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Abstract—This paper is focused on a comparison between
two linear matrix inequality conditions for design of robust
state feedback controllers applied for current regulation of grid-
connected converters with LCL filters, operating under uncertain
grid impedance at the point of common coupling. The first
condition is the well known quadratic stability and the second one
is the polyquadratic stability, which uses extra matrix variables.
It is shown that the condition with slack variables can provide
superior performance in terms of ensuring stable and suitable
operation for a larger set of uncertainties.
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I. INTRODUCTION

Grid-connected converters (GCCs) are fundamental in dis-
tributed generation systems, allowing, for instance, to control
the power flow between renewable energy sources and the
grid [1]–[3]. Several control techniques have been employed
to ensure grid injected currents respecting limits of harmonic
distortion. Considering the linear current control methods
with pulse-width modulation (PWM), one has the important
strategies based on integral action (e.g. proportional integral
controllers in dq coordinates [4], [5]) and on resonant action
(e.g. proportional resonant controllers in αβ coordinates [6],
[7]).

One important stage in a GCC is a filter between the
inverter and the grid, in order to attenuate the high frequency
harmonics from the PWM voltages generated by the inverter.
In this context, LCL filters have been widely used due to the
attenuation profile with -60 dB per decade [8], [9]. However,
such filters have a challenge of presenting a resonance peak
that must be attenuated, in order to avoid loss of performance
or even instability. This problem is more challenging due to
the fact that, when the LCL filter is connected to a grid with
uncertain impedance in the point of common coupling (PCC),
the resonance frequency may vary inside a large interval.
Thus, controllers designed to attenuate the LCL resonance at a
specific frequency may not work properly. This fact demands
more efficient control designs, capable to stabilize marginally
stable plants subject to uncertain parameters. In this scenario,
state feedback controllers designed by means of linear matrix
inequalities (LMIs) have been successfully applied to GCCs
with LCL filters subject to uncertain grid impedances [10]–
[16].

Although the LMI framework is recognized as highly effi-
cient in computational point of view to deal with robust control
of GCCs, there is a lack of works in the literature comparing
different LMIs in the solution of robust control design for
GCCs under uncertain grid impedances. The control theory
literature shows that less conservative LMIs such as those
based on extra matrix variables can provide better performance
[17], [18]. The theoretical comparisons between LMIs are
carried out, in general, in a scenario without limitations in the
control signal. In the case of practical application of control
for GCCs, the control signal is limited and this fact can be
taken into account in a comparative study of performance of
different LMI based controllers applied in practice.

This paper provides a comparison between two LMI robust
control design conditions applied to GCCs with LCL filters,
with grid predominantly inductive, and whose inductance is
uncertain, lying on a given interval. First, a polytopic model of
the GCC is given, taking into account the uncertain parameters
and the delay from a digital control implementation. Second,
two LMIs are presented, in order to provide the robust
state feedback control gains. These LMIs are based on the
quadratic stability and on the polyquadratic stability. Third,
the performance with these robust control gains is compared
in a scenario with limitations in the control signal and it is
shown that one can have better performance with the more
relaxed LMI design.

II. MODELING

Consider the three-phase inverter connected to the PCC
by means of an LCL filter, as illustrated in Figure 1. The
controller is developed in αβ coordinates, as described in the
sequence. It is also assumed that the voltages at the PCC are
measured and the synchronism with the grid voltage is ensured
by a suitable algorithm.

The grid is assumed as predominantly inductive and possi-
bly time-varying [19], [20]. The grid inductance Lg2 belongs
to a bounded interval for which only the maximum and
minimum values are given. Therefore, for a balanced three-
phase system, one can write, for any of the three phases, that

Lg = Lg1 + Lg2 (1)

The plant depicted in Figure 1 can be represented by a
state space model in stationary reference frame. Assuming a
balanced system, and that there is no path for the current
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Figure 1. Three-phase inverter connected to the grid by means of an LCL
filter.

of axis ′0′, the system can be described by means of two
uncoupled single-phase systems, given by [21]

ẋα=A(Lg)xα+Buuα+Bd(Lg)vgα
ẋβ=A(Lg)xβ+Buuβ+Bd(Lg)vgβ

(2)

where

A(Lg) =


0 −1

Lc
0

1
Cf

0 −1
Cf

0 1
Lg

0

 , Bu =

 1
Lc

0
0

 ,

Bd(Lg)=

 0
0
−1
Lg

, xα=

 icαvcα
igα

, xβ=

 icβvcβ
igβ


(3)

In this representation, icα is the current through the
converter-side inductor, vcα is the voltage across the filter
capacitor, and igα is the current injected into the grid. The
same reasoning is valid for axis β.

For the application of a digital control law, consider the
discretization of the plant with a sufficiently small sampling
period Ts, and also the inclusion of an additional state, φ,
representing the one sample digital delay. The discretized
model is given by 1

x(k+1)=Ad(θ)x(k)+Bud(θ)φ(k)+Bdd(θ)vg(k)
φ(k+1) = u(k)
y(k) = Cyx(k) = [0 0 1]x(k) = ig(k)

(4)

To obtain the matrices in model (4), the continuous-time
matrices in (3) were discretized for each extreme value of Lg ,
and then convexically combined, leading to [22]

(Ad,Bud,Bdd)(θ)=
2∑
j=1

θj(Adj ,Budj ,Bddj), [θ1, θ2]∈Θ,

Θ , {θ∈R2 : θ1+θ2 =1, θj ≥ 0, j = 1, 2}
(5)

in which

Adj = eAjTs ,Budj =
Ts∫
0

eAjτBudτ,Bddj =
Ts∫
0

eAjτBdjdτ

(6)

1From this point on, for simplicity, the subscripts α and β are suppressed.

with

A1 = A(Lgmin), A2 = A(Lgmax),
Bd1 = Bd(Lgmin), Bd2 = Bd(Lgmax).

(7)

To ensure tracking of sinusoidal references and rejection of
harmonic disturbances, n resonant controllers are included in
the model, leading to the representation [12]

ξ(k + 1) = Rξ(k) + T (iref (k)− y(k)) (8)

where

ξ =

 ξ1
...
ξn

 , R =

 R1

. . .
Rn

 , T =

 T1

...
Tn

 (9)

and iref is the reference for the grid currents. ξ, R and T are,
respectively, the state vector and the matrices of the multiple
resonant controllers. Each vector ξi, i = 1...n, has two states
and represents one resonant controller.

Notice that (4)-(8) can be rewritten as x(k + 1)
φ(k + 1)
ξ(k + 1)

=

 Ad(θ) Bud(θ) 03×2n

01×3 0 01×2n

−T2n×1Cy 02n×1 R2n×2n

 x(k)φ(k)
ξ(k)

+

+

 03×1

1
02n×1

u(k) +
Bdd(θ)

0
02n×1

 vg(k) +
 03×1

0
T2n×1

 iref (k)
(10)

or, in a more compact form, as

ρ(k + 1) = G(θ)ρ(k)+Huu(k)+Hd(θ)vg(k)
+Href iref (k)

y(k) = Cρ(k) , C =
[
Cy 01×(2n+1)

] (11)

where

G(θ)=
2∑
j=1

θjGj , Hd(θ)=
2∑
j=1

θjHdj (12)

with [θ1, θ2] ∈ Θ, ∀k ≥ 0.
This model is suitable to design robust state feedback

controllers by means of LMIs (see, for instance, [12]–[14]).

III. CONTROL DESIGN BASED ON LMIS

Consider that the state feedback control law

u(k) = Kρ(k) =
[
Kx Kφ Kξ

]  x(k)
φ(k)
ξ(k)

 (13)

is applied to the system (11).
The state feedback controller gains can be computed using

the robust stabilizability LMIs based on quadratic stability and
on polyquadratic stability given below.

1) Quadratic stability [23]: If there exist W and Z for all
i = 1, 2, such that

W = W ′ > 0 (14)[
W WGi

′ + Z ′Hui
′

GiW +HuiZ W

]
> 0 (15)



then the state feedback control gain vector

K = ZW−1 (16)

ensures the asymptotic stability of the closed-loop system.
2) Polyquadratic stability [24]: If there exist symmetric

positive definite matrices Sj , j = 1, 2, and matrices G and R
such that the following LMIs2[

G + G′ − Sj G′G′

j + R′H ′

uj

GjG +HujR Si

]
> 0

i = 1, 2
j = 1, 2

(17)
hold, then the state feedback control gain vector given by

K = RG−1 (18)

ensures the asymptotic stability of the closed-loop system.
[12].

To allow a comparative study of these control design LMIs,
consider for a case study the GCC borrowed from the literature
[13], [14], [16], whose parameters are shown in Table I. Notice
that the grid inductance is given here by an uncertain interval
of Lg2 from 0 mH to 3 mH. Notice also that there are
four resonant controllers, chosen in terms of frequency and
damping factor as in the previous mentioned references.

Table I
SYSTEM PARAMETERS.

Converter inductance Lc 1 mH
Filter capacitor Cf 62 µH

Grid-side inductance Lg1 0.3 mH
Grid inductance Lg2 [0 mH ; 3 mH]

Sampling frequency Ts 1/20040 s
Switching frequency 1/10020 s
Grid phase voltage 127 Vrms; 60 Hz

DC-link 400 V
Resonant frequencies 60, 180, 300 and 420 Hz

Resonant damping factor 0.0001

Applying the LMIs in this section for the set of parameters
in Table I, one has that both LMIs are feasible. The quadratic
stability leads to the gains K ′QS , while the polyquadratic
stability, based on extra matrix variables, leads to the gains
K ′PQS in Table II 3.

Although both conditions provide control gains, the viability
of the closed-loop control system with these gains must be
evaluated under limitations of the control signal, which were
not taken into account in the control design stage. In this
direction, simulations for control validation are given in the
next section.

IV. SIMULATIONS AND CONTROL VALIDATION

In order to validate the control gains in conditions closer of
practical application, tests of sinusoidal reference tracking for

2The value of n represents the number of resonant controllers, that is, if
four resonant controllers are used, and n = 4 then K belongs to R1×12.

3Gains obtained by means the solver LMI control toolbox (MATLAB®)

Table II
CONTROL GAINS.

K ′QS K ′PQS
-22.74189048 -17.20640173
-8.27935946 -5.11265162
-9.83442208 -6.16577797
-1.00034347 -0.73197371
63.56200269 51.33879276
-63.45499580 -51.17310062
21.30606037 17.31028709
-22.40198848 -18.02405838
14.88119349 11.66425868
-18.45408436 -14.01190485
11.99894623 9.07983549
-19.21054987 -13.84923202

the closed-loop system with limitations in the control signal,
which is implemented as PWM waveforms of amplitude 400 V
and frequency of 20040 Hz, are taken into account. The
reference signal for grid currents in α and β axes begins with
zero value, then is changed to 10 A of peak value. Two changes
in the phase of the reference are imposed and finally a change
in the amplitude of the reference, to the peak value of 20 A,
is implemented.

Considering the gains K ′QS in Table II, designed with the
quadratic stability, Figure 2 shows the grid current reference
in α and the respective controlled grid-current and Figure 3
shows the respective control signal. In this simulation, the out-
put of the control system progressively increases in amplitude,
indicating the instability in practice with for the grid operation
condition of Lg2 = 0 mH, that is, for strong grid condition.
Thus, a limitation with the design with the quadratic stability
can be observed.

On the other hand, the polyquadratic stability, with control
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Figure 2. Closed-loop responses with the control gains from the quadratic
stability. Top: operation at Lg2 = 0 mH (instability). Bottom: operation at
Lg2 = 3 mH.
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Figure 3. Control signals from Figure 2.

gains K ′PQS in Table II, ensures stable operation for the entire
range of grid inductance values, as can be verified in figures 4
and 5, for the extreme values of Lg2 = 0 mH and Lg2 = 3 mH.
Notice the suitable transient responses under the amplitude and
phase changes of the reference signal, and also the good steady
state performance, with the controllers designed with the more
relaxed LMI design conditions.

It is worth to mention that the polyquadratic stability leads
to better results than the quadratic stability in this case due
to the fact that the control gains of the quadratic stability
tend to increase to keep the poles inside the unit circle for
the large interval of Lg2 under consideration here, as can
be seen comparing the gains K ′QS and K ′PQS in Table II.
Both gains would be sufficient to ensure stability under linear
operation of the converter. However, in practice, the control
action is limited in amplitude and in frequency, and then the
larger gains, from quadratic stability, are not viable in this case
study. On the other hand, due to extra variables in the design
problem, the polyquadratic stability produces control gains that
avoid problems with limitation in the control signal, leading
to viable results.

In order to corroborate the good performance of the closed-
loop system with the gains designed by the polyquadratic
stability, Figure 6 shows the Bode diagrams from the reference
to the output ig , where one can verify the 0 dB gain and phase
equivalent to 0 degrees, thus confirming the good reference
tracking capacity of the closed-loop system.

A sweep in the closed-loop poles of the system with
gains designed by the polyquadratic stability are given in
Figure 7, confirming the theoretical stability for the entire
grid inductance interval value, based on the models shown
in Section II.

V. CONCLUSION

This paper explored two LMI conditions for robust con-
trol design applied to GCCs operating under uncertain grid
impedance at the PCC. The first condition, known as quadratic
stability, has two matrix variables, that are used to recover
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Figure 4. Closed-loop responses with the control gains from the polyquadratic
stability. Top: operation at Lg2 = 0 mH. Bottom: operation at Lg2 = 3 mH.
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Figure 5. Control signals from Figure 4.
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the state feedback control gains vector. The second condition,
known as polyquadratic stability, has four matrix variables,
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thus including additional variables which improve the control
design solution. A case study for a GCC with LCL filter
connected to a predominantly inductive grid was shown, for
both LMI design conditions. The converter was modeled
including grid parameter uncertainty in a real interval and one
step control implementation delay. The resulting control gains
illustrate a case where the quadratic stability gains cannot
ensure stability for a large interval of grid inductances, due
to the higher conservativeness of these LMIs for system with
larger intervals of uncertainty. On the other hand, thanks to the
extra matrix variables and the lower conservativeness when
compared to the quadratic stability, the polyquadratic stability
provides, for this case study, a set of gains capable of ensuring
stability and good performance, thus indicating that relaxed
LMIs can be explored to provide results with a good tradeoff
between robustness and performance for GCC applications.
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