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RESUMO

VIES ASSOCIADO AO ARRANJO DE DADOS E TAMANHO AMOSTRAL E SUAS
IMPLICACOES NA ACURACIA DA SELECAO INDIRETA NO MELHORAMENTO
DE PLANTAS

AUTOR: Tiago Olivoto
ORIENTADOR: Velci Queirdz de Souza

Alguns métodos de arranjo de dados utilizados atualmente podem superestimar os coeficientes
de correlacdo de Pearson (r) entre variaveis explicativas, aumentando a multicolinearidade em
analises que utilizam regressao maltipla. Neste sentido, os objetivos da presente pesquisa foram
revelar o impacto de diferentes cenarios de arranjos de dados na multicolinearidade de matrizes,
na eficiéncia dos métodos utilizados para ajusta-la, nas estimativas dos coeficientes e acuracia
da anélise de trilha, bem como fazer uso de simulag6es para revelar o comportamento estatistico
do r e o tamanho amostral 6timo para estimativas de r entre caracteres do milho. Para isto,
foram utilizados dados de um experimento conduzido em delineamento de blocos completos
casualizados em esquema fatorial 15 x 3 (15 hibridos simples de milho e trés locais), dispostos
em quatro repeticdes. As variaveis analisadas em cinco plantas de cada parcela foram: altura de
planta, altura de insercdo da espiga, diametro e comprimento da espiga, numero de fileiras de
grdos por espiga, numero de grdos por fileira, didmetro e comprimento do sabugo, relacdo
diametro do sabugo/diametro da espiga, nimero de graos por espiga, massa de graos por espiga
e massa de mil grdos. Em um primeiro momento, trés métodos de analise de trilha (tradicional,
com incluséo de k e com exclusdo de variaveis) tendo como variavel dependente a massa de
grdos por espiga, foram testados em dois cendrios: 1) com a matriz de correlacdo linear (X'X)
entre as variaveis estimada com todas as observacfes amostradas, n = 900 e 2) com a matriz
X’X estimada com o valor médio das cinco plantas amostradas em cada parcela, n = 180.
Posteriormente, visando avaliar o comportamento estatistico do r, além dos dois cenarios
descritos, o valor médio dos tratamentos em cada local, n = 45, também foi considerado. Em
cada cenério foram simulados 60 tamanhos amostrais utilizando simulagdes bootstrap com
reposicdo. Intervalos de confianca para combinacdes de diferentes magnitudes foram estimados
em cada cenario e tamanho amostral. Cento e oitenta matrizes de correlacdo (trés cenarios x 60
tamanhos amostrais) foram estimadas e a multicolinearidade avaliada. O nimero de gréos por
espiga e a massa de mil grédos apresentam os efeitos diretos mais expressivos sob a massa de
grdos por espiga (r = 0,892 e r = 0,733, respectivamente). A utilizacdo de valores oriundos de
médias reduz a variancia individual de um conjunto de n-variaveis, superestima a magnitude
do r entre os pares de combinacdo, aumenta a multicolinearidade da matriz e reduz a eficiéncia
dos métodos utilizados para ajusta-la, bem como a acurécia das estimativas dos coeficientes de
trilha. O nimero de plantas necessario para estimativa de coeficientes de correlacdo com
intervalo de confianca bootstrap de 95% é maior quando todas as observacfes da amostra séo
utilizadas e aumenta no sentido de pares de combinagdo com menor magnitude. Utilizando
todas as observagdes amostradas, 210 plantas sdo suficientes para estimativa do r entre
caracteres de hibridos simples de milho, no intervalo de confianga “bootstrap” de 95% < 0,30.
Um método simples para reduzir a multicolinearidade das matrizes e melhorar a acuracia da
analise de trilha é proposto.

Palavras-chave: Zea mays L. Coeficiente de correlagdo. Multicolinearidade. Simulagdes.



ABSTRACT

BIAS ASSOCIATED WITH DATA ARRANGEMENT AND SAMPLE SIZE AND ITS
IMPLICATIONS ON THE ACCURACY OF INDIRECT SELECTION IN PLANT
BREEDING

AUTHOR: Tiago Olivoto
ADVISOR: Velci Queirdz de Souza

Some data arrangement methods currently used may overestimate Pearson correlation
coefficient (r) among explanatory traits, increasing multicollinearity in analysis that uses
multiple regression. In this sense, the aims of the present research were to reveal the impact of
different data arrangement scenarios on the multicollinearity of matrices, on the efficiency of
the used methods to adjust it, on the estimates of coefficients and accuracy of the path analysis,
as well as to use simulations to reveal the statistical behavior of the r and the optimal sample
size for estimating r between maize traits. For this, data from an experiment conducted in a
randomized complete design in a 15 x 3 factorial scheme (15 maize hybrids x three growing
sites), arranged in four replicates were used. The traits analyzed in five plants of each plot were:
plant height, ear insertion height, diameter and length of ear, number of rows per ear, number
of kernels per row, diameter and length of cob, cob diameter/ear diameter ratio, number of
kernels per ear, kernel mass per ear and thousand-kernel weight. At first, three path analysis
methods (traditional, with k inclusion and with the exclusion of traits) having as a dependent
trait the kernel mass per ear were tested in two scenarios: 1) with the linear correlation matrix
(X’X) between the traits estimated with all sampled observations, n = 900 and 2) with the XX
matrix estimated with the average value of the five sampled plants in each plot, n = 180.
Subsequently, aiming to evaluate the statistical behavior of r, in addition to the two described
scenarios, the average value of treatments at each site, n = 45, was also considered. In each
scenario, 60 sample sizes were simulated by using bootstrap simulations with replacement.
Confidence intervals for combinations of different magnitudes were estimated in each scenario
and sample size. One hundred and eighty correlation matrices (three scenarios x 60 sample
sizes) were estimated and the multicollinearity evaluated. The number of kernels per ear and
the thousand-kernel weight presented the most expressive direct effects to kernel mass per ear
(r = 0.892 and r = 0.733, respectively). The use of average values reduces the individual
variance of a set of n-traits, overestimates the magnitude of the r between the trait pairs,
increases the multicollinearity of the matrix, and reduces the effectiveness of the used methods
to adjust it as well as the accuracy of the path coefficient estimates. The number of plants
required to estimate correlation coefficients with a 95% bootstrap confidence interval is greater
when all sampled observations are used and increases in the sense of combination pairs with
lower magnitude. By using all sampled observations, 210 plants are sufficient to estimate r
between traits of simple maize hybrids in the 95% bootstrap confidence interval < 0.30. A
simple method that reduces the multicollinearity of matrices and improves the accuracy of path
analysis is proposed.

Key words: Zea mays L. Correlation coefficient. Multicollinearity. Simulations.
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1 INTRODUCAO

Modelos biométricos desempenham um importante papel no melhoramento genético
vegetal atual, aumentando a eficiéncia e reduzindo o tempo de selecdo por meio da selecédo
indireta. Para realizar a selecdo indireta 0 melhorista precisa compreender o sentido e o grau de
associacao entre os caracteres avaliados de uma determinada espécie. Para isto, o coeficiente
de correlacdo produto-momento de Pearson (PEARSON, 1920), vem sendo amplamente
utilizado.

Embora a correlagdo de Pearson revele o sentido e o grau de associagéo linear entre um
par de caracteres, esta ferramenta ndo revela associaces de causa e efeito. Assim, Sewall
Wright em seu trabalho publicado com o titulo ‘Correlation and causation’ (WRIGHT, 1921),
propds um método conhecido como analise de trilha ou ‘Path analysis’ permitindo esta
compreensdo. O método é baseado no particionamento do coeficiente de correlagdo linear em
efeitos diretos e indiretos de um grupo de variaveis consideradas preditoras ou explicativas, na
resposta de uma variavel dependente ou principal.

Na cultura do milho, bem como em diversas culturas de importancia mundial, trabalhos
utilizando analise de trilha tém obtido sucesso no sentido de revelar as inter-relagdes entre
caracteres, sejam eles produtivos, de qualidade de grdo ou de efeitos da interacdo do genétipo
x ambiente/manejo de cultivo (ADESOJI; ABUBAKAR; LABE, 2015; JADHAV; KASHID;
KULKARNI, 2014; MA et al., 2015; NARDINO et al., 2016).

1.1 PROBLEMATICA

Embora 0 modelo estatistico seja consolidado, alguns problemas de natureza inevitavel
sdo observados nas estimativas dos coeficientes de trilha. O principal entrave encontrado,
principalmente por se tratar de um modelo de regressdo mdltipla, é a presenca de
multicolinearidade entre varidveis preditoras, ou seja, a alta correlacdo entre as variaveis
preditoras incluidas no modelo. No decorrer de quase um século de utilizacdo desta anélise,
diversos pesquisadores tém trabalhado com o intuito de ajustar a multicolinearidade em
matrizes de variaveis explicativas, seja excluindo variaveis ndo aditivas ou modificando o
modelo estatistico utilizado (ALIN, 2010; AUCOTT; GARTHWAITE; CURRALL, 2015;
FARRAR; GLAUBER, 1967; GUNST; MASON, 1977; HUANG; JOU; CHO, 2015; KIERS;
SMILDE, 2006; MANSFIELD; HELMS, 1982; YU; JIANG; LAND, 2015). Resultados

satisfatorios vém sendo observados, no entanto, a grande maioria dos estudos realizados tém o
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foco principal no ajuste da multicolinearidade, ou seja, o que e como fazer para minimizar os
efeitos danosos da multicolinearidade apos a estimativa da matriz de correlagdo. S&o escassos
na literatura, entretanto, trabalhos que abordam métodos para reduzi-la.

Como discutido, a multicolinearidade estd diretamente associada a magnitude das
correlagOes entre variaveis preditoras. Neste sentido, para estimativa da real correlagdo entre
duas variaveis aleatorias (ex. X e Y), a covariancia e o desvio padrdo destas variaveis devem
representar a populacdo em estudo. Em experimentos agronémicos, € comum mensurar 0S
caracteres elencados de acordo com as hipoteses e objetivos do programa de melhoramento em
diversos individuos (plantas) em cada parcela de cada tratamento, visando representar a
populacéo (tratamento) em estudo. Tais plantas rotineiramente compdem a média desta parcela,
qual serd posteriormente utilizada para estimativas de analise de variancia e analises
complementares. No entanto, sdo encontrados diversos estudos que fizeram uso destas médias
para estimar os coeficientes de correlagéo e posteriormente os coeficientes de trilha (ADESOJI,
ABUBAKAR; LABE, 2015; FARIA et al., 2015; KHAMENAE et al., 2012; KUMAR et al.,
2015; NATARAJ; SHAHI; AGARWAL, 2014; NATARAJ; SHAHI; VANDANA, 2015;
RIGON et al., 2012; TOEBE; CARGNELUTTI, 2013; TORRES et al., 2015). Partindo-se do
pressuposto que a média mascara as variancias individuais (das observacGes coletadas),
correlagOes estimadas a partir destas médias ndo representardo a real variancia e desvio padrao
das variaveis mensuradas (X, Y, ..., Z) na populacéo original.

Diante do exposto, na presente pesquisa serdo abordados problemas conceituais e
metodoldgicos evidenciados atualmente na estimativa dos coeficientes de correlacdo entre
variaveis explicativas e qual o impacto da utilizacdo de diferentes cenéarios de arranjo de dados
na acuracia da andlise de trilha, direcionada para a &rea do melhoramento genético do milho.
Em adicdo a isto, tamanhos amostrais sdo estudados em diferentes cenarios de arranjo de dados,
visando avaliar o comportamento estatistico do coeficiente de correlagédo e o condicionamento

das matrizes de correlagéo.

1.2 HIPOTESES

Levando-se em consideracdo a premissa para estimativa do coeficiente de correlagdo
abordada anteriormente e a observacédo de diversos trabalhos metodologicamente tendenciosos,
as seguintes hipoteses foram formuladas.

- A utilizacdo de valores médios reduz a variancia do conjunto de n-variaveis,

superestimando os coeficientes de correlacdo dos pares de combinacéo;
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- Os métodos para ajuste de multicolinearidade conhecidos atualmente sdo mais eficazes
quando aplicados em matrizes de correlagdo estimadas com os valores de todas as observagoes
amostradas;

- A acuracia da analise de trilha é maior quando os coeficientes de trilha sdo estimados
com matrizes de correlagdo estimadas com todas as observagdes da amostra;

- O aumento no tamanho amostral proporciona menor intervalo de confianga do
coeficiente de correlacao;

- Matrizes de correlacdo estimadas com todas as observacfes amostradas apresentam

melhor condicionamento e menores problemas de multicolinearidade;

1.3 OBJETIVOS

1.3.1 Objetivo geral

As hipoteses formuladas fundamentaram o seguinte objetivo geral: fazer uso de modelos
estatisticos e biométricos para analisar o comportamento do coeficiente de correlacdo, a
multicolinearidade das matrizes e a acurécia da analise de trilha em diferentes cenarios de

arranjos de dados.

1.3.2 Objetivos especificos

Propor um método de arranjo de dados que reduza os niveis de multicolinearidade,
melhore a eficiéncia dos métodos conhecidos para ajusta-la, bem como aumente a acuracia das
estimativas dos coeficientes de trilha.

Revelar quais os impactos de diferentes cenarios de arranjo de dados e tamanhos
amostrais no comportamento estatistico dos coeficientes de correlacdo e no condicionamento

das matrizes.
1.4 JUSTIFICATIVA
A realizacdo da presente pesquisa € justificada pela ampla utilizacdo e importancia

mundial do coeficiente de correlagdo de Pearson e da anélise de trilha, apoiada pela inexisténcia,

até onde se sabe, de estudos que avaliaram o impacto do arranjo de dados e tamanhos amostrais
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nas estimativas dos coeficientes de correlacdo e condicionamento de matrizes de variaveis
consideradas explicativas.

Espera-se que as hipoteses sejam comprovadas e, se assim evidenciado, os resultados
pioneiros poderdo contribuir para uma melhor acurécia desta analise. A aplicabilidade de tais
resultados serd ampla, principalmente na &rea de melhoramento genético vegetal, contudo,

outras areas da ciéncia que fazem uso desta analise, também poderdo ser beneficiadas.
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2.1 ABSTRACT

Maize (Zea mays L.) has been the subject of several studies involving correlation
coefficient estimates and path analysis. This critical review discusses some systematic errors
that have been observed in estimating of correlation coefficients and its possible impacts on
accuracy of path analysis. In a first moment, an approach about the maize crop, origin,
characteristics and biometric models commonly used in genetic breeding of this crop is
presented. Some obstacles found in estimates of path coefficients and the methods used to adjust
them are discussed. We also present evidences and a theoretical explanation that some data
arrangement methods currently used may be overestimating the correlation coefficients in
scientific studies. Data from a literature search revealing the accuracy of path analysis of some
research are presented and discussed. In a last moment, we present a future perspective about
how the correct estimate of the correlation coefficients may improve the accuracy of path
analysis, underscoring the need for research directed to this subject.

Key-words: Zea mays. Average data. Correlation matrices. Systematic errors.

2.2 INTRODUCTION
2.2.1 Maize crop

Maize (Zea mays L.), belonging to the grass family Poaceae is the most produced cereal
in the world, surpassing the mark of 1 billion tons produced in 2016 growing season. This crop
has great economic, social and recently environmental importance due their grain serve as
alternative raw material for ethanol production (Hertel et al., 2010). The world's leading
producers of this cereal is the United States, China and Brazil.

It is known that the currently known maize is the result of a long evolutionary process,
being the most accepted hypothesis that it evolved from the teosinte, with the center of origin

in Central America, specifically in Mexico (Gaut and Doebley, 1997).
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During this evolutionary process, genetic events were decisive for the change in plant
architecture and crop's inflorescence characteristics. Two quantitative traits loci (QTLS) were
identified as the main responsible for the morphological differences between these species. The
first (TB1) located on arm of chromosome 1L has effects on the gender of the inflorescence and
the number and length of internodes on the lateral branches; the second, located on arm of
chromosome 3L, affects the same characteristics. A study evaluating the segregation of these
loci revealed that they present epistatic interrelationships turning together, substantially, the
plant architecture and inflorescence (Doebley et al., 1995).

The number of chromosomes present in the modern maize is 10, but it has long been
suspected that this number was the result of a historical tetraploid event. Several observations
point to this possibility, including the fact that the culture has duplicated chromosome segments
(Gaut, 2001). Some of these segments were sequenced and the standard divergence between 14
pairs of duplicated genes was examined. The results indicated that the time in this sequences'
duplication vary in two distinct groups, corresponding to about 20.5, and 11.4 million years
ago. (Gaut and Doebley, 1997). This observation indicates the possibility of an allotetraploid
genomic event where his two diploid progenitors diverged about 20.5 million years ago, and

that the allotetraploid event probably occurred approximately 11.4 million years ago.

2.2.2 Maize breeding

It is attributed to Darwin the first works with plant pollination, however, were East and
Shull the pioneers in the study of the influence of successive self-pollination and exploitation
of heterosis in maize. During the era of hybrid maize (1908 to present), the crop yield has
increased almost six times (Lee and Tollenaar, 2007).

In early 1908, George Harrison Shull, published a paper with the title “The composition

of the field of maize”, marking the beginning of the exploitation of heterosis in plant breeding,
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certainly one of the greatest genetic triumphs of our time. In his work, Shull showed that inbred
lines of maize, subjected to several cycles of self-pollination showed significant reduction in
vigor and grain yield; however, the hybrids resulting from two inbred lines had these features
recovered, often featuring performance and superior vigor of varieties from which the inbred
lines were derived (Shull, 1908).

At the same time, Edward Murray East made similar experiments and also recognized
the deleterious effects of inbreeding in maize plants; however, did not realize the value of
crossing inbred lines, up to study Shull’s paper. East was not convinced of the usefulness of the
idea, because, really, inbred lines produced a very small amount of seeds, burdening any
increase in production provided by hybrids. Both were at odds, but have remained true to their
findings (Crow, 1998).

The limitation in seeds’ production was surpassed later (1918) from an idea of Donald
Forsha Jones, who while still a graduate student, defended the idea of using four genetic bases
or double-cross hybrids. The principle involved crossing two inbred lines and later, crossing of
this hybrid with other, resulting from two other inbred lines. These hybrids were somewhat
more variable compared with simple hybrids, however, much less than the open-pollinated
varieties existing at that time. As seeds were coming from a simple hybrid, the largest quantity
of available seed improved the program viability (Jones, 1918).

Increases in maize productivity was, no doubt, largely due to the discovery of heterotic
effect; however, the evolution of agricultural practices, such as increased use of fertilizers,
changes in plant's arrangement, cultivation practices and agricultural mechanization, were
useful tools and that combined with the use of higher-genetically plants enabled the
achievement of high yields currently observed. But, it would be possible to separate the

contribution of these effects? Studies evaluating the productivity of maize in a period of 70 yrs.
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showed an average increase of 65-75 kg ha™! yr!, and that genetic breeding was responsible for
about 50% of this increase (Duvick, 1977, 2005).

A maize ideotype had been proposed by Mock and Pearce (1975). The ideotype that
should produce optimally when grown in an environment without limitations of edaphoclimatic
factors, high plant density and reduced spacing between rows, it is characterized by a) rigid
vertically-oriented leaves above ear (leaves below the ear should be horizontally-oriented ); b)
maximum photosynthetic efficiency; c) efficient conversion of assimilates in grains; d) short
interval between pollination and the emergence of style-stigmas; e) prolificacy; f) small size of
cobs; g) insensitivity to photoperiod; h) cold tolerance in the germination (for cultivated
genotypes in areas where early sowing takes place in cold or wet soil); i) as long as possible
grain filling; and j) slow leaves senescence.

In this regard, studies aiming at a higher-plant architecture (Tian et al., 2011), better
floral sync (Buckler et al., 2009), improved photosynthetic efficiency (Fracheboud et al., 1999)
and absorption of nutrients (Gallais and Hirel, 2004) has been successful. The combination of
all the favorable characteristics in a single hybrid, however, is a daunting task for breeders
mainly due, in most part, the traits be expressed by different genic actions (Sa et al., 2014).

Success in maize breeding, as well as in others economically important crops also was
due to wider use of statistic-experimental models in the selection of superior hybrid, introduced
by Fisher, involving replication, randomization and local control. The author states the
importance of a thorough selection in a plant breeding program. In the case of simple maize
hybrids this process occurs in three steps. 1) choice of individuals in a population to start the
process; 2) artificial self-pollination of these individuals aiming to inbreeding and selection of
pure lines and 3) artificial crosses. If plants are randomly selected in each step, the hybrids will
be a random sample of the original population. Thus, the criteria-based selection in the three

steps should be considered. At first, the selection resembles the mass selection, practiced in
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breeding of open-pollinated varieties. In the second, the selection is neutralized quickly by rapid
fixation, due to homozygosity increase in 50% each generation; so, Fisher emphasized that the
selection in the last step, should have greater emphasis. In fact, the selection at this step is

important as it is being practiced in the studied subject (Fisher, 1925).

2.2.3 Biometric models used in maize hybrids

Several statistical models have been used to evaluate the performance of maize hybrids.
Models that allow the partition of genotype-vs-environment interaction into environmental and
genetic components are useful to evaluate the adaptability and stability of hybrids, especially
in the assessment of value for cultivation and use. Mixed models with fixed and random
variance components also have proven also efficient to identify promising hybrids in breeding
programs (Baretta et al., 2016).

Knowledge of association degree between traits is of fundamental importance in plant
breeding programs. This importance increases, especially if some desirable trait present
difficulty in assessment or low heritability (Cruz et al., 2014). The Pearson product-moment
correlation coefficient (Pearson, 1920), has been widely used for this purpose. Although this
correlation reveals the direction and degree of linear association between a pair of traits, it does
not reveal interrelationships of cause and effect. Thus, Sewall Wright in his work entitled
“Correlation and causation” (Wright, 1921) proposed a method known as “path analysis”
allowing this understanding. The method is based on the partitioning of the linear correlation
coefficient into direct and indirect effects of a group of explanatory traits on the response of a
dependent trait.

Path analysis has been highlighted in breeding area because the selection aiming to

improve a desirable trait that has difficulty-measure and low heritability, can be indirectly
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carried out by another trait, directly associated with the desirable trait, but that shows high
heritability and easy assessment.

In maize, as well as in several world-important crops, studies using path analysis has
been successful in the sense of revealing the interrelationships between traits, be them yielding,
grain quality or the effects of interaction genotype-vs-environment or management of
cultivation (Adesoji et al., 2015, 2015; Jadhav et al., 2014; Ma et al., 2015; Nardino et al.,
2016). In summary, the results converge to a common conclusion: the number of kernels per
ear and thousand-kernel weight are the traits with greater direct association with grain yield
(Adesoji et al., 2015; Khameneh et al., 2012; Mohammadi et al., 2003; Reddy et al., 2012). As
the heritability in the broad sense of these traits is high (h? > 0.90), the indirect selection from
these traits aiming at increasing grain yield (trait highly influenced by the environment) can be

effective (Ojo et al., 2006).

2.2.4 Path analysis conception

Path analysis is originally based on ideas developed by Sewall Wright (Wright, 1921),
however, from its conception to the method’s consolidation, some disagreement about the
reliability of the mathematical method were observed. In 1922, Henry E. Niles, in his paper
entitled “Correlation, causation and Wright’s theory of path coefficients”, made a criticism of
the method proposed by Wright, claiming that the philosophical basis of the path coefficients
method was doubtful. Niles, testing Wright’s method had observed in some of its results
correlations exceeding | 1 |, saying “these results are ridiculous” and that Wright would have to
provide much more convincing evidence than he was presenting (Niles, 1922).

In the following year (1923), Sewall Wright in his paper entitled “The theory of path
coefficients: a reply to Niles’ criticism”, consolidates his method concluding that Niles seemed

to be based on incorrect mathematical concepts, result of a failure to recognize that path
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coefficient it is not a symmetric function of two traits, but it necessarily has direction. Wright
concludes his work by stating that the path analysis does not provide a formula to infer causal
relationships from knowledge of the correlations; it is, however, within certain limitations, a
method of evaluating the logical consequences of a causal hypothesis relationship in a system
of correlated traits. It adds yet that the criticism offered by Niles nothing invalidates the theory
or application of path coefficient (Wright, 1923). Currently, the statistical method of path
coefficient is consolidated and worldwide used in several areas of science.

To estimate path coefficients, normal equations models are used to partition the linear
coefficients into direct and indirect effects of a set of explanatory traits on a dependent trait.
Thus, their estimates need a previously-estimated linear correlation matrix among traits under

study.

2.2.5 Estimation of linear correlation

One of the most used measures in breeding to estimate the direction and degree of linear
association between two random traits is the Pearson product-moment correlation coefficient.
To estimate the degree of association between two hypothetical traits X and Y, let’s consider
the following assumption. The traits should form the following dataset. (X1, Y1), (X2, Y2)...(Xn,

Yn). Thus, correlation coefficient estimates between X and Y is obtained by the following
equation: , = Solx X T
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Although the merit of this analysis had been attributed to Karl Pearson, the method was
originally designed by Francis Galton, who defined the term correlation as to the following:
“two variables are said to be co-related when the variation of the one is accompanied on the
average by more or less variation of the other, and in the same direction” (Galton, 1888). So,
your estimate considers the covariance between two traits, represented here by XY divided by
the product of respective standard deviation of X and Y.

Considering the premise of this analysis, the traits which will be correlated, will have,
mandatorily, be assessed in the same subject, in order to represent the actual covariance and

standard deviation of the set of observations.

2.2.6 Path analysis estimation

After obtaining linear correlation estimates (r), partitioning of linear correlations into
direct and indirect effects of an explanatory dataset with p-traits can be performed by derivation
of the set of normal equations (X’X5= X'Y) to estimate parameters of multiple regression using
OLS (Ordinary Last Squares). Thus, f estimate is given by # = X'X1 X'Y, where £ is the partial
regression coefficient (51, B2, B3,....0p) 10 p + 1 rows; X’X! is the inverse of linear correlation
matrix among explanatory traits; and X'Y is the correlation matrix between each explanatory
trait with the dependent trait.

After estimating the regression coefficients (fp), the direct and indirect effects of a set
of p-explanatory trait towards the dependent trait can be estimated. Consider the following
example, where a set of explanatory traits (a, b, ¢ and d) are used to explain the relationship of
cause and effect on the response of dependent variable (y). After partial regression estimations
(B1, 2, pzand pBa), direct and indirect effects of ‘@’ on °y’ are given by: ra:yy = 1+ foFa:n + farac +
[ara:a Where ray is the linear correlation between ‘@’ and ‘y’; f1is the direct effect of ‘@’ on ‘y’;

[a:b is the indirect effect of ‘@’ on ‘y’ via ‘b’; fa:cis the indirect effect of ‘@’ on ‘y’ via ‘c’; and
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Pua:d is the indirect effect of ‘@’ on ‘y’ via ‘d’. Similar equations are used to estimate direct and
indirect effects of b, ¢, and d. The coefficient of determination of the model, i.e., how much of
the variance in the dependent trait is explained by the interrelationship on explanatory traits, is
given by R? = Biray + farby + fafcy + Parc:y. Residual effect is estimated by Noise = v/1 — R2.

This technique has facilitated the understanding of the interrelationship among traits and
their effects on dependent trait in several areas of science, as in plant breeding and crop
management (Abdala et al., 2016; Dewey and Lu, 1959; Farooq et al., 2015; Mohammadi et
al., 2016; Nardino et al., 2016; Olivoto et al., 2015; Souza et al., 2015), animal breeding (Norris
et al., 2015; Onder and Abaci, 2015), environmental and social sciences (Hong et al., 2016; Xu
et al., 2014), humanities (Hagger et al., 2016) and several related areas.

Indeed, path analysis has been a useful tool particularly in plant breeding, however, care
must be taken prior the estimation of this analysis. Below we discuss some obstacles

encountered in the estimates of the path coefficients.

2.2.7 Difficulties observed in path analysis

Although this analysis shows associations of cause and effect, its estimate is based on
multiple regression principles; thus, it can be biased by complex nature of the data, where the
response of the dependent trait is linked to many explanatory traits that are often correlated with
each other (Graham, 2003). Correlated traits are difficult to analyze because its effects on
dependent trait may be due to any synergistic relationship between traits or spurious
correlations. Thus, where two explanatory traits are highly associated, it is difficult to estimate
the relationship of each individual explanatory trait, since these, as a whole contribute to the
explanation of the linear relationship. This particularity is known as multicollinearity (Blalock,

1963).
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2.2.8 Matrices multicollinearity
2.2.8.1 What is it?

In multiple linear regression, data is fitted to a multiple linear model that predicts the
values of a response trait (Y) from the weighted sum of several explanatory traits (Xi) and the
random error (¢) Y = fo + B1X1 + B2Xo + ... +fiXi+e; where S are regression coefficients.

The main goal is to fit a model using the smallest number of traits that explain the most
variance of the response variable. If all explanatory traits are independent, each of the regression
coefficients (fi) represent the total contribution of a given predictor in response trait; if
however, two or more explanatory traits are associated, partial regression coefficients need to
be estimated to isolate the contribution of a single explanatory trait. The distinction between
single contributions is the crucial point in multiple regression analysis being also the largest
inferential problem found due to the presence of multicollinearity (Graham, 2003; Gunst and
Mason, 1977).

When this phenomenon occurs in moderate or severe levels, the variances associated
with path estimators can reach too high values, making unreliable estimates. Montgomery et al
(2012), proposed a classification for multicollinearity based on the condition number (CN), i.e.
the ratio between the largest and smallest eigenvalue of explanatory traits matrix (

CN = A,/ Aun )- Thus, the degree of multicollinearity is considered weak, moderate and severe

when CN <100 between 100 and 1000 and > 1000, respectively.
Other indicator used to identify the presence of multicollinearity is called variance

inflation factor (VIF), and demonstrated the extent of the effects of other independent traits on
the variance of the selected independent trait [VIF =1/ (1—R?) ]. For each of 8 coefficients in a
multiple regression model there is one VIF. When the VIF for a given predictor is 1, it means

that there is no correlation between this predictor and the remainder of explanatory traits. This

fact is hardly observed. Can be taking as a rule, that the existence of VIFs greater than 10, are
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serious multicollinearity signals, being necessary to take some action to adjust it (Mansfield
and Helms, 1982; O'Brien, 2007).

Path coefficients at odds with biological expectation were observed when the analysis
was performed in the presence of severe multicollinearity (Toebe and Cargnelutti, 2013). In
addition, a study by Petraitis et al. (1996) revealed that from 24 path analysis published in
ecological studies, 15 had problems with multicollinearity, resulting in 13 cases with biased
path coefficients. This information is worrying because in the case of plant breeding, path
coefficients wrongly-estimated and interpreted, may result in an inefficient selection, brought

into play the financial, human and time spent in the conduct of a plant breeding program.

2.2.8.2 Methods for adjusting multicollinearity

Although the problems related to multicollinearity presents itself as a difficulty in
estimating path coefficients, some steps can be taken to mitigate its undesirable effects when it
is detected by the aforementioned methods.

It is now known that the exclusion of the traits responsible for inflating the variance of
a regression coefficient is an effective technique that reduces the multicollinearity in matrices
of explanatory traits (Jadhav et al., 2014). The identification of these traits, however, can
become a difficult task. As previously discussed, the purpose of multiple regression (path
analysis) is to identify a set of explanatory traits with high explanatory power, but which do not
exhibit highly correlated. In this sense, there are several variable selection methods to choose a
subset of predictors with minimal multicollinearity, such as hierarchical models, stepwise
procedures and criteria-based models (George and McCulloch, 1993; Mitchell and Beauchamp,
1988; Nishii, 1984; Wold et al., 1984).

In a focused approach to plant breeding, Cruz et al. (2014) discuss a method to identify

the traits responsible for the multicollinearity in a set of explanatory traits. This method is based
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on analysis of eigenvalues and eigenvectors of a symmetric positive definite matrix of
explanatory traits and identifies the traits responsible for this problem, as that with the highest
weight (component of the eigenvector) associated to the eigenvalues of lesser magnitude.

The exclusion of traits responsible for multicollinearity allowed estimating path
coefficients, without its harmful effect, in research with several crops such as rice (Shrivastava
and Sharma, 1976), canola (Coimbra et al., 1999), soybean (Bizeti et al., 2004) and maize
(Toebe and Cargnelutti, 2013). It should be noted that the choice of traits for exclusion must be
careful, because traits with high explanatory power removed from the model, can reduce the
coefficient of determination (R?), and increase the noise’s model (Cruz et al., 2014). When the
exclusion of multicollinearity-generating traits is not a procedure considered by researcher, e.g.,
due to a small number of explanatory traits, or the importance of knowing their effects, a second
option is to perform the path analysis with all the explanatory traits, but with the addition of a
small value in diagonal elements of X'X, known as ridge regression (Hoerl and Kennard, 1970).
This method aims to reduce the variance associated with the OLS (Ordinary Last Squares)
estimators. Thus, g estimates in ridge regression are obtained similarly to the conventional
method, however solving the partially-modified normal equations system (X'X+k)p = X'Y)
generating f = (X'X+k)1 X'Y, for 0 < k < 1. Where, £ is the partial regression coefficient (51,
B2, Ba,.... ) to p + 1 rows; (X'X+k)~ is the inverse of linear correlation among explanatory traits
with k constant included in diagonal elements; and X'Y is the correlation matrix between each
explanatory traits with the dependent trait.

Using numerical examples to illustrate the effectiveness of this method, Marquardt
(1970), concluded that the ridge regression method is efficient in estimating path analysis
coefficients from non-orthogonal data. In plant breeding, this technique also has been proven

effective in improving the conditioning of explanatory traits matrices in studies with several
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economically-important crops (Bizeti et al., 2004; Coimbra et al., 1999; Luz et al., 2011;

Nardino et al., 2016; Nogueira et al., 2012; Olivoto et al., 2015; Souza et al., 2015).

2.2.8.3 Can multicollinearity be reduced?

Although the techniques for adjusting multicollinearity have been effective and widely
known, such techniques are used after the diagnosis of the correlation matrix among
explanatory traits, that is, its use is only possible after the estimation of linear correlation matrix.

As previously discussed, multicollinearity is directly associated with the high magnitude
of correlation between explanatory traits in the model. In this sense, to estimate the actual
correlation between two random traits (X and Y), the covariance and standard deviation should
represent the population under study. In agronomic experiments, it is common assessing several
samples (plants) in each plot of each treatment, to represent the population (treatment). Such
plants routinely make up an average of this specific plot, which will be used later for ANOVA
and supplementary analysis, such as multiple comparison analysis.

In a bibliographic research project were found, however, several studies that has been
using these averages to estimate the correlation coefficients and then the path coefficients
(Adesoji et al., 2015; Faria et al., 2015; Khameneh et al., 2012; Kumar and Babu, 2015; Nataraj
etal., 2015, 2014; Rigon et al., 2012; Toebe and Cargnelutti, 2013; Torres et al., 2015). Starting
from the assumption that the average can mask the individual variances (of assessed plants),
correlations estimated from these averages do not represent the actual variance and standard
deviation of the traits (X, Y, ..., Z) of the original population.

In addition to the statistical concept methodologically biased, the inference of
magnitude and direction of interrelationships between traits when the correlation is estimated
with average data is misleading, because this inference is performed in a different population

of the original (e.g. when all plants are used for this estimate). As a large number of agronomic
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studies makes populational inferences based on sampling (plants), using average value of these
plants to estimate correlations and make an inference to the original population is a

misconception that, without a doubt, should be considered.

2.2.9 A theoretical explanation

We take as an example an experiment to evaluate the direction and degree of association
between traits of maize hybrids, conducted in a randomized complete block design with five
treatments (simple hybrid) and four replications. In each replication (plot) is common to assess
traits in several plants, aiming to represent the population of this specific plot. In experiments
with maize hybrids are usually sampled 3 to 5 plants per plot, mainly because they present low
phenotypic variation. So, in this hypothetical experiment, we assume that in five plants of each
plot were evaluated three traits (X, Y, and Z). The researcher would then have the values of
these three traits assessed in 100 plants (5 hybrids x 4 replications x 5 plants). To estimate the
correlation between X and Y, e.g., the following dataset is required: (X1, Y1), (X2, Y2), ..., (X100,
Y100). The correlation coefficient is then given by applying the formulae described in
“estimation of linear correlation”.

When the researcher uses the average values of plots in order to estimate the correlation,
he is masking the deviations of each trait (X, Y and Z) relative to the overall average of these
traits. In this case, the observed deviations among the five plants of each plot will be canceled
out by the average of these plants. The new data set used for the same estimation of the
correlation between X and Y in this methodology will be then: (X1, Y1), (X2, Y2), ..., (X20, Y20).
The observed variance in the new dataset is representing then the variance of average from five
original sampled plants, and not the variance coming from all sampled plants; therefore, this

variance is masked and tends to present lower itself, compared to the original variance. This
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fact should be considered because the inference of the direction and magnitude of association
between traits is being made for a population with variance different than the original.

After an in-depth evaluation of the correlation’s formula (see estimation of linear
correlation), it is noted that the formula’s divisor is estimated by the product of the standard
deviations of X and Y. Then, when the correlation is estimated based on average data, generally
showing less variation, the product of these deviations will be lesser. Assuming that the
covariance between X and Y remain similar, dividing by a smallest divider, will result in an
overestimated coefficient of correlation. But, could this mistake found in the correlation
estimates be associated with higher multicollinearity problems and with the reduction of

accuracy in path analysis? This approach, as far as we known, is still limited in the literature.

2.2.10 Path analysis accuracy in ecological experiments

In a randomized research of 25 studies using path analysis, we observed a certain
contradiction regarding information of the coefficient of determination (R?) and model’s noise.
For example, only five studies (20%) clearly showed the R? and the noise in their results. In
four studies (16%), only the R? was presented, while in six studies (24%) only the noise was
presented. In 10 studies (40%), neither of these parameters were found. This is alarming
because it can mask the interpretation of the reader in not to know how much of the variation
in the dependent trait was explained by the model.

In studies that showed both adjustment measures, were observed R? fluctuating between
0.31 and 0.99 and noises ranging from 0.105 to 0.680. It is also observed that in some cases,
the noise approached of the R?, a fact that may cast doubt on the reliability of the estimated path

coefficients (Table 1).
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2.2.11 Future perspectives

Research aiming to demonstrate if and how much the use of average values may
overestimate the correlation coefficients, increase multicollinearity in analysis that uses
multiple regression and reduces its accuracy are necessary and certainly will be welcome. Thus,
by combining the correct estimate of correlation coefficients with the known methods to adjust
multicollinearity, the accuracy of path analysis in biological studies could be increased. It is
noteworthy that, completely eliminate the multicollinearity in matrices of explanatory traits is
an almost impossible task, because the degree of interrelationship coming from the nature of
the traits is inevitable. In this context, studies adopting a sequential path analysis model with
first-, second-, n-order predictors might be considered to determine the interrelationships
among traits with smallest problems of multicollinearity (Mohammadi et al., 2003).

From a breeding viewpoint, the effectiveness of indirect selection based on path
coefficients will depend then of: (i) researcher’s ability to correctly estimating correlation
coefficients; (ii) take the right steps to adjust multicollinearity of their matrices; (iii) include in
group of predictors, traits that explain most of the observed variance in the dependent trait; and
(iv) carry out the selection based on traits with high heritability and directly associated with the

response of the dependent trait.

2.3 FINAL CONSIDERATIONS

Path analysis has been helping researchers from several areas of science to reveal logical
relationships of cause and effect. In maize genetic breeding, in particular, this technique has
allowed the knowledge of the interrelationships between traits, enabling faster-indirect
selection of lines in inbreeding process. The methods currently used for adjusting the
multicollinearity of explanatory traits matrices are effective. Observation of studies with

correlation coefficients tendentiously-estimated and studies in which have been hidden
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important information such as coefficient of determination and model’s noise, however, is
worrying. In this sense, research aiming to compare the influence of average values on estimates
of correlation coefficients and its impact on path analysis accuracy are needed and could help

researchers reduce the systematic errors in their experiments.
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Table 1. Multiple Coefficient of Determination (R?) and the noise observed in 25 studies
involving path analysis.

Species R? Residual Reference
Castor beans 0.89 np Torres et al., 2015
Cotton npt np Farooq et al., 2015
Indigenous goats np np Norris et al., 2015
Maize np 0.345 Adesoji et al., 2015
Maize np np Agrama, H. 1996
Maize np np Alvi et al., 2003
Maize np np Bello et al., 2010
Maize np 0.560-0.670 Carvalho et al., 2001
Maize 0.555 0.667 Faria et al., 2015
Maize 0.31-0.99 np Khameneh et al., 2012
Maize np 0.249 Kumar et al., 2011
Maize np 0.105 Kumar et al., 2013
Maize 0.851 0.386 Kumar et al., 2015
Maize np 0.372 Nataraj et al., 2014
Maize np np Nataraj et al., 2015
Maize 0.64 0.53 Rigon et al., 2012
Maize np np Saleem et al., 2007
Maize 0.74% 0.490% Toebe and Cargneluti, 2013
Peanut np np Luz etal., 2011
Pearl millet x Elephantgrass np np Diz et al., 1994
Rice 0.915 np Abdala et al., 2016
Soybean 0.912 0.295 Barbaro et al., 2006
Soybean 0.909-0.950 np Bizeti et al., 2004
Soybean np np Igbal et al., 2003
Wheat np 0.470-0.680 Khan and Nagvi, 2012

+ np, not presented.
T Average from 14 path analysis.
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3.1 ABSTRACT

Some data arrangement methods often used may mask correlation coefficients among
explanatory traits, increasing multicollinearity in multiple regression analysis. This study was
performed to determine if the harmful effects of multicollinearity might be reduced in the
estimation of the X’X correlation matrix among explanatory traits. For this, data on 45
treatments (15 maize [Zea mays L.] hybrids sown in three places) were used. Three path
analysis methods (traditional, with k inclusion, and traditional with trait exclusion) were tested
in two scenarios: with X’X matrix estimated with all sampled observations (ASO, n = 900) and
with the X’X matrix estimated with the average values of each plot (AVP, n = 180). The
condition number (CN) was reduced from 3395 to 2004 when the matrix was estimated with

all observations. On average, the factors that inflate the variance of regression coefficients were
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increased by 61% in the AVP scenario. The addition of the k coefficient reduced the CN to
85.40 and 51.17 for the ASO and AVP scenarios, respectively. Exclusion of multicollinearity-
generating traits was more effective in the ASO than the AVP scenario, resulting in CNs of
29.62 and 63.66, respectively. The largest coefficient of determination (0.977) and the smallest
noise (0.150) were obtained in the ASO scenario after the exclusion of the multicollinearity-
generating traits. The use of all sampled observations does not mask the individual variances
and reduces the magnitude of the correlations among explanatory traits in 90% of cases,

improving the accuracy of biological studies involving path analysis.

Abbreviations: ASO, All sampled observations; AVP, Average values of plot; CD, cob
diameter; CD/ED, cob diameter/ear diameter ratio; CL, cob length; CN, condition number; ED,
ear diameter; EH, ear height; EL, ear length; KWE, kernel weight per ear; MD, matrix
determinant; NKR, number of kernels per row; NRE, number of rows per ear; PH, plant height
TKW, thousand-kernel weight; TNK, total number of kernels per ear; VIF, variance inflator

factor.

3.2 INTRODUCTION

In genetic breeding programs, understanding the sense and degree of association among
traits has an important role in the development of selection strategies, which facilitate obtaining
superior genotypes. One of the most used techniques to estimate these associations is the
Pearson product-moment correlation, which is interpreted as the strength of the linear
association between a pair of traits (Pearson, 1920). When more than two traits are considered,

this measure by itself does not present the real sense and magnitude of the interrelationships,
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making it impossible to determine if the associations are cause or effect (Aliyu et al., 2000).
Therefore, path analysis is used when there is a dependent trait (of interest) and interrelations
among explanatory traits. This method is based on ideas originally developed in biology
(Wright, 1921, 1923, 1934) and economics (Wold, 1954) and enables the partitioning of the
linear correlation coefficients into direct and indirect effects of several traits considered as
explanatory toward a single dependent trait. In genetic plant breeding, this technique has proven
very useful for revealing associations of cause and effect and providing help on indirect
selection (Bello et al., 2010; Nardino et al., 2016).

Although path analysis presents the magnitude and sense of interrelations among
explanatory traits toward a dependent trait, it is essentially based on the principles of multiple
regression. When two or more alleged explanatory traits are highly correlated, it is hard to
individually estimate the relations of each explanatory trait because they are associated and
because they collectively contribute to explain linear relations. Such particularity is called
multicollinearity (Blalock, 1963). When this problem is present at moderate or severe levels,
the variance associated with estimators of path coefficients reach extremely high values, which
makes such estimates untrustworthy, usually inconsistent with the biological expectation (Cruz
etal., 2014).

Without the intention of observing such results, Shrivastava and Sharma (1976),
performing studies related to the yield components of rice (Oryza sativa L.) yields, proved its
negative direct effects on grain yields in the presence of multicollinearity. Theoretically, the
yield components contribute positively to the grain yield; therefore, their results revealed that
multicollinearity causes a bias in path coefficients. Illogical relationships in path coefficients

obtained under multicollinearity (—25.90 [J direct effect [J 21.5) were also observed in maize
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(Zea mays L.; Toebe and Cargnelutti, 2013). In addition, a study performed by Petraitis et al.
(1996) reported that, from 24 path analysis studies published in ecological studies, 15 cases
presented problems of multicollinearity, resulting in 13 cases with incorrectly estimated path
coefficients.

The problems related to multicollinearity may be bypassed by excluding the nonadditive
traits of the model. This technique depends on the prior diagnosis of the correlation matrix
among explanatory traits, adopting procedures that, besides informing the degree of present
multicollinearity, also identify the traits that are causing such problems (Mansfield and Helms,
1982; Montgomery et al., 2012). After excluding the multicollinearity-generating traits, path
coefficients were estimated without the harmful effects of multicollinearity in several crops,
such as rice (Shrivastava and Sharma, 1976), maize (Carvalho et al., 1999a), canola (Brassica
napus L. ssp. napus; Coimbra et al., 2005), and soybean (Glycine max L. Merr.; Bizeti et al.,
2004). When the exclusion of a trait is not a procedure considered by researchers (e.g., due to
the reduced number of explanatory traits), path coefficients may be obtained with partially
modified equations by the inclusion of a k constant in the diagonal elements of the X’X
correlation matrix (Cruz et al., 2012). This technique has been effective in studies with maize
(Carvalho et al., 1999a), canola (Coimbra et al., 2005), peanut (Arachis hypogaea L.; da Luz et
al., 2011), and bell pepper (Capsicum annuum L. var. annuum; Carvalho et al., 1999b).

The techniques used for adjusting the multicollinearity effects in path analysis are very
well known. These methods, however, are applied only after the estimation of the correlation
matrix among the explanatory traits (Cruz et al., 2012). In agronomic studies, the tradition is to
assess different plants from each plot or, in other words, in each replicate; the traits of several

plants are assessed, which routinely composes the average of the trait for this specific plot
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(Vauxetal., 2012). In a bibliographic research project, it was observed that the path coefficients
of 10 relevant studies were obtained with the average data of the observations of each plot (Silva
et al., 2005; Khameneh et al., 2012; Rigon et al., 2012; Toebe and Cargnelutti, 2013; Nataraj et
al., 2014, 2015; Adesoji et al., 2015; Faria et al., 2015; Kumar et al., 2015; Torres et al., 2015).
After an in-depth study of these studies, the hypothesis was established that it would be possible
to reduce the multicollinearity in matrices of explanatory traits by estimating correlation
coefficients with data coming from all sampled plants in each plot. It is known that the
multicollinearity arises because of high correlations between two or more explanatory traits and
that linear correlation is the quotient between covariance XY and the product of the standard
deviations of X and Y. Because average values tend to present the smallest standard deviation,
the possibility of the correlation coefficient between X and Y getting the largest magnitude is
high once the standard deviation is the divisor of the correlation’s formula.

In this context, the following hypotheses were formulated: (i) the use of average values,
at the plot level, suppresses individual variation and may increase correlations among
explanatory traits; (ii) the harmful effects of multicollinearity in X’X correlation matrices of
explanatory traits are reduced when the values of all sampled observations are considered in
estimations; and (iii) the measures to adjusting multicollinearity are more effective in
correlation matrices estimated with the values of all sampled observations. These hypotheses
motivated our research’s aims: to evaluate the multicollinearity effects, and the effectiveness
of the current methods for adjusting it, in X’X correlation matrices of explanatory traits
estimated in two scenarios: using the values of each sampled observation (ASO) and with the

average values of each plot’s observations (AVP).
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3.3 MATERIALS AND METHODS

3.3.1 Material and experimental design

The experimental material used for this study consisted of simple maize hybrids. This
specific crop was chosen due to its phenotypic stability and ease of trait assessment, thus
reducing the likelihood of the occurrence of systematic and random errors. Fifteen commercial
hybrids from five companies, which represent a large part of the Brazilian seed market, were
used. Hybrids of each company were as follows: Pioneer P30F53H, P1630H, and P30B39;
Biomatrix B2A525 HX, BM915 PRO, and 2B655 PW; Agroceres AG8690, AG8780, and
AG9045; Syngenta Velox TL, Status TL, Truck TL, and SX7331; and Biogene BG7318H and
BG7648H. The trials were performed in three cities in the Rio Grande do Sul state, Brazil, in
the 2015 summer growing season: (i) Santo Expedito do Sul (27°56(101S, 51°37J W at 728
m asl), with an average daily temperature of 24.5°C and accumulated rainfall during the crop
cycle of 823 mm; (ii) Séo José do Ouro (27°4410JS, 51°32[J[JW at 796 m asl), with an average
daily temperature of 23.8°C and accumulated rainfall of 958 mm; and (iii) Viadutos
(27°33010JS, 52'001JW at 628 m asl), with an average daily temperature of 25.2°C and
accumulated rainfall of 746 mm. All locations are within a 70-km radius, have a Haplustox soil,
and were chosen due to similarities of soil and climatic characteristics. Thus, abiotic effects on
the plants’ response were minimized as much as possible.

Prior to the installation of the trials, each site was surveyed for potentially disruptive
characteristics. To ensure uniformity inside the block and heterogeneity between the blocks, a
randomized complete block design in a 15 x 3 factorial treatment design (15 simple maize
hybrids x 3 cropping fields) with four replicates was used, totaling 180 plots. Each plot was

composed of six, 5-m-long cultivar rows, spaced at a 0.45 m. The hybrid seeds were manually
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sown. After emergence and crop establishment, the plant density was adjusted to 70,000 plants
ha™t for all hybrids. Soil management and cultural practices were the same for the three
locations, following the phenological stages and needs of the crop. At the harvest stage, to avoid
edge effects, only the two central rows were assessed. Data on 12 traits were assessed in five
representative plants (observations) from each plot. Each plant and ear were labeled to assure
that the traits (of plant and ear) were measured on the same subject; thus, a numerical sample

identification system was implemented (place, hybrid, replicate, and plant).

3.3.2 Assessed traits

The plant height (PH) and ear height (EH) were measured (cm) from the surface of the
ground to the flag leaf node and the supporting node of the largest ear at the harvest stage,
respectively. The labeled ears were then evaluated in the laboratory. For each ear, the following
traits were assessed: ear length (EL, cm), ear diameter (ED, cm), number of rows per ear (NRE),
number of kernels per row (NKR), cob length (CL, cm), cob diameter (CD, mm), cob
diameter/ear diameter ratio (CD/ED), total number of kernels per ear (TNK), kernel weight per
ear (KWE, g), and thousand-kernel weight (TKW, g).

The lengths and diameters of ears and cobs were measured with a digital caliper. After
counting the number of rows per ear and kernels per row, each ear was manually threshed, and
the kernels were cleaned with pressurized air. Later, the kernel weight was measured with an
analytical scale (AX 200, Marte Cientifica), and the total number of kernels was obtained with
seed counter equipment (Pfeuffer). Last, the humidity of the kernels was assessed with a
universal-humidity bench determiner (Comag), using 60 g of kernels, in a thickness of 0.575

inches. With these data, and with the humidity adjusted to 14% base humidity, it was possible



55

to determine the thousand-kernel weight of each ear, obtained by the following equation: TKW
= [(KWE/TNK) x 1000]. To maintain the actual variance of the sample, all procedures were

carefully performed, one ear at a time, keeping sample traceability.

3.3.3 Data analysis

The dataset was tested with the purpose of detecting the presence of outliers. Points
considered as discrepant were excluded. To test our hypotheses, we considered two scenarios
for estimating X’X correlation matrices (consider the columns of X as the standardized traits):
In the first scenario, the data used were obtained from values of each sampled observation (place
x hybrid x replicate x plant), totaling a dataset with 900 samples (ASO). In the second, the
data used were obtained from the average values of the five plants of each replicate (place x
hybrid x replicate), totaling a dataset with 180 samples (AVP). In each scenario, the sampled
traits were subjected to a descriptive analysis to obtain the values related to average, mode,
maximum, minimum, and standard deviation. Later, for each dataset, matrices of correlation

(phenotypic) and covariance were estimated.

3.3.4 Correlation and covariance matrices

To estimate the degree of interdependence among the traits in each scenario, the traits
(see above), represented here by X and Y, formed a dataset (X1,Y1), (X2,Y2), ..., (Xn,Yn). The

covariance between X and Y was estimated by the expression:

n

Cov, =y |(X,—X)(¥, 7|

i=1



56

which was used to estimate the nonstandard degree of the interrelation between such traits. To
estimate the standardized degree of interrelation between the traits, the values of the Pearson
product-moment correlation (r) were estimated by (Puth et al., 2014).

xR
WX =X (T [1]

Where
x=137x,
N5
and
v=13y,
n.

The X’'X11,.11 matrices of phenotypic correlation and covariance among the explanatory
traits PH, AE, EL, ED, NRE, NKR, CD, CL, TNK, CD/ED, and TKW were formed for two
scenarios. The correlation coefficients between each explanatory trait and the dependent trait

(KWE) generated a X’Y11,1 correlation matrix.

3.3.5 Multicollinearity diagnosis

We determined the source and magnitude of the multicollinearity in X’X correlation
matrices in each scenario by the following methods:
Method 1: Eigenvalues and Eigenvectors

In each scenario, the eigenvalues (A1, A2, ..., A11), as well as the associated eigenvectors
of each matrix of explanatory traits were estimated by the eigen() procedure in R software (R

Development Core Team, 2008). The eigenvalues indicate the amount of variance explained by
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each factor, and the components of the eigenvector are the weights of the traits to explain the
variance determined by the associated eigenvalue.
Method 2: Condition Number

The condition number (CN) was obtained by the ratio between the largest and smallest

eigenvalue of the X’X correlation matrices, using the expression:
>\Max

Min

CN= [2]

The multicollinearity degree of the matrices was respectively considered as weak,
moderated, and severe when CN < 100, between 100 and 1000, and > 1000 (Montgomery et
al., 2012).

Method 3: X’X Correlation Matrix Determinant

The determinant of each correlation matrix (MD) was estimated by the product of its

respective eigenvalues, for eigenvalues of X’X >0 (Aj>0forj=1, 2, ..., 11), as described by:
VD= [ [3]
i

An MD closer to zero indicated linear dependency among the explanatory traits,
indicating severe multicollinearity problems (Cruz et al., 2014).

Method 4: Variance Inflation Factors

The variance inflation factors (VIFs) were used to measure how much the variance of
estimated regression coefficients (5) was inflated in comparison to when the explanatory traits
were not linearly associated. We estimated the VIF for the kth element of £ by the sum of the

quotients of each component of the eigenvector divided by its respective associated eigenvalue:

EVKCl EVKC 2 EVKCIJ.
VIFB pN A2 pNT 4]
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Where VI F@( is the variance inflation factor the kth element of g for k = 1, 2, ..., 11;
EVkc, IS the component of the kth eigenvector fork=1,2,...,11andC=1, 2, ..., 11;and A is

the eigenvalue associated with the respective eigenvector fora =1, 2, ..., 11.

3.3.6 Methods for adjusting multicollinearity

To confirm the third hypothesis, when detected, two ways for adjusting the harmful
effects of multicollinearity were tested in each scenario: (i) eliminating the traits responsible
for the multicollinearity in the matrix, and (ii) estimating path coefficients with all traits based
on normal equations, partially modified by the addition of the k constant in diagonal elements

of the X’X correlation matrix among explanatory traits (Hoerl and Kennard, 1976, 1981).

3.3.6.1 Determining which traits should be excluded from the model

For each scenario, the origin of the multicollinearity of the X’X correlation matrices was
assessed by analyzing the eigenvalues and eigenvectors. We adopted the procedure of
identifying the traits causing multicollinearity, in order of importance, as the component of the
eigenvector (trait with the largest weight) associated with the eigenvalues with the smallest
magnitudes (Kirschvink, 1980; Mansfield and Helms, 1982; Cruz et al., 2014; Hu and Qi,

2014).

3.3.6.2 Including the k constant into correlation matrices

Sequences of pj values forj=1, 2, 3, ..., 11, obtained by a set of 21 values of k (0.00,

0.05, 0.10, ..., 1.00), where the values of gj estimated with the value of k = 0 correspond to the
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estimation of least squares, were estimated according to Hoerl and Kennard (1976). The

procedure was based on:

B, = XX+k XY [5]

where p;j is the partial regression coefficient forj=1, 2, 3, ..., 11; (X’X + k) 1 is the inverse of
the X’X correlation matrix among explanatory traits with k included in the diagonal elements;
and XY is the matrix of the correlation coefficients between the explanatory traits and the
dependent trait (KWE). Using all 11 coefficients of f, for each scenario a graph was made
where the y axis was represented by values of g for each of the 21 k values represented on the
x axis (Fig. 1). Thus, it was possible to visually determine the smallest necessary k value in
each scenario to stabilize the regression coefficients (Cruz et al., 2014).

After the use of these methods to reduce the multicollinearity of the matrices, a new
determination was performed for each scenario, using the methods described for the

multicollinearity determination.

3.3.7 Direct and indirect effects

In each scenario, linear correlation coefficients were partitioned into direct and indirect
effects by solving normal equation systems to fit multiple regression models using ordinary
least squares, as described by Quinn and Keough (2002). The explanatory traits included in the
model were PH, AE, EL, ED, NRE, NKR, CD, CL, TNK, CD/ED, and TKW. The dependent
trait was kernel weight per ear (KWE). We estimated the direct and indirect effects of each pth
explanatory trait on KWE using three path analysis methods: (i) traditional path analysis, (ii)

with k inclusion, and (iii) traditional path analysis with trait exclusion.
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Traditional path analysis

In this methodology, direct and indirect effects (indirect effects are shown in
Supplemental Table S1) were estimated by derivation of the set of normal equations used for
estimating the parameters of multiple regression models. To estimate £, we solved the model

X'X p=X"Y, represented in matrix form as:

1 Poren -+ ToTkw By Porcwe
.. 1 ... §) r.,.

EH..PH ] ) EH.:I'KW % .2 — EH.I'<WE [6]
r-TKW:PH r-TKW:EH te 1 Bll r-TKW:KWE

The estimate of g was given by: g = (X’X)1 XY, where £ is the vector of sample partial
regression coefficients (1, Sz, ..., fp) with p + 1 rows; (X’X)? is the inverse of the X’'X
correlation matrix among explanatory traits; and XY is the correlation matrix between each
explanatory trait and KWE. Solving this model, it was possible to estimate the direct and
indirect effects. Consider, as an example, the direct and indirect effects of PH on KWE, given
by: rpH:kwe = f1 + forpH:AE + ... + SrarpH:Tkw, Where reu:kwe iS the linear correlation between PH
and KWE; g1 is the direct effect of PH on KWE; freh:ae is indirect effect of PH on KWE via
AE, ..., and BurenTkw IS the indirect effect of PH on KWE via TKW. Equivalent equations
were used for the other predictors. The coefficient of determination of the model was given by:
R? = Birpr:kwe + Sol AE:KWE + S3rELkwWE + BalED:KWE + S5INREKWE + BeINKRKWE + f7rcD:Kwe +
SercLkwe + SarTnk:kwe + Srorco/ep:kwe + Siirtkw:kwe. The noise of the path analysis model was

obtained by: Noise = V1-R?.
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With k inclusion

In this methodology, for each scenario, the 11 explanatory traits were used to estimate
the direct and indirect effects on KWE (indirect effects are shown in Supplemental Table S2),
but in contrast to the traditional path analysis method, a constant k was included in the diagonal
of the X’X correlation matrix to reduce the variance associated with the least squares estimator.
Thus, the normal partially modified system of equations was solved (X’X + k) = X'Y. (See

discussion on including the k constant into correlation matrices above to understand k chosen).

14+K Guen o Topkw By Porkwe

.. 1+k ... r. §} ..

EH'.PH . ‘ EH.:I'KW % .2 — EH.!(WE [7]
rTKW:PH r.TKW:EH te 1+ k Bll rTKW:KWE

The estimates of g were given by g = (X’X + k)1 X’Y, where f is the vector of sample
partial regression coefficients (81, Sz, ..., Bp) With p + 1 rows, and (X’X + k)1 is the inverse of
the (X’X + k) correlation matrix among explanatory traits with k included in diagonal elements.
Thus, like traditional path analysis, it was possible to estimate the direct and indirect effects of
each explanatory trait on KWE, however without the harmful effects of multicollinearity. The
coefficient of determination and the noise were also estimated as described for the traditional

path analysis.

With trait exclusion

In this methodology, the direct and indirect effects (indirect effects are given in
Supplemental Table S3), the coefficient of determination and the noise were estimated for each
scenario, as described for traditional path analysis, after the exclusion of the multicollinearity-

generating traits (Cruz et al., 2014).
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3.4 RESULTS

The results of the descriptive analysis and the correlation and covariance matrices
obtained in the studied scenarios are shown. Next, the results of the multicollinearity diagnosis
are presented. Analysis of the eigenvalues and the components of the eigenvectors showed
which were the traits that were causing multicollinearity and which were considered for
exclusion. A new multicollinearity determination performed after the use of the mentioned
measures for adjusting it is also presented. Ultimately, it was demonstrated how the three path
analysis methodologies, performed on both scenarios, influenced the direct effects, precision,

and noise of the models.

3.4.1 Descriptive statistics

Table 1 shows the descriptive analysis of the explanatory traits obtained for each
scenario. It is clear that PH, AE, EL, CD, and CL presented the largest averages in the AVP
scenario. The mode of the traits CD, TNK, and CD/ED ratio was largest in the AVP scenario.
In this scenario, the amplitude of the data was meaningfully smallest, resulting in the smallest

standard deviation for all assessed traits (Table 1).

3.4.2 Correlation and covariance matrices

From 55 tested combinations, the correlation matrix estimated in the ASO scenario (n =
900) presented 51 meaningful combinations (p < 0.01), with the largest correlation observed
between EL and CL (r = 0.906). For the correlation matrix estimated for the AVP scenario (n
= 180), 42 combinations were meaningful, with the largest correlation obtained between AE

and PH (r = 0.925) (Table 2).
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Comparing the same combinations between both scenarios, excluding TNK x EL,
CD/ED x ED, NRE x TKW, NKR x CD, TNK x CD, and CL x TNK, approximately 90%

of studied combinations (49) presented the largest magnitudes in the AVP scenario.

3.4.3 Multicollinearity Diagnosis

For the ASO scenario, the eigenvalue amplitude ranged from 4.4088 to 2.2 x 1073,
resulting in a CN of 2004.00 (Eq. [2]), with an MD of 3.024 x 10° (Eq. [3]). For the AVP
scenario, the eigenvalue amplitude was larger, from 5.0943 to 1.5 x 103, which resulted in a
CN of 3395.20 and, consequently, in a MD still smaller: 1.26 x 10~’. According to Montgomery
et al. (2012), severe multicollinearity was observed for both scenarios; however, the largest
problems were in the AVP scenario (Table 3).

Three VIFs >10 were observed in both scenarios. For the ASO scenario, the VIFs >10
were 143.2167, 196.3047, and 116.7618 for ED, CD, and the CD/ED ratio, respectively. In the
AVP scenario, the variances of those coefficients were inflated to 214.2254, 310.2553, and
147.1021, respectively (see above for understanding VIF estimates). On average, the factors
that inflated the variance of the regression coefficients were increased by 61% in the AVP
scenario. It is also noticeable that, although there are just three VIFs >10 in the AVP scenario,
the VIFs of PH and AE were inflated by 150 and 135%, respectively, presenting magnitudes of
9.5969 and 8.6245, respectively (Table 3). Based on Eqg. [4], the largest VIFs of PH and AE in
the AVP scenario occurred due to the largest weight of these traits linked to eigenvalues of

TNK and the CD/ED ratio close to zero (Table 5).
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3.4.4 Multicollinearity-generating traits

The analysis of eigenvalues and eigenvectors in the ASO scenario (Table 4) revealed
that the multicollinearity in this scenario was generated principally by the CD, CL, and TNK
traits. According to the adopted methodology for exclusion of traits, CD was excluded from the
model because it presented the largest weight (0.6556) linked to the smallest associated
eigenvalue (0.0022), and CL, which presented the largest weight (0.6772) linked to the second-
smallest associated eigenvalue (0.0872). Researchers must carefully choose which traits should
be excluded because the exclusion of traits with high explanatory power might reduce the
accuracy of the analysis. The TNK and TKW traits (indicated third and fourth, respectively, for
exclusion) are important traits in maize genetic breeding and might meaningfully contribute
with path coefficients, improving the coefficient of determination of the model. Therefore, the
third component of the eigenvector (NKR) with the largest weight (—0.3172) linked to the third-
smallest associated eigenvalue (0.1036) was excluded.

Differently from the ASO scenario, the data presented in Table 5 indicated CD, PH, and
AE as the traits that should be excluded from the model. The CD presented the largest weight
(0.6807) linked to the smallest associated eigenvalue (0.0015). The PH presented the largest
weight (0.5984) linked to the second-smallest associated eigenvalue (0.0475). For the third-
smallest eigenvalue (0.0744), the trait with the largest weight (0.3330) was also PH, thus the
second component of the eigenvector with the largest weight (AE) was considered for

exclusion.

3.4.5 Multicollinearity determination after adjustment
The inclusion of the k constant in the diagonals of the matrix reduced the

multicollinearity effects for both scenarios compared with the traditional path analysis. In the
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ASO scenario, the inclusion of 0.05 in the diagonal of the X’X matrix resulted in a CN of
85.404, in a MD of 3.740 x 10*, and in the largest VIF of 9.907 linked to CD. For the AVP
scenario, the inclusion of 0.10 at the diagonal of the X’X matrix was efficient in reducing the
harmful effects of multicollinearity for a CN of 51.175, a MD of 5.39 x 107*, and no VIF >10
(Table 6).

The exclusion of the traits CD, CL, and NKR in the ASO scenario presented better
responses in the sense of reducing the multicollinearity of the matrix. This methodology’s CN
was 29.620, and the MD was of 1.2 x 1072, with the largest VIF of 4.022 linked to ED. For the
AVP scenario, however, the exclusion of the traits CD, PH, and AE did not result in a
meaningful improvement of the multicollinearity of the matrix, as happened in the ASO
scenario. This methodology’s CN (63.656) was larger than in ASO scenario, with a
meaningfully smaller MD (7.938 x 10%). The largest correlation between the remaining traits
in the model was r = 0.924 between EL and CL, possibly resulting in problems to estimate path

coefficients.

3.4.6 Direct effects and accuracy

In the ASO scenario, the distorted estimations of the direct effects become obvious,
especially for ED, CD, and the CD/ED ratio, reaching magnitudes > 2 (Table 7). Unexpectedly,
the coefficient of determination of 1.020 and the noise 0.000 also revealed that a path analysis
performance under multicollinearity is a problem that must be taken into consideration,
especially under conditions classified as severe.

The inclusion of the k constant (0.05) presented direct effects more consistent with the
biological expectation. The traits TNK and TKW presented the most meaningful direct effects,

with r = 0.636 and r = 0.564, respectively (Table 7). The coefficient of determination of 0.931
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and the noise of 0.261 indicated the effectiveness of the k constant to reduce the undesired
effects of multicollinearity in path coefficient estimations.

After excluding the traits CD, CL, and NKR, TNK and TKW presented direct effects of
r =0.892 and r = 0.733, respectively, on KWE (Table 7). For this methodology, the coefficient
of determination was 0.977, with noise of 0.150. These findings showed that the exclusion of
multicollinearity-generating traits provided the largest coefficient of determination and the
smallest noise among the studied methods.

For the AVP scenario, the direct effects traditionally estimated had different magnitudes
than in the ASO scenario, especially in relation to ED, CD, and the CD/ED ratio, presenting
direct effects of r = 0.476, r =-0.602, and r = 0.403, respectively. Although the coefficient of
determination of 0.973 and noise of 0.161 indicate a good precision in the analysis, the findings
proved themselves contrary to what was observed when we included the k constant in the
correlation matrix. With k inclusion (0.10), ED, CD, and the CD/ED ratio presented direct
effects of r = 0.128, r = 0.046, and r = —0.040, respectively. The coefficient of determination
was 0.922, with noise of 0.278 (Table 7). It can be observed that the noise of this methodology
was larger than for ASO scenario. Thus, we proved that although k inclusion adjusted the
multicollinearity to an acceptable degree, the success of this technique depends on the original
degree of multicollinearity present in the matrices of the explanatory traits.

After excluding the traits PH, AE, and CD, the direct effects of TNK and TKW were r
= 0.653 and r = 0.645, respectively (Table 7). The coefficient of determination in this path
analysis method (0.973) was somewhat smaller than that for the ASO scenario, and the noise
analysis (0.165) was largest.

It is obvious that multicollinearity generates bias in the estimation of path coefficients,

especially in traits with a large VIF. Therefore, we demonstrate that a previous and reliable
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multicollinearity determination of the X’X matrix needs to be performed to create reliable path

analysis results.

3.5 DISCUSSION
3.5.1 Correlation coefficients estimated with data average are overestimated

Correlation coefficients estimated with the data average are overestimated. The smallest
standard deviation observed in the AVP scenario confirmed the first hypothesis that the use of
averages masks individual variances. It was proved that when correlation matrices are estimated
at the average plot level, correlation coefficients are overestimated, and consequently,
multicollinearity in explanatory traits matrices presents the largest problems. The reduction in
individual variation (standard deviation) observed in the AVP scenario (Table 1) was the main
factor responsible for overvaluing of 90% of the combination pairs (Table 2). This fact can be
explained due to the standard deviation being the divisor in the correlation’s formula (Eq. [2]).
If covariance XY (dividend of the formula) is similar in both scenarios, however, the standard
deviation of X and Y traits (divisor of the formula) is smallest, as observed in the AVP scenario,
and the magnitude of the correlation coefficients will be greater.

When the correlation between explanatory traits increases, the difficulties in assessing
its relative importance in estimating the dependent trait are greatest (Blalock, 1963; Hoerl and
Kennard, 1981). Therefore, the determination of the degree of association among explanatory
traits and of the degree of multicollinearity in the matrices of the explanatory traits are vital

steps that come before the path analysis estimates.

3.5.2 Preserving individual variances, multicollinearity is reduced

It is evident that the AVP scenario presented bigger problems of multicollinearity due

to the largest VIF magnitudes, the largest CN (3396.20), the smallest MD (1.22 x 107'), and
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four eigenvalues near zero (Table 3). Because calculations of multiple regression analysis
involve matrix inversion, and this inversion basically involves dividing by MD, when a
determinant near zero is observed, values in the inverted matrix become very sensitive to small
differences in the data of the original matrix, or in other words, the inverted matrix is unstable
(Farrar and Glauber, 1967; Gunst and Mason, 1977; Mansfield and Helms, 1982; Quinn and
Keough, 2002). For the ASO scenario, however, just the last two eigenvalues present extremely
low estimates, indicating the existence of only two decisive linear relations with the harmful
effects of multicollinearity (Table 2). Consequently, we suggest that the correlation should not
be estimated based on the sampled averages of the plots because they overvalue the correlation
magnitudes, generating bigger problems with multicollinearity in the matrices of the
explanatory traits.

The largest VIF, in both scenarios linked to CD, ED, and CD/ED (Table 3), was
expected because CD/ED is the result of the ratio between CD and ED. When CD was excluded
from the model, the considerable reduction in multicollinearity of the matrices was evident
(Table 6). With that, the degree of trustworthiness of the path coefficients depends on the
researcher’s ability in choosing the explanatory traits with more power for data representations
that are not highly correlated and, in the case of problems, such as multicollinearity, to take the
right measures to adjust it (Cruz et al., 2012).

Some research prominently showed the magnitude of multicollinearity in their findings
(Carvalho et al., 1999a; Toebe and Cargnelutti, 2013). In others, it was only mentioned that it
was there and that some measures were taken to adjust it (Bizeti et al., 2004; Coimbra et al.,
2005; Nogueira et al., 2012). We observed, however, that several agronomic studies did not
clearly reveal whether multicollinearity determination was performed before the estimation of
path analysis (Alvi et al., 2003; Saleem et al., 2007; Reddy et al., 2012; Kumar et al., 2013;

Nataraj et al., 2014; Adesoji et al., 2015; Pavlov et al., 2015). This is worrying. Because the
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problems related to multicollinearity are not generated only by its presence (Cruz et al., 2014),
to assess its magnitude and origin is a fundamental step to choose the best method for adjusting

it.

3.5.3 Data arrangement change the efficiency of methods to adjusting multicollinearity

In the procedure with k inclusion, when the ridge trace was examined (Fig. 1), the largest
value of k necessary (0.10) to stabilize the regression coefficients in the AVP scenario became
clear. In this scenario, k inclusion was more efficient to reduce the degree of multicollinearity
than in the ASO scenario. However, the smallest coefficients of determination and the largest
noise (Table 7) indicated that largest k values generate bias in regression analysis. This
observation was also mentioned by Hoerl and Kennard (1970b) and Cruz et al. (2014). In
addition, the residual effect was larger in the AVP than the ASO scenario when path analysis
was performed with trait exclusion (Table 7).

There are many variable selection methods for choosing a subset of model terms with
minimal multicollinearity, such as hierarchical models, stepwise procedures, and criterion-
based procedures (George and McCulloch, 1993; Mitchell and Beauchamp, 1988; Nishii, 1984;
Wold et al., 1984). However, there is a shortage of research that shows, in theory and in practice,
how to discover the traits responsible for multicollinearity in path analysis; our findings in this
study make this interpretation possible.

Toebe and Cargnelutti (2013) were successful by excluding the traits of ear height and
number of ears, or adding the k constant = 0.10 in the diagonal of the correlation matrices among
the explanatory traits obtained from simple maize hybrids trials. However, the largest
coefficient of determination and the smallest noise found by the researchers were of 0.950 and
0.230, respectively, which were obtained with five explanatory traits (number of days to 50%

tasseling, plant height at harvest, relative ear position, number of plants at harvest, and
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prolificacy). It is important to highlight that the correlation matrices of their study were
estimated with the average of three observations (plants) in each plot. In the present study, when
the values of all sampled observations (ASO scenario) were used and the path coefficients were
estimated with eight explanatory traits, except for CD, CL, and NKR, it was possible to reduce
the noise of the model by almost 35%. This fact is possibly linked to the larger number of

explanatory traits used and to the choice of traits.

3.5.4 Data based on averages reduce direct effects and increase the noise in path analysis

The smallest direct effects of TNK and TKW in the AVP scenario (Table 7) can be
attributed to the largest effects of multicollinearity in this scenario because both PH and AE,
excluded from the ASO scenario, and NKR and CL, excluded from the AVP scenario, presented
meaningful direct effects to change the magnitudes of TNK and TKW in both scenarios (Table
7).

In our research, a logical relation in the path coefficients was noticed. Previous studies
also found a direct and positive contribution of TNK on KWE, fluctuating between r = 0.52
and r = 0.78 (Mohammadi et al., 2003; Bello et al., 2010; Khameneh et al., 2012), and TKW
on KWE, fluctuating between r = 0.48 and r = 0.74 (Mohammadi et al., 2003; Nastasic et al.,
2010; Khameneh et al., 2012; Reddy et al., 2012; Adesoji et al., 2015). In addition, the large
coefficient of determination and the small noise demonstrate that the model was efficient in
explaining the variation in the dependent trait.

It was clear that a path analysis performed with all sampled observations (ASO
scenario), excluding the traits NKR, CD, and CL, was the most trustworthy, being linked to the
largest coefficient of determination (0.977), the smallest noise (0.150), and the smallest VIFs

observed among the three tested methodologies in both scenarios (Table 7). Thus, we thought
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that it is unacceptable, after obtaining the data, to use methodologies that mask the correlation
coefficient and reduce path analysis accuracy.

To estimate correlations using data from average values is a biased procedure.
Furthermore, the inference about the magnitude of relationships between traits is equivocal
because this inference is performed on a population with a variance different than the original.
A great number of agronomic studies perform populational inferences based on sampled
observations (plants); thus, to use average values of these plants to represent the variance of the
original population should be considered, without doubt, a mistake.

In the present research, we proved that average values overestimate correlation
coefficients. Also, we demonstrated that researchers can reduce systematic errors and avoid the
harmful effects of multicollinearity in explanatory traits matrices that are not linked to a trait’s
nature by adopting a simple methodology: estimating correlation matrices with data from all
sampled observations. We believe that this data arrangement method can be easily applied in
future plant breeding research projects, as well as in other areas of science, without a substantial
increase in time, labor, or financial resources. Thus, aiming at the correct estimate of the
correlation coefficients in future research, we encourage researchers to not estimate correlation
matrices based on average data but to do it with all sampled observations to prevent masking
the real existing variance of each trait. Success in making estimates of path coefficients aimed
at indirect selection in breeding programs, however, will depend on researchers’ abilities in
correctly estimating the correlation coefficients and in correctly using the methods described
here for adjusting the multicollinearity of the correlation matrices. In addition to these factors,
success in indirect selection also depends on performing it based on traits with high heritability
that are directly associated with the dependent trait. If the plant breeder considers the

correlations calculated from average values, these correlations will be overestimated, a fact that



72

can mask the estimates of path coefficients and consequently the choice of the trait for indirect

selection.

Considering that in this research the data used to estimate the X’X correlation matrices
in both scenarios was the same, with the only difference being procedural in nature, we believe
that we have proved, for the first time, that accuracy in path analyses will be greater if all
identification procedures (sample tracking) are performed and correlation matrices are
estimated with all sampled observations after the exclusion of traits that generate

multicollinearity.

3.6 CONCLUSIONS

The use of average data suppresses the individual variation and overestimates the
magnitude of correlation among traits; thus, the correlation matrices among explanatory traits
estimated with average data have the largest multicollinearity. The best strategy to mitigate this
problem is to perform the estimates of correlation coefficients with data coming from all
sampled observations, excluding the traits responsible for inflating the variance of regression
coefficients. By using these methodologies, the fit statistics of path analysis will be more

accurate.
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Table 1. Descriptive analysis for the 11 explanatory traits estimated in the two data arrangement scenarios.

X Average Mode Minimum Maximum Standard deviation
Traitst ~"Aso;  avpP§ ASO AVP ASO AVP ASO AVP ASO AVP
PH 2.468 2.470 2.6001 2.680 1.000 1.670 3.300 3.068 0.379 0.351
AE 1.333 1.333 1.450 1.032 1 0.500 0.662 2.390 1.912 0.317 0.298
EL 15.129 15.142 15.4001 15.0801 0.800 9.700 20.900 19.100 2.277 1512
ED 4.939 4.938 4.8451 4.6381 3.140 3.826 5.969 5.465 0.391 0.323
NRE 16.064 16.048 16.000 15.600 10.000 12.000 22.000 21.600 2.259 1.737
NKR 32.144 32.101 34.000 30.400 12.000 19.667 50.000 45.000 6.078 4.230
CD 28.943 28.971 28.260 29.4601 19.360 22.985 41.460 33.560 3.017 2.465
CL 15.941 15.959 17.000 15.3001 7.800 11.360 21.800 19.800 2.131 1416
TNK 510.215 508.821 419.0001 444.2001 83.000 157.800 1104.000 772.600 123.844 92.219
CD/ED 0.587 0.587 0.572 0.596 0.401 0.495 0.846 0.687 0.048 0.035
TKW 339.039 338.704  368.9181 213.7961 122.779 213.796 546.309 439.021 63.228 47.887

+ PH, plant height; EH, ear height; EL, ear length; ED, ear diameter; NRE, number of rows per ear; NKR, number
of kernels per row; CD, cob diameter; CL, cob length; TNK, total number of kernels per ear; CD/ED, cob
diameter/ear diameter ratio; TKW, thousand-kernel weight.
1 All sampled observations.
8 Average values of plot.

1 In the case of multiple modes, the smallest is shown.
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Table 2. Correlation and covariance matrices among 11 explanatory traits obtained with all sampled
observations, n = 900 (upper diagonal) and with the average values of each plot, n = 180 (below diagonal).

Traitst PH AE EL ED NRE NKR CD CL TNK CD/ED TKW
PH i 1 0.838**  0.274**  0.490** 0.248** 0.257** 0.273**  0.251** 0.327** -0.132** 0.402**
Cov§ 0.101 0.236 0.072 0.212 0.590 0.312 0.202 15.273 -0.002 9.529
AE r 0.925" 1 0.246**  0.474** 0.177** 0.232** 0.328**  0.202** 0.260** -0.049™ 0.415**
Cov 0.097 0.177 0.059 0.126 0.445 0.313 0.136 10.131 -0.001 8.228
EL r 0.414" 0.400** 1 0.457** 0.055** 0.654** 0.328**  0.907** 0.578** -0.034™ 0.359**
Cov 0.221 0.181 0.407 0.285 9.064 2.257 4.400 162.132 -0.004 49.773
ED r 0.642" 0.610**  0.516** 1 0.503** 0.355** 0.657**  0.464** 0.566** -0.161** 0.484**
Cov 0.729 0.590 2.516 0.444 0.843 0.774 0.386 27.181 -0.003 11.492
NRE r 0.362" 0.283** 0.081™ 0.578** 1 0.098** 0.275** 0.050™ 0.527** -0.143** -0.209**
Cov 0.221 0.147 0.214 3.240 1.341 1.878 0.242 147.884 -0.015 -29.794
NKR r 0.402" 0.388**  0.660**  0.395** 0.165™ 1 0.097**  0.654** 0.731** -0.233** 0.093**
Cov 0.599 0.491 4.220 5.396 1.212 1.782 8.475 553.101 -0.067 34.783
CD r 0.378" 0.441**  0.349**  0.730** 0.299** 0.064" 1 0.363** 0.218** 0.634** 0.482**
Cov 0.328 0.325 1.302 5.805 1.281 0.675 2.334 80.970 0.091 91.227
CL r 0.370" 0.341**  0.924**  0.524** 0.064" 0.648** 0.389** 1 0.560** 0.010™ 0.383**
Cov 0.185 0.145 1.977 2.391 0.157 3.881 1.357 148.057 .001 50.147
TNK r 0.489" 0.420**  0.543**  0.595** 0.624** 0.778** 0.180™ 0.505** 1 -0.290** -0.105**
Cov 15.883 11.620 75.743 177.098 99.955 303.528 40.828 65.898 -1.668 -796.122
CD/ED r -0.175"  -0.051™"  -0.083™  -0.078™  -0.217**  -0.362**  0.622**  -0.033"  -0.422** 1 0.161**
Cov -0.002 -0.001 -0.004 -0.009 -0.013 -0.053 0.053 -0.002 -1.346 0.479
TKW r 0.539" 0.554**  0.451**  0.623** -0.082" 0.139™ 0.645**  0.470** 0.012™ 0.237** 1
Cov 9.094 7.947 32.629 96.271 -6.794 28.110 76.178 31.833 52.757 0.393

** meaningful at 0.01 probability level.

+ PH, plant height; EH, ear height; EL, ear length; ED, ear diameter; NRE, number of rows per ear; NKR, number
of kernels per row; CD, cob diameter; CL, cob length; TNK, total number of kernels per ear; CD/ED, cob
diameter/ear diameter ratio; TKW, thousand-kernel weight.

i 1, correlation coefficient.

§ Cov, covariance.

1 ns, nonmeaningful at the 0.01 probability level.
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Table 3. Multicollinearity diagnosis for Pearson product-moment correlation matrices among 11

explanatory traits estimated in the two data arrangement scenarios.

Order

All sampled observations

Average value of plots

Eigenvalues VIFT Eigenvalues VIF
1 4.4088 3.8361 5.0943 9.5969
2 2.0327 3.6679 2.2155 8.6245
3 1.6130 6.2261 1.5000 7.7949
4 1.3324 143.2167 1.0560 214.2254
5 0.7012 2.7460 0.5208 45611
6 0.3632 3.3364 0.3047 5.3588
7 0.2028 196.3047 0.1053 310.2553
8 0.1530 6.5360 0.0801 8.1903
9 0.1036 6.3061 0.0744 9.1945
10 0.0872 116.7618 0.0475 147.1021
11 0.0022 4.4572 0.0015 5.6768

1 VIF, variance inflation factor.
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Table 4. Eigenvalues and components of the eigenvectors of Pearson product-moment correlation matrix
among the 11 explanatory traits estimated with all sampled observations, n = 900.
Components of the eigenvectors (Weight of the traits)

PH AE EL ED NRE NKR CD CL TNK  CD/ED  TKW
EV: 44088 03072 02922 03726 03913 01797 03231 02761 03700 0.3511 -0.0344  0.2325
EV, 20327 01325 01982 -0.1040 0.0797 -0.1662 -0.3272 0.4463 -0.0811 -0.3754 05076  0.4325
EVs 16130 03977 03792 -0.3863 0.1994 04400 -0.2351 -0.0494 -0.4149 00399 -0.2671 -0.1127
EV, 13324 -0.3258 -0.3264 -0.0661 0.1609 05308 -0.0883 04125 -0.0346 02243 0.3698 -0.3304
EVs 07012 -0.3031 -0.3649 -0.0038 0.4823 0.0892 -0.2554 0.0007 0.0262 -0.1527 -0.4877  0.4553
EVe 03632 -0.1889 -0.0020 -0.4431 02382 -0.3464 05902 02017 -0.3929 0.1922 0.0021  0.1045
EV; 02028 01694 -0.2666 -0.1584 -0.3277 05167 0.4131 -0.2070 0.0001 -0.1785 0.1543  0.4812
EVe 01530 -0.6436 06193 0.1545 -0.0556 0.2613 0.1598 -0.0673 -0.0454 -0.2680 -0.0306  0.0464
EVs  0.1036 -0.1857 0.0922 0.0990 -0.2484 -0.0247 -0.3172f -0.1713 -0.2595 0.7010 0.1246  0.4250
EViy 00872 -0.1372 0.1696 -0.6644 -0.0449 -0.0180 -0.1228 -0.0694 0.6772 0.1668 0.0080  0.0471
EVy, 00022 -0.0018 -0.0015 -0.0160 -0.5579 0.0248  -0.0058  0.6556  0.0100 0.0276 -0.5049  0.0472

+ PH, plant height; EH, ear height; EL, ear length; ED, ear diameter; NRE, number of rows per ear; NKR, number
of kernels per row; CD, cob diameter; CL, cob length; TNK, total number of kernels per ear; CD/ED, cob
diameter/ear diameter ratio; TKW, thousand-kernel weight.

1 Component of the eigenvectors in bold indicate multicollinearity-generating traits.

Eigenvalues (EV)
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Table 5. Eigenvalues and component of the eigenvectors of Pearson product-moment correlation matrix
among the 11 explanatory traits estimated with the average values of each plot, n = 180.

Components of the eigenvectors (weight of the traits)

Eigenvalues (EV) —5 AE EL ED NRE NKR _ CD CL TNK _CD/ED TKW
EV: 50943 03508 03399 03420 03860 01994 02996 02677 03343 03245 -0.0502 02733
EV, 22155 00231 00921 -0.0525 00967 -0.1813 -0.3326 04622 -0.0198 -0.3737 0.5664 0.4011
EVs 15000 02380 02121 -0.4406 02188 05670 -02783 0.1193 -0.4637 0.0990 -0.0707 -0.1157
EV, 10560 -0.4556 -0.4508 0.082 0.1477 04075 00286 03368 0.1647 02457 03174 -0.2810
EVs 05208 -0.1977 -0.3568 00595 0.4007 00945 -0.3436 -0.0644 0.1067 -0.1983 -0.5488 0.4319
EVe 03047 -02272 -0.1335 -0.4360 02453 -0.3111 05640 01727 -0.3440 01932 -0.0432 0.2795
EV, 01053 -01032 02138 01197 04309 -0.5081 -0.2706 02666 -0.0728 0.0896 -0.1942 -0.5387
EVs 00801 00171 01019 -0.4464 01674 01179 02910 00713 05108 -0.5577 -0.0885 -0.2802
EV, 00744 04875 -0.4208% -0.4069 -0.0306 -0.2479 -0.2519 00150 03608 0.3994 0.0612 -0.0120
EVie 00475 -05224 04912 -0.3188 -0.1413 00016 -02526 -0.1151 0.3458 03600 -0.0064 0.1950
EVi, 00015 00086 -0.0079 -0.0040 -0.5627 00239 0.0054 06807 00046 -0.0051 -0.4676 0.0230

1 PH, plant height; EH, ear height; EL, ear length; ED, ear diameter; NRE, number of rows per ear; NKR, number
of kernels per row; CD, cob diameter; CL, cob length; TNK, total number of kernels per ear; CD/ED, cob
diameter/ear diameter ratio; TKW, thousand-kernel weight.
1 Components of the eigenvectors in bold indicate multicollinearity-generating traits.
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Table 6. Multicollinearity diagnosis of Pearson product-moment correlation matrices among the 11
explanatory traits estimated in two data arrangement scenarios and three path analysis methodologies.

All sampled observations (ASO) Average value of each plot (AVP)
Multicollinearity Traditional, Traditional,
diagnosis Traditional ~ With k inclusion excluding Traditional ~ With k inclusion excluding
traitst traits
Condition number 2004.000 85.404 29.621 3395.200 51.175 63.656
Matrix determinant 3.024E-6 3.740E-1 1.2E-2 1.260E-7 5.390E-4 7.938E-4
Number of VIFs > 10§ 3 0 0 3 0 0
Largest VIF 195.582 9.907 4.022 320.825 6.445 8.756
Trait di cob cob diameter ear diameter - cob cob diameter kernel number
iameter diameter per ear
Multicollinearity Severe Weak Weak Severe Weak Weak
Largest correlation 0.906** 1.050** 0.837** 0.925** 1.100** 0.924**
Smallest correlation 0.010nsY 0.055ns -0.034ns 0.012ns 0.081ns 0.011ns

** Meaningful at 0.01 probability level.

T Traits excluded in this scenario: Cob diameter, cob length and number of kernels per row.
1 Traits excluded in this scenario: Cob diameter, plant height and ear height.

8 VIF, variance inflation factors.

1 ns, non-meaningful at 0.01 probability level.
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Table 7. Direct effects for the 11 explanatory traits on kernel weight per ear with the regression estimators
estimated in two data arrangement scenarios and three path analysis methodologies.

All sampled observations (ASO) Average values of each plot (AVP)
Direct effects Direct effects
Traitst rt Traditional, r Traditional
*  Traditional With k inclusion excluding Traditional With k inclusion echLrJacljirl1 Iotr:Ziisﬂ
traits§ g

PH 0.515** 0.015 0.039 0.012 0.716** 0.019 0.081 -

AE 0.461** -0.027 -0.024 -0.040 0.671** -0.003 0.017 -

EL 0.685** -0.011 -0.018 -0.056 0.679** -0.071 0.010 -0.073
ED 0.753** 2.379 0.152 -0.068 0.835** 0.476 0.128 -0.019
NRE 0.278** -0.089 0.020 0.005 0.422** 0.037 0.058 0.061
NKR 0.657** 0.040 0.093 - 0.694** 0.106 0.187 0.111
CD 0.469** -2.902 -0.132 - 0.525** -0.602 0.046 -

CL 0.698** 0.016 0.048 - 0.672** 0.041 0.045 0.041
TNK 0.736** 0.763 0.636 0.892 0.760** 0.651 0.359 0.653
CD/ED -0.114** 2.241 0.110 0.014 -0.182** 0.403 -0.040 -0.013
TKW 0.575** 0.536 0.564 0.733 0.634** 0.615 0.389 0.645

k value - 0.050 - - 0.100 -

R? 1.02 0.931 0.977 0.973 0.922 0.973
Elffs'd“a' 0 0.261 0.150 0.161 0.278 0.165

ect

** Meaningful at 0.01 probability level.

+ PH, plant height; EH, ear height; EL, ear length; ED, ear diameter; NRE, number of rows per ear; NKR, number
of kernels per row; CD, cob diameter; CL, cob length; TNK, total number of kernels per ear; CD/ED, cob
diameter/ear diameter ratio; TKW, thousand-kernel weight.

1 r, linear correlation coefficient with kernel weight per ear.

8§ Traits excluded in this scenario: cob diameter, cob length and number of kernels per row.

1 Traits excluded in this scenario: cob diameter, plant height and ear height.
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Fig. 1. S values for plant height (PH), ear height (EH), ear length (EL), ear diameter (ED),
number of rows per ear (NRE), number of kernels per row (NKR), cob diameter (CD), cob
length (CL), total number of kernels per plant (TNK), cob diameter/ear diameter ratio (CD/ED),
and thousand-kernel weight (TKW), obtained with 21 k values, where £ estimated with k = 0,
matches to the estimations of least squares. Estimations performed for ASO (a) and AVP (b)

scenarios.
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4.1 ABSTRACT

Information about data arrangement methodologies and optimal sample size in estimating the
Pearson correlation coefficient (r) among maize traits are still limited. Furthermore, some data
arrangement methodologies currently used may be increasing multicollinearity in multiple
regression analysis. This study aimed to investigate the statistical behavior of the r and the
multicollinearity of correlation matrices among maize traits in different data arrangement
scenarios and different sample sizes. Data from 45 treatments [15 simple maize hybrids (Zea
mays L.) conducted in three locations] were used. Eleven traits were accessed and three datasets
(scenarios) were formed: 1) Coming from all the sampled observations (plants), n = 900; 2)
Coming from the average of five plants per plot, n = 180; and 3) Coming from the average of
treatments, n = 45. A thousand estimates of r were held in each scenario to 60 sample sizes by
bootstrap simulations with replacement. Confidence intervals (CI) were estimated. One
hundred eighty correlation matrices were estimated and the condition number (CN) calculated.
Data coming from average values of plots and average values of treatments overestimates the r
up to 24 and 34%, resulting in an increase of 24 and 131% in the matrices’ CNs, respectively.
Trait pairs with high r require a smaller number of plants, being the CI inversely proportional
to the magnitude of the r. Two hundred and ten plants are sufficient to estimate the r in the CI
of 95% < 0.30.

Abbreviations: ASO, all sampled observations; AVP, average values of plot; AVT, average
values of treatments; CD, cob diameter; CD/ED, cob diameter/ear diameter ratio; CL, cob
length; ED, ear diameter; EH, ear height; EL, ear length; NKR, number of kernels per row;
NRE, number of rows per ear; PH, plant height; TKW, thousand-kernel weight; TNK, total
number of kernels per ear.

Keywords: average values, bootstrap, confidence intervals, sample tracking, Zea mays L.
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4.2 INTRODUCTION

One of the most used statistical methods to measure the degree of association (linear)
between two random traits is the Pearson product-moment correlation coefficient (r) (Pearson,
1920) and has been used in ecological studies to estimate the direction and degree of association
among traits (Annicchiarico et al. 1999, Yao and Mehlenbacher 2000, Yang and Su 2016).

As this measure only reveals the linear association between two traits, technigques such
as path analysis (Wright 1923) and canonical correlation (Hotelling 1936) were developed in
order to explain the interrelationships among traits or group of traits, being worldwide used in
plant breeding. These techniques depend on the linear correlation matrix among traits and, due
its estimates be based on principles of multiple regression, the low dependence among the traits
considered as explanatory is required. When this assumption is not met, it is said that the matrix
presents multicollinearity (Blalock 1963).

Although there are techniques to adjust the multicollinearity (Hoerl and Kennard 1970b)
these techniques are essentially correctives, applied only after the linear correlation matrix be
estimated. Since the estimates of correlation coefficients basically involve the behavior
analyses of the variances, i.e., deviations from the average, it is possible that some methods of
data arrangement currently used may be masking the actual averages and variances of a trait (x)
on a dataset of (n) observations. For example, in a brief survey, we found that the correlation
matrices of some agronomic studies using path analysis, were estimated with average values of
several plants sampled in each experimental unit (Khameneh et al., 2012, Toebe and Cargnelutti
2013, Adesoji et al., 2015, Kumar and Babu 2015., Nataraj et al., 2015).

In field experiments, it is very common to access values of traits in several plants of
each experimental unit. The utilization of average value of these plants in order to estimate the
r and perform inferences to the population under study, however, may be questionable. In a

theoretical explanation focused on plant breeding, Olivoto et al. (2016) reported that the use of
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average values in estimating the r between a traits pair (e.g. rx;y) may overestimate its magnitude
mainly due the reduction of standard deviation (SD) in the dataset, when compared with
estimates performed with values coming from all sampled plants. In addition, the observed SD
(e.g., for X and Y) when average values of plots or treatments are used, represents the SD of the
average of the originally sampled plants, and not the actual SD coming from all these plants;
therefore, this SD is masked and tends to present itself lower. This fact should be taken into
consideration, because the inference of the direction and magnitude of association among traits
when average values are used, is being made for a different population of the original.

There were no studies in the literature comparing different data arrangement
methodologies on estimates of Pearson’s correlation coefficients. In addition, the information
about the optimal sample size to estimate the r among trait pairs in the maize crop in an
acceptable confidence interval is needed. In this context, the aims of the present study were to
(i) reveal the statistical behavior of estimated Pearson’s correlation coefficients in different data
arrangement scenarios and different sample sizes, (ii) reveal the impact of data arrangement
scenarios and sample sizes on multicollinearity of matrices, and (iii) propose the optimal sample

size to estimate r among trait pairs in the maize crop in an acceptable confidence interval.

4.3 MATERIALS AND METHODS
4.3.1 Site description and experimental design

Field trials were conducted in 2014/2015 growing season in Santo Expedito do Sul
(27°56' S, 51°37' W; 728 m above sea level), Sdo José do Ouro (27°44" S, 51°32' W; 796 m
above sea level) and Viadutos (27°33' S, 52°00" W; 628 m above sea level), municipalities of
northeast region of Rio Grande do Sul State, Brazil. During the experimental period, the air
averages temperatures at the sites of the experiments were 24.5, 23.8 and 25.2°C and rainfall of

823, 958 and 746 mm, respectively. All locations are within a 70-km radius, have a Haplustox
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soil, and were chosen due to similarities of soil and climatic characteristics, which provided to
them low variability of temperature and rainfall. Thus, abiotic effects on the plants’ response
were minimized as much as possible.

Prior to the installation of the trials, each site was surveyed for potentially disruptive
characteristics. To ensure uniformity inside the block and heterogeneity between the blocks, a
randomized complete block design in a 15 x 3 factorial treatment design (15 simple maize
hybrids x three cropping fields) with four replications was used, totaling 180 plots. Each plot
contained six 5-m-long cultivar rows, spaced by 0.45 m. Only the two central rows were used
to prevent edge effects. In each plot, five representative plants (observations) were selected
from which the ear was removed for further evaluation. To ensure that traits (of plant and ear)
were assessed in the same individual, a sample tracking system was created, identifying each
ear with a label containing a sequence number that characterized the site, the hybrid, the

repetition and the evaluated plant.

4.3.2 Accessed traits

Plant height (PH) and the ear insertion height (AE) were measured (cm) from the ground
surface to the flag leaf node and the support node of the highest ear at the stem, respectively.
Tagged ears were evaluated at a laboratory. The following traits were accessed: ear length (EL)
(cm), ear diameter (ED) (cm), number of rows per ear (NRE) (un), number of kernels per row
(NKR) (un), cob length (CL) (cm), cob diameter (CD) (mm), cob diameter / ear diameter ratio
(CD / ED) (decimal), total number of kernels per ear (TNK) (un) the thousand-kernel weight
(TKW) (g). The ratings were performed as follows: the lengths and diameters were measured
with a digital caliper. After counting the number of rows per ear and the number of kernels per
row, the kernels of each ear were manually-threshed and cleaned with pressurized air.

Subsequently, the kernels-weight was measured with an analytical balance and the total number
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of kernel each ear was measured with a seed counter equipment. Finally, the grain moisture was
measured with a universal moisture meter. With this data, and with the humidity adjusted to
14% base moisture, we determined the thousand-kernel weight each ear by the equation: TKW
= [(KME/TNK) x 1000]. Where: TKW = Thousand kernel weight; KME = Kernel mass per ear;
TNK = the total number of kernels per ear. All evaluations were carried out carefully in an ear
at a time, to maintain traceability of the sample, avoid any systematic errors as well as minimize

the random errors.

4.3.3 Statistical procedures
4.3.3.1 Bootstrap simulations

Three data arrangement scenarios were considered: (i) the data used were originated
from all sampled observations (ASO), with a total sample size of 900; (ii) in this scenario, the
data used were obtained from the average of the five sampled plants of each plot (AVP), with
a total sample size of 180; and (iii) finally, the average of the treatments (AVT), with a total
sample size of 45 (15 treatments x 3 locations) was considered.

Aiming to match the sample size in each scenario, 60 sample sizes (plants) were
simulated. The size of the initial sample was 15 plants, and the rest were obtained with an
increment of 15 plants up to 900 plants. For each one of 55 trait pairs [n x (n-1)]/2, where n =
11, in each sample size of each scenario, 1000 simulations of the r were performed by bootstrap
resampling with replacement (Efron 1979). Thus, for each pair of traits, 1000 estimates of the
r were obtained. Simulations were performed by the Structural Equation Modeling procedure

in Statistica 8.0 software (WeiR, 2007).
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4.3.3.2 Descriptive analysis of correlation coefficients

In each sample size of each scenario, the 1000 simulated r were subjected to descriptive
analysis, where it was determined the maximum, (97.5%), average, (2.5%) and minimum
values. Later, the amplitude of the 95% confidence interval was calculated by the difference
between the percentile 97.5% and 2.5%. For comparison, three trait pairs that came closest to
the following r magnitudes were chosen: » = |0], » = |0.5] and r = |1.0|. The statistics mentioned
of these three trait pairs has formed scatter diagrams where the x-axis corresponding to the

number of plants and the y-axis corresponding to the descriptive statistics.

4.3.3.3 t-test to compare the correlation coefficient among the scenarios

In order to determine whether the inferences could be made with the average of 60
sample sizes, initially the r average of each traits pair at the different sample sizes were
compared by t-test at 5% probability error (Steel et al. 1997) in the following scenario
combinations: ASO x AVT, ASO x AVP and AVP x AVT. Inferences were made using the
average of sample sizes for each pair of trait if the 60 sample size presented the same result on
the test.

A test comparing the 3300 values of r (55 trait pairs x 60 sample size) was also
performed. Histograms were developed for each scenario combination (ASO x AVT, ASO x
AVP and AVP x AVT) in order to show the behavior of the estimated r distribution. These
procedures were performed using t.test and hist functions in R software (R core Team, 2016).
Descriptive statistics such as asymmetry, average, mode, 25th and 75th percentiles, maximum,
and minimum applied in each scenario are also presented in boxplot graphics. These procedures

were performed using summary and boxplot functions in R software.
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4.3.3.4 Diagnosis of multicollinearity in the scenarios

Data of 11 traits obtained by the average of 1000 bootstrap simulations in each sample
size of each scenario were used to estimate correlation matrices. A total of 180 matrices (60
sample size x three scenarios) were estimated. In each matrix, multicollinearity diagnosis was
performed by the condition number (CN) of the matrix. The CN was obtained by the ratio
between the largest and the smallest eigenvalue of the matrix. The degree of multicollinearity
was considered weak, moderate and severe when CN < 100, between 100 and 1000 and > 1000,
respectively (Mansfield and Helms 1982). A graph containing the number of plants (x axis) and
the CN of each scenario (y axis) was developed. This analysis was performed using the

Multicollinearity Diagnostic procedure in Genes software (Cruz 2013).

4.4 RESULTS
4.4.1 Statistical properties of the correlation coefficient

The estimated r presented the largest amplitude when the lowest number of plants was
used. For the pair AE x PH, the magnitude of r oscillates between —0.02 and 0.98 (Fig. 1a),
0.42t0 0.99 (Fig. 1b) and 0.71 to 0.99 (Fig. 1c) in ASO, AVP, and AVT scenarios, respectively.
This range was reduced as the number of plants increased, however, it appeared higher in the
ASO scenario. The average r between the 60 different numbers of plants evaluated was
increased by approximately 11% (r = 0.92) and 15% (r = 0.96), in AVP and AVT scenarios,
respectively (Fig. 1b,c).

For trait the pairs with r = | 0.5 | as NKR x ED, the amplitude of r was larger,
irrespectively of the scenario and the number of assessed plants. With 15 plants, r ranged
between —0.33 and 0.89 in the ASO scenario (Fig. 1d), between 0.62 and 0.91 in the AVP
scenario (Fig. 1e) and between 0.03 and 0.90 in the AVT scenario (Fig. 1f). The average r was

increased by approximately 16% (r = 0.58) and 24% (r = 0.62), in AVP and AVT scenarios,
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respectively. Trait pairs with r = | 0 | as DSDE x CE presented the highest amplitudes, with
similar r distribution in the studied scenarios (Fig. 1g—i).

For the pair PH x AE, 270 plants were enough to estimate the r in the ASO scenario in
the CI 95% < 0.10 (Fig. 2a). For AVP and AVT scenarios, however, the number of plants
needed was only 45 (Fig. 2b) and 30 (Fig. 2c), respectively. Trait pairs with r = | 0.5 | (NKR x
ED), needed 660, 465 and 285 plants, in ASO, AVP, and AVT scenarios, respectively. For

CD/ED x EL combination, CI 95% < 0.10 was not reached even with 900 plants.

4.4.2 Comparison of correlation pairs between the scenarios

The t-test revealed no differences among the sample sizes in all scenario combinations.
Thus, the inferences for each pair of traits were performed with the average of 60 sample sizes.
Among the 165 comparisons (55 trait pairs in three scenario combinations), 164 differed. Only
one did not differ. In approximately 82% of the cases, average values (AVT and AVT scenarios)
overestimated the magnitude of the r (Table 1).

Comparing the estimated r in ASO x AVT scenarios, of 55 tested pairs, ten (18%) had
a higher average when all sampled observations were used (Table 1). Comparing ASO x AVP
scenarios, only seven combinations (13%) had a higher average r in correlation analysis
estimated with all observations. Comparing the averages (AVP x AVT), 12 combinations
(22%) were higher when the average of the plots was used (Table 1).

A t-test comparing the average r of 55 trait pairs in ASO x AVT scenario combination
confirmed the difference between these (t-value = —12.89, P < 0.001). The average r with low
magnitudes are due to the use of all pairs of correlation, where there are positive and negative
values. The estimates in the ASO scenario showed a distribution similar to normal. That is
related to the low asymmetry value (0.009), smaller r amplitude (-0.273 to 0.912), and the

median value (0.268) that is similar to the average value (0.282), although the tests reject the
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hypothesis of normality (Kolmogorov-Smirnov = 0.048, P = < 0.01) (Fig. 3). The estimates
carried out in the AVT scenario, however, shows a negative asymmetrical distribution of r
values (—0.843), with a greater r amplitude (—0.552 to 0.956) and the median value (0.484),
higher than the average (0.379). The distribution of r values in this scenario do not follow the
normal distribution (Kolmogorov-Smirnov = 0.137, P =< 0.01) (Fig. 3).

The comparison of ASO x AVP scenarios shows a behavior similar to that discussed
above, though with a slightly smaller difference (t-value = —9.60, P < 0.0001). For the AVP
scenario, r also presented negative asymmetry (—0.566). The amplitude was also lower (—0.427
to 0.926), with a median value (0.399) higher than the average (0.350) (Fig. 4). The distribution
in this scenario was not normal (Kolmogorov-Smirnov = 0.136, P < 0.01).

The t-test comparing the average r between the AVP x AVT scenarios combinations,
revealed difference (t-value = —3.73, P < 0.001). With the measures of central tendency and
amplitudes of these scenarios discussed above, both showed non-normal distribution of r, with
a clear tendency of most of the observed values being higher than r average (Fig. 5).

The r was increased by approximately 24% and 34% in the AVP and AVT scenarios,

respectively. In addition, the r amplitude and standard deviation were higher in these scenarios

(Fig. 6).

4.4.3 Multicollinearity

Multicollinearity was considered severe for the three scenarios, regardless of the number
of assessed plants (Fig. 7). The use of averages (AVP and AVT scenarios) increased the CN of
the correlation matrices. The largest changes occurred when the number of plants was low (<
100). For example, with 45 and 60 plants, the CN increased by 118% and 75% for the AVP

scenarios and 250% and 68% for the AVT scenario, respectively. Although in some cases the
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CN was higher for the ASO scenario, on mean, CN was increased by 24% and 131% in AVP

and AVT scenarios, respectively (Fig. 7).

4.5 DISCUSSION

The reduction of individual variation (standard deviation) observed in the scenarios
AVP and AVT was the main factor responsible for overvaluing the r of trait pairs. This fact can
be explaining due standard deviation be the divisor on correlation formulae. If covariance XY
(dividend of formulae) is similar in both scenarios, however, the standard deviation of X and Y
traits (divisor of formulae) is smallest, the magnitude of correlation coefficients will be greater.

The higher number of plants required for estimation of the r at the 95% CI < 0.10 in trait
pairs with less intensity of linear association, shows that the researcher must take into
consideration the magnitude of the trait pairs, and the confidence interval will be inversely
proportional to the magnitude of its correlations. The magnitude of the CI used here (95% CI <
0.10) it is not a rule, being it will be up to each researcher adopt the appropriate confidence
level for its inferences. If we consider the ClI 95% CI < 0.30, 210 plants are enough for
estimating trait pairs with low magnitude (r < 0.10). This number of plants it is perfectly
possible of to be evaluated. The experimental design (number of treatments and repetitions)
will set so, the number of plants to be sampled in each plot. In experiments with large numbers
of experimental units (e.g., factorial designs), the increase in sample size will provide greater
confidence in the estimates provided that they are properly followed the sampling procedures
and maintained traceability of the samples.

Although for trait pairs with high linear association (AE x PH) AVP and AVT scenarios
needed 83% and 89% fewer plants to estimate r, the average r in these scenarios was increased
by 11% and 15%, respectively, compared to the ASO scenario (r = 0.83). In an analysis that

depends on of the linear correlation matrix for their estimates, e.g., canonical correlation, path
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analysis and stepwise multiple linear regression procedures, high linear association magnitudes
among explanatory traits make it difficult to analyze, threatening the statistic and the inferential
interpretation (Graham 2003).

A recent study revealed that multicollinearity begins to seriously distort the estimates of
the path coefficients when the explanatory traits show r >| 0.7 | (Dormann et al. 2013). While
there have been observed high correlations in the ASO scenario (e.g., AE x PH, r = 0.83), the
higher values for the same pair (r = 0.92) and (r = 0.96) estimated in APV and AVT scenarios,
respectively, demonstrated that these data arrangement methodologies overestimate the
magnitude of the r and may result in larger problems in estimates of multiple regression
parameters, leading to an erroneous interpretation of predictors in a statistical model. Thus,
these methods should be carefully evaluated by the researchers when the goal is to use the
correlation matrix in studies involving multiple regression, as for this, the independence or the
less degree of dependence among explanatory traits is sought (Prunier et al., 2014; Montgomery
et al., 2015).

Average values (AVP and AVT scenarios), visibly elevated the multicollinearity of the
matrices, confirming the earlier discussion. Although there are variations in CN in each studied
sample size, the multicollinearity was increased on average by 24% and 131% when the AVP
and AVT scenarios were considered in the estimation of correlation matrices. Although there
are techniques for adjusting the multicollinearity as to delete the traits responsible for inflating
the variance of the coefficients (Gunst and Mason 1977) or to perform estimates using equations
partially modified by the inclusion of a k constant in the diagonal elements of correlation matrix
(Hoerl and Kennard 1970a), these techniques can mask the true biological behavior’s response,
because the deletion of the traits can reduce the model’s explanation power. The inclusion of
the k constant is effective in reducing the magnitude of multicollinearity, however, also causes

a bias in the regression analysis (Hoerl and Kennard 1970a).
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The best strategy to mitigate the problems caused by multicollinearity is to reduce it
since it becomes practically impossible to eliminate it. In this research, a simple method for
mitigating the multicollinearity in correlation matrices is suggested: estimating the correlation
coefficients considering all observations, keeping traceability and individual variance of the
sample. This can be accomplished without significant increase of time, labor and financial

resources since, a priori, all sampled plants were assessed.

4.6 CONCLUSION

Estimates made with data based on averages (AVP and AVT scenarios) reduce the
individual variances, overestimate the correlation coefficients and increase the multicollinearity
in correlation matrices. Thus, studies that require explanatory traits in order to predict a
dependent trait will present greater misstatements in the estimates of the regression coefficients,
if these methods are used. Using values coming from all sampled plants, 210 plants are enough
for estimating Pearson product-moment correlation coefficients among maize traits. The current
study about data arrangement on Pearson’s correlation coefficients presents useful information
on the planning of future experiments in plant breeding involving biometric templates that

require the correlation matrix for their estimates.
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Table 1. t-statistics for the average correlation coefficient (r) of 55 trait pairs estimated in 60
different numbers of plants. Average values represent 1000 bootstrap simulations of the
original data coming from all sampled observations (ASO), coming from the average of each
plot (AVP) and coming from the average of treatments (AVT). Coefficients in bold indicate
the pairs in which r was lower with the use of averages.

ASO x AVT ASO x AVP AVP x AVT
Trait pairs Average r ¢ Average r ¢ Average r t
ASO AVT ASO AVP AVP  AVT
AE x PH 0.834 0.955 782.08** 0.834 0.955 -782.08** 0.925 0.955 484.84**
EL x PH 0.249 0.573 944.63** 0.249 0414 -460.71** 0.414 0573  547.30**
EL x AE 0.215 0546  1079.40** 0.215 0.399 -559.79** 0.399 0.546 516.39**
ED x PH 0.478 0.750 910.05** 0.478 0.641  -559.57** 0.641 0.750 389.69**
ED x AE 0.458 0.712 805.67** 0.458 0.610 -558.02** 0.610 0.712  315.06**
ED x EL 0.417 0.513 205.64** 0417 0514 -113.86** 0.514 0.513 -1.62ns
NRE x PH 0.234 0.447 458.76** 0.234 0.360 -241.01** 0.360 0.447  155.68**
NRE x AE 0.160 0.346 550.12** 0.160 0.282 -290.51** 0.282 0.346  154.48**
NRE x EL 0.028 0.040 38.31** 0.028 0.082 -107.56** 0.082 0.040 -93.21**
NRE x ED 0.498 0.621 391.20** 0.498 0.578 -248.07** 0.578 0.621  224.23**
NKR x PH 0.234 0568 1008.10** 0.234 0.402 -511.47** 0.402 0.568 534.93**
NKR x AE 0.206  0.519 942.17** 0.206 0.387 -482.23** 0.387 0.519  379.25**
NKR x EL 0.646 0.618 68.570** 0.646 0.659  -26.22** 0.659 0.618 -103.53**
NKR x ED 0.319 0.334 22.55** 0.319 0.394  -83.45** 0.394 0.334 -73.38**
NKR x NRE 0.067  0.092 58.63** 0.067 0.164 -124.62** 0.164 0.092  -95.29**
CD x PH 0.256  0.416 253.86** 0.256 0.376 -246.66** 0.376 0.416  59.46**
CD x AE 0.313  0.488 248.73** 0.313 0.439 -215.07** 0.439 0.488  66.05**
CD x EL 0.308  0.359 98.98** 0.308 0.351 -76.61** 0.351 0.359  14.34**
CD x ED 0.653  0.730 263.58** 0.653 0.729 -325.70** 0.729 0.730 2.64*
CD x NRE 0.269 0.259 23.550** 0.269 0.298  -59.45** 0.298 0.259  -69.79**
CD x NKR 0.069 0.086  294.860** 0.069 0.064 7.30** 0.064 0.087 -228.23**
CL xPH 0.222  0.485 555.35** 0.222 0.369 -339.33** 0.369 0.485  288.34**
CL x AE 0.170 0.449 552.07** 0.170 0.340 -388.77** 0.340 0.449  225.58**
CL xEL 0.908  0.936 171.82** 0.908 0.923  -69.04** 0.923 0.936  70.45**
CLxED 0.430 0.479 79.17** 0.430 0.523 -106.13** 0.523 0.479  -56.79**
CL x NRE 0.023 0.003 53.69** 0.023 0.065  -82.83** 0.065 0.003 -152.69**
CL x NKR 0.639 0.592 136.66** 0.639 0.647 -26.52** 0.647 0592 -160.26**
CLxCD 0.343  0.393 74.94** 0.343 0.391  -69.94** 0.391 0.393 3.76**
TNK x PH 0.303 0.642 998.75** 0.303 0.488 -556.69** 0.488 0.642 471.33**
TNK x AE 0.226 0.556  1051.70** 0.226 0.419 -564.68** 0.419 0.556  399.82**
TNK x EL 0.548 0.493 147.44** 0.548 0.540 11.17** 0.540 0.493 76.05**
TNK x ED 0.532 0.639 192.04** 0.532 0594 -110.93** 0.594 0.639  70.25**
TNK x NRE 0.519 0.691 350.18** 0.519 0.625 -242.68** 0.625 0.691 121.83**
TNK x NKR 0.719 0.736 69.52** 0.719 0.777 -136.53** 0.777 0.736  110.79**
TNK x CD 0.191 0.116 180.57** 0.191 0.179 31.27** 0.179 0.116 144.95**
TNK x CL 0.535 0.428 274.75** 0.535 0.502 56.70** 0.502 0.428  148.45**
CD/ED x PH -0.123  0.2273  235.70** -0.123 -0.174  120.65** -0.174 0.227  111.10**
CD/ED x AE -0.034  0.0840 91.19** -0.034 -0.051  33.37** -0.051 0.084  65.52**
CD/ED x EL 0.002  0.0400 84.15** 0.002 -0.079 124.89** -0.079 0.040  55.65**
CD/ED x ED -0.121  0.0576 88.49** -0.121 -0.078  -57.34** -0.078 0.058 29.73**
CD/ED x NRE -0.13  0.3127  210.45** -0.130 -0.219 116.49** -0.219 0.313 86.75**
CD/ED x NKR -0.221 0.4987  717.16™* -0.221 -0.360 355.08** -0.360 0.499  336.64**
CD/ED x CD 0.666 0.636 80.68** 0.666 0.620 120.02** 0.620 0.636 62.00**
CD/ED x CL 0.038 0.048 20.31** 0.038 -0.029 126.76** -0.029 0.048  146.04**
CD/ED x TNK -0.265 0.5475  504.87** -0.265 -0.421  301.55** 0421 0.547 190.86**
TKW x PH 0.405 0.638 505.66** 0.405 0.539 -329.62** 0.539 0.638 254.21**
TKW x AE 0.418 0.674 537.91** 0.418 0.553 -335.17** 0.553 0.674  286.18**
TKW x EL 0.364 0.594 591.29** 0.364 0.452 -214.08** 0.452 0.594  432.89**
TKW x ED 0.488  0.685 617.07** 0.488 0.623  -499.34** 0.623 0.685 214.27**

(Continua)
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(Concluséo)

ASO x AVT ASO x AVP AVP x AVT
Trait pairs Average r t Average r t Average r t
ASO AVT ASO AVP AVP  AVT

TKW x NRE -0.206 0.0141 626.90** -0.206  -0.082  -223.54** -0.082 0.014 130.71**
TKW x NKR 0.096 0.209  288.70** 0.096 0.14 -104.59** 0.14 0.209 159.98**
TKW x CD 0.482 0.738  564.25** 0.482 0.644  -472.08** 0.644 0.738 204.82**
TKW x CL 0.384 0.55 305.53** 0.384 0471  -182.82** 0.471 055 164.41**
TKW x TNK -0.102  0.13 528.63** -0.102  0.013  -229.57** 0.013 0.13  277.06**
TKW x CD/ED 0.163 0.314  338.57** 0.163 0.236  -197.08** 0.236 0.314 172.82**

“*> and “**’ show the significances at 0.001 and 0.01 of probability level, respectively. ‘ns’ is

not significant.

PH, Plant heigth; AE, ear heigth; EL, ear length; ED, ear diameter; NRE, number of rows per
ear; NKR, number of kernels per row; CL, cob length; CD, cob diameter; CD/ED, cob diameter
/ ear diameter ratio; TNK, total number of kernels per ear; TKW, thousand-kernel weight.
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Figure 1. Descriptive analysis of 1000 bootstrap estimates of Pearson’s correlation
coefficient. Symbols represent the maximum values, percentile 97.5%, average, percentile
2.5% and minimum, obtained for the pair of traits plant height x ear height estimated in ASO
(@) in AVP (b) and AVT (c) scenarios; number of kernels row x ear diameter estimated in
ASO (d), AVP (e) and AVT (f) scenarios and cob diameter / ear diameter ratio x ear length,
estimated in ASO (g), AVP (h) and AVT (i) scenarios.
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average values of treatments, respectively. In the lower plot, the average (rhombus), the
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and the maximum and minimum values (outer spread) of the estimated correlation coefficient
are presented for each scenario.
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Figure 4. Distribution of average values of correlation coefficient in ASO x AVP scenarios
combination. Columns represent the observed values. Black and gray lines represent the
normal distribution and Kernel density estimation, respectively. ASO and AVP scenarios

represent the correlation coefficients estimated by all sampled observations, and by the
average values of plots, respectively. In the lower plot, the average (rhombus), the median

(vertical line), the distance between the 25th and 75th percentiles (length of the box) and the
maximum and minimum values (outer spread) of the estimated correlation coefficient are

presented for each scenario.
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average (rhombus), the median (vertical line), the distance between the 25th and 75th
percentiles (length of the box) and the maximum and minimum values (outer spread) of the
estimated correlation coefficient are presented for each scenario.
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5 DISCUSSAO GERAL

As hipoteses da presente pesquisa foram comprovadas. O método de arranjo de dados
proposto, ou seja, estimar os coeficientes de correlacdo com todas as observacdes amostradas
foi eficiente em reduzir o viés associado as estimativas, melhorar o condicionamento das
matrizes e aumentar acuracia da analise de trilha em estudos agronébmicos.

A utilizacdo de médias nas estimativas dos coeficientes de correlagdo, pratica comum
evidenciada em diversos trabalhos, reduziu o desvio padréo de todos os caracteres analisados,
superestimando os coeficientes de correlacdo em aproximadamente 90% das combinacdes. A
reducdo na amplitude dos dados pode ser observada no Apéndice A. Este resultado refletiu
diretamente no aumento da multicolinearidade da matriz de correlacdo das variaveis
explicativas, na reducdo da eficiéncia dos métodos utilizados atualmente para ajusta-la e no
aumento médio cerca de 8% no efeito residual da analise.

Os efeitos indiretos, principalmente os associados a varidveis com alto VIF,
apresentaram elevadas magnitudes quando os coeficientes de trilha foram estimados sem o uso
de métodos de ajuste da multicolinearidade (Apéndice B). Isto reforca ainda mais a necessidade
de um diagnéstico confiavel da multicolinearidade que permita ao pesquisador identificar, além
de sua magnitude, quais sdo as variaveis associadas a este problema.

Metodologias que mascaram a real variancia ou desvios de um conjunto de n-variaveis
influenciardo as magnitudes de suas correlacdes, pois esta medida estatistica é baseada na
covariancia e no desvio padrdo dos caracteres. Em adicdo ao conceito estatistico
metodologicamente tendencioso, a inferéncia da magnitude e sentido de associacdo entre
caracteres quando a correlacdo é estimada com base em dados médios é equivoca, pois esta
inferéncia é realizada para uma populacdo com variancia diferente da original (ex. de quando
todas as observacOes sdo utilizadas para tal estimativa). Como grande parte dos estudos
agrondmicos realiza inferéncias populacionais baseados em amostragens (plantas), a utilizagédo
do valor médio destas plantas para estimar correlacdes e fazer inferéncia a populacdo de
interesse, € um equivoco que, sem dividas, ndo deve ser considerado.

As simulagdes realizadas foram eficientes em revelar o impacto dos diferentes cenarios
e tamanhos amostrais no comportamento estatistico do coeficiente de correlacdo. O aumento
no namero de plantas reduziu a magnitude do intervalo de confianca independentemente do
cendrio estudado e da magnitude da correlacdo avaliada, contudo o numero 6timo de plantas

dependeu destes fatores.
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Foi observado também que o numero de plantas necessario para estimativa do
coeficiente de correlagdo no intervalo de confianca bootstrap de 95% < 0,1, aumentou no
sentido de combinacBes com menor magnitude e que este numero foi sempre maior quando
todas as observac6es da amostra foram consideradas. Por exemplo, para uma combinagdo com
alta magnitude de associacéo (r > 0,8), a utilizacdo dos valores medios de parcelas e de hibridos
necessitou 83 e 89% menos plantas, respectivamente, quando comparado as estimativas
realizadas com todas as observacdes amostradas. Embora este fato leve a entender que a
utilizacdo de médias aumenta a acuracia das estimativas, a média do coeficiente de correlacéo
para a mesma combinacao foi superestimada em 11 e 15%, respectivamente. Estas correlagdes
espurias devem ser cautelosamente avaliadas, pois podem levar o pesquisador a uma
tendenciosidade na interpretacdo e indicacdo de resultados.

A reducdo do numero de plantas necessarias e a superestimativa do coeficiente de
correlacdo observada quando valores oriundos de médias sdo utilizados estd diretamente
associado com a reducdo das variancias individuais. Por um lado, valores médios, com menor
variancia e desvio padrao, necessitam menor tamanho amostral para estimativa de correlacdes
com mesmo intervalo de confianca. Por outro, quando a variacdo individual é reduzida, a
magnitude do coeficiente de correlacdo tende a aumentar devido as varidveis apresentarem
covariancia semelhante (dividendo da férmula da correlagdo), contudo, um menor desvio
padrdo (divisor da formula da correlacdo), quando comparado a utilizagdo de todas as
observacBes amostradas.

O impacto da utilizacdo de valores méedios também foi observado no condicionamento
das matrizes de variaveis explicativas. De fato, a multicolinearidade destas matrizes foi severa
para os trés cenarios, apresentando os maiores problemas quando o tamanho amostral foi
relativamente baixo (n < 100). A utilizacdo dos valores médios (parcelas e tratamentos), no
entanto, aumentou em 24 e 131% o valor do nimero de condicdo da matriz na média dos 60
tamanhos amostrais estudados. Este fato é preocupante, pois pesquisadores que fazem uso de
médias para estimativas de correlacdo visando sua utilizacdo na andlise de trilha, bem como em
outras que utilizam regressao multipla, terdo maiores problemas para ajustar a
multicolinearidade das matrizes e, como visto, poderdo ter uma reducdo na acurdcia desta
analise.

A melhor estratégia para mitigar os problemas que a multicolinearidade causa nas
estimativas de coeficientes de regressdo € reduzi-la, uma vez que elimina-la completamente é
praticamente impossivel. Nesta pesquisa, técnicas estatisticas e biométricas foram eficazes no

sentido de revelar a magnitude e a origem deste problema. Sugere-se um método simples para
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reduzir a multicolinearidade e melhorar a acuracia da anélise de trilha: estimar os coeficientes
de correlacdo com todas as observagdes, mantendo a rastreabilidade da amostra a fim de ndo
mascarar a real variancia existente. Isto pode ser facilmente realizado sem acréscimos
substanciais de tempo, mao-de-obra e recursos financeiros, pois parte-se do pressuposto que

todas as plantas da amostra foram previamente analisadas.
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6 CONCLUSAO GERAL

A utilizacdo de valores oriundos de médias reduz a variancia individual de um conjunto
de n-variaveis, superestima a magnitude do coeficiente de correlacbes entre os pares de
combinacdo, aumenta a multicolinearidade desta matriz e reduz a acurécia das estimativas dos
coeficientes de trilha.

O numero de plantas necessario para estimativa de coeficientes de correlagdo com
intervalo de confianca bootstrap de 95% é maior quando todas as observacGes da amostra séo
utilizadas e aumenta no sentido de pares de combinacdo com menor magnitude. No entanto,
quando utilizado todas as informag6es amostradas, 210 plantas sé&o suficientes para estimativa
do coeficiente de correlacdo linear de Pearson entre caracteres de hibridos simples de milho no

intervalo de confianca bootstrap de 95% < 0,30.
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APENDICE A - ANALISE DESCRITIVA DAS VARIAVEIS ANALISADAS EM CADA

CENARIO DE ARRANJO DE DADOS.
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APENDICE B - EFEITOS INDIRETOS ESTIMADOS EM DIFERENTES CENARIOS

E METODOS DE ANALISE DE TRILHA.

Material suplementar S1. Efeitos indiretos estimados tradicionalmente com todas as observagdes

amostradas (ASO) e com os valores médios das parcelas (AVP).

Efeitos Cenarios
VARIAVEL} AP ASO AVP
EFEITO DIRETO SOBRE KWE 0.015 0.019
EFEITO INDIRETO VIA AE -0.023 -0.002
EFEITO INDIRETO VIA CE -0.003 -0.029
EFEITO INDIRETO VIA DE 1.166 0.305
EFEITO INDIRETO VIA NFG -0.022 0.014
EFEITO INDIRETO VIA NGF 0.010 0.043
EFEITO INDIRETO VIA DS -0.792 -0.227
EFEITO INDIRETO VIA CS -0.004 0.015
EFEITO INDIRETO VIA NTG 0.249 0.318
EFEITO INDIRETO VIA DS/DE -0.296 -0.070
EFEITO INDIRETO VIA MMG 0.215 0.332
LINEAR 0.516 0.716
VARIAVEL AE
EFEITO DIRETO SOBRE KWE -0.027 -0.003
EFEITO INDIRETO VIA AP 0.013 0.018
EFEITO INDIRETO VIA CE -0.003 -0.028
EFEITO INDIRETO VIA DE 1.128 0.290
EFEITO INDIRETO VIA NFG -0.016 0.011
EFEITO INDIRETO VIA NGF 0.009 0.041
EFEITO INDIRETO VIA DS -0.951 -0.265
EFEITO INDIRETO VIA CS -0.003 0.014
EFEITO INDIRETO VIA NTG 0.199 0.274
EFEITO INDIRETO VIA DS/DE -0.110 -0.021
EFEITO INDIRETO VIA MMG 0.223 0.340
LINEAR 0.461 0.671
VARIAVEL CE
EFEITO DIRETO SOBRE KWE -0.011 -0.071
EFEITO INDIRETO VIA AP 0.004 0.008
EFEITO INDIRETO VIA AE -0.007 -0.001
EFEITO INDIRETO VIA DE 1.088 0.246
EFEITO INDIRETO VIA NFG -0.005 0.003
EFEITO INDIRETO VIA NGF 0.026 0.070
EFEITO INDIRETO VIA DS -0.954 -0.210
EFEITO INDIRETO VIA CS -0.015 0.037
EFEITO INDIRETO VIA NTG 0.441 0.354
EFEITO INDIRETO VIA DS/DE -0.076 -0.033
EFEITO INDIRETO VIA MMG 0.193 0.277
LINEAR 0.685 0.680
VARIAVEL DE
EFEITO DIRETO SOBRE KWE 2.379 0.476
EFEITO INDIRETO VIA AP 0.007 0.012
EFEITO INDIRETO VIA AE -0.013 -0.002
EFEITO INDIRETO VIA CE -0.005 -0.036
EFEITO INDIRETO VIA NFG -0.045 0.022
EFEITO INDIRETO VIA NGF 0.014 0.042
EFEITO INDIRETO VIA DS -1.907 -0.439
EFEITO INDIRETO VIA CS -0.007 0.021
EFEITO INDIRETO VIA NTG 0.432 0.388
EFEITO INDIRETO VIA DS/DE -0.361 -0.032
EFEITO INDIRETO VIA MMG 0.259 0.383
LINEAR 0.754 0.835
VARIAVEL NFG
EFEITO DIRETO SOBRE KWE -0.089 0.037
EFEITO INDIRETO VIA AP 0.004 0.007
EFEITO INDIRETO VIA AE -0.005 -0.001
EFEITO INDIRETO VIA CE -0.001 -0.006
EFEITO INDIRETO VIA DE 1.196 0.275
EFEITO INDIRETO VIA NGF 0.004 0.017
EFEITO INDIRETO VIA DS -0.800 -0.180
EFEITO INDIRETO VIA CS -0.001 0.003
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EFEITO INDIRETO VIA NTG 0.402 0.406
EFEITO INDIRETO VIA DS/DE -0.320 -0.087
EFEITO INDIRETO VIA MMG -0.112 -0.050
LINEAR 0.279 0.422
VARIAVEL NGF
EFEITO DIRETO SOBRE KWE 0.040 0.106
EFEITO INDIRETO VIA AP 0.004 0.008
EFEITO INDIRETO VIA AE -0.006 -0.001
EFEITO INDIRETO VIA CE -0.007 -0.047
EFEITO INDIRETO VIA DE 0.843 0.188
EFEITO INDIRETO VIA NFG -0.009 0.006
EFEITO INDIRETO VIA DS -0.282 -0.039
EFEITO INDIRETO VIA CS -0.011 0.026
EFEITO INDIRETO VIA NTG 0.557 0.507
EFEITO INDIRETO VIA DS/DE -0.522 -0.146
EFEITO INDIRETO VIA MMG 0.050 0.085
LINEAR 0.658 0.694
VARIAVEL DS
EFEITO DIRETO SOBRE KWE -2.903 -0.602
EFEITO INDIRETO VIA AP 0.004 0.007
EFEITO INDIRETO VIA AE -0.009 -0.001
EFEITO INDIRETO VIA CE -0.004 -0.025
EFEITO INDIRETO VIA DE 1.563 0.347
EFEITO INDIRETO VIA NFG -0.024 0.011
EFEITO INDIRETO VIA NGF 0.004 0.007
EFEITO INDIRETO VIA CS -0.006 0.016
EFEITO INDIRETO VIA NTG 0.166 0.117
EFEITO INDIRETO VIA DS/DE 1.420 0.250
EFEITO INDIRETO VIA MMG 0.259 0.397
LINEAR 0.470 0.525
VARIAVEL Cs
EFEITO DIRETO SOBRE KWE -0.016 0.041
EFEITO INDIRETO VIA AP 0.004 0.007
EFEITO INDIRETO VIA AE -0.005 -0.001
EFEITO INDIRETO VIA CE -0.010 -0.065
EFEITO INDIRETO VIA DE 1.103 0.249
EFEITO INDIRETO VIA NFG -0.004 0.002
EFEITO INDIRETO VIA NGF 0.026 0.069
EFEITO INDIRETO VIA DS -1.054 -0.234
EFEITO INDIRETO VIA NTG 0.427 0.329
EFEITO INDIRETO VIA DS/DE 0.023 -0.013
EFEITO INDIRETO VIA MMG 0.205 0.289
LINEAR 0.698 0.672
VARIAVEL NTG
EFEITO DIRETO SOBRE KWE 0.763 0.651
EFEITO INDIRETO VIA AP 0.005 0.009
EFEITO INDIRETO VIA AE -0.007 -0.001
EFEITO INDIRETO VIA CE -0.006 -0.038
EFEITO INDIRETO VIA DE 1.347 0.283
EFEITO INDIRETO VIA NFG -0.047 0.023
EFEITO INDIRETO VIA NGF 0.029 0.082
EFEITO INDIRETO VIA DS -0.632 -0.108
EFEITO INDIRETO VIA CS -0.009 0.020
EFEITO INDIRETO VIA DS/DE -0.650 -0.170
EFEITO INDIRETO VIA MMG -0.057 0.007
LINEAR 0.737 0.760
VARIAVEL DS/DE
EFEITO DIRETO SOBRE KWE 2.241 0.403
EFEITO INDIRETO VIA AP -0.002 -0.003
EFEITO INDIRETO VIA AE 0.001 0.000
EFEITO INDIRETO VIA CE 0.000 0.006
EFEITO INDIRETO VIA DE -0.383 -0.037
EFEITO INDIRETO VIA NFG 0.013 -0.008
EFEITO INDIRETO VIA NGF -0.009 -0.038
EFEITO INDIRETO VIA DS -1.840 -0.374
EFEITO INDIRETO VIA CS 0.000 -0.001
EFEITO INDIRETO VIA NTG -0.221 -0.275
EFEITO INDIRETO VIA MMG 0.087 0.146
LINEAR -0.114 -0.183
VARIAVEL MMG
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EFEITO DIRETO SOBRE KWE 0.536 0.615
EFEITO INDIRETO VIA AP 0.006 0.010
EFEITO INDIRETO VIA AE -0.011 -0.001
EFEITO INDIRETO VIA CE -0.004 -0.032
EFEITO INDIRETO VIA DE 1.150 0.297
EFEITO INDIRETO VIA NFG 0.019 -0.003
EFEITO INDIRETO VIA NGF 0.004 0.015
EFEITO INDIRETO VIA DS -1.400 -0.388
EFEITO INDIRETO VIA CS -0.006 0.019
EFEITO INDIRETO VIA NTG -0.080 0.008
EFEITO INDIRETO VIA DS/DE 0.362 0.096
LINEAR 0.575 0.635
Coeficiente de determinagéo 1.02 0.973
Efeito residual 0 0.161

1 AP, altura de planta; AE, altura da espiga; CE, comprimento da espiga; DE, didametro da espiga; NFG, nimero

de fileira de grdos; NGF, nimero de gréos por fileira; DS, diametro do sabugo; CS, comprimento do sabugo;

NTG, nimero total de gréos por espiga; DS/DE, relacdo didmetro do sabugo/diametro da espiga; MMG, massa

de mil gréos.

Material suplementar S2. Efeitos indiretos estimados com todas as observacfes amostradas (ASO) e
com os valores medios das parcelas (AVP) com a inclusdo de k na diagonal da matriz X’X das

caracteristicas explicativas.

Efeitos Cenarios
VARIAVELT AP ASO AVP
EFEITO DIRETO SOBRE KWE 0.039 0.081
EFEITO INDIRETO VIA AE -0.021 0.016
EFEITO INDIRETO VIA CE -0.005 0.004
EFEITO INDIRETO VIA DE 0.075 0.083
EFEITO INDIRETO VIA NFG 0.005 0.021
EFEITO INDIRETO VIA NGF 0.024 0.075
EFEITO INDIRETO VIA DS -0.036 0.017
EFEITO INDIRETO VIA CS 0.012 0.017
EFEITO INDIRETO VIA NTG 0.208 0.176
EFEITO INDIRETO VIA DS/DE -0.015 0.007
EFEITO INDIRETO VIA MMG 0.227 0.210
LINEAR 0.516 0.716
VARIAVEL AE
EFEITO DIRETO SOBRE KWE -0.025 0.018
EFEITO INDIRETO VIA AP 0.033 0.075
EFEITO INDIRETO VIA CE -0.004 0.004
EFEITO INDIRETO VIA DE 0.072 0.079
EFEITO INDIRETO VIA NFG 0.004 0.016
EFEITO INDIRETO VIA NGF 0.022 0.073
EFEITO INDIRETO VIA DS -0.044 0.020
EFEITO INDIRETO VIA CS 0.010 0.015
EFEITO INDIRETO VIA NTG 0.166 0.151
EFEITO INDIRETO VIA DS/DE -0.005 0.002
EFEITO INDIRETO VIA MMG 0.234 0.216
LINEAR 0.461 0.671
VARIAVEL CE
EFEITO DIRETO SOBRE KWE -0.018 0.011
EFEITO INDIRETO VIA AP 0.011 0.034
EFEITO INDIRETO VIA AE -0.006 0.007
EFEITO INDIRETO VIA DE 0.070 0.067
EFEITO INDIRETO VIA NFG 0.001 0.005
EFEITO INDIRETO VIA NGF 0.061 0.124
EFEITO INDIRETO VIA DS -0.044 0.016
EFEITO INDIRETO VIA CS 0.044 0.042
EFEITO INDIRETO VIA NTG 0.368 0.196
EFEITO INDIRETO VIA DS/DE -0.004 0.003
EFEITO INDIRETO VIA MMG 0.203 0.176
LINEAR 0.685 0.680
VARIAVEL DE
EFEITO DIRETO SOBRE KWE 0.152 0.129
EFEITO INDIRETO VIA AP 0.019 0.052
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EFEITO INDIRETO VIA AE -0.012 0.011
EFEITO INDIRETO VIA CE -0.008 0.006
EFEITO INDIRETO VIA NFG 0.010 0.033
EFEITO INDIRETO VIA NGF 0.033 0.074
EFEITO INDIRETO VIA DS -0.087 0.034
EFEITO INDIRETO VIA CS 0.023 0.024
EFEITO INDIRETO VIA NTG 0.361 0.214
EFEITO INDIRETO VIA DS/DE -0.018 0.003
EFEITO INDIRETO VIA MMG 0.273 0.243
LINEAR 0.754 0.835
VARIAVEL NFG
EFEITO DIRETO SOBRE KWE 0.020 0.058
EFEITO INDIRETO VIA AP 0.010 0.029
EFEITO INDIRETO VIA AE -0.004 0.005
EFEITO INDIRETO VIA CE -0.001 0.001
EFEITO INDIRETO VIA DE 0.076 0.075
EFEITO INDIRETO VIA NGF 0.009 0.031
EFEITO INDIRETO VIA DS -0.037 0.014
EFEITO INDIRETO VIA CS 0.002 0.003
EFEITO INDIRETO VIA NTG 0.335 0.225
EFEITO INDIRETO VIA DS/DE -0.016 0.009
EFEITO INDIRETO VIA MMG -0.118 -0.032
LINEAR 0.279 0.422
VARIAVEL NGF
EFEITO DIRETO SOBRE KWE 0.093 0.188
EFEITO INDIRETO VIA AP 0.010 0.033
EFEITO INDIRETO VIA AE -0.006 0.007
EFEITO INDIRETO VIA CE -0.012 0.007
EFEITO INDIRETO VIA DE 0.054 0.051
EFEITO INDIRETO VIA NFG 0.002 0.009
EFEITO INDIRETO VIA DS -0.013 0.003
EFEITO INDIRETO VIA CS 0.032 0.029
EFEITO INDIRETO VIA NTG 0.465 0.280
EFEITO INDIRETO VIA DS/DE -0.026 0.014
EFEITO INDIRETO VIA MMG 0.053 0.054
LINEAR 0.658 0.694
VARIAVEL DS
EFEITO DIRETO SOBRE KWE -0.133 0.046
EFEITO INDIRETO VIA AP 0.011 0.031
EFEITO INDIRETO VIA AE -0.008 0.008
EFEITO INDIRETO VIA CE -0.006 0.004
EFEITO INDIRETO VIA DE 0.100 0.094
EFEITO INDIRETO VIA NFG 0.006 0.017
EFEITO INDIRETO VIA NGF 0.009 0.012
EFEITO INDIRETO VIA CS 0.018 0.018
EFEITO INDIRETO VIA NTG 0.139 0.065
EFEITO INDIRETO VIA DS/DE 0.070 -0.025
EFEITO INDIRETO VIA MMG 0.272 0.252
LINEAR 0.470 0.525
VARIAVEL (ofS}
EFEITO DIRETO SOBRE KWE 0.049 0.045
EFEITO INDIRETO VIA AP 0.010 0.030
EFEITO INDIRETO VIA AE -0.005 0.006
EFEITO INDIRETO VIA CE -0.016 0.010
EFEITO INDIRETO VIA DE 0.071 0.067
EFEITO INDIRETO VIA NFG 0.001 0.004
EFEITO INDIRETO VIA NGF 0.061 0.122
EFEITO INDIRETO VIA DS -0.048 0.018
EFEITO INDIRETO VIA NTG 0.357 0.182
EFEITO INDIRETO VIA DS/DE 0.001 0.001
EFEITO INDIRETO VIA MMG 0.216 0.183
LINEAR 0.698 0.672
VARIAVEL NTG
EFEITO DIRETO SOBRE KWE 0.637 0.360
EFEITO INDIRETO VIA AP 0.013 0.040
EFEITO INDIRETO VIA AE -0.006 0.007
EFEITO INDIRETO VIA CE -0.010 0.006
EFEITO INDIRETO VIA DE 0.086 0.077
EFEITO INDIRETO VIA NFG 0.011 0.036
EFEITO INDIRETO VIA NGF 0.068 0.146
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EFEITO INDIRETO VIA DS -0.029 0.008
EFEITO INDIRETO VIA CS 0.027 0.023
EFEITO INDIRETO VIA DS/DE -0.032 0.017
EFEITO INDIRETO VIA MMG -0.059 0.005
LINEAR 0.737 0.760
VARIAVEL DS/DE
EFEITO DIRETO SOBRE KWE 0.110 -0.040
EFEITO INDIRETO VIA AP -0.005 -0.014
EFEITO INDIRETO VIA AE 0.001 -0.001
EFEITO INDIRETO VIA CE 0.001 -0.001
EFEITO INDIRETO VIA DE -0.025 -0.010
EFEITO INDIRETO VIA NFG -0.003 -0.012
EFEITO INDIRETO VIA NGF -0.022 -0.068
EFEITO INDIRETO VIA DS -0.084 0.029
EFEITO INDIRETO VIA CS 0.000 -0.001
EFEITO INDIRETO VIA NTG -0.185 -0.152
EFEITO INDIRETO VIA MMG 0.091 0.092
LINEAR -0.114 -0.183
VARIAVEL MMG
EFEITO DIRETO SOBRE KWE 0.565 0.390
EFEITO INDIRETO VIA AP 0.016 0.044
EFEITO INDIRETO VIA AE -0.010 0.010
EFEITO INDIRETO VIA CE -0.006 0.005
EFEITO INDIRETO VIA DE 0.074 0.080
EFEITO INDIRETO VIA NFG -0.004 -0.005
EFEITO INDIRETO VIA NGF 0.009 0.026
EFEITO INDIRETO VIA DS -0.064 0.030
EFEITO INDIRETO VIA CS 0.019 0.021
EFEITO INDIRETO VIA NTG -0.067 0.004
EFEITO INDIRETO VIA DS/DE 0.018 -0.010
LINEAR 0.575 0.635
k value 0.050 0.100
Coeficiente de determinagéo 0.931 0.922
Efeito residual 0.261 0.278

+ AP, altura de planta; AE, altura da espiga; CE, comprimento da espiga; DE, didmetro da espiga; NFG, nimero

de fileira de graos; NGF, nimero de graos por fileira; DS, didmetro do sabugo; CS, comprimento do sabugo;

NTG, namero total de gréos por espiga; DS/DE, relacdo didmetro do sabugo/didmetro da espiga; MMG, massa

de mil gréos.

Material suplementar S3. Efeitos indiretos estimados com todas as observa¢Ges amostradas (ASO) e
com os valores médios das parcelas (AVP) excluindo as variaveis responsaveis pela multicolinearidade.

Efeitos Cenarios
VARIAVELT AP ASO AVP
EFEITO DIRETO SOBRE KWE 0.012 -
EFEITO INDIRETO VIA AE -0.033 -
EFEITO INDIRETO VIA CE -0.015 -
EFEITO INDIRETO VIA DE -0.033 -
EFEITO INDIRETO VIA NFG - -
EFEITO INDIRETO VIA NGF 0.001 -
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - -
EFEITO INDIRETO VIA NTG 0.291 -
EFEITO INDIRETO VIA DS/DE -0.002 -
EFEITO INDIRETO VIA MMG 0.294 -
LINEAR 0.516 -
VARIAVEL AE
EFEITO DIRETO SOBRE KWE -0.040 -
EFEITO INDIRETO VIA AP 0.010 -
EFEITO INDIRETO VIA CE -0.014 -
EFEITO INDIRETO VIA DE -0.032 -
EFEITO INDIRETO VIA NFG - -
EFEITO INDIRETO VIA NGF 0.001 -
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - -
EFEITO INDIRETO VIA NTG 0.232 -
EFEITO INDIRETO VIA DS/DE -0.001 -
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EFEITO INDIRETO VIA MMG 0.304 -
LINEAR 0.461 -
VARIAVEL CE -
EFEITO DIRETO SOBRE KWE -0.056 -0.073
EFEITO INDIRETO VIA AP 0.003 -
EFEITO INDIRETO VIA AE -0.010 -
EFEITO INDIRETO VIA DE -0.031 -0.010
EFEITO INDIRETO VIA NFG - -
EFEITO INDIRETO VIA NGF 0.000 0.005
EFEITO INDIRETO VIA DS - 0.073
EFEITO INDIRETO VIA CS - 0.038
EFEITO INDIRETO VIA NTG 0.516 0.355
EFEITO INDIRETO VIA DS/DE 0.000 0.001
EFEITO INDIRETO VIA MMG 0.263 0.291
LINEAR 0.685 0.680
VARIAVEL DE
EFEITO DIRETO SOBRE KWE -0.068 -0.019
EFEITO INDIRETO VIA AP 0.006 -
EFEITO INDIRETO VIA AE -0.019 -
EFEITO INDIRETO VIA CE -0.026 -0.037
EFEITO INDIRETO VIA NFG - 0.035
EFEITO INDIRETO VIA NGF 0.003 0.044
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - 0.021
EFEITO INDIRETO VIA NTG 0.505 0.389
EFEITO INDIRETO VIA DS/DE -0.002 0.001
EFEITO INDIRETO VIA MMG 0.354 0.402
LINEAR 0.754 0.835
VARIAVEL NFG
EFEITO DIRETO SOBRE KWE - 0.061
EFEITO INDIRETO VIA AP - -
EFEITO INDIRETO VIA AE - -
EFEITO INDIRETO VIA CE - -0.006
EFEITO INDIRETO VIA DE - -0.011
EFEITO INDIRETO VIA NGF - 0.018
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - 0.003
EFEITO INDIRETO VIA NTG - 0.408
EFEITO INDIRETO VIA DS/DE - 0.003
EFEITO INDIRETO VIA MMG - -0.053
LINEAR - 0.422
VARIAVEL NGF
EFEITO DIRETO SOBRE KWE 0.005 0.111
EFEITO INDIRETO VIA AP 0.003 -
EFEITO INDIRETO VIA AE -0.007 -
EFEITO INDIRETO VIA CE -0.003 -0.048
EFEITO INDIRETO VIA DE -0.034 -0.008
EFEITO INDIRETO VIA NFG - 0.010
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - 0.026
EFEITO INDIRETO VIA NTG 0.470 0.508
EFEITO INDIRETO VIA DS/DE -0.002 0.005
EFEITO INDIRETO VIA MMG -0.153 0.090
LINEAR 0.279 0.694
VARIAVEL DS
EFEITO DIRETO SOBRE KWE - -
EFEITO INDIRETO VIA AP - -
EFEITO INDIRETO VIA AE - -
EFEITO INDIRETO VIA CE - -
EFEITO INDIRETO VIA DE - -
EFEITO INDIRETO VIA NFG - -
EFEITO INDIRETO VIA NGF - -
EFEITO INDIRETO VIA CS - -
EFEITO INDIRETO VIA NTG - -
EFEITO INDIRETO VIA DS/DE - -
EFEITO INDIRETO VIA MMG - -
LINEAR - -
VARIAVEL Cs
EFEITO DIRETO SOBRE KWE - 0.041

EFEITO INDIRETO VIA AP



EFEITO INDIRETO VIA AE
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EFEITO INDIRETO VIA CE - -0.067
EFEITO INDIRETO VIA DE - -0.010
EFEITO INDIRETO VIA NFG - 0.004
EFEITO INDIRETO VIA NGF - 0.072
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA NTG - 0.330
EFEITO INDIRETO VIA DS/DE - 0.000
EFEITO INDIRETO VIA MMG - 0.303
LINEAR - 0.672
VARIAVEL NTG
EFEITO DIRETO SOBRE KWE 0.892 0.653
EFEITO INDIRETO VIA AP 0.004 -
EFEITO INDIRETO VIA AE -0.010 -
EFEITO INDIRETO VIA CE -0.032 -0.039
EFEITO INDIRETO VIA DE -0.038 -0.012
EFEITO INDIRETO VIA NFG - 0.038
EFEITO INDIRETO VIA NGF 0.003 0.086
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - 0.021
EFEITO INDIRETO VIA DS/DE -0.004 0.006
EFEITO INDIRETO VIA MMG -0.077 0.008
LINEAR 0.737 0.760
VARIAVEL DS/DE
EFEITO DIRETO SOBRE KWE 0.014 -0.013
EFEITO INDIRETO VIA AP -0.002 -
EFEITO INDIRETO VIA AE 0.002 -
EFEITO INDIRETO VIA CE 0.002 0.006
EFEITO INDIRETO VIA DE 0.011 0.002
EFEITO INDIRETO VIA NFG - -0.013
EFEITO INDIRETO VIA NGF -0.001 -0.040
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - -0.001
EFEITO INDIRETO VIA NTG -0.259 -0.276
EFEITO INDIRETO VIA MMG 0.118 0.153
LINEAR -0.114 -0.183
VARIAVEL MMG
EFEITO DIRETO SOBRE KWE 0.733 0.645
EFEITO INDIRETO VIA AP 0.005 -
EFEITO INDIRETO VIA AE -0.017 -
EFEITO INDIRETO VIA CE -0.020 -0.033
EFEITO INDIRETO VIA DE -0.033 -0.012
EFEITO INDIRETO VIA NFG - -0.005
EFEITO INDIRETO VIA NGF -0.001 0.015
EFEITO INDIRETO VIA DS - -
EFEITO INDIRETO VIA CS - 0.019
EFEITO INDIRETO VIA NTG -0.094 0.008
EFEITO INDIRETO VIA DS/DE 0.002 -0.003
LINEAR 0.575 0.635
Coeficiente de determinagéo 0.977 0.973
Efeito residual 0.161 0.165

1 AP, altura de planta; AE, altura da espiga; CE, comprimento da espiga; DE, didmetro da espiga; NFG, nimero

de fileira de grdos; NGF, nimero de graos por fileira; DS, didmetro do sabugo; CS, comprimento do sabugo;

NTG, nimero total de grdos por espiga; DS/DE, relacdo diametro do sabugo/diametro da espiga; MMG, massa

de mil gréos.
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