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Abstract—This paper provides a two step procedure for cur-
rent control design of grid-connected converters with LCL filter.
The proposed procedure is based on: i) an internal loop with state
feedback, aiming on active damping of the LCL filter resonance;
ii) an external loop with resonant controllers, aiming to ensure
tracking of sinusoidal grid current references. The state feedback
gains are computed based on pole location and the resonant
control gains are computed based on the minimization of a closed-
loop tracking error index. A case study is shown to illustrate
that the proposed control design procedure leads to grid-injected
currents with suitable steady state and transient performances.

Keywords – Active damping, Grid-connected converter,
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I. INTRODUCTION

Renewable energy sources can help to supply the demand
for electrical energy. In the connection of alternative sources
to the grid, one has that issues such as synchronization and
regulation of voltage, frequency and current become very
important, with codes and standards that provide limits for
the electrical variables. In this sense, the control of grid-
connected converters (GCCs) has driven attention in industry
and academy [1]–[4].

One important class of GCCs include voltage source in-
verters connected to the grid by means of LCL filters. These
filters are known to provide good rejection of harmonics, but
also exhibit a resonance peak that must be damped in order
to avoid instability [5]–[13]. In this context, state feedback
control can be used to increase the damping of the closed-
loop system, as well to ensure tracking of references and
rejection of disturbances [14]. This technique can be related
to robust and optimal control [15], and was used in the current
control of GCCs, for instance, in [16]–[20]. These works use
robust pole location to assign the discrete-time closed-loop
poles inside the unit circle for an entire set of uncertainties
in the grid impedance. However, since the poles associated
with the LCL filter and the poles associated with the resonant
controllers are constrained together, the use of different criteria
to damp the resonance of the filter and to design the gains of
resonant controllers is an interesting feature, that have not been
explored in these works.

This paper proposes a two step procedure for current control
design of GCCs with LCL filter, based on state feedback
of the filter states and on resonant controllers. The proposed

procedure is based on a state space model of the converter, in-
cluding one sample delay in the discretization of the plant, and
also in the state space representation of resonant controllers.
The internal loop is comprised by a state feedback controller
that ensures damping of the resonance of the LCL filter,
including the effect of the delay. The external loop includes a
resonant controller to ensure tracking error minimization given
sinusoidal references for the grid current and also the rejection
of grid voltage disturbances.

II. PLANT MODEL

Consider a GCC comprised by a voltage source inverter,
an LCL filter and a predominantly inductive grid, as given
in Fig. 1. It is assumed that the input DC voltage and the
synchronization with the voltage at the point of common
coupling (PCC) are ensured by suitable strategies [4], [21],
[22]. Therefore, the objective here is to regulate the grid
injected currents, ig .
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Figure 1. Inverter connected to the grid through an LCL filter.

Taking into account that the signal u is the control signal
to be synthesized, and that the inductances at the PCC can be
summed up for sake of modeling, the GCC in Fig. 1 can be
represented in a simplified way as it is shown in Figure 2.

From Fig. 2, one state space model can be written, using
the inductor currents and capacitor voltage as state variables,
and the grid voltage as a disturbance, as given by

ẋ = Ax + Buu+ Bgvg
y = Cx

(1)
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Figure 2. Simplified circuit used for plant modeling.
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and Lg =Lg1+Lg2 .
Aiming on the application of a digital control law, the plant

model in (1)-(2) can be discretized, using the ZOH method,
including one sample delay from the digital implementation
of the control law, as [23]

x(k + 1) = Adx(k) + Budφ(k) + Bgdvg(k)
φ(k + 1) = u(k)

(3)

with

Ad = eATs , Bud =
Ts∫
0

eAτBudτ, Bgd =
Ts∫
0

eAτBgdτ (4)

From (3) and (4) one can write

xd(k + 1) = Gdxd(k) + Hudu(k) + Hgdvg(k)
y(k) = Cdxd(k)

(5)

where

Gd=

[
Ad Bud

0 0

]
, Hud=

[
0
1

]
, Hgd=

[
Bgd

0

]
,

Cd=
[
C 0

]
, xd(k)=

[
ic(k) vc(k) ig(k) φ(k)

]T (6)

III. DESIGN OF THE CONTROLLER IN TWO STEPS

Consider the control system given in Fig. 3. This control
system is comprised by two control loops. One internal loop,
based on state feedback, and one external loop, based on a
resonant controller.

The block representing the plant discretized including one
sample delay has as inputs the disturbance (grid voltage vg)
and the control signal u. This control signal is composed by
two terms: one state feedback action, usf , and one resonant
action ur.

For the control action usf , it is assumed that all filter state
variables are available for feedback. For the control action ur,
it is assumed that the tracking error, with respect to a reference
for the grid current ig , is available.

The resonant controller can be represented in state space in
discrete-time as [18], [20]

ρ(k + 1) = Rdρ(k) + Sde(k)
ur(k) = Tdρ(k)

(7)

where

Rd = eRTs , Sd =
Ts∫
0

eRτSudτ, Td=
[
Kr1 Kr2

]
(8)

and
R =

[
0 1

−ω2
n −2ξωn

]
, S =

[
0
1

]
(9)

The proposed procedure for the design of the control gains
Ksf , for the state feedback internal loop, and Td, for the
resonant control external loop, is detailed below.

A. Step 1: internal loop design

In order to design the internal loop, consider the control
signal in Fig. 3, given by

usf (k) = −Ksfxd(k) + ur(k) (10)

where the state feedback control gains are given by

Ksf = [Kic Kvc Kig Kφ] (11)

From (5) and (10), one can write

xd(k + 1) = Gclxd(k) + Hudur(k) + Hgdvg(k),
Gcl = Gd −HudKsf

(12)

Thus, if the pair (Gd,Hud) is controllable, the eigenvalues
of the state matrix of the inner loop, given by Gcl, in (12),
can be assigned by the suitable computation of the gains in
(11) using, for instance, the Ackermann’s formula [14]

Ksf = [0 0 0 1]C−1∆(Gd) (13)

where C is the controllability matrix and ∆(Gd) is the closed-
loop characteristic polynomial in terms of the matrix Gd.

If the designer chooses the closed-loop eigenvalues, that is,
the eigenvalues of Gcl, for instance, with pure real positive
values inside the unit circle, the poles of the plant with delay
will be damped, and the resonance peak from the LCL filter
profile can be attenuated by the controller in the internal loop.

B. Step 2: external loop design

Now, assume that the inner loop was already designed, that
is, the gain vector Ksf was computed to damp the resonance
of the plant discretized with delay. Taking into account the
outer loop resonant controller (7), one can write the augmented
model[

xd(k + 1)
ρ(k + 1)

]
=

[
Gcl HudTd

−SdCd Rd

] [
xd(k)
ρ(k)

]
+[

Hgd

0

]
vg(k) +

[
0
Sd

]
r(k)

y(k) =
[
Cd(k) 0

] [ xd(k)
ρ(k)

] (14)
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Figure 3. Control system for grid current regulation. Internal loop: state feedback control with gain Ksf . External loop: resonant control, with gain Td.

Notice that the model (14) depends on the gain vector Td, of
the resonant controller, to be computed to attain some control
objective.

Due to the importance of the time response of this control
system in the tracking of sinusoidal references, here the control
vector Td will be obtained from the minimization of the
integral time squared error (ITSE) for the reference profile
given in Fig. 4.
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Figure 4. Reference profile for the grid current to test the closed-loop system
tracking capacity.

Notice that the reference in Fig. 4 begins with zero value,
changes the amplitude to an intermediate peak value, and then
changes the amplitude to a value related with the nominal
power of the GCC, for instance. This reference can be written
as

igref (k) =

 0, 0 < k < k1
A1 sin(2πfgridk), k1 < k < k2
A2 sin(2πfgridk), k ≥ k2

(15)

where k1, k2, fgrid, A1 and A2 are chosen by the control
designer.

The ITSE ctriterion can be computed as

ITSE =

N∑
k=0

k (r(k) − ig(k))2 (16)

The resonant controller gain vector, of the outer loop, can be
computed based on the minimization of the ITSE criterion. In
this case, the gain vector Td can be obtained by a searching

procedure in a previously given set, T , in the optimization
problem

Td = arg min
T

ITSE (17)

In the next section, a case study is given, to illustrate the
computation of Ksf and Td, for a GCC with parameters in
the literature.

IV. CASE STUDY

For a case study, consider the parameters of GCC with LCL
filter borrowed from [16]–[20], given in Table I.

Table I
GCC WITH LCL FILTER PARAMETERS.

LCL filter converter side inductance Lc 1 mH
LCL filter capacitance Cf 62 uF

LCL filter grid side inductance Lg1 0.3 mH
Grid Inductance minimum value Lg2min 0 mH
Grid Inductance maximum value Lg2max 1 mH

Grid voltage vg 127 V, 60 Hz
Sampling frequency fs 20040 Hz

For sake of the design of the control gains, it is considered as
the nominal plant the one related with Lg2min. Nevertheless,
any other value of Lg2 between Lg2min and Lg2max could be
used in the proposed design procedure.

Applying Step 1 of the proposed procedure, with the
choice of closed-loop eigenvalues at [0.7, 0.7, 0.7, 0.1] to min-
imize the resonance peak, using the function acker, from
MATLAB©, one has the state feedback control gains

Ksf = [13.18 − 0.86 − 9.51 0.62] (18)

The frequency response of the open-loop plant discretized
with the delay, in (5), for both situations of Lg2 are given in
Fig. 5. It can be noticed the peak of the resonance of the LCL
filter, and its change with the change in the value of the grid
inductance. In the same figure, one has the responses of the
closed-loop system with the state feedback control action (i.e.,
only the effect of the internal control loop). It becomes clear
the damp of the resonance of the filter, in both grid inductance
conditions, thanks to the state feedback gains.

Now, taking into account the internal loop gains Ksf in
(18), and applying Step 2 of the proposed procedure, for a
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Figure 5. Bode diagrams for the open-loop plant and for the closed-loop
plant with active damping.

search space of Kr1 and Kr2 between −20 and 20, one has
that Td = [Kr1 Kr2] has entries given by

Td = [15.04 − 15.00] (19)

This control gain vector minimizes the ITSE criterion defined
in the previous section, and was found by means of an
exhaustive search.

The closed-loop responses with state feedback and resonant
controller, simulated with parameters in Table I, are shown
in Fig.6, for both grid inductance conditions. It is possible to
notice the good tracking of the reference, with fast transient
responses against reference variations and suitable steady state.
These properties were obtained due to the optimization of the
ITSE criterion.

Finally, to confirm the robust stability of the closed-loop
system with the internal and external control loops, a sweep
in the eigenvalues is shown in Fig. 7. It is possible to see that
all the closed-loop eigenvalues of system (14) remain inside
the unit circle, for values of grid inductance Lg2 inside the
grid uncertainty interval in Table I, corroborating the stable
behavior.

V. CONCLUSION

This paper provided a two step procedure for the current
control design applied to grid-connected converters with LCL
filters. The first step of the proposed procedure is to compute
state feedback control gains using a pole location strategy,
aiming to suitably damp the resonance peak of the LCL filter,
taking into account the one sample delay. Then the gains of
a resonant controller in the outer loop are computed based
on the minimization of the grid current tracking error, given
a sinusoidal reference pattern. Typical parameters from the
literature were used to provide a case study, which illustrated
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Figure 6. Time responses of the closed-loop system with the two control
loops, for operation with grid inductances Lg2min and Lg2max.
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Figure 7. Eigenvalues of the closed-loop system with the two control loops,
for a sweep in the values of Lg2 from Lg2min to Lg2max.

that the proposed procedure allows to get control gains for the
two control loops, ensuring closed-loop systems with suitable
grid currents for this important class of power converters.
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