executed. Since is the first time the condition B is executed during 
SIMD Execution, its instructions are vectorized. Since the condition 
B is executed at the 6st iteration, its operations are vectorized 
considering the range (Vectorize B - 6 → 20), generating preemptive 
results to 14 iterations (B - RESULTS). In parallel, its execution is 
mapped into a vector map (6th Iteration - B) to further select the 
results produced by each condition (speculative execution). In the 7th 
iteration, condition B is executed again. Since this condition has 
already been vectorized at the 6th iteration, its instructions are not 
executed (Idle), and only the mapping is performed (7th Iteration - 
B). In the 8th iteration, condition A is executed. As it is the first time 
condition A is executed during SIMD Execution, its instructions are 
vectorized considering the range of the current iteration until the end 
of the loop (Vectorize A - 8 → 20 iterations), generating preemptive 
results to the 12 remaining iterations (A - RESULTS). In parallel, its 
execution is mapped in the Vector Map (8th Iteration - A). The 6th 
and 7th iterations are not considered in this vectorization since they 
executed condition B. At the 9th iteration, condition B is executed. 
Because it has already been executed, condition B is only mapped 



(Idle) in Vector Map (9th Iteration - B). At last iteration (20th 
iteration) condition A is executed again and because it has already 
been executed it is only mapped (Idle) (20th Iteration - A). At the end 
of the loop, we use the Vector Map to select only the mapped results, 
while the others are discarded. 

 
Figure 12 – Conditional Code Loop SIMD Execution 

B. Vectorizing Dynamic Range Loop (DRL)  
As shown in Figure 13, there are two types of Dynamic Range 

loops. In the Type A (DRLA), the loop size is determined by the user 
input or even by a variable handled at runtime, before of the loop 
execution. The vectorization size of such example is unfeasible to be 
determined at compile time. However, DSA can vectorize such DRL 
since such value is available at runtime. In the Type B (DRLB), the 
loop size or the loop stop condition is determined in the body of the 
loop. In this case, it is unfeasible to determine the vectorization size 
at both compile time and runtime. In this case, the DSA uses a 
speculative execution to vectorize this type of loop. 

 
Figure 13 – DRL Type A, DRL Type B 

1. DRLA - size calculated before loop execution 

Since the DRLA size is calculated before the loop execution, the 
loop can be analyzed maintaining the original DSA state machine. 
However, the DRLA must be analyzed every time it repeats, since 
the Dependence Analysis Stage needs to verify if the vectorization 
is feasible based on loop range.   

As it can be seen in Figure 14, at the 1st time the loop executes, 
the Dependence Analysis Stage cannot detect any cross-iteration 
dependence (refer to the Section “Cross-iteration Dependency 
Prediction”). Thus, considering the loop range 5, the DSA Loop 
Analysis predict the loop as vectorizable. However, at the 2nd time 
the loop executes, a cross-iteration dependence is detected at the 10th 
iteration (MemRead Access = 0x120 = MemWrite Access). Such an 
example shows that different loop sizes imply in different DSA Loop 
Analysis. 

 
Figure 14 – DRLA Cross-iteration Analysis 

2. DRLB - size calculated during loop execution 

Since the DRLB size or stop condition is calculated during the 
loop execution, it is unfeasible for the DSA to determine the number 
of times the loop would execute. As a way to vectorize the DRLB 
the DSA: 

- speculates the number of times the loop will execute 
based on the last loop execution; 

- verifies cross-iteration dependency based on the 
speculative value every time the loop executes. 

Figure 15 shows the DRLB analysis and execution. During the 
1st Loop Analysis, the 2nd and 3rd iterations are responsible for 
verifying if there is a cross-iteration dependency in the loop. Since a 
loop range is necessary to predict a cross-iteration dependency and 
there is no defined range in the DRLB, the DSA assumes a 
speculative range. Thus, the DSA chooses a loop range that 
maximizes vector units’ utilization. In this example, the DSA 
assumes a 128-bit wide ARM NEON, since the instruction operands 
widths are 8 bits (8 bits operands), the DSA chooses a Speculative 
Range of 16 (Speculative Range - 16) in order to use all vector units. 
In this way, at the 3rd iteration (Dependency Analysis Stage), the 
DSA predicts that there is no cross-iteration dependency considering 
the range 16 (Cross-iteration Prediction) and the loop can be 
vectorized. At the 1st Loop Execution (Execution Stage – 4th 
iteration), the DSA executes the loop operation considering the 
speculative loop range (Vectorize - 4 → 20). From the 5th iteration 
to the 10th , the already vectorized operations are not executed (Idle) 
and the only instructions that are processed in the loop are those 
responsible for the stopping condition calculation. When the stop 
condition is reached (10th iteration), the results from iterations (4 →10) are kept, while the operation results (11 → 20) are discarded. 
Since the current loop execution has 10 iterations, on the next 
execution the speculative range value is 16, since is the minimum 
operation range to be allocated at the vector units considering an 
operand width of 8 bits. At the second time this loop is detected by 
the DSA which, in the DSA Loop Analysis Stage, predicts that there 
is no cross-iteration dependency. At the 4th iteration (Execution 
Stage), the DSA executes the loop operation considering the 
speculative loop range (Vectorize - 4 → 20). From the 5th iteration 
to the 16th iteration, the already vectorized operations are not 
executed. This time the loop executes until the 18th iteration (Real 
Range - 18). Despite the DSA computed results from 4th to the 20th  
iteration, only the results from 4th to 16th are considered, since the 
cross-iteration prediction was based on the range 16. The operations 
of the 17th and 18th are sequentially executed by the ARM Processor. 



 
Figure 15 – DRLB Cross-iteration Analysis and Execution 

There are three Dynamic Range loop predicting possibilities:  
• if the loop executes a smaller number of iterations than 

previously performed, only the results of the current 
range are saved and the previous loop range is replaced 
by the current range;  

• if the loop executes a greater number of times, the 
remaining iterations are performed by the general 
purpose processor and the previous loop range is 
replaced by the current range;  

• if the loop executes the expected number of iterations, 
the speculative range is retained. 

VI. RESULTS 

A. Methodology 
To evaluate the effectiveness of the proposed approach, we have 

applied the Conditional Code Loop and Dynamic Range Loop 
techniques to the DSA (ARM NEON Extended DSA), and coupled 
the DSA to the ARM Cortex A12 (ARMv7 ISA) O3 model of gem5 
[11] simulator. To gather performance results, we have compared the 
proposed technique with: 

- the original ARM NEON DSA without Conditional Code Loop 
and Dynamic Range Loop support (ARM NEON Original DSA);  

- the ARM Cortex A12 processor without DLP exploitation 
(ARM Original Execution); 

- the ARM Cortex A12 processor coupled to NEON architecture 
(ARM NEON AutoVec) exploiting DLP through the support of 
ARM NEON auto-vectorization compiler. 

 It is important to notice that we employ the same ARM NEON 
engine in ARM NEON Original DSA, Extended DSA and ARM 
NEON AutoVec approaches, which provides the same opportunities 
to exploit DLP. Table 2 shows the configurations of ARM Original 
Execution, ARM NEON AutoVec, ARM NEON Original and 
Extended Dynamic SIMD Assembler.  

Table 2 – Systems Setups 

 

We have chosen benchmarks that cover two different scenarios 
of DLP exploitation to evaluate the systems shown in Table 2. We 
have selected:  

- three applications with Conditional Code and 
Dynamic Range loops (Bit Counts[13], Dijkstra[13] 
and Susan E[13]); 

- four applications with opportunities to exploit DLP but 
without Conditional Code and Dynamic Range loops 
(MM[13], RGB-Gray[14], Gaussian Filter[14] and Q 
Sort[13]).  

B. Performance  
Figure 16 shows the performance improvements of the ARM 

NEON Compiler, ARM NEON Original DSA [8] and ARM NEON 
Extended DSA over the ARM Original Execution. As it can be 
noticed, when the applications contain Conditional Code or 
Dynamic Range loops (Dijkstra and BitCounts), the Extended DSA 
presents performance improvements of 45% for BitCounts and 32% 
for Dijkstra over the ARM Original Execution. In cases where we 
have a great opportunity of exploiting DLP, our approach achieves 
up to 61% of performance improvements over the ARM Original 
Execution.  When Gaussian Filter and Susan Edges are considered, 
the performance gains are lower since such applications provide 
smaller opportunities to exploit DLP. On average, the Extended 
DSA provides performance improvements of 37% over the ARM 
Original Execution showing the importance of DLP exploitation. 

The Original DSA cannot vectorize any loop of Dijkstra and 
BitCounts benchmarks since both just contain conditional code and 
dynamic range loops. Considering these benchmarks, the Extended 
DSA shows a performance improvement of 38.5% over the Original 
DSA. Susan E presents DLP exploitation opportunities in both 
Dynamic Behavior Loops and Count Loops. Thus, such benchmark 
is benefited from the improvements of both Original and Extended 
DSA, but the Extended DSA shows performance improvements of 
4% over the Original DSA. In the remaining benchmarks there are 
no performance differences between Original DSA and Extended 
DSA, since such benchmarks do not contain conditional code and 
dynamic range loops.  

The Extended DSA outperforms ARM auto-vectorization in all 
benchmarks but MM 64x64. Due to the extension proposed in this 
work, it achieves 40% of performance improvements over ARM 
auto-vectorization technique when executing BitCounts. The ARM 
auto-vectorization technique provides performance penalty of 3% 
considering Dijkstra benchmark, while our approach achieves a 
performance gain of 32%.  

For the application with low DLP exploitation opportunities, our 
proposal maintained the same performance of the ARM Original 
Execution since DSA does not cause performance penalties when 
vectorizable loops are not found. In such scenario, ARM NEON 
auto-vectorization provides performance penalties of 1% in the Q 
Sort execution. In addition, besides achieving 40% performance 
improvements over the ARM auto-vectorization technique, the 
proposed approach keeps software compatibility and does not affect 
the SW development life cycle due to its transparent and dynamic 
DLP detection. 

 



 
Figure 16 – ARM NEON Compiler AutoVec. vs. ARM NEON Original DSA 

vs. ARM NEON Extended DSA Performance 

Table 3 presents the time consumed by ARM NEON Extended 
DSA to detect vectorizable loops and generate SIMD instructions 
considering the total execution time of each benchmark. As it can be 
seen, Dijkstra and BitCounts spend more time detecting vectorizable 
loops since they contain more Conditional Code and Dynamic Range 
loops. Benchmarks containing only static ranged vectorizable loops 
spent, on average, 1.5% of the execution time detecting vectorizable 
loops. Q Sort has no vectorizable loops but it spends 1.02% of its 
time  analyzing non-vectorizable loops. However, since the DSA 
process is done in parallel with the ARM Cortex execution, no 
performance penalty is shown in the total execution time, as it can 
be noticed in Figure 16.  

Table 3 – DSA Latency 

 

VII. CONCLUSION AND FUTURE WORK 

In this work, we have proposed the coupling of two vectorization 
techniques to the Dynamic SIMD Assembler (DSA) approach. With 
such extension, the DSA is capable of vectorizing Dynamic Range 
and Conditional Code Loops. The proposed approach shows 
performance improvements of 37% over ARM original execution 
(without DLP exploitation). In addition, the extended DSA version 
outperforms: the original DSA up to 45% and the ARM auto-
vectorization technique in 12%. For future work, we intend to 
support partial vectorization techniques.  
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Abstract — Data Level Parallelism has been improving performance-

energy tradeoff of current processors by coupling SIMD engines, such 

as Intel AVX and ARM NEON. Special libraries and compilers are 

used to support DLP execution on such engines. However, timing 

overhead on hand coding is inevitable since most software developers 

are not skilled to extract DLP using unfamiliar libraries. In addition, 

DLP detection through compiler, besides breaking software 

compatibility, is limited to static code analysis, which compromises 

performance gains. In this work, we propose a runtime DLP detection 

named as Dynamic SIMD Assembler, which transparently identifies 

vectorizable code regions to execute in the ARM NEON engine. Due 

to its dynamic fashion, DSA keeps software compatibility and avoids 

timing overhead on software developing process. Results have shown 

that DSA outperforms ARM NEON auto-vectorization compiler by 

32% since it covers wider vectorized regions, such as Dynamic Range, 

Sentinel and Conditional Loops. In addition, DSA outperforms hand-

vectorized code using ARM library by 26% reducing 45% of energy 

consumption with no penalties over software development time. 

 
Keywords— DLP, SIMD, Vectorization, ARM NEON 

I. INTRODUCTION  

Speech and vision recognition have been taking important 

role in the current era of cognitive computing to analyze human 

behaviors [1].  In particular, such application domains are 

benefit from Single Instruction Multiple Data (SIMD) machines 

since their algorithms are plentiful of Data-Parallel Statements.  

Currently, SIMD engines are present in market processors, 

which can support the execution of such application domains. 

ARM NEON [2], Intel SSE/AVX [3] and IBM Altivec [4] are 

vector engines coupled to general purpose processors with the 

purpose of benefiting energy-performance tradeoff on data-

parallel applications. The execution of such engines is 

supported by vector instructions that can be generated by: 

automatic vectorization through compiler and hand-coding 

using low-level functions available on specific programming 

libraries. 

Both compiler techniques and libraries directives focus on 

exploiting Data Level Parallelism (DLP) opportunities on loops 

statements, since same operations are repeated over data 

independent structures. However, the vectorization of most loop 

statements, such as dynamic range, sentinel and conditional 

loops relies on runtime information, which restrict compiler and 

hand-coding DLP coverage. In addition, besides breaking 

software compatibility, timing overhead on hand-coding is 

inevitable since most software developers are not skilled to 

extract DLP using unfamiliar libraries. 

In this work, we propose a runtime DLP detection, named as 

Dynamic SIMD Assembler (DSA), which transparently 

identifies vectorizable code regions, builds SIMD instructions 

and triggers the SIMD engine. Due to its dynamic fashion, DSA 

keeps binary compatibility and avoids timing overhead on 

software developing process. In addition, unlike compiler and 

hand-coding techniques, DSA is capable of vectorizing all 

aforementioned loop statements since it is aware of runtime 

information, which boost the DLP coverage and, consequently, 

performance-energy tradeoff over techniques based on static 

analysis. Summarizing, this work contributes to: 

 show that is mandatory a runtime vectorization 

exploitation to boost the applications DLP coverage;  

 propose an energy efficient runtime vectorization 

technique capable of boost applications performance by 

increasing vectorization coverage of techniques based 

on static analysis with no penalties over software 

development time. 

This work is organized as follows; Section II presents the 

Related Work. Section III presents the Dynamic SIMD 

Assembler System. Methodology and Results are shown in 

Section IV. Finally, we present conclusions and future work in 

Section V. 

II. RELATED WORK  

In the academic field, many researches have been exploiting 

Data Level Parallelism (DLP) to achieve performance 

improvements and energy savings. Sui Yulei [5] extends the 

LLVM compiler [6] to automatically vectorize Loop-Oriented 

Pointer. This technique is able to increase the number of 

vectorizable basic blocks achieving performance improvements 

from 2.95% to 7.23%.  

Similar to [5], Zhou Hao [7] presents the Loop-Mix 

compiler that vectorizes loops focusing on reorganizing data 

when mixed SIMD parallelism (inter-loops and intra-loops) is 

considered. This technique outperforms the Loop-ILV by 36%. 

Sara S. Baghsorkhi [8] proposes FlexVec, a partial 

vectorization technique to dynamically adjust vector length for 

loops affected by cross-iteration dependencies. FlexVec 

extends the AVX-512 ISA showing a Geomean performance 

improvement over the original AVX ISA from 9% to 11%. 

Dorit Nuzman [9] proposes a compiler based techquite aiming 

to vectorize outer loop. It shows performance improvements of 

3.13 and 2.77 when coupled to a Cell BE SPU and a 

PowerPC970, respectively.  

Tian Xinmin [10] presents a set of C/C++ directives 

extensions for SIMD programming capable of automatic 

translating both functions and loops. Significant speedups (from 

3.07x to 4.69x) are achieved when these optimizations are 

applied. Bramas Berenger [11] proposes Inastemp, a 

lightweight open-source C++ library that provides SIMD 

Vectorization to several ISA, such as SSE, AVX, AVX512 and 

ALTIVEC/VMX. The authors claim that Inastemp shows the 

same performance on exploiting DLP than libraries developed 

for specific ISA. 

ARM NEON [2] is a SIMD engine coupled to the ARMv7 

architecture that is triggered through specific ARM SIMD 



instructions. ARM supports two approaches to produce ARM 

NEON code: compiler auto-vectorization and ARM NEON 

software library. 

Despite the advantages of automatic auto-vectorization 

through the compiler shown in [2][5][7][8][9], their static code 

exploitation limits the performance gains since it is not capable 

of identifying vectorizable regions that depends on data that is 

only available at runtime, such as: conditional, dynamic range 

loops and sentinel loops. In addition, hand coding using 

software libraries proposed in [2][10][11] inevitably causes 

timing overhead since most software developers are not skilled 

to extract DLP using unfamiliar low-level functions. Thus, in 

this work, we propose Dynamic SIMD Assembler (DSA) that 

automatically vectorizes code regions to execute in a SIMD 

engine. DSA is a hardware module coupled to an ARM 

Processor responsible for detecting vectorizable code regions, 

generating ARM SIMD instruction and triggering NEON 

engine at runtime. Due to its dynamic nature, DSA keeps binary 

compatibility and avoids timing overhead on software 

developing process. Moreover, performance improvements 

with energy savings are feasible to achieve in a wide range of 

application domains since the proposed approach covers larger 

vectorizable code regions than static analysis techniques, such 

as count loops, conditional statements, dynamic range and 

sentinel loops. 

III. DYNAMIC SIMD ASSEMBLER  

A. DSA Overview 

The Dynamic SIMD Assembler (DSA) is tightly coupled to 

the ARMv7-A processor [12]. Figure 1 shows the system 

overview. As it can be seen, the DSA is composed of a SIMD 

instruction logic detection and two cache memories (DSA 

Cache and Verification Cache). The DSA Cache is responsible 

for storing information about the built SIMD instructions over 

the vectorizable loops. The Verification Cache (V-Cache) 

stores the addresses of data memory accesses performed into the 

vectorizable loops (more details about caches in Section IV).  

 

 
Figure 1. System Overview 

      Figure 2 shows an overview of how the DSA works. In the 

first scenario (Scenario 1 – DSA Loop Analysis), the DSA and 

ARMv7-A processor operate in parallel. While the ARM 

processor executes the incoming instructions, the DSA is in a 

probing mode, searching for a vectorizable loop to build SIMD 

instructions. In such execution mode, the NEON Engine 

remains deactivated. If the DSA detects a vectorizable loop, the 

second scenario is triggered (Scenario 2 – DSA Loop 

Execution). In this scenario, the DSA deactivates the ARMv7-

A processor and activates the NEON Data Engine to execute the 

built SIMD instruction (Vectorized Instructions). It is important 

to notice that the DSA works in parallel with the ARMv7-A 

CPU execution, which means that the processor’s critical path 

is not affected by the DSA. 

 
Figure 2. Execution Flow 

B. Dynamic SIMD Assembler DLP Coverage 

As explained before, the Dynamic SIMD Assembler is 

capable of exploiting vectorizable regions at runtime, which 

extends DLP Exploitation of hand coding using ARM library 

and auto-vectorization compiler. Figure 3 shows loop examples 

of (A) count loop; (B) dynamic range loop; (C) conditional 

loop; (D) loop with a function call. As it can be seen, the 

pseudocode (A) presents a simple vectorizable loop in which 

both the compiler and DSA would be capable of vectorize. The 

pseudocode (B) has a dynamic range loop, where the loop size 

is determined by an input or even a data calculated at runtime. 

The pseudocode (C) has a loop containing conditional 

statements which the execution is also determined at runtime. 

The same evaluation can be made for the pseudocode (D), 

which has a loop containing a function call that depends on a 

variable calculated at runtime. In this way, the pseudocodes (B), 

(C) and (D) cannot be vectorized by the compiler auto-

vectorization techniques since they depend on data 

manipulation at runtime. However, as the DSA (Dynamic 

SIMD Assembler) analyzes the application code at runtime, it 

is capable of vectorizing all aforementioned situation.  

Summarizing, the DSA covers full vectorization of: Count 

Loops, Function Loops, Outer and Inner Loops, Dynamic 

Range Loops and Sentinel Loops. In addition, as it can be seen 

in next section, the DSA also supports partial vectorization of 

loops with cross-iteration dependencies. 

 
Figure 3 – Examples of Loops 

C. Dynamic SIMD Assembler Overview 

The Dynamic SIMD Assembler (DSA) detection process is 

based on a State Machine (SM) composed of six stages: Loop 

Detection, Data Collection, Dependency Analysis, Store 

ID/Execution, Mapping and Speculative Execution. Each one 

of these stages is activated in different loop iterations.  

As it can be seen in Figure 4, the Loop Detection stage is 

triggered by the end of the first loop iteration. The Loop 

Detection stage is responsible for: 

 detecting the presence of a loop;  

 checking the existence of innermost-loop and outer-
loops; 



 accessing the DSA cache, checking if the current loop 
is already vectorizable. 

The Data Collection stage is triggered in the second loop 

iteration. This stage is responsible for:  

 evaluating the loop range (number of iterations), 
vectorizable instructions and their operands; 

 identifying the existence of function calls and 
conditional code inside the loop; 

 storing the addresses of data memory accesses in the 
Verification Cache.  

The Dependency Analysis stage is triggered in the third loop 

iteration. This stage is responsible for: 

 analyzing the cross-iteration dependency (dependencies 
between two or more iterations in the same loop 
statement). 

The Store ID/Execution stage is triggered in the fourth loop 

iteration. This stage is responsible for: 

 concluding the vectorization of Count loops, Function 
loops, Outer/Inner loops, Dynamic Ranged Loops, 
Sentinel loops and Partial loops; 

 generating and saving the loop identification (ID) in the 
DSA Cache; 

 building SIMD instruction and activating the execution 
of the ARM NEON engine.  

The Mapping stage is only activated for Conditional loops. 

This stage is responsible for: 

 mapping the executed conditional code statements; 

 detecting cross-iteration dependencies between 
conditional statements. 

The Speculative Execution stage is only activated for 

Conditional and Sentinel loops. This stage is responsible for: 

 selecting data generated during the vectorization in the 
end of loop execution (Sentinel and Conditional Loop); 

 tracking Sentinel loop range; 

 storing mapped conditions of Conditional Loop for 
further executions. 

Figure 4 shows a DSA execution example by considering: 

Count and Function Loop (a), Dynamic Range Loop (b), 

Conditional Loop (c) and Sentinel Loop (d). 

Following the Count_Loop() (a) procedure example, the 

Loop Detection stage (A) detects the loop by the end of the 

execution of the first iteration by analyzing instruction address 

gaps and branches. In the second iteration, the Data Collection 

stage (B) identifies the loop range (400) and the value of the 

increment/decrement (i++). In addition, such stage: stores the 

addresses of the data memory accesses (Mem[a[i]], Mem [b[i]] 

and Mem[v[i]]) in the Verification Cache; and identifies 

function calls inside the loop (x[i] = function[i]) by verifying 

branches and the memory address gap between instructions 

fetched from memory. The detection of function calls is 

mandatory to analyze cross-iteration dependencies since the 

increment/decrement register can be modified for an operation 

inside the function call. In the third iteration, the Dependency 

Analysis Stage (B) analyses data dependencies between 

iterations (more detailed in subsection D). For the current 

example, the DSA identifies that no cross-iteration dependency 

exists and triggers the Store ID/Execution Stage. Such stage 

stores the Loop ID in the DSA cache  to avoid repeating loop 

analysis and builds SIMD instructions to execute the remaining 

iterations in the ARM NEON engine. The DSA needs four 

parameters to generate SIMD instructions: data type, loop 

range, operation and ARM NEON execution support. For such 

an example the parameters are: float, 400, add, 128-bit wide, 

respectively. Thus, the DSA generates an instruction equivalent 

to the vaddq_f32 instruction of the NEON architecture.  Since 

the corresponding ARM NEON engine can operate 128 bits in 

parallel and the float type is 32-bit wide data, the DSA divides 

the loop range by the factor four, running the vaddq_f32 one 

hundred times, instead of executing a non-vectorizable add 

operation four hundred times.  

In the Dynamic_Range_Loop (b) procedure example, the 

loop size is calculated at runtime but before the loop execution. 

In this case, the loop analysis passes through the same steps as 

the Count_Loop (a) example. However, instead of having a 

single analysis when the loop executes for the first time, the 

Dynamic_Range_Loop (b) must be analyzed on every 

execution, since the loop range can change on each loop 

execution, the Dependency Analysis Stage (C) needs to verify 

if the vectorization is allowed based on current value of the loop 

range.  

Considering the Conditional_Loop (c) example, the Loop 

Detection Stage (A) detects the loop by the end of the execution 

of the first iteration. The Data Collection Stage (B), besides 

collecting the necessary data to vectorize the loop, also detects 

if all instruction addresses within the loop range were accessed. 

In case a instruction address gap is detected, a conditional loop 

is confirmed. In such case, the  Mapping stage (E) is activated. 

 

Figure 4- DSA Analysis and Execution Process 

  



This stage is responsible for mapping every condition within the 

loop body and detecting any cross-iteration dependency. If no 

cross-iteration dependency is detected, all conditions within the 

loop can be vectorized considering the remaining loop range. 

During the remaining loop execution, the DSA maps every 

accessed condition. While the mapping is activated, the 

vectorized instructions (if: v[i] = a[i] + b[i] and else: 

v[i]=a[i]-b[i]) are not executed. At the end of the loop, the 

Speculative Execution Stage (F) selects the appropriate results 

based on the mapping process. 

The Sentinel_Loop (d) vectorization is based on Speculative 

Execution. The DSA assumes a speculative loop range when 

detecting such loop type since it is not feasible to have such 

information beforehand. In the Data Collection Stage, besides 

collecting all the necessary data to vectorize the loop, the DSA 

chooses a loop range that maximizes utilization of the 

functional units available in the ARM NEON engine. Assuming 

a 128-bit wide ARM NEON, the DSA chooses a speculative 

loop range of four, in order to use all vector units, since the 

operands width is 32 bits (32 bit float). In the third iteration, in 

the Dependency Analysis Stage (C), the DSA analyses and 

predicts any cross-iteration dependency based on the 

speculative loop range. If no Cross-Iteration Dependency is 

found, the Store ID/Execution stage (D) is activated and the 

instructions are vectorized based on the speculative loop range. 

In addition, the loop ID is saved in the DSA cache. The 

speculative execution can provide three situations: 

 if the loop executes fewer iterations than the 
speculated number of iterations, the execution results 
of the speculated number of iterations are written back, 
the remaining results are discarted and the loop range 
is updated in DSA cache;  

 if the loop executes greater iterations than the 
speculated number of iterations, the execution results 
of the speculated number of iterations are written back, 
the further iterations are executed by the general 
purpose processor and the loop range is updated in 
DSA cache;  

 if the loop executes the speculated number of 
iterations, the ARM NEON results of the speculated 
number of iterations are written back and the 
speculative range is maintained in the DSA cache. 

D. Cross-iteration Dependency Prediction 

At the memory access point of view, a cross-iteration 

dependency exists when the same data memory address is 

accessed in different loop iterations. The DSA cross-iteration 

analysis starts in the 2nd loop iteration, where the addresses of 

data memory accesses are saved in the Verification Cache (VC). 

Even having the memory addresses in the VC and comparing 

them to the memory addresses performed on every iteration, one 

cannot discard cross-iteration dependencies in future iterations. 

Assuming such situation, we have implemented Cross-iteration 

Dependency Prediction. The equations below describe the steps 

of the prediction process, where 𝑀𝑅𝑒𝑎𝑑[2] and 𝑀𝑅𝑒𝑎𝑑[3]is the 

memory address accessed by a MemRead (load) instruction in 

the second and third loop iterations, respectively. 

𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] is the memory address accessed by a load 

instruction in the last executed iteration (Equation 4), x is the 

interval between 𝑀𝑅𝑒𝑎𝑑[2] and 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] (Equation 1), 

𝑀𝑊𝑟𝑖𝑡𝑒[2] is the memory address accessed by a MemWrite 

(store) instruction in the second iteration (Equations 2 and 3), 

𝑀𝑅𝑎𝑛𝑔𝑒  is the memory address range between the 𝑀𝑅𝑒𝑎𝑑[2] and 

𝑀𝑅𝑒𝑎𝑑[3] (Equation 5), 𝐶𝐼𝐷 means Cross-Iteration Dependency 

and NCID means No Cross-Iteration Dependency. 

 𝑀𝑅𝑒𝑎𝑑[3] ≤ 𝑥 ≤ 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] 

                                       𝑀𝑊𝑟𝑖𝑡𝑒[2] ∈ 𝑥 → 𝐶𝐼𝐷                         

                                   𝑀𝑊𝑟𝑖𝑡𝑒[2] ∉  𝑥 → 𝑁𝐶𝐼𝐷                                          (3) 

           𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] = 𝑀𝑅𝑒𝑎𝑑[2] + (𝑀𝐺𝑎𝑝 ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 2))    

                        𝑀𝐺𝑎𝑝 = |𝑀𝑅𝑒𝑎𝑑[3] − 𝑀𝑅𝑒𝑎𝑑[2]|                             

Considering the equations above, if the 𝑀𝑊𝑟𝑖𝑡𝑒[2] is within 

the memory address range of 𝑀𝑅𝑒𝑎𝑑[3] and 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] 

(Equation 2), the loop would have a cross-iteration dependency 

since the load instruction of a future loop iteration could 

perform a memory access in the same memory address of the 

store instruction executed in the second loop iteration. The 

memory address of the load instruction executed in the last 

iteration is predicted based on the sum of the 𝑀𝑅𝑒𝑎𝑑[2] and the 

equation (𝑀𝐺𝑎𝑝 ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 2)) (Equation 4). Thus, in 

case of  𝑀𝑊𝑟𝑖𝑡𝑒[2] is out of the memory address interval of 

𝑀𝑅𝑒𝑎𝑑[3] and 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] (Equation 3), one can ensure 

that the loop has no cross-iteration dependency. 

Figure 5 illustrates an example of how Cross-iteration 

Dependency Prediction (CIDP) works. In such example, the 

DSA detects that there is no cross-iteration dependency between 

2nd and 3rd iteration. Thus, by the end of the 3rd loop iteration, 

the CIDP is activated by applying Equation 5 ( 𝑀𝐺𝑎𝑝 =

|0𝑥104 − 0𝑥100| = 0𝑥004). Using Equation 4, one can 

calculate the memory address of the load instruction of the last 

iteration 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] = 0𝑥100 + 0𝑥020 = 0𝑥120. By 

applying Equations 1 and 2, the CIDP detects that 𝑀𝑊𝑟𝑖𝑡𝑒[2] =

0𝑥108    is within the interval  (𝑀𝑅𝑒𝑎𝑑[3] ≤ 𝑥 ≤

𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛]) = 0𝑥100 ≤ 𝑥 ≤ 0𝑥120), which produces 

a cross-iteration dependency.  

E. Dynamic SIMD Assembler Partial Vectorization 

Despite having cross-iteration dependencies, loops can be 

partially vectorized by avoiding vectorization of iterations that 

produces dependencies. Figure 6 shows how the partial 

vectorization works. As it can be seen, the CIDP detects cross 

iteration dependency between the 2nd Iteration and the 11th 

Iteration due to the data memory address 0x124. However, there 

is a gap between the 2nd Iteration to the 10th that could be 

vectorized. Thus, for such an example, the DSA performs the 

 
Figure 5- Example of a Cross-iteration Dependency Prediction Process 

 

 
Figure 6. DSA Partial Vectorization Technique 

 



vectorization detection process from 1st to 4th Iterations, which 

allows the vectorization from the 4th up to 10th iteration which 

provides data to the vectorization of the iterations from 11th up 

to 19th. The same process repeats until the end of the loop 

execution. 

IV. RESULTS 

A. Methodology 

We have coupled the DSA to an ARMv7 ISA processor 

using the O3CPU model of gem5 [12] simulator to evaluate the 

proposed approach. To gather performance results, we have 

compared the DSA with: 

 an ARMv7 ISA processor without NEON engine (ARM 
Original Execution); 

 an ARMv7 ISA processor coupled to a NEON 
architecture exploiting DLP through the support of the 
ARM NEON auto-vectorization compiler (ARM 
NEON AutoVec); 

 an ARMv7 ISA processor coupled to a NEON 
architecture exploiting DLP through hand-coded 
applications using ARM NEON library (ARM NEON 
Hand-Coded). 

Table 1 shows the configurations of all setups. It is important 

to notice that we coupled the same ARM NEON architecture in 

ARM NEON AutoVec, ARM NEON Hand-Coded and DSA, 

which provides the same DLP exploitation degree. We used 

Cadence RTL Compiler [13] to gather energy results from the 

VHDL description of the Dynamic SIMD Assembler and 

McPAT of the ARMv7 processor. 
Table 1 – System Setups 

 

B. Benchmarks Characterization 

Aiming to create a heterogeneous workload to evaluate the 

proposed approach, we have selected benchmarks from 

different suites following their opportunities to exploit DLP: 

MM 64x64 [14] and RGB-Grayscale [14], which provide great 

opportunities; Susan E [14] and JPEG [16] that provide medium 

opportunities; and Bit Counts [14], Susan C [14], Susan S [14] 

and Gaussian Filter [15], which have low opportunities. 

Figure 7 presents a static profiling that considers the 

percentage of each loop type in the aforementioned 

benchmarks. Such analysis quantifies the presence of 

vectorizable loops statically, which means that weight over the 

execution time of each loop is not considered. As it can be seen, 

there are different degrees of vectorization opportunities in the 

selected benchmarks, 86% of the Susan E loops can be 

vectorized but just 33% of MM 64x64 and RGB-G 320x240. 

However, as explained before, considering 86% of Susan E 

vectorizable loops, only 14.3% (Count Loops) could be 

vectorized at compile and programming time. On the other 

hand, all 33% of the loops of MM 64x64 and RGB-G 320x240 

are vectorized at compile and programming time. However, on 

average, only 21% of the application loops can be vectorized at 

compile and programming time. A runtime analysis potentially 

increases such coverage to 57%, since it can vectorize all 

considered loops types. The benchmarks characterization 

indicates the need for a runtime analysis to boost application 

performance on exploiting DLP.  

As shown in Section III, the DSA produces a time overhead 

to detect vectorizable code regions and build NEON 

instructions. Table 2 shows the  percentage of the execution 

time spent in the DSA detection process. As it can be seen, Bit 

Counts and Susan E spend 26.20% and 15.58% of the execution 

time detecting vectorizable loops. Such applications contain 

sentinel loops that relies on Mapping Stage execution (Figure 

4) which leaves active during the whole vectorization/execution 

process. The remaining benchmarks spend, on average, only 

1.53% of the whole execution time detecting vectorizable 

regions showing the acceptable overhead of the proposed 

approach. 

Table 2- DSA Detection Latency  

 
 

 

Figure 7 - Percentage of Loop Types in the Selected Applications 

C. Performance  

Figure 8 shows the performance improvements of the ARM 

NEON DSA, the ARM NEON AutoVec and the ARM NEON 

Hand-Coded over the ARM Original Execution. As it can be 

noticed, the proposed technique provides performance 

improvements over the ARM Original Execution in all 

benchmarks. The performance gains increase as the DLP 

opportunities increase as well. Bit Counts (low DLP 

opportunities) shows performance improvements of 32% while 

RGB-G 320x240 (great DLP opportunities) of 70%. RGB-G 

and MM 64x64, besides having only 33.33% of vectorizable 

loops (shown in Figure 7), such loops consume most of the 

execution time, which explains the high acceleration in both 

benchmarks. Results demonstrate the efficient runtime DLP 

exploitation of the proposed approach by showing, on average, 

45% of performance improvements over ARM Original 

Execution running applications with heterogeneous DLP 

opportunities. 

Due to the larger DLP exploitation opportunities of DSA 

over the static analysis of the ARM NEON AutoVec, the 

proposed approach outperforms the compiler technique in all 

benchmarks but MM 64x64 by only 0.6%. Performance gains 

of the proposed approach over compiler technique comes from 

the vectorization of Sentinel Loops, Dynamic Ranged Loops 

and Conditional Loops vectorization which are not capable to 

be achieved at compile time. As it can be seen in Figure 7, 

considering Susan E, ARM NEON AutoVec covers only 14.3% 

of vectorizable loops (Count Loops) while DSA boost such 

covering to 86% which results on 71,5% of performance 



improvements over the compiler technique. In addition, the 

ARM NEON AutoVec provides performance penalties in Bit 

Counts, Gaussian Filter and Susan S since the greater latencies 

of NEON instructions allocated by the compiler were not 

diluted by DLP performance gains. Besides keeping the binary 

compatibility, broken by the ARM NEON AutoVec, the 

proposed approach provides, on average, 32% of performance 

improvements over the ARM NEON AutoVec technique 

considering benchmarks with different DLP opportunities. 

Similar to the ARM NEON AutoVec, due to its dynamic 

DLP exploitation, the proposed approach outperforms ARM 

NEON Hand-Coded. 

 
Figure 8 – Performance Improvements over ARM Original Execution 

D. Energy 

Figure 9 shows the energy consumption of DSA, ARM 

NEON AutoVec and ARM NEON Hand-Coded considering the 

ARM Original Execution as a baseline. As it can be seen, the 

DSA achieves greater energy savings than static analysis 

approaches in all benchmarks but RGB-G 320x240 since such 

an application boost performance due to code optimizations 

using ARM NEON library. On average, DSA achieves 45%, 

31.2% and 23.5% of energy savings over ARM Original 

Execution, ARM NEON AutoVec and ARM NEON Hand-

Coded, respectively. 

Table 3 shows the energy consumption percentage of the 

DSA hardware relative to the whole system energy (ARMv7 

CPU + NEON Engine). As it can be noticed, the DSA detection 

process is responsible for, at most, 11% and, on average, for 

2.8% of the whole system energy. Summarizing, the 

experiments have shown that the lightweight DSA detection 

achieves higher performance than static analysis approaches 

with lower energy consumption maintaining binary 

compatibility with no penalties on software development time. 

V. CONCLUSION AND FUTURE WORK 

In this work, we propose the Dynamic SIMD Assembler 

(DSA) that automatically vectorizes code regions to execute in 

ARM NEON. In comparison with compiler and programming 

techniques, due to its dynamic nature, DSA boosts DLP 

coverage, keeps binary compatibility and avoids timing 

overhead on software developing process. Experimental results 

show that the DSA outperforms both ARM NEON Auto-

Vectorization and ARM NEON Hand-Coded methods by 32% 

and 26%, respectively, while keeping binary compatibility and 

software productivity. In terms of energy, the DSA shows 45%, 

31% and 23.5% of energy savings over the ARM Original 

Execution, ARM NEON AutoVec and ARM NEON Hand-

Coded considering applications with heterogeneous DLP 

opportunities. For future works, we intend to merge DLP, ILP 

and TLP exploitation in a single MPSoC by using DSA in a 

heterogenous fashion. 

 

 
Figure 9. Energy Savings over ARM Original Execution 

Table 3. DSA Energy Consumption  

 
  

REFERENCES 

[1] Dharmendra S. Modha, Rajagopal Ananthanarayanan, Steven K. Esser, 
Anthony Ndirango, Anthony J. Sherbondy, and Raghavendra Singh. 2011. 
Cognitive computing. Commun. ACM 54, 8 (August 2011), 62-71. 

[2] Reddy, Venu Gopal. "Neon technology introduction." ARM 
Corporation (2008). 

[3] Lomont, Chris. "Introduction to Intel advanced vector extensions." Intel 
White Paper (2011): 1-21. 

[4] Diefendorff, Keith, et al. "Altivec extension to PowerPC accelerates 
media processing." IEEE Micro 20.2 (2000): 85-95. 

[5] Sui, Yulei, et al. "Loop-oriented array-and field-sensitive pointer analysis 
for automatic SIMD vectorization." ACM SIGPLAN Notices. Vol. 51. No. 
5. ACM, 2016. 

[6] Lattner, Chris, and Vikram Adve. "LLVM: A compilation framework for 
lifelong program analysis & transformation." Proceedings of the 
international symposium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer Society, 2004. 

[7] Zhou, Hao, and Jingling Xue. "Exploiting mixed SIMD parallelism by 
reducing data reorganization overhead." Proceedings of the 2016 
International Symposium on Code Generation and Optimization. ACM, 
2016. 

[8] Baghsorkhi, Sara S., Nalini Vasudevan, and Youfeng Wu. "FlexVec: auto-
vectorization for irregular loops." ACM SIGPLAN Notices. Vol. 51. No. 
6. ACM, 2016. 

[9] Nuzman, Dorit, Ira Rosen, and Ayal Zaks. "Auto-vectorization of 
interleaved data for SIMD." ACM SIGPLAN Notices 41.6 (2006): 132-
143. 

[10] Tian, Xinmin, et al. "Compiling C/C++ SIMD extensions for function and 
loop vectorizaion on multicore-SIMD processors." Parallel and 
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 
2012 IEEE 26th International. IEEE, 2012. 

[11] Bramas, Berenger. "Inastemp: A Novel Intrinsics-as-Template Library for 
Portable SIMD-Vectorization." Scientific Programming 2017 (2017). 

[12] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH Computer 
Architecture News 39.2 (2011): 1-7. 

[13] Cadence, R. T. L. "Compiler User’s Manual." 

[14] Guthaus, Matthew R., et al. "MiBench: A free, commercially 
representative embedded benchmark suite." Workload Characterization, 
2001. WWC-4. 2001 IEEE International Workshop on. IEEE, 2001. 

[15] Bradski, Gary, and Adrian Kaehler. "OpenCV." Dr. Dobb’s journal of 
software tools 3 (2000).  

[16] Lee, Chunho, Miodrag Potkonjak, and William H. Mangione-Smith. 
"MediaBench: a tool for evaluating and synthesizing multimedia and 
communicatons systems." Proceedings of the 30th annual ACM/IEEE 
international symposium on Microarchitecture. IEEE Computer Society, 
1997. 



87

9 DISCUSSION

The paper titled Improving Software Productivity and Performance through a Transpa-

rent SIMD Execution introduces the first version of the DSA. This work focuses on presenting

a transparent hardware capable of detecting vectorizable regions at runtime without requiring

specific libraries or compilers. This primary version is capable of detecting: Count Loops, Ou-

ter loops and Function Loops. To evaluate this work, we have compared the DSA performance

with the ARM NEON auto-vectorization compiler. We also implemented the HDL version of

the DSA to gather data about area. Unlike the auto-vectorization compiler, the DSA does not

provide performance penalties running benchmarks with low DLP Exploitation opportunities.

Besides, in the RGB-Gray benchmark, the DSA could achieve 20% of performance impro-

vements over the auto-vectorization compiler with an area overhead of 2.18% over the ARM

processor. Considering all benchmarks, the DSA outperforms the ARM auto-vectorization in

6%, showing that its dynamic nature could exploit vectorizable regions efficiently.

In the paper titled Runtime Vectorization of Conditional Code and Dynamic Range Lo-

ops to ARM NEON Engine the DSA was extended in order to provide vectorization of loops

with dynamic behavior. The extended version is capable of detecting: Count Loops, Outer

loops, Function Loops, Conditional Loops, Dynamic Sized Loops and Sentinel Loops. To eva-

luate this work, we compared the DSA with its primary version and with the ARM NEON

auto-vectorization compiler. Due to the proposed extensions, the DSA outperforms the NEON

auto-vectorization compiler by 40% considering BitCounts benchmark. In general, the exten-

ded DSA could provide 38% performance improvements over the original approach and 12%

performance improvements over the NEON auto-vectorization compiler. In this paper, we also

provide data about the time consumed by the DSA to detect vectorizable loops and generate

SIMD instructions considering the total execution time of each benchmark. Benchmarks con-

taining more Conditional Loops and Dynamic Range Loops (Dijkstra and BitCounts) spent

more time detecting vectorizable loops. Benchmarks containing only static ranged vectorizable

loops spent, on average, 1.5% of the execution time detecting vectorizable loops. For the Q Sort

benchmark, which has no vectorizable loops, the DSA spent only 1.02% of the time analyzing

non- vectorizable loops.

The paper titled Boosting SIMD Benefits through a Run-time and Energy Efficient DLP

Detection evaluates the DSA energy consumption and applies the Partial Vectorization tech-



88

nique to the DSA. We also compare the performance and energy results of the DSA with an

ARM NEON Hand-Coded approach and with the ARM NEON Auto-vectorization Compi-

ler. The DSA boosts in 71,5% the performance of the Susan E benchmark over the NEON

Auto-vectorization compiler and outperforms in 67% the ARM NEON Hand-Coded in Susan

S benchmark. On average, the DSA outperforms the Hand-Coded approach in 26% reducing

23.5% of energy consumption and improves the Auto-vectorization Compiler performance in

32% reducing 31% of energy consumption.

All presented works show that is mandatory a runtime vectorization exploitation to boost

applications DLP coverage and keep binary compatibility. Also, unlike a Just-in-time compiler,

which demands a monitor task running concurrently, the DSA adds no execution time penalty,

since it has its own processing hardware. Besides, the DSA applies little area overhead over the

system. We coupled the DSA to an ARM ISA approach to evaluate its functionality and extract

performance results, but the techniques can be adapted to any ISA.

Summarizing, the Dynamic SIMD Assembler is capable of:

• improving DLP coverage and software productivity in a runtime fashion with no execu-

tion time penalty;

• keeping binary compatibility since no code recompilation is needed;

• suggesting multi-ISA runtime vectorization techniques;

• improving performance and reducing energy consumption.

As aforementioned, the DSA was compared with the ARM auto-vectorization and li-

brary usage approaches, which are static DLP exploitation techniques. In our future works,

we intend to evaluate the DSA over a Just-in-time compiler method, since they are both dyna-

mic DLP exploitation approaches. Besides, by comparing both approaches, we expect to see

which dynamic vectorization approach is the best option: the DSA hardware, which impacts

on area increase, or the Just-in-time compiler, which demands no area increase but implies in

performance penalties due a monitor task.

The DSA HDL implementation as well as the high-level simulator (DSA + O3CPU) can

be found in (JORDAN, 2019).
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10 CONCLUSION AND FUTURE WORK

In this work, we propose the Dynamic SIMD Assembler (DSA) that automatically vec-

torizes code regions to execute in ARM NEON during runtime. In comparison with compiler

and programming techniques, due to its dynamic nature, DSA boosts DLP coverage, keeps bi-

nary compatibility and avoids timing overhead on software developing process. Experimental

results show that the DSA outperforms both ARM NEON Auto-Vectorization and ARM NEON

Hand-Coded methods by 32% and 26%, respectively, while keeping binary compatibility and

software productivity. In terms of energy, the DSA shows 45%, 31% and 23.5% of energy sa-

vings over the ARM Original Execution, ARM NEON AutoVec and ARM NEON Hand-Coded

considering applications with heterogeneous DLP opportunities.

For future works, we intend to:

• apply improved DSA instruction generation and memory hierarchy approaches in the

DSA since both of them influence in the DSA analysis and execution latencies;

• implement the whole system in an HDL (hardware description language) to enable an

accurate performance and energy system analysis;

• develop a software Just-in-time version of the DSA and compare such approach with the

original DSA (hardware);

• provide an exploitation of the DSA version that mixes the benefits of a static vectorization

compiler and the dynamic vectorization of the DSA (high performance version);

• expand the DSA loop vectorization (DSA Analysis), which means that complex control

flow loops and loops with misaligned memory access will be covered;

• merge ILP, DLP and TLP exploitation in a single MPSoC by using DSA in an heteroge-

nous fashion.
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