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DESPACHO ECONÔMICO MULTI ÁREA DESCENTRALIZADO 

CONSIDERANDO A PARTICIPAÇÃO DE AGREGADORES PRIVADOS LOCAIS 

USANDO O MÉTODO META-HEURÍSTICO 

 

 

AUTOR: Olatunji Matthew Adeyanju 

ORIENTADORA: Luciane Neves Canha 

 

 
A operação dos sistemas de energia tem sido majoritariamente baseada em soluções centralizadas. 

Nos últimos tempos, no entanto, os modelos econômicos do sistema de energia estão mudando 

devido à inclusão de novos participantes privados no sistema e políticas que apoiam a integração 

de 100% de energia renovável (ER). Este novo paradigma aumenta a complexidade dos sistemas 

de energia considerando a autonomia dos participantes individuais. A falta de transparência na 

troca de dados entre as operadoras também limita a eficácia das soluções centralizadas, tornando a 

operação centralizada mais desafiadora. Como resultado, a motivação para desenvolver uma 

solução descentralizada que permita ao operador individual gerenciar efetivamente sua operação 

enquanto interage com outros operadores torna-se necessária para operações seguras e confiáveis 

de toda a rede. Além disso, o problema clássico de operação multiárea tem sido estudado por muitos 

autores usando alguns métodos matemáticos lineares por partes convencionais. Alternativamente, 

onde há necessidade de abordar funções complexas e não convexas, os métodos metaheurísticos 

são considerados adequados. No entanto, apesar dessa capacidade, os métodos metaheurísticos 

existentes limitam-se a usar modelos centralizados ou a não considerar vários participantes 

autônomos em suas estruturas de tomada de decisão. Consequentemente, esta pesquisa desenvolve 

dois novos modelos de despacho econômico multiárea descentralizado baseado em otimização 

metaheurística (MO) para gerenciar a operação de alguns operadores de sistemas de transmissão 

(TSOs) e agregadores privados (PAs) de recursos de ER, incluindo armazenamentos de baterias 

em um contexto de sistemas de energia multiárea interconectados. O primeiro modelo é um modelo 

semi-descentralizado (SD) desenvolvido para atrair uma maior inclusão de PAs nos sistemas de 

transmissão, permitindo-lhes maximizar os lucros. O segundo modelo é um modelo totalmente 

descentralizado (FD) desenvolvido para coordenar a operação das PAs com os TSOs para preservar 

suas linhas de base. Os modelos propostos permitem determinar a integração efetiva de PAs 

autônomos nos sistemas de transmissão (TS) e sua cooperação com os TSOs. O objetivo de ambos 

os modelos é minimizar o custo total de operação do sistema coordenando efetivamente as 

operações dos TSOs e PAs. Os TSOs e PAs avaliam suas incertezas operacionais e determinam as 

reservas de energia considerando os melhores e piores cenários das variáveis incertas, permitindo 

assim que os modelos resultantes sejam resolvidos em três etapas usando métodos metaheurísticos 

selecionados (MM). Para preservar a propriedade de TSOs e PAs, o MM utiliza eficientemente 

conjuntos populacionais separados para resolver as operações das áreas em paralelo em uma 

abordagem de operação de duas camadas, permitindo que os TSOs e PAs alcancem operações 

quase ideais, de forma independente. Os estudos de caso são realizados em sistemas de transmissão 

nigerianos de 330 kV e 39 ônibus modificados, com três TSOs, cada um com três PAs, para 

demonstrar a eficácia dos modelos propostos. Os resultados de simulação obtidos mostraram a 

superioridade de desempenho dos novos modelos em relação ao modelo centralizado.  
 

 

Palavras-chave: Modelos Descentralizados. Multi-Área. Sistemas de Energia. Agregadores 

Privados. Operadores de Sistemas de Transmissão (TSOs). 
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The power systems operation has been mostly based on centralized solutions. In the recent time 

however, the power system economic models are changing because of the inclusion of new 

private participants in the system and policies that support 100 percent renewable energy (RE) 

integration. This new paradigm increases the power systems complexity considering the 

autonomy of the individual participants. Non transparency in data exchange among operators 

also limits the effectiveness of the centralized solutions, making centralized operation more 

challenging. As a result, the motivation to develop decentralized solution that allows individual 

operator to effectively manage its operation while interacting with other operators becomes 

necessary for secure and reliable operations of the entire grid. Furthermore, the classical 

multiarea operation problem has been studied by many authors using some conventional piece-

wise linearized mathematical methods. Alternatively, where there is need to address complex 

and non-convex functions, the metaheuristic methods are considered suitable. However, 

despite this capability, the existing metaheuristic methods have been limited to either using 

centralized models or not considering multiple autonomous participants in their decision-

making frameworks. Consequently, this research develops two novels decentralized multiarea 

economic dispatch models based on metaheuristic optimization (MO) to manage the operation 

of some transmission system operators (TSOs) and private aggregators (PAs) of RE resources 

including battery storages in an interconnected multiarea power systems context. The first 

model is a semi-decentralized (SD) model developed to attract wider inclusion of PAs in the 

transmission systems by allowing them to maximize profits. The second model is a fully 

decentralized (FD) model developed to coordinate the operation the PAs with the TSOs to 

preserve their baselines. The proposed models allow to determine the effective integration of 

autonomous PAs in the transmission systems (TS) and their co-operation with the TSOs. The 

objective of both models is to minimize the total operation cost of the system by effectively 

coordinating the TSOs and PAs operations. The TSOs and PAs evaluate their operational 

uncertainties and determine the power reserves considering the best and worst-case scenarios 

of the uncertain variables, thus enabling the resulting models to be solved in three stages using 

select metaheuristic methods (MM). To preserve the ownership of TSOs and PAs, the MM 

efficiently utilizes separate population sets to solve the operations of the areas in parallel in a 

two-layer operation approach, allowing the TSOs and PAs to achieve near-optimal operations, 

independently. Case studies are performed on a modified Nigerian 330 kV 39-bus transmission 

systems having three TSOs each with three PAs to demonstrate the effectiveness of the 

proposed models. The simulation results obtained showed the performance superiority of the 

novel models over their centralized counterpart model.  
 

 

Keywords: Decentralized Models. Multi-Area. Power Systems. Private Aggregators. 

Transmission Systems Operators (TSOs). 
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1 INTRODUCTION 

The recent changes in the traditional power systems operation imposed by the 

integration of variable energy resources have necessitated new changes in the system’s 

operation and economic models. Currently, the operation of many systems worldwide includes 

high renewable energy while many conventional generators in the system are declining 

substantially (MAKAROV, et al., 2017). This trend is envisaged to persist in the electricity 

market considering the economic and environmental benefits that renewable energy presents 

(KABOURIS and KANELLOS, 2010). However, these benefits come with a price. As 

renewable energy grows in the system, the system operation becomes more complex and the 

system operator faces the challenge of maintaining the system’s reliable and security, 

considering the variability and uncertainty of renewable resources (KUMAR, et al., 2016), 

especially, where the dispatch of renewable energy is prioritized over the conventional 

generators.  

Traditionally, the system operator would rely on power sharing with other areas or 

operators to manage its power imbalances (JI and TONG, 2018; MADADI, et al., 2019). 

However, over-reliance on inter-area power sharing during instances of inadequate reserve 

provision can lead to unimaginable price surges in the market and could make the system 

operation less cost-effective (HIRTH and ZIEGENHAGEN, 2015). This cost becomes 

increasingly important to system operators as the share of variable renewable resources 

increases in the system. Furthermore, the increase in the renewable energy resources permits 

the participation of new technologies in the system. As such, the transmission systems operator 

(TSO) must meet the challenge of keeping its existing infrastructure effectively open to new 

services to enhance the operation and cost-effectiveness of the system. Consequently, the need 

to make the integration of variable renewable energy in the power systems less complex, more 

effective, and economical becomes necessary.  

1.1 OPPORTUNITIES FOR PRIVATE AGGREGATORS IN THE POWER SYSTEMS 

The research on the inclusion of aggregators of distributed energy resources has been 

considered very promising in an electricity market environment with increasing variable 

renewable generation (HIRTH and ZIEGENHAGEN, 2015). Power balancing is required 

mostly during imminent emergency or power imbalance situations (MAZZI, et al., 2018). The 

power balancing or regulation provisioning have been majorly considered from conventional 
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generators in literatures with little attention on reserves from aggregated renewable sources 

(LUCÍA and JIM, 2018; MAZZI, et al., 2018). However, a number of available balancing 

providers is expected to decline in some systems, envisaged due to the retirement of more 

conventional generators in some systems. This situation indicates a foreseeable state of 

inadequate power balance provision and unimaginable price surges in the market during certain 

instances (DIVÉNYI, et al., 2019; MAKAROV, et al., 2017; RAMTEEN SIOSHANSI, 2010).  

In this sense, including aggregators in the system operation can benefit the system in 

some major ways. One, the strategic coordination and control of the aggregators resources can 

help respond quickly to power imbalances in the system, especially while considering the 

ramping rate limitations of the conventional generators (MAZZI, et al., 2018; OLSEN, et al., 

2012). Two, aggregators can support the system operator in deferring the built-out of new 

transmission delivery, and as more conventional generators declines in the system, they can 

help increase flexibility by providing both negative and positive balancing power to maintain 

the system operation (HELLMERS, et al., 2016; OLSEN, et al., 2012; REZA, et al., 2020). 

Also, beyond serving the function of balancing, the optimal allocation (location and sizing) of 

the aggregators can benefit the system in terms of active power loss and congestion relieves, 

steady-state voltage stability, and reduction in cost of operation (KARDAKOS, et al., 2016; 

MAZZI, et al., 2018).  

Enabling robust investment recovery process can attract wider participation of 

aggregators in the transmission systems to meet some of the current power systems operational 

needs. However, preserving the baselines of the existing operators is also needful as: One, the 

new aggregators may seek to maximize their profits and consequently, their optimal operation 

could jeopardize the operation of the existing system operators, especially if the aggregators 

are autonomous, having their own customers and existing operation strategies (MOHITI, et al., 

2019). Two, the operational uncertainties and power reserves in the area could increase 

drastically as the number of aggregators increases (MAKAROV, et al., 2017; MOHITI, et al., 

2019), more so if the aggregators’ operation include high intermittent renewable energy 

resources. From this perspective, the effective planning and operation of the entire power 

systems will rely on robust decentralized model that can coordinate the operation of multiple 

agents and energy resources, allowing each participant to manage its operation more 

effectively. 
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1.2 MULTI-AREA ECONOMIC DISPATCH (MAED) SOLUTIONS 

In the deregulated systems, the focus of power pool is to ensure an effectiveness of the 

system operation while satisfying the power demand and system constraints. This is facilitated 

through transmitting power from an area with cheaper costs of generation to another area with 

high generation costs. Usually, power pool is made up of several areas that are interconnected 

via the tie-lines with the aim to facilitate reliability, power sharing, and security for cost-

effective operation of the overall system (BASU, 2019a; BASU, 2019b; DOOSTIZADEH, et 

al., 2016; KHANABADI, et al., 2018). Each of the area has its own generation cost, load 

pattern and spinning reserves. Hence the main aim of the multi-area economic dispatch 

(MAED) is to determine optimal scheduling of the online generators and power exchange 

among the areas to minimize the overall system operation cost while satisfying the system 

operational constraints 

The common methods in the literatures used for solving the MAED problems are the 

mathematical programming (MP) methods and meta-heuristic optimization (MO) methods. 

The usual practice in MP methods is to decouple the optimal power flow (OPF) problems 

around tie-lines or by manipulating the voltage angles of some buses in the boundary areas or 

considering both to coordinate the operation of the entire system (DOOSTIZADEH, et al., 

2016; GUO, et al., 2017; LI, et al., 2016; MHANNA and VERBI, 2019; WANG and FU, 2016; 

WU, 2019). On the other hand, the MO methods decouple the areas via the tie-lines 

(GHASEMI, et al., 2016; LIN and WANG, 2019). The choice of methods used is a trade-off 

between pros and cons. For example, the MP methods may be computationally cheaper than 

the MO methods but suffers from linearization and complexity issues. Furthermore, while some 

MP methods have achieved decentralized solution for MAED (DOOSTIZADEH, et al., 2016; 

KHANABADI, et al., 2018; WU, 2019; ZHANG, et al., 2020), the existing MO methods 

(GHASEMI, et al., 2016; LIN and WANG, 2019) are usually conducted using centralized 

approaches. 

Generally, the MO methods are developed to mitigate the linearization and complexity 

issues associated with the MP methods, since they are relatively easy to implement and can 

handle large scale non-linear and non-convex optimization problems and constraints (BASU, 

2014; JEBARAJA, et al., 2017). However, their implementation for decentralized solution is 

still necessary considering that centralized models are relatively computationally expensive, 

complex to manage, disrespect privacy, and do not fully support regional integration 

(DIVÉNYI, et al., 2019; WU, 2019). As a result, the future power system operation models 
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may rely less on centralized approaches. From this background, this study develops two 

specific decentralized solution frameworks considering metaheuristics methods and thus, 

enabling them to meet the challenges of future power system operation involving multiple 

autonomous entities. 

1.3 MOTIVATION OF RESEARCH 

The classical multi-area economic dispatch has been studied by many authors. 

However, in the recent time, the power system economic models are changing because of the 

inclusion of new participants in the system. This new paradigm makes the operation of the 

power system to be more complex, considering large number of objectives and constraints to 

fulfill. Obviously, the previously developed models for power systems solution need to be 

reviewed to ensure the effective operation of the power systems, now considering the 

participation of numerous independent entities. Consequently, the motivation of this work is to 

develop practical MO-based decentralized models that permit the effective co-operation of 

multiple independent agents including the TSOs and PAs to enhance the overall operation of 

the power systems. 

1.4 JUSTIFICATION OF RESEARCH 

Some MP methods have achieved decentralized solution for MAED (DOOSTIZADEH, 

et al., 2016; KHANABADI, et al., 2018; WU, 2019; ZHANG, et al., 2020), however, they are 

indicated to suffer from linearization and complexity issues. Reference (ROSTAMPOUR, et 

al., 2019) indicated that the linearized model may not achieve optimal solution in real systems 

especially for weak or highly stressed systems. Therefore, the MO-based decentralized solution 

is necessary to address the linearization problems of the MP-based methods. Although the MO 

methods may not guarantee optimal solutions, still their solutions represent the actual 

behaviour of the power system as they do not need any form of linearization and could as well 

handle large number of linear and non-linear constraints. 

Furthermore, the power system operation which now includes multiple TSOs and PAs 

becomes more complicated. This new complexity weakens the use of most centralized models 

considering the shortcomings already mentioned (JEAN-MICHEL and JAVIER 

RODRÍGUEZ-GARCÍA, 2020; NARIMANI, et al., 2018; ROSTAMPOUR, et al., 2019). In 

contrast, the existing MO-based MAED models (GHASEMI, et al., 2016; LIN and WANG, 

2019) and even the decentralized MP-based MAED studies in the literature (KHANABADI, 
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et al., 2018; LU, et al., 2018; MHANNA and VERBI, 2019; ZHANG, et al., 2020;) did not 

include multiple local PAs in their decision-making framework. Therefore, developing 

effective practical decentralized models for the operation of PAs while preserving the baselines 

of the TSOs becomes evident and justifiable.  

1.5 RESEARCH OBJECTIVES 

1.5.1 General Objective 

This research implements a semi-decentralized (SD) and a fully decentralized (FD) 

multiarea economic dispatch (MAED) model based on meta-heuristic optimization (MO) to 

minimize the total operation cost of transmission system operators (TSOs) and private 

aggregators (PAs), effectively coordinating their operations. The research specific objectives 

are as follow: 

1.5.2 Specific Objectives: 

• Modelling of the hydropower generators with cascaded reservoir, thermal 

generators with valve-point effects, pumped-hydro and battery energy storage units. 

• Modelling the worst-case scenarios of load, wind and solar power uncertainties 

including the uncertainty of the exchanged power of the TSO and PAs using specific 

probabilistic modelling methods. 

• Evaluation of the power systems optimal operation costs and net-operation costs 

under varying tie-line power restrictions of the TSOs and PAs, respectively. 

• Analysis of the combined uncertainty impacts on the developed decentralized 

models. 

• Performance comparison of the proposed decentralized models and their centralized 

counterpart model in terms of operation cost and net-operation cost. 

• Validation of the developed decentralized models on a real modified interconnected 

multi-area power system. 

1.6 INNOVATIVE CONTRIBUTIONS 

The main contributions of the research are summarized as follow:  

• It presents novel methodologies for conducting MO-based decentralized solutions 
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for MAED problems including multiple autonomous entities. 

• The development of novel decentralized MAED models based on MO method for 

operating multi-area power systems including multiple autonomous entities.  

• The proposed novel decentralized solution is developed into two distinct models 

namely, Semi-decentralized (SD) and fully decentralized (FD) models. The SD 

model is developed to attract wider inclusion of PAs in the transmission systems by 

allowing them to maximize profits. On the other hand, considering that optimal 

operation of the new PAs can jeopardize the operation of the TSOs, the FD model 

is developed to coordinate the operation of the PAs with the TSOs’ to preserve their 

baselines. 

• Preservation of privacy and ownership of entities considering their operation 

independency considering MO frameworks. 

• Performance of several case studies on a modified real transmission system to 

demonstrate the effectiveness of the proposed models. 

1.7 ORGANIZATION OF THE CHAPTERS 

The rest of the research is organized as follow: 

Chapter 2: Presents the literature review relating to the research. The need and roles of 

aggregator of distributed energy resources including the various methods used to address the 

multi-area economic dispatch are discussed. 

Chapter 3: Presents the proposed SD and FD models and the mathematical formulations 

including the operation cost of the TSO and PA, uncertainty consideration and handling, 

reserve quantification and its associated cost, including the description of the RCEGA, the 

handling of area coupling and other system constraints, and implementation procedures of the 

proposed models.  

Chapter 4: Presents several case studies constructed with the proposed SD and FD 

models and their fully centralized (FC) counterpart. Also, the parameter settings of the RCEGA 

algorithm and relevant simulation results are presented. 

Chapter 5: Presents relevant states of the research including possible future studies. 
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2 LITERATURE REVIEW 

In the following sections, the review of the new participants here-in referred as 

aggregators including their relevant roles in the power systems, and the common methods used 

for addressing multi-area economic dispatch problems are presented. 

2.1 AGGREGATORS OF DISTRIBUTED ENERGY RESOURCES 

The research on the inclusion of aggregators of distributed energy resources has been 

considered very promising in an electricity market environment with increasing intermittent 

renewable generation (HIRTH and ZIEGENHAGEN, 2015). Mostly, aggregators are teased to 

influence both the energy and balancing reserve market. In any case, the inclusion of the 

aggregators in the power systems provides different options for the system operator to mitigate 

the overall system cost of operation.  

In Kardakos, et al., (2016), the optimal bidding strategy problem of a commercial virtual 

power plant (CVPP), which comprises of distributed energy resources (DERs), battery storage 

systems (BSS), and electricity consumers, and participates in the day-ahead (DA) electricity 

market was addressed. The CVPP model maximized the DA profit by minimizing the 

anticipated real-time production and the consumption of imbalance charges by formulating a 

three-stage stochastic bi-level optimization model while considering the uncertainty in the DA 

CVPP DER production and load consumption, as well as in the rivals' offer curves and real-

time balancing prices.  

Mueller, et al., (2017) introduced a generic and scalable approach for flexible energy 

systems to quantitatively describe and price their flexibility based on zonotopic sets. The 

description proposed allowed the aggregators to efficiently pool the flexibility of large numbers 

of systems and make control and market decisions on the aggregate level. In addition, an 

algorithm was presented that distributes aggregate-level control decisions among the individual 

systems of the pool in an economically fair and computationally efficient way. It was shown 

how the zonotopic description of flexibility could enable an efficient computation of aggregate 

regulation power bid-curves. 

In Faria, et al., (2018), a methodology capable of managing resources through the 

activities of an aggregator as in the case of a Virtual Power Player, providing different choices 

of aggregation and remuneration strategies. The methodology was validated in a case study 

regarding a 21-bus network composed of 20 consumers and 26 producers with relevant results. 
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Mazzi, et al., (2018) proposed an innovative market framework where the participant 

(virtual power plant, VPP) in the balancing market was allowed to act as an active agent (i.e., 

a provider of regulating energy) in some trading intervals and as a passive agent (i.e., a user of 

regulating energy) in some others. Computational experiments showed that the VPP expected 

revenues could increase substantially compared to an active-only or passive-only participation. 

Jiang, et al., (2019) proposed a bi-level optimization model for developing optimal 

bidding strategies of independent power producer in the monthly sequential contract and 

balancing markets based on an existing implemented monthly pre-listing balancing 

mechanism. The simulation results showed that the presented model could assist independent 

power producers in adjusting their monthly bidding strategies with relevant factors, such as the 

minimum output level of each producer, risk preference, and forecast information including 

system energy imbalance status and bidding strategies of rivals.  

Tavakoli, et al., (2019) investigated an energy exchange strategy between a generating 

company (GenCO) and an electric vehicle load aggregator (EVLA) in the energy and ancillary 

services markets by proposing an optimal self-scheduling problem for a GenCO together with 

an EVLA and renewable generation units under an energy exchange strategy, considering the 

offer prices and EV tariffs under a price-maker approach and uncertainties in a two-levels 

operation approach. The results showed that the energy exchange strategy under flexible EV 

tariffs resulted in an increase of the renewable energy penetration and the profitability of the 

GenCO. 

Alshehri, et al., (2020) focused on the aggregation of distributed energy resources 

(DERs) through a profit-maximizing intermediary that enables participation of DERs in 

wholesale electricity markets. Particularly, they studied the market efficiency brought in by the 

large-scale deployment of DERs and explore the extent the benefits could offset by the profit-

maximizing nature of the aggregator. Their numerical experiments illustrated the impact of 

uncertainty and amount of DER integration on the overall market efficiency. 

In Guzman, et al., (2020), a linear programming model for the aggregator’s 

coordination strategy to maximize its profit through the management of DERs and the 

participation in the day-ahead reserve market was proposed. The model used EV charging 

control provided up/down reserves to reduce operation cost by taking advantage of the DG. 

The proposed mathematical model was a representation of the daily EDS operation (hourly 

resolution) that enforced voltage and current magnitude constraints. A case study carried out 

in an unbalanced 34-bus EDS with 660 EVs demonstrated that the application of the proposed 

method could enhance the DER aggregator’s strategy with better outcomes in both profits and 
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EDS operation. 

2.2 MULTI-AREA ECONOMIC DISPATCH 

Doostizadeh, et al., (2016) developed a parallel decentralized methodology for multi-

area energy and reserve clearance under wind power uncertainty. It considered preserving the 

independency of regional markets while fully taking the advantages of interconnection as a 

salient feature of the new model. Additionally, the parallel procedure simultaneously clears 

regional markets for the sake of acceleration particularly in large-scale systems. To achieve the 

optimal solution in a distributed fashion, the augmented Lagrangian relaxation along with 

alternative direction method of multipliers were applied. The effectiveness and robustness of 

the proposed method were evaluated through several case studies on a two-area 6-bus and the 

modified three-area IEEE 118-bus test systems. 

In Madadi, et al., (2019), a decentralized methodology was proposed for optimal 

scheduling of generation units taking into consideration environmental constraint, dynamic line 

rating, wind power generations, compressed air energy storage and power pool market. A ε-

constraint approach was applied to solve the proposed dynamic economic/environmental 

dispatch of multi-area model. In addition, a fuzzy satisfying technique was used to select the 

best compromise solution. An interconnected, multi-area power system with cross-border 

trading in the presence of wind power uncertainty and the storage unit was considered for 

evaluating the proposed method.  

In Ding, et al., (2019), a novel distributed continuation power flow (CPF) algorithm 

based on block matrix computations was presented for realizing the decomposition and 

coordination calculation of multiple regional subsystems. This distributed algorithm could 

preserve the precision and convergence of integrated CPF algorithms and has an advantage in 

terms of the calculation speed. The performance of the proposed CPF model and distributed 

algorithm was demonstrated via case studies and comparative analyses.  

Similar to the MP methods described above, an augmented Lagrangian method is 

proposed in (FU, et al., 2016), alternating direction method of multipliers (ADMM) in 

(MHANNA and VERBI, 2019), stochastic optimization in (WANG and FU, 2016), quadratic 

programming in in (GUO, et al., 2017), linear programming in (LI, et al., 2016), mixed integer 

programming (MIP) in (KHANABADI, et al., 2018) and distributed interior point method in 

(LU, et al., 2018). Although the MP studies were conducted in remarkably interesting manner, 

however, they are indicated to suffer from linearization issues which makes them less suitable 
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for very complex non-linear and non-convex optimization problems.  

Consequently, in Basu (2014), teaching learning-based optimization algorithm was 

proposed for solving MAED problem with tie line constraints considering transmission losses, 

multiple fuels, valve-point loading and prohibited operating zones. The effectiveness of the 

proposed algorithm was verified on three different test systems, both small and large, involving 

varying degree of complexity.  

In Jadoun, et al. (2015), improved PSO was proposed to solve multi area economic 

dispatch (MAED) problem. The objective of the MAED problem determined the optimal value 

of power generation and interchange of power through tie-lines interconnecting areas to 

minimize the total fuel cost of thermal generating units of all areas while satisfying system 

non-linear operational constraints. To obtain more accurate solution, the control equation of 

the proposed PSO was modified by suggesting improved cognitive component of the particle’s 

velocity by suggesting preceding experience. The effectiveness of the proposed method was 

tested on four areas, 40 generators test system. The application results showed the robustness 

of the proposed model to solve large-dimensional MAED problem effectively. 

In Secui (2015), a chaotic optimizing method based on the global best artificial bee 

colony algorithm, where the random sequences used in updating the solutions of this algorithm 

are replaced with chaotic sequences generated by chaotic maps was proposed. The algorithm 

chaotic global best artificial bee colony algorithm was used to solve the multi-area 

economic/emission dispatch problem taking into consideration the valve-point effects, the 

transmission line losses, multi-fuel sources, prohibited operating zones, tie line capacity and 

power transfer cost between different areas of the system. Experimental results were used to 

verify the robustness of the model. 

Basu (2016) presented a quasi-oppositional group search optimization for solving 

multi-area dynamic economic dispatch problem with multiple fuels and valve-point loading. 

The proposed model employed quasi-oppositional based learning (QOBL) for population 

initialization and also for generation jumping. The model was tested on two multi-area test 

systems having valve point loading and multi-fuel option. It was found that the proposed model 

provided attractive solution for the MAED.  

In Ghasemi, et al., (2016), an efficient and powerful heuristic-hybrid algorithm using 

hybrid DE (differential evolution) and PSO (particle swarm optimization) techniques DEPSO 

(differential evolution particle swarm optimization) was proposed to solve several optimization 

problems including the MAED (multi-area economic dispatch), RCMAED (reserve 

constrained MAED) and RCMAEED (reserve constrained multi area environmental/economic 
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dispatch) problems with reserve sharing in power system operations. The effectiveness and 

efficiency of the proposed algorithm was affirmed by the experimental results presented.  

In First and Jinbei (2018), an efficient and powerful crisscross optimization algorithm 

(CSO) combining Pareto multi-objective processing strategy (MOCSO) was proposed. The 

proposed MOCSO approach addressed the different types of complex multi-objective MAED 

problem by applying two interacting search operators, namely horizontal crossover and vertical 

crossover. The former was used to enhance the MOCSO’s global search ability in complex 

solution space by introducing a distinctive cross-border crossover mechanism while the latter 

prevented the premature convergence by a unique dimensional crossover approach. The 

effectiveness and efficiency of the MOCSO algorithm was demonstrated with relevant results. 

Olang, et al. (2018) presented a multi objective, multi area hydrothermal environmental 

economic dispatch (MOMAHEED) problem to determine the optimal generating level of all 

the hydro and thermal generating units to adequately supply the demand, such that the total 

fuel cost of thermal plants in all areas and emissions are simultaneously curtailed while 

satisfying all physical and operational constraints. MOMAHEED was solved using Bat 

Algorithm (BA) which is inspired by echolocation behavior of micro bats. The multi objective 

function is converted to a single objective one using weighted sum method and cardinal priority 

ranking is used to select the optimal solutions. The algorithm when tested on a four-area system 

considering three test cases resulted in cost-effectiveness of the system.  

Basu (2019a), presented a squirrel search algorithm (SSA) for solving intricate multi-

region combined heat and power economic dispatch problem with integration of renewable 

energy sources. The valve point effect and proscribed workable area of thermal generators and 

solar and wind power uncertainty was addressed. SSA is a swarm-based intelligence algorithm 

which emulates the dynamic scavenging activities of squirrels. The efficiency of the suggested 

method was revealed on a three-region test system with capability to bestow with better-quality 

solution.  

In Lin and Wang (2019), an improved stochastic fractal search (ISFS) was proposed to 

solve the MAED problem considering the area load demands, the tie-line limits and various 

operating constraints. To balance exploration and exploitation, the ISFS introduced an 

opposition-based learning method for population initialization as well as for generation 

jumping. By combining with the differential evolution strategy, a hybrid diffusion process was 

then developed and used as the local search technique to enhance the exploitation ability. 

Furthermore, a novel repair-based penalty approach was presented and incorporated into the 

ISFS to find feasible solutions more efficiently. The effectiveness of the ISFS was 
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demonstrated on a real test system.  

Basu (2019b), presented nondominated genetic algorithm–II (NSGA-II) for solving 

multi-area dynamic economic emission dispatch (MADEED) of hydro-wind-thermal power 

system where power generations are allocated among the on-line units in such a manner that 

total cost and emission level are optimized simultaneously while fulfilling all operational 

constraints. Test results of a four-area system acquired from the suggested technique were fit 

to that acquired from strength pareto evolutionary algorithm 2 (SPEA 2).  

2.3 SECTION SUMMARY II 

These previous studies have presented interesting results in terms of cost-effectiveness 

of the system operation; however, they did not include uncertainties in their decision-making 

frameworks. And where uncertainties were considered, the solution methods for the 

participation of the aggregators in the power systems were limited to mathematical 

programming (MP) methods which do suffer from the linearization issues. In systems where 

there is need to address complex and multiple non-convex functions, the metaheuristic methods 

are considered suitable. Even with this capability, the existing metaheuristic methods are still 

limited to either not considering multiple autonomous participants in their decision-making 

frameworks or using centralized approaches. Considering that centralized models are relatively 

computationally expensive, complex to manage, disrespect privacy, and do not fully support 

regional integration, the future power system operation models may rely less on centralized 

approaches. Therefore, implementing the metaheuristic methods for decentralized solutions 

becomes very necessary. 
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3 PROPOSED METHODOLOGY 

This research develops two decentralized MAED models based on MO method to solve 

the MAED problem consisting of multiple transmission system operators (TSOs) and private 

aggregators (PAs) with minimal cost. The diagrammatic framework showing the inter-area 

interaction between TSO/TSO and intra-area interaction of TSO/PAs is presented in Figure 

3.1. 

 

Figure 3.1 – Diagrammatic framework showing the inter-area interaction between TSO/TSO 

and intra-area interaction between TSO/local PA 

 

Source: Authors. 

Note the term “private” is used to connote the “independency” of the PAs. The proposed 

decentralized models allow to determine the effective integration of autonomous PAs in the 

transmission systems (TS) and their co-operation with the TSOs. The objective of both models 

is to minimize the total operation cost of the system by effectively coordinating the TSOs and 

PAs operations. 

The first model is a SD model developed to attract wider inclusion of PAs in the 

transmission systems by allowing them to maximize profits. The second model is a FD model 

developed to coordinate the operation the PAs with the TSO to preserve their baselines. Unlike 
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the previous MO-based MAED studies, both models use multiple input-output population sets 

to achieve decentralization for the entire system.  

The developed models manage the ownership of TSOs and PAs, and consider the 

combined uncertainties of wind, solar, and load, including the uncertainties of the intra- and 

inter-area exchanged power costs of TSOs and PAs. Both models are solved using a Real-

Coded Elitism Genetic Algorithm (RCEGA). To preserve the operation independence of TSOs 

and PAs, the RCEGA efficiently utilizes separate population sets to solve the operations of the 

areas in parallel in a two-layer operation approach, allowing the TSOs and PAs to achieve 

optimal operations, independently. 

Considering that optimality is strictly based on accurate probability distribution 

function (PDF) (KHANABADI, et al., 2018; BASU, 2019), this study assumes that TSOs and 

PAs evaluate their degree of conservatism using the expected values along with the minimum 

and maximum deviations of the uncertain variables and account for their impacts on the power 

system operation in terms of power reserves requirement and associated costs ( MELODI, et 

al., 2016; MOHITI, et al., 2019). This way, the inherent risks are still preserved, and the total 

execution time is reduced.  

To reduce the problem complexity, the operation of the PAs is differentiated from the 

existing transmission participants in each area assuming that the TSO of the area owns all the 

existing generating units in the area. Although, the generators may be owned by different 

owners in the actual sense, the idea is to be able to properly account for the impact of operation 

of the new PAs in the system. Therefore, the TSO and PAs in each area are treated as separate 

entities with their operations coupled via the tie-lines. The proposed day-head semi and fully 

decentralized economic dispatch models are described in section 3.1 and 3.2, respectively. 

3.1 SEMI-DECENTRALIZED MODEL (SD) 

The decentralized structure of the SD model is presented in Figure 3.2a. Still recall that 

the SD model is particularly developed to attract wider inclusion of PAs in the transmission 

systems by allowing them to maximize profits. Note that individual participants (i.e., TSO and 

PAs) are organized into separate input-output population sets for the RCEGA implementation, 

giving complete operation autonomy to each party. Furthermore, the SD model is divided into 

two independent layers. A layer refers to an operational level where the operation of the 

respective areas takes place. In the first layer, the scheduling of PAs is prioritized together with 

the TSOs’ hydropower, pumped-hydro storage (PHS), wind, and solar units in a decentralized 
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manner. However, to mitigate the increased power system uncertainties, an inter-area power 

exchange is facilitated using a centralized strategy to re-coordinate and reschedule all TSOs’ 

thermal units in the second layer. It should be mentioned that the SD model only preserves the 

privacy of the local PAs as they interact with the responsible TSO via the TSO-PA tie-lines in 

the area but ultimately destroys the privacy preservation of the responsible TSO as it interacts 

with the neighbouring TSOs via the TSO-TSO tie-lines. As a result, the SD model is termed a 

semi-decentralized model. 

3.2 FULLY DECENTRALIZED MODEL (FD) 

The decentralized structure of the FD model is presented in Figure 3.2b. The FD model 

is developed to investigate the power system operation assuming that the operation of the PAs 

is coordinated with the TSOs’ to preserve their baselines. Unlike the SD model which uses 

independent population sets for the TSO and PAs across the entire power system, the FD model 

only organizes the areas into separate input-output population sets for RCEGA implementation, 

allowing the TSO in each area to coordinate the PAs operations in the area. The FD solution is 

further divided into two independent layers. The first layer is concerned with the decision 

making of each power system area with their decentralized operations. The individual area’s 

dispatch is coordinated using the thermal operation cost, the exchanged power with 

neighbouring areas and the associated hourly prices for a day-ahead operation. However, the 

independent approach may violate some operational constraints, especially the power output 

constraints of the reference generator and could compromise the solution optimality. To 

address this issue, the reference area in which the reference generator is located is assigned to 

coordinate the overall power system operation in the second layer. To realize this, other areas 

send their optimal operational data to the reference TSO who readjusts the operations of 

participants in the reference area accordingly. 
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Figure 3.2 – Decentralized structure of the proposed semi-decentralized (SD) and fully 

decentralized (FD) models 

 

Source: Authors. 

Considering that the TSOs and PAs evaluate their operations using the expected 

variables and their worst-case deviations, a three-stage optimization approach is employed to 

coordinate the TSOs and PAs operations. In the first stage, the expected variables (load, wind, 

solar, and exchanged power cost) are considered for evaluating the power system objective 

function. In the second and third stages, the uncertainties (modelled as the minimum and 

maximum deviations of the expected variables) are evaluated in the objective function to 

validate the effectiveness of the models. The flowchart describing the parallel operations of the 

areas and multi-stage solutions for the base case and scenario cases is shown in Figure 3.3. 
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Figure 3.3 – Flowchart of the proposed decentralized models 

 

Source: Authors. 

3.3 MATHEMATICAL FORMULATION OF THE DECENTRALIZED MODELS 

Assuming area 𝑖 as the reference, the objective function is to minimize the total system 

operation cost 𝑃𝑆𝑜𝑐, comprising the 𝑇𝑆𝑂𝑠 and 𝑃𝐴𝑠 total operation costs, given in Equation (1) 

and (2) for the SD and FD models, respectively.  

𝑃𝑆𝑜𝑐
𝑆𝐷 = 𝑚𝑖𝑛

{
 
 

 
 ∑𝑂𝑃𝑇𝑆𝑂𝑖,(𝑡)

𝑡∈𝑇,
𝑖∈𝐴

+ ∑ 𝑂𝑃𝑃𝐴𝑘,𝑖,(𝑡)
𝑡∈𝑇,
𝑘∈𝑁𝑖

,  𝑙𝑎𝑦𝑒𝑟 = 1

𝐴𝑐 +∑𝑂𝑃𝑇𝑆𝑂𝑖,(𝑡)
𝑡∈𝑇,
𝑖∈𝐴

,                                     𝑙𝑎𝑦𝑒𝑟 = 2
                  (1) 

𝑃𝑆𝑜𝑐
𝐹𝐷 = 𝑚𝑖𝑛

{
 
 
 

 
 
 ∑(𝑂𝑃𝑇𝑆𝑂𝑖,(𝑡) + 𝑂𝑃𝑃𝐴𝑘,𝑖(𝑡))

𝑡∈𝑇,
𝑖∈𝐴,
𝑘∈𝑁𝑖

,  𝑙𝑎𝑦𝑒𝑟 = 1

𝐵𝑐 + ∑(𝑂𝑃𝑇𝑆𝑂𝑖,(𝑡) + 𝑂𝑃𝑃𝐴𝑘,𝑖(𝑡))
𝑡∈𝑇,
𝑖=1,
𝑘∈𝑁𝑖

,  𝑙𝑎𝑦𝑒𝑟 = 2
                        (2) 

Equation (1) represents the total system operation cost with the SD model. Note that 𝐴𝑐 
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is a constant representing the optimal operation cost in layer 1 excluding the operation cost of 

the 𝑇𝑆𝑂𝑠’ thermal units in all areas, Equation (2) represents the total system operation cost 

with the FD model. Note that 𝐵𝑐 is a constant representing the optimal operation cost in layer 

1 excluding the reference area. In addition, 𝑡 is the time index in hours, 𝑇 is the total number 

of hours, 𝑖 is the area index, 𝐴 is the total number of power system areas, 𝑘 is the 𝑃𝐴 index, 𝑁𝑖 

is the total number of 𝑃𝐴𝑠 in area 𝑖, and 𝑂𝑃𝑇𝑆𝑂𝑖(𝑡) and 𝑂𝑃𝑃𝐴𝑘,𝑖(𝑡) are the operation costs of the 

𝑇𝑆𝑂𝑖 and 𝑃𝐴𝑘,𝑖, respectively. It should be mentioned that the SD and FD models are two 

distinct models and therefore, their performance simulation are performed separately. 

3.3.1 Operating Cost of TSO  

A multiarea power system is shown in Figure 3.4, consisting of areas 𝑖.and 𝑗. The 

notations “𝑖𝑗” and “𝑖𝑘”  denote the power flowing from area 𝑖 to area 𝑗 and from 𝑇𝑆𝑂𝑖 to 𝑃𝐴𝑘,𝑖, 

respectively. The 𝑇𝑆𝑂𝑖 exchanges power 𝑃(𝑡1)
𝑖𝑗

 with 𝑇𝑆𝑂𝑗 at cost 𝐶(𝑡1)
𝑒,𝑖𝑗

, while 𝑇𝑆𝑂𝑗 exchanges 

power 𝑃(𝑡2,𝑡2≠𝑡1)
𝑗𝑖

 with 𝑇𝑆𝑂𝑖 at cost 𝐶(𝑡2,𝑡2≠𝑡1)
𝑒,𝑗𝑖

. 

 

Figure 3.4 – Interconnected power system 𝑎𝑟𝑒𝑎 𝑖 having 𝑇𝑆𝑂𝑖 and 𝑃𝐴𝑘,𝑖, and 𝑎𝑟𝑒𝑎 𝑗 having 

𝑇𝑆𝑂𝑗 and 𝑃𝐴𝑘,𝑗 

 

Source: Authors. 

When the 𝑇𝑆𝑂𝑖 and 𝑇𝑆𝑂𝑗 relate to more than one tie-lines, the 𝑇𝑆𝑂 with net power 

exchange deficit pays the cost of the net power exchanged. A similar principle exists between 

𝑇𝑆𝑂𝑖 and local 𝑃𝐴𝑘,𝑖. Considering that 𝑇𝑆𝑂𝑖 owns all the existing generating units in its area, 

the penalty cost of underestimating wind and solar power, and load are neglected. Hence, the 

operation cost of the 𝑇𝑆𝑂𝑖 is obtained using Equation (3).  
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𝑂𝑃𝑇𝑆𝑂𝑖 =∑

{
 
 

 
 

∑ ∑𝑓𝑐(𝑃(𝑡)
𝑔,𝑖
)

𝑖∈𝐴

+∑𝐶(𝑡)
𝑒,𝑗𝑖
𝑃(𝑡)
𝑗𝑖

𝑗∈𝐴
𝑗≠𝑖

𝑔∈𝑇𝐺𝑖

+ ∑ 𝐶(𝑡)
𝑒,𝑘𝑖𝑃(𝑡)

𝑘𝑖

𝑘∈𝑁𝑖

}
 
 

 
 

                   (3)

𝑡∈𝑇

 

where 𝑓𝑐 (𝑃(𝑡)
𝑔,𝑖
) is the fuel cost function of thermal unit 𝑔, 𝑇𝐺𝑖 is total number of thermal 

units, 𝑃(𝑡)
𝑗𝑖
 and 𝑃(𝑡)

𝑘𝑖  are the expected power purchases from 𝑇𝑆𝑂𝑗 and 𝑃𝐴𝑘,𝑖, and 𝐶(𝑡)
𝑒,𝑗𝑖

 and 𝐶(𝑡)
𝑒,𝑘𝑖

 

are the associated costs, in area 𝑖. The fuel cost function of thermal unit 𝑔 in area 𝑖 considering 

valve-point effect is obtained using Equation (4) (BASU, 2019; LIN and WANG, 2019). 

𝑓𝑐 (𝑃(𝑡)
𝑔,𝑖
) = 𝑎𝑔,𝑖(𝑃(𝑡)

𝑔,𝑖
)2 + 𝑏𝑔,𝑖𝑃(𝑡)

𝑔,𝑖
+ 𝑐𝑔,𝑖 + |𝑒𝑔,𝑖 𝑠𝑖𝑛 (𝑓𝑔,𝑖(𝑃𝑚𝑖𝑛

𝑔,𝑖
− 𝑃(𝑡)

𝑔,𝑖
))|         (4) 

where 𝑓𝑐 (𝑃(𝑡)
𝑔,𝑖
) is the fuel cost function, 𝑃(𝑡)

𝑔,𝑖
 is the active power generated, and 𝑎𝑔,𝑖, 

𝑏𝑔,𝑖, 𝑐𝑔,𝑖, 𝑒𝑔,𝑖, and 𝑓𝑔,𝑖 are the fuel cost coefficients of thermal unit 𝑔 in area 𝑖. Since the real 

forecast data of wind and solar power are used for this study, their modelling is not presented. 

However, more details about their modelling can be found in (BASU, 2019a; BASU, 2019b). 

3.3.1.1 Modelling of the hydropower generator 

The hydropower plant generation output modelling is based on (BASU, 2019a; BASU, 

2019b; DUBEY, et al., 2016), given in Equation (5).  

𝑃(𝑡)
ℎ,𝑖 = 𝐶1ℎ,𝑖(𝑉(𝑡)

ℎ,𝑖)2 + 𝐶2ℎ,𝑖(𝑄(𝑡)
ℎ,𝑖)2 + 𝐶3ℎ,𝑖𝑉(𝑡)

ℎ,𝑖𝑄(𝑡)
ℎ,𝑖 + 𝐶4ℎ,𝑖𝑉(𝑡)

ℎ,𝑖 + 𝐶5ℎ,𝑖𝑄(𝑡)
ℎ,𝑖 + 𝐶6ℎ,𝑖              (5) 

where 𝑉(𝑡)
ℎ,𝑖

 is the reservoir storage volume, 𝑄(𝑡)
ℎ,𝑖

 is the discharge rate, and 𝐶1ℎ,𝑖, 𝐶2ℎ,𝑖, 

𝐶3ℎ,𝑖, 𝐶4ℎ,𝑖,𝐶5ℎ,𝑖, and 𝐶6ℎ,𝑖 are the hydropower plant coefficients in area 𝑖. 

3.3.1.2 Hydraulic network constraints: 

The hydraulic constraints are presented in (6)-(9) (BASU, 2019a; BASU, 2019b; 

DUBEY, et al., 2016; LIAO, et al., 2013). The physical limitations on reservoir storage 

volumes and discharge rates are given by (6) as follows: 

{
𝑉𝑚𝑖𝑛
ℎ,𝑖 ≤ 𝑉(𝑡)

ℎ,𝑖 ≤ 𝑉𝑚𝑎𝑥
ℎ,𝑖                                   

𝑄𝑚𝑖𝑛
ℎ,𝑖 ≤ 𝑄(𝑡)

ℎ,𝑖 ≤ 𝑄𝑚𝑎𝑥
ℎ,𝑖             

                           (6) 

where 𝑉𝑚𝑖𝑛
ℎ , 𝑉𝑚𝑎𝑥

ℎ  are the min./max. storage volume of hydro-plant reservoir ℎ, 

𝑄𝑚𝑖𝑛
ℎ , 𝑄𝑚𝑎𝑥

ℎ  are the min./max. water discharge of hydro-plant reservoir ℎ. 

The continuity equation for the hydro reservoir network is. 

𝑉(𝑡+1)
ℎ,𝑖 = 𝑉(𝑡)

ℎ,𝑖 + 𝐼(𝑡)
ℎ,𝑖 − 𝑄(𝑡)

ℎ,𝑖 − 𝑆(𝑡)
ℎ,𝑖 +∑(𝑄(𝑡−𝜏ℎ𝑙,𝑖)

ℎ𝑙,𝑖 + 𝑆(𝑡−𝜏ℎ𝑙,𝑖)
ℎ𝑙,𝑖 )

𝑅𝑢
ℎ,𝑖

𝑙=1

                   (7) 
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where 𝐼(𝑡)
ℎ  is the water inflow rate of hydro-plant reservoir ℎ, 𝐼(𝑡)

ℎ𝑙  is the water inflow 

rate of upper reservoir 𝑙 to ℎ, 𝑅𝑢
ℎ is the number of upstream units directly above hydro plant 

reservoir ℎ, 𝜏ℎ𝑙 is the water transport delay from reservoir 𝑙. 

Assuming the spillage to be zero for simplicity, the hydraulic continuity constraints are: 

𝑉0
ℎ,𝑖 − 𝑉𝑇

ℎ,𝑖 =∑𝑄(𝑡)
ℎ,𝑖

𝑇

𝑡=1

−∑∑𝑄(𝑡−𝜏ℎ𝑙,𝑖)
ℎ𝑙,𝑖

𝑅𝑢
ℎ,𝑖

𝑙=1

𝑇

𝑡=1

−∑𝐼(𝑡)
ℎ𝑙,𝑖

𝑇

𝑡=1

                           (8) 

where 𝑉0
ℎ/𝑉𝑇

ℎ are the initial/final storage volume of hydro-plant reservoir ℎ. 

In order to meet exactly the restrictions on the initial and final reservoir storage levels, 

the water discharge rate of the ℎ hydro plant 𝑄𝑑
ℎ,𝑖

 in the dependent interval d is then calculated 

by: 

𝑄𝑑
ℎ,𝑖 = 𝑉0

ℎ,𝑖 − 𝑉𝑇
ℎ,𝑖 +∑𝐼(𝑡)

ℎ𝑙,𝑖

𝑇

𝑡=1

+∑∑𝑄(𝑡−𝜏ℎ𝑙,𝑖)
ℎ𝑙,𝑖

𝑅𝑢
ℎ,𝑖

𝑙=1

𝑇

𝑡=1

−∑𝑄(𝑡)
ℎ,𝑖

𝑇

𝑡=1,
𝑡≠𝑑

                       (9) 

The dependent water discharge rate must satisfy the above constraints on the physical 

limitations of the reservoir storage volumes and discharge rates. 

3.3.1.3 Modelling pumped storage hydropower (PSH) 

The PSH model considering its generating and pumping modes is modelled according 

to (BASU, 2019) as given in (10) and (11), respectively.  

{
 
 

 
 𝑃𝑚𝑖𝑛

𝑔ℎ,𝑖
≤ 𝑃(𝑡)

𝑔ℎ,𝑖
≤ 𝑃𝑚𝑎𝑥

𝑔ℎ,𝑖
                                  𝑀𝑊;

𝑃𝑚𝑖𝑛
𝑔ℎ,𝑖

= 0; 𝑃𝑚𝑎𝑥
𝑔ℎ,𝑖

> 0                                    𝑀𝑊;

𝑄(𝑡)
𝑔ℎ,𝑖

(𝑃(𝑡)
𝑔ℎ,𝑖

) = 𝜌𝑖 + 2𝑃(𝑡)
𝑔ℎ,𝑖

     𝑎𝑐𝑟𝑒 − 𝑓𝑡/ℎ𝑟;

                     (10) 

{
 

 𝑃𝑚𝑖𝑛
𝑝ℎ,𝑖 ≤ 𝑃(𝑡)

𝑝ℎ,𝑖 ≤ 𝑃𝑚𝑎𝑥
𝑝ℎ,𝑖                                   𝑀𝑊;

𝑃𝑚𝑖𝑛
𝑝ℎ,𝑖 < 0; 𝑃𝑚𝑎𝑥

𝑝ℎ,𝑖 = 0                                    𝑀𝑊;

𝑄(𝑡)
𝑝ℎ,𝑖
(𝑃(𝑡)

𝑝ℎ,𝑖
) = −𝜇𝑖                       𝑎𝑐𝑟𝑒 − 𝑓𝑡/ℎ𝑟;

                   (11) 

where 𝑃(𝑡)
𝑔ℎ,𝑖

, 𝑃(𝑡)
𝑝ℎ,𝑖

 are the generating and pumping power, respectively, 𝑄(𝑡)
𝑔ℎ,𝑖

(𝑃(𝑡)
𝑔ℎ,𝑖

) is 

the discharging rate, 𝑄(𝑡)
𝑝ℎ,𝑖(𝑃(𝑡)

𝑝ℎ,𝑖) is the pumping rate, and 𝜌𝑖 and 𝜇𝑖 are real positive values. It 

should be mentioned that 𝑃(𝑡)
𝑔ℎ,𝑖

≥ 0 and  𝑃(𝑡)
𝑝ℎ,𝑖 = 0 when the PHS is in generating mode, 

𝑃(𝑡)
𝑔ℎ,𝑖

= 0 and 𝑃(𝑡)
𝑝ℎ,𝑖 < 0 when the PHS is in pumping mode. For each time the PHS performs 

a changeover function, it enters a temporary state of rest for a period due to its physical 

limitation. At these instances, 𝑃(𝑡)
𝑔ℎ,𝑖

= 𝑃(𝑡)
𝑝ℎ,𝑖 = 0. 
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3.3.1.4 Modelling battery energy storage system (BESS) 

First, a major consideration for BESS is its charging and discharging capacities. Both 

State of Charge (SoC) and Depth of Discharge (DoD) are usually used for limiting the ESS 

power injection. The SOC is calculated by (FARROKHIFAR, 2016; LUO, et al, 2015): 

𝑆𝑜𝐶(𝑡)
𝑖 =

𝐶(𝑡)
𝑏𝑒𝑠𝑠,𝑖 

𝐶𝑚𝑎𝑥
𝑏𝑒𝑠𝑠 

                                                                             (12) 

𝐷𝑜𝐷(𝑡)
𝑖 = 1 − 𝑆𝑜𝐶(𝑡)

𝑖                                                                       (13) 

0 ≤ |𝑃(𝑡)
𝑏𝑒𝑠𝑠,𝑖 | ≤ 𝑃𝑚𝑎𝑥

𝑒𝑠𝑠                                                                      (14) 

𝐶𝑚𝑖𝑛
𝑏𝑒𝑠𝑠 ≤ 𝐶(𝑡)

𝑏𝑒𝑠𝑠,𝑖 ≤ 𝐶𝑚𝑎𝑥
𝑏𝑒𝑠𝑠                                                                 (15) 

𝐶(𝑡)
𝑏𝑒𝑠𝑠,𝑖 = 𝐶(𝑡−1)

𝑏𝑒𝑠𝑠,𝑖 + (𝑃(𝑡)
𝑏𝑒𝑠𝑠,𝑖 ∗ 𝜌𝑏𝑒𝑠𝑠,𝑖)∆𝑡                                      (16) 

𝑆𝑜𝐶(𝑡)
𝑖  is the State of Charge, 𝐷𝑜𝐷(𝑡)

𝑖  is the Depth of Discharge, 𝐶𝑚𝑎𝑥
𝑒𝑠𝑠  is the rated energy 

capacity in MWh, 𝐶(𝑡)
𝑒𝑠𝑠,𝑖

 is the energy capacity, 𝑃(𝑡)
𝑒𝑠𝑠,𝑖

 is the BESS power injected/consumed, 

𝑃𝑚𝑎𝑥
𝑒𝑠𝑠  is the rated power capacity of the BESS in MW, 𝐶𝑚𝑖𝑛

𝑏𝑒𝑠𝑠/𝐶𝑚𝑎𝑥
𝑏𝑒𝑠𝑠 are the minimum and 

maximum energy allowed in each state of time 𝑡 of the i-th BESS unit, 𝜌𝑏𝑒𝑠𝑠,𝑖 is the efficiency 

of charging or discharging of the BESS, and ∆𝑡 is the operation time-step of the BESS in hours. 

3.3.1.5 Power balance constraints  

The power balance for the power system considering the operating modes of the PHS 

is given in (12)-(14) (BASU, 2019): 

• When PHS in the generation mode (𝑡 ∈ 𝑇𝑔𝑒𝑛) and BESS is discharging: 

∑ 𝑃(𝑡)
𝑔,𝑖

𝑔∈𝑇𝐺𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
ℎ,𝑖

ℎ∈𝐻𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑤,𝑖

𝑤∈𝑊𝐺𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑝𝑣,𝑖

𝑝𝑣∈𝑃𝑉𝑖
𝑖∈𝐴

+𝑃(𝑡)
𝑔ℎ,𝑖

+𝑃(𝑡)
𝑏𝑒𝑠𝑠,𝑖 + ∑ 𝑃(𝑡)

𝑛_𝑖𝑘

𝑘∈𝑁𝑖

+∑𝑃(𝑡)
𝑛_𝑖𝑗

𝑗∈𝐴
𝑗≠𝑖

= 𝑃(𝑡)
𝑑,𝑖 +𝑃(𝑡)

𝑙,𝑖                                                                                                                (12) 

• When PHS is in pumping mode (𝑡 ∈ 𝑇𝑝𝑢𝑚𝑝) and the BESS is charging: 

∑ 𝑃(𝑡)
𝑔,𝑖

𝑔∈𝑇𝐺𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
ℎ,𝑖

ℎ∈𝐻𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑤,𝑖

𝑤∈𝑊𝐺𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑝𝑣,𝑖

𝑝𝑣∈𝑃𝑉𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑛_𝑖𝑘

𝑘∈𝑁𝑖

+∑𝑃(𝑡)
𝑛_𝑖𝑗

𝑗∈𝐴
𝑗≠𝑖

= 𝑃(𝑡)
𝑑,𝑖 +𝑃(𝑡)

𝑝ℎ,𝑖
+𝑃(𝑡)

𝑏𝑒𝑠𝑠,𝑖 +𝑃(𝑡)
𝑙,𝑖                                                                                  (13) 

• When PHS is in changeover mode (𝑡 ∈ 𝑇𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟) and BESS is resting: 
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∑ 𝑃(𝑡)
𝑔,𝑖

𝑔∈𝑇𝐺𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
ℎ,𝑖

ℎ∈𝐻𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑤,𝑖

𝑤∈𝑊𝐺𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑝𝑣,𝑖

𝑝𝑣∈𝑃𝑉𝑖
𝑖∈𝐴

+ ∑ 𝑃(𝑡)
𝑛_𝑖𝑘

𝑘∈𝑁𝑖

+∑𝑃(𝑡)
𝑛_𝑖𝑗

𝑗∈𝐴
𝑗≠𝑖

= 𝑃(𝑡)
𝑑,𝑖 + 𝑃(𝑡)

𝑙,𝑖                                                                                                               (14) 

where 𝑃(𝑡)
𝑤,𝑖 𝑎𝑛𝑑 𝑃(𝑡)

𝑝𝑣,𝑖
 are the wind and solar power realizations, respectively, 𝐻𝑖, 𝑊𝐺𝑖 

and 𝑃𝑉𝑖 are the total number of hydro, wind and solar power units, respectively, 𝑃(𝑡)
𝑑,𝑖

 and 𝑃(𝑡)
𝑙,𝑖

 

are the total load and active power loss in area 𝑖, 𝑃(𝑡)
𝑛_𝑖𝑘

 is the net-power exchange between 𝑇𝑆𝑂𝑖 

and 𝑃𝐴𝑘,𝑖, 𝑃(𝑡)
𝑛_𝑖𝑗

 is net-power exchange between 𝑇𝑆𝑂𝑖 and 𝑇𝑆𝑂𝑗, and 𝑇𝑔𝑒𝑛, 𝑇𝑝𝑢𝑚𝑝, 𝑇𝑐ℎ𝑎𝑛𝑔𝑒𝑜𝑣𝑒𝑟 

are the times when the PHS is in the generating, pumping and changeover modes respectively. 

Recall that the PHS power is zero when it changes from the generating to pumping mode and 

vice versa. Observe the active power loss 𝑃(𝑡)
𝑙,𝑖

 is duly represented in the respective power 

balance constraints. 

3.3.1.6 Generation limits 

All generating units must operate within their minimum and maximum generating 

capacities as given in (16) (BASU, 2019a; BASU, 2019b). 

{
 
 

 
 𝑃𝑚𝑖𝑛

ℎ,𝑖 ≤ 𝑃(𝑡)
ℎ,𝑖 ≤ 𝑃𝑚𝑎𝑥

ℎ,𝑖

𝑃𝑚𝑖𝑛
𝑔,𝑖

≤ 𝑃(𝑡)
𝑔,𝑖
≤ 𝑃𝑚𝑎𝑥

𝑔,𝑖

𝑃𝑚𝑖𝑛
𝑤,𝑖 ≤ 𝑃(𝑡)

𝑤,𝑖 ≤ 𝑃𝑚𝑎𝑥
𝑤,𝑖

𝑃𝑚𝑖𝑛
𝑝𝑣,𝑖 ≤ 𝑃(𝑡)

𝑝𝑣,𝑖 ≤ 𝑃𝑚𝑎𝑥
𝑝𝑣,𝑖

                                                 (16)  

where 𝑃𝑚𝑖𝑛
ℎ,𝑖 , 𝑃𝑚𝑎𝑥

ℎ,𝑖
, 𝑃𝑚𝑖𝑛

𝑤,𝑖 , 𝑃𝑚𝑎𝑥
𝑤,𝑖

, 𝑃𝑚𝑖𝑛
𝑝𝑣,𝑖, 𝑃𝑚𝑎𝑥

𝑝𝑣,𝑖
 are the minimum and maximum generating 

power of hydro, wind, and solar power plants in area 𝑖, respectively. 

3.3.1.7 Thermal generator ramp rate limits constraints  

The ramp up/down rates limitations 𝑅𝑈𝑔,𝑖 and 𝑅𝐷𝑔𝑖, respectively, of thermal unit 𝑔 are 

defined in (17) (BASU, 2019; ROSTAMPOUR, et al., 2019): 

{
𝑃(𝑡)
𝑔,𝑖
− 𝑃(𝑡−1)

𝑔,𝑖
≤ 𝑅𝑈𝑔,𝑖,𝑡

𝑃(𝑡−1)
𝑔,𝑖

− 𝑃(𝑡)
𝑔,𝑖
≤ 𝑅𝐷𝑔,𝑖𝑡

                                                   (17)  

3.3.1.8 Tie line capacity and security constraints 

The tie-line power transfer 𝑃(𝑡)
𝑖𝑗

, 𝑃(𝑡)
𝑗𝑖

 and 𝑃(𝑡)
𝑖𝑘 , 𝑃(𝑡)

𝑘𝑖  should be less or equal to the tie-line 

maximum transfer capacity, as expressed in (18) (JI and TONG, 2018; BASU, 2019).  
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{
(−𝑃𝑚𝑎𝑥

𝑖𝑗
= 𝑃𝑚𝑎𝑥

𝑗𝑖
) ≤ 𝑃(𝑡)

𝑖𝑗
≤ (𝑃𝑚𝑎𝑥

𝑖𝑗
= −𝑃𝑚𝑎𝑥

𝑗𝑖
)

(−𝑃𝑚𝑎𝑥
𝑖𝑘 = 𝑃𝑚𝑎𝑥

𝑘𝑖 ) ≤ 𝑃(𝑡)
𝑖𝑘 ≤ (𝑃𝑚𝑎𝑥

𝑖𝑘 = −𝑃𝑚𝑎𝑥
𝑘𝑖 )

                                    (18) 

3.3.2 Operating Cost of PA 

The operating cost of 𝑃𝐴𝑠, neglecting the maintenance cost and the penalty cost 

associated with the wind and solar power imbalances, is given in Equation (19). 

𝑂𝑃𝑃𝐴𝑘,𝑖 = ∑ ∑𝑓𝑐 (𝑃(𝑡)
𝑔,𝑘
)

𝑖∈𝐴𝑘∈𝑁𝑖

+ ∑ 𝐶(𝑡)
𝑒,𝑖𝑘𝑃(𝑡)

𝑒,𝑖𝑘

𝑘∈𝑁𝑖

                                      (19) 

where 𝑓𝑐 (𝑃(𝑡)
𝑔,𝑘
) is the fuel cost function of thermal unit 𝑔 of 𝑃𝐴𝑘,𝑖 and 𝑃(𝑡)

𝑒,𝑖𝑘,   and 

𝐶(𝑡)
𝑒,𝑖𝑘 are the expected purchased power and the associated cost from 𝑇𝑆𝑂𝑖, respectively. The 

fuel cost function of thermal unit 𝑔 of 𝑃𝐴𝑘,𝑖 in area 𝑖 is obtained using Equation (20) (BASU, 

2019A; BASU, 2019B; SHIWEI, et al., 2020). 

𝑓𝑐 (𝑃(𝑡)
𝑔,𝑘
) = 𝑎𝑔,𝑘(𝑃(𝑡)

𝑔,𝑘
)2 + 𝑏𝑔,𝑘𝑃(𝑡)

𝑔,𝑘
+ 𝑐𝑔,𝑘                                       (20) 

where 𝑓𝑐 (𝑃(𝑡)
𝑔,𝑘
) is the fuel cost function, 𝑃(𝑡)

𝑔,𝑘
 is the active power generated, and 𝑎𝑔,𝑘, 

𝑏𝑔,𝑘, and 𝑐𝑔,𝑖, are the fuel cost coefficients of thermal unit 𝑔 of 𝑃𝐴𝑘,𝑖 in area 𝑖.  

For the 𝑃𝐴𝑘,𝑖 in area 𝑖, the mathematical modeling of the pumped storage hydropower 

unit is obtained as in Equation (10)-(11). The power balance constraints and generators power 

limits are obtained as in (10)-(15) but without hydropower unit. The generator ramp rates 

limits, line capacity and security constraints are obtained as in (16)-(18). 

3.4 UNCERTAINTY CONSIDERATION AND HANDLING 

Without regard to ownership of wind and solar units, the decentralized planning model 

must account for the operational uncertainties if the available load, wind, and solar power are 

less than their expected values. This is modeled in terms of the power reserves needed. The 

actual values of wind and solar power and load are modelled in terms of their expected value 

using probabilistic modelling methods (GUAN and WANG, 2014; MELODI, et al., 2016; 

SHAHIRINIA, et al., 2016; MOHITI, et al., 2019). The worst-case scenarios are the minimum 

and maximum deviations of the expected values given by (21).  
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{
 
 
 

 
 
 𝑃(𝑡)

𝑎𝑊  = (𝑃(𝑡)
𝑊 + ∆𝑃(𝑡)

𝑊 ), {
∆𝑃(𝑡),𝑚𝑖𝑛

𝑊 , 𝑃(𝑡)
𝑎𝑊 < 𝑃(𝑡)

𝑊

∆𝑃(𝑡),𝑚𝑎𝑥
𝑊 , 𝑃(𝑡)

𝑎𝑊 > 𝑃(𝑡)
𝑊

𝑃(𝑡)
𝑎𝑃𝑉  = (𝑃(𝑡)

𝑃𝑉 + ∆𝑃(𝑡)
𝑃𝑉), {

∆𝑃(𝑡),𝑚𝑖𝑛
𝑃𝑉 , 𝑃(𝑡)

𝑎𝑃𝑉 < 𝑃(𝑡)
𝑃𝑉

∆𝑃(𝑡),𝑚𝑎𝑥
𝑃𝑉 , 𝑃(𝑡)

𝑎𝑃𝑉 > 𝑃(𝑡)
𝑃𝑉

𝑃(𝑡)
𝑎𝑑  = (𝑃(𝑡)

𝑑 + ∆𝑃(𝑡)
𝑑 ), {

∆𝑃(𝑡),𝑚𝑖𝑛
𝑑 , 𝑃(𝑡)

𝑎𝑑 < 𝑃(𝑡)
𝑑

∆𝑃(𝑡),𝑚𝑎𝑥
𝑑 , 𝑃(𝑡)

𝑎𝑑 > 𝑃(𝑡)
𝑑

                           (21) 

where 𝑃(𝑡)
𝑊 , 𝑃(𝑡)

𝑃𝑉, 𝑃(𝑡)
𝑑  / 𝑃(𝑡)

𝑎𝑊, 𝑃(𝑡)
𝑎𝑃𝑉, 𝑃(𝑡)

𝑎𝑑 / ∆𝑃(𝑡)
𝑊 , ∆𝑃(𝑡)

𝑃𝑉, ∆𝑃(𝑡)
𝑑  are the expected values, 

actual, and deviations of wind and solar power, and load, respectively.  

3.4.1 Quantifying power reserves need and associated costs. 

The required power reserve is computed using the net-deviation concept (i.e., the 

combined wind and solar power and load forecast deviations) instead of treating the deviations 

separately, as in Equation (22) (MAKAROV, et al., 2017). 

∆𝑃(𝑡)
𝑅 =∑{

(𝑃(𝑡)
𝑊 − 𝑃(𝑡)

𝑎𝑊),

(𝑃(𝑡)
𝑃𝑉 − 𝑃(𝑡)

𝑎𝑃𝑉),

(𝑃(𝑡)
𝑑 − 𝑃(𝑡)

𝑎𝑑),𝑡∈𝑇

                                                                          (22) 

where ∆𝑃(𝑡)
𝑅  is the total reserve power required due to the uncertainties of load and wind 

and solar power. For the 𝑇𝑆𝑂𝑖, the associated cost of the reserves consists of three major 

components, given in Equation (23). 

𝐾(𝑡)
𝑖 =∑𝑘𝑅𝑖𝐶(𝑡)

𝑅,𝑖∆𝑃(𝑡)
𝑅,𝑖 +

𝑖∈𝐴

∑𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡,𝑘𝑖

𝑘∈𝑖

+ ∑𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡,𝑗𝑖

𝑗∈𝐴,
𝑗≠𝑖

              (23) 

where 𝐶(𝑡)
𝑅,𝑖

 is the cost of ∆𝑃(𝑡)
𝑅,𝑖

 in $/MWh, 𝑘𝑅𝑖 is the coefficient of 𝐶(𝑡)
𝑅,𝑖

, and 𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡,𝑘𝑖

 

and 𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡 ,𝑗𝑖

 are the extra cost budgets to account for the market price uncertainties of 𝑃𝐴𝑘,𝑖 

and 𝑇𝑆𝑂𝑗 during which 𝑇𝑆𝑂𝑖 purchases power from 𝑃𝐴𝑘,𝑖 and 𝑇𝑆𝑂𝑗 in $, defined in Equation 

(24) and (25), respectively.  

𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡,𝑘𝑖 = 𝑘𝑘𝑖(𝐶(𝑡)

𝑎,𝑘𝑖 − 𝐶(𝑡)
𝑒,𝑘𝑖)𝑃(𝑡)

𝑘𝑖                                                    (24) 

𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡 ,𝑗𝑖 = 𝑘𝑗𝑖(𝐶(𝑡)

𝑎,𝑗𝑖
− 𝐶(𝑡)

𝑒,𝑗𝑖
)𝑃(𝑡)

𝑗𝑖
                                                   (25) 

The 𝑃𝐴𝑘,𝑖 reserve cost is obtained using a similar approach of that in (21)-(25), and is 

given as:  

𝐾(𝑡)
𝑘 =∑𝑘𝑅𝑘𝐶(𝑡)

𝑅,𝑘,𝑖∆𝑃(𝑡)
𝑅,𝑘,𝑖 +

𝑘∈𝑖,
𝑖=1

∑𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡,𝑖𝑘

𝑘∈𝑖,
𝑖=1

                                  (26) 
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where 𝐶(𝑡)
𝑅,𝑘,𝑖

 is the cost of ∆𝑃(𝑡)
𝑅,𝑘,𝑖

 in $/MWh, 𝑘𝑅𝑘 is the coefficient of 𝐶(𝑡)
𝑅,𝑘,𝑖

, and 

𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡,𝑖𝑘

 is the extra cost budget to account for the market price uncertainty of 𝑇𝑆𝑂𝑖 during 

which 𝑃𝐴𝑘,𝑖 purchases power from 𝑇𝑆𝑂𝑖 in $, as in Equation (27). 

𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡,𝑖𝑘 = 𝑘𝑖𝑘(𝐶(𝑡)

𝑎,𝑖𝑘 − 𝐶(𝑡)
𝑒,𝑖𝑘)𝑃(𝑡)

𝑖𝑘                                                              (27) 

It should be mentioned that 𝐶(𝑡)
𝑒𝑥𝑏𝑔𝑡

 equals to zero when the available exchanged power 

cost is less than the expected cost. Assuming that the exchanged power costs is proportional to 

the cost of energy in the area, 𝐶(𝑡)
𝑅,𝑖

 and 𝐶(𝑡)
𝑅,𝑘,𝑖

 are determined in terms of the expected exchanged 

power costs, given in (28) and (29), respectively. 

𝐶(𝑡)
𝑅,𝑖 =

{
 

 max( 𝐶(𝑡)
𝑒,𝑗
, 𝐶(𝑡)

𝑒,𝑘,𝑖)     𝑃(𝑡)
𝑖𝑗
+ 𝑃(𝑡)

𝑗𝑖
+ 𝑃(𝑡)

𝑖𝑘 + 𝑃(𝑡)
𝑘𝑖 < 0

𝐶(𝑡)
𝑒,𝑖,    𝑃(𝑡)

𝑖𝑗
+ 𝑃(𝑡)

𝑗𝑖
+ 𝑃(𝑡)

𝑖𝑘 + 𝑃(𝑡)
𝑘𝑖 > 0

0, ∆𝑃(𝑡)
𝑅,𝑖 < 0

                 (28) 

𝐶(𝑡)
𝑅,𝑘,𝑖 =

{
 

 𝐶(𝑡)
𝑒,𝑖, 𝑃(𝑡)

𝑘𝑖 + 𝑃(𝑡)
𝑖𝑘 < 0

𝐶(𝑡)
𝑒,𝑘,𝑖, 𝑃(𝑡)

𝑘𝑖 + 𝑃(𝑡)
𝑖𝑘 > 0

0, ∆𝑃(𝑡)
𝑅,𝑘,𝑖 < 0

                                                       (29) 

where 𝐶(𝑡)
𝑒,𝑖

 and 𝐶(𝑡)
𝑒,𝑗

 are the expected power selling prices in area 𝑖 and area 𝑗, 

respectively, and 𝐶(𝑡)
𝑒,𝑘,𝑖

 is the expected power-selling price of 𝑃𝐴𝑘,𝑖 in area 𝑖. By considering 

Equations (23) and (26), the total operation cost, including reserves cost of the 𝑇𝑆𝑂𝑖 and 𝑃𝐴𝑘,𝑖, 

is re-written as Equation (30) and (31), respectively. 

𝑂𝑃𝑇𝑆𝑂𝑖 =∑

(

 
 
∑ ∑𝑓𝑐 (𝑃(𝑡)

𝑔,𝑖
)

𝑖∈𝐴𝑔∈𝑇𝐺𝑖

+∑𝐶(𝑡)
𝑒,𝑗𝑖
𝑃(𝑡)
𝑗𝑖
+ ∑ 𝐶(𝑡)

𝑒,𝑘𝑖𝑃(𝑡)
𝑘𝑖

𝑘∈𝑁𝑖

+ 𝐾(𝑡)
𝑖

𝑗∈𝐴
𝑗≠𝑖 )

 
 
                        (30)

𝑡∈𝑇

 

𝑂𝑃𝑃𝐴𝑘,𝑖 =∑(∑ ∑ 𝑓𝑐(𝑃(𝑡)
𝑔,𝑘
)

𝑔∈𝑇𝐺𝑘𝑘∈𝑁𝑖

+ ∑ 𝐶(𝑡)
𝑒,𝑖𝑘𝑃(𝑡)

𝑖𝑘

𝑘∈𝑁𝑖

+ 𝐾(𝑡)
𝑘 )

𝑡∈𝑇

                                                   (31) 

It should be mentioned that the resulting Equations (30) and (31) are non-linear and 

non-convex problems, although it includes some linear and convex functions. 

3.5 THE REAL-CODED ELITISM GENETIC ALGORITHM (RCEGA) 

The RCEGA evolves populations based on the principle of natural selection (THAKUR 

and KUMAR, 2016). First, an individual is represented as a chromosome structure which is 
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made up of several genes. During the creation of an individual, chromosomes traits are 

randomly chosen from the pool of possible values generated between the minimum and 

maximum values of the decision variables and introduced into the generators. For each 

chromosome introduced into generator, load flow is conducted to check if the power systems 

constraints are satisfied. The chromosomes which do not satisfy the predefined constraints are 

considered as invalid and therefore rejected. For every invalid chromosome, a new 

chromosome is generated and re-introduced into the population. After a population of solutions 

is created, ranking is performed according to fitness values and genetic operators (e.g., elitism, 

selection, crossover, and mutation) are applied to evolve and generate new solutions. In each 

generation, the fitness function evaluates the individual survival likelihood in the new 

generation. The RCEGA flowchart is summarized in Figure 3.5.  

 

Figure 3.5 – The RCEGA working process 

 

Source: Authors. 

The consideration for the RCEGA algorithm for the current work is its suitable to 

handle the non-convexity and non-linearity functions and constraints (KUMAR and NARESH, 

2007). Note that different MO algorithms have performance comparative advantage over 

another. However, with the proposed decentralized models, the economic dispatch solution 

should improve when compared to the centralized counterpart model for any given MO 

algorithm. 
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3.5.1 Initial Population Sets 

To achieve both FD and SD models, separate set of population is created for the TSO 

and PAs in each area as described in Chapter 2. The control variables of the individual TSO 

and PA over the entire time frame can be expressed as in Equation (32) and (33), respectively. 

𝑋𝑝
0 =

[
 
 
 
 𝑄1

ℎ,𝑖 𝑃1
𝑔,𝑖

𝑃1
𝑤,𝑖 𝑃1

𝑝𝑣,𝑖
𝑃1
𝑔ℎ,𝑖

𝑃1
𝑝ℎ,𝑖

𝑄2
ℎ,𝑖 𝑃2

𝑔,𝑖
𝑃2
𝑤,𝑖 𝑃2

𝑝𝑣,𝑖
𝑃2
𝑔ℎ,𝑖

𝑃2
𝑝ℎ,𝑖

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑄𝑇
ℎ,𝑖 𝑃𝑇

𝑔,𝑖
𝑃𝑇
𝑤,𝑖 𝑃𝑇

𝑝𝑣,𝑖
𝑃𝑇
𝑔ℎ,𝑖

𝑃𝑇
𝑝ℎ,𝑖

]
 
 
 
 

                              (32) 

𝑋𝑢
0 =

[
 
 
 
 𝑃1

𝑔,𝑘
𝑃1
𝑤,𝑘 𝑃1

𝑝𝑣,𝑘
𝑃1
𝑔ℎ,𝑘

𝑃1
𝑝ℎ,𝑘

𝑃2
𝑔,𝑘

𝑃2
𝑤,𝑘 𝑃2

𝑝𝑣,𝑘
𝑃2
𝑔ℎ,𝑘

𝑃2
𝑝ℎ,𝑘

⋮ ⋮ ⋮ ⋮ ⋮

𝑃𝑇
𝑔,𝑘

𝑃𝑇
𝑤,𝑘 𝑃𝑇

𝑝𝑣,𝑘
𝑃𝑇
𝑔ℎ,𝑘

𝑃𝑇
𝑝ℎ,𝑘

]
 
 
 
 

                                      (33) 

The initial populace (𝑋𝑝
0/𝑋𝑢

0) of the control variables are selected at random based on 

uniform probability distribution for all variables to cover the entire search space uniformly as 

in Equation (34) and (35) for the TSO and PA, respectively. 

𝑥𝑝,𝑞
0 ~𝑈(𝑥𝑞

𝑚𝑖𝑛, 𝑥𝑞
𝑚𝑎𝑥), 𝑞 ∈ 𝑛𝑖, 𝑝 ∈ 𝑁𝑖,𝑝                                         (34) 

𝑥𝑢,𝑣
0 ~𝑈(𝑥𝑣

𝑚𝑖𝑛, 𝑥𝑣
𝑚𝑎𝑥), 𝑣 ∈ 𝑛𝑘 , 𝑢 ∈ 𝑁𝑘,𝑝                                       (35) 

where 𝑛𝑖 and 𝑛𝑘 are the number of decision variables in an individual, 𝑁𝑖,𝑝 and 𝑁𝑘,𝑝 are 

the populace sizes; 𝑥𝑝,𝑞
0  and 𝑥𝑢,𝑣

0  signify the initial 𝑞th and 𝑣th variables of the 𝑝th and 𝑢th 

populaces; 𝑥𝑞
𝑚𝑖𝑛/𝑥𝑣

𝑚𝑖𝑛 and 𝑥𝑞
𝑚𝑎𝑥/𝑥𝑣

𝑚𝑎𝑥 are the lower and upper bounds of the 𝑞th and 𝑣th 

decision variables, respectively; 𝑈(𝑥𝑞
𝑚𝑖𝑛, 𝑥𝑞

𝑚𝑎𝑥)/ 𝑈(𝑥𝑣
𝑚𝑖𝑛, 𝑥𝑣

𝑚𝑎𝑥) indicates a uniform random 

variables ranging over [𝑥𝑞
𝑚𝑖𝑛 , 𝑥𝑞

𝑚𝑎𝑥]/[ 𝑥𝑣
𝑚𝑖𝑛, 𝑥𝑣

𝑚𝑎𝑥], where 𝑁𝑖,𝑝 = 𝑁𝑘,𝑝. Subsequently, the 

individual fitness is calculated and passed to the RCEGA algorithm as described in Chapter 2 

to obtain the optimal solutions for TSO and PA, respectively. 

3.5.2 Handling Area Coupling and Other Systems Constraints 

Recall that the decentralized operations of the power system areas are decoupled around 

the tie-lines while the operations of the areas are solved in parallel to achieve decentralization. 

However, to ensure the consistency of coupling constraints of the areas, first, the tie-line limits 

between the areas are predefined in the solution algorithm, and both the base case and scenario 

cases must satisfy the specified tie-lines limits and other system’s constraints. Secondly, initial 

population of chromosome is randomly generated in each area. Each chromosome generated is 

introduced into the generator units in the area and load flow is initiated to obtain the area’s 
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information including tie-line power, line flows and losses, bus voltages, and generator power. 

The RCEGA algorithm is then implemented for each area taking the area’s information from 

the load flow simulation results. Because the objective function does not include a penalty 

function, the RCEGA operation is conducted such that every chromosome that violates the 

predefined constraints are considered as invalid and therefore rejected. During this process, the 

boundary mismatches including the tie-line power constraints are managed and satisfied. For 

every invalid chromosome, a new chromosome is generated and re-introduced into the 

population to complete the RCEGA process for the system optimal solution. 

3.5.3 Decentralized Solution Implementation Procedures 

Note that the base case and scenario cases are solved in different stages. For each case, 

the RCEGA solves the operations of the areas in parallel in a two-layer operation approach as 

detailed in Section 2. The parallel steps for the implementation of the SD and FD models shown 

in Figure 1 and 2 are summarized as follows: 

Step 1: Define all constraints: tie-lines, generators, ramp rates, and set RCEGA parameters: 

chromosome number, population size, fitness function by area/entity, and set the hour 

= 0. 

Step 2: Randomly generate initial parent population between the min. and max. decision 

variables. 

Step 3: Introduce chromosomes into the generators and perform load flow. 

Step 4: Check if the power system constraints are satisfied. if so, go to Step 5; if no, go to Step 

2. 

Step 5: Set hr = hr + 1, solve the layer 1 problems for each area in parallel using Equation 

(1a/2a). 

Step 6: Solve the layer 2 problems considering information from layer 1 using Equation 

(1b/2b). 

Step 7: Check if the reference generator output constraints are violated. If so, go to Step 6; if 

not, go to Step 8. 

Step 8: Repeat Steps 2-7 for the minimum case and then go to Step 9.  

Step 9: Repeat Steps 2-7 for the maximum case and then go to Step 10. 

Step 10: Check if hr = 24. if so, go to Step 11; if no, go to Step 5. 

Step 11: Stop. 
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3.6 SECTION SUMMARY III 

This research develops two novels decentralized multiarea economic dispatch (MAED) 

models based on metaheuristic optimization (MO) to manage the operation of some 

transmission system operators (TSOs) and private aggregators (PAs) of distributed energy 

resources in an interconnected multiarea bulk-power systems context. The first model is a semi-

decentralized (SD) model developed to attract wider inclusion of PAs in the transmission 

systems by allowing them to maximize profits. The second model is a fully decentralized (FD) 

model developed to coordinate the operation the PAs with the TSOs to preserve their baselines. 

The proposed models allow to determine the effective integration of autonomous PAs in the 

transmission systems (TS) and their co-operation with the TSOs. The objective of both models 

is to minimize the total operation cost of the system by effectively coordinating the TSOs and 

PAs operations. The TSOs and PAs evaluate their operational uncertainties and determine the 

power reserves considering the best and worst-case scenarios of the uncertain variables, thus 

enabling the resulting models to be solved in three stages using a robust Real-Coded Elitism 

Genetic Algorithm (RCEGA). To preserve the ownership of TSOs and PAs, the RCEGA 

efficiently utilizes separate population sets to solve the operations of the areas in parallel in a 

two-layer operation approach, allowing the TSOs and PAs to achieve near-optimal operations, 

independently. 
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4 CASE STUDIES 

For this study, three case studies are performed. The first case implements real-coded 

genetic algorithm to solve the proposed models. In the second case, select metaheuristic 

algorithms are implemented. The performance of the select algorithms are then compared in 

terms of overall operation cost of the grid and simulation time. On the other hand, the third 

case include the battery energy storage systems (BESS) in the operation of the independent 

entities in all area. In this case, the BESS is used for peak load leveling for each entity. In all 

cases, the results obtained are compared with the centralized counterpart models. 

4.1 CASE 1 – IMPLEMENTING REAL-CODED GENETIC ALGORITHM 

For the case 1, three simulation considering only real-coded genetic algorithm are 

performed. The first and second simulations are performed for the SD and FD models described 

above. The third simulation is performed for a fully centralized (FC) model where operations 

of all entities are solved in a centralized way. Each simulation is further divided into two sub-

simulations considering: “with and without restrictions” on the maximum capacity of tie-lines 

concerning the exchanged power between TSO-TSO and TSO-PAs. The results of the three 

simulation and sub-simulations are thereafter compared.  

4.1.1 Parameter Settings – Case 1 

The performance of the proposed methodology is tested on the modified Nigerian 39-

bus 330 kV transmission system as shown in Figure 4.1, consisting of three areas, each with 

multi-chain cascade of four reservoir hydropower plants, four thermal generators with non-

smooth fuel cost function, one PHS unit, and one wind and solar power unit. Also, each area 

has three PAs each with a wind, solar, thermal, and PHS unit. All notations are as presented in 

the formulation.  
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Figure 4.1 – Modified Nigerian 39-Bus Bulk TS 

 

Source: Authors. 
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The expected load and energy price data used in evaluating the day-ahead operation of 

TSOs are the scaled-down aggregated load and energy price data of April 10, 2020 recorded at 

the Australian Energy Market Operator (AEMO) for QLD, NSW, and VIC regional operators, 

while all PAs are constructed from TAS regional network to foster consistent prices among 

PAs. Similarly, the expected wind and solar power for all TSOs and PAs are the day-ahead 

scaled-down wind and solar power data of April 10, 2020 recorded at the ELIA power system 

in Belgium.  

It should be mentioned that all TSOs’ thermal units have the same capacity but different 

fuel cost coefficients. It is also assumed that all the installed wind and solar power units of PAs 

have unity power factors but are of different capacities. The technical parameters of the 

hydropower plants, PHS units and cost coefficients of thermal units of TSOs and PAs are 

obtained from (BASU, 2019; DUBEY, et al., 2016; LIAO, et al., 2013). The maximum 

generating power of the TSOs thermal generators are 550 MW while that of the PAs are 250 

MW. However, considering that the wind and solar power dispatches are prioritized over the 

conventional units, the minimum thermal generated power for the TSOs and PAs is 0 MW and 

ramp up/down rates are modified as 300/300 MW/hr and 100/100 MW/hr, to better 

accommodate wind and solar fluctuations, as shown in TableA.1 and A.2, respectively.  

The PHS parameters for TSOs include, 𝜌 = 70 𝑎𝑐𝑟𝑒 − 𝑓𝑡/ℎ, 𝜇 = 200 𝑎𝑐𝑟𝑒 − 𝑓𝑡/ℎ 

while PHS pumping power is fixed at −100 𝑀𝑊 and it generates power within 0 − 100 𝑀𝑊. 

The reservoir starts at 3000 acre-ft and must be at 3000 acre-ft at the end of the 24 h. Similarly, 

for PAs, 𝜌 = 7 𝑎𝑐𝑟𝑒 − 𝑓𝑡/ℎ, 𝜇 = 20 𝑎𝑐𝑟𝑒 − 𝑓𝑡/ℎ while PHS pumping power is fixed at 

−10 𝑀𝑊 and it generates power within 0 − 10 𝑀𝑊. The reservoir starts at 300 acre-ft and 

must be at 300 acre-ft at the end of the 24 h. The water inflow rate and spillage is not 

considered. 

The standard deviations of the wind and solar power are assumed to be 10% of their 

expected values and the exchanged power cost is 5% of their expected values (MOHITI, et al., 

2019; GUAN and WANG, 2014). To construct the uncertainty sets, a 95% prediction 

confidence interval is considered (MOHITI, et al., 2019). The interval predictions of wind and 

solar power are computed as 120% and 80% of their expected values, respectively, while the 

load and the exchanged power costs are computed as 110% and 90% of their expected values, 

respectively (GUAN and WANG, 2014). All uncertainty coefficients of net-deviation and 

exchanged power cost budget are equal to 1. The total TSOs’ load and costs of exchanged 

power are presented in Figure 4.2 and 4.3, respectively, while the prediction intervals of the 
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power system total wind and solar power are presented in Figure 4.4 and 4.5, respectively.  

 

Figure 4.2 – Expected TSO total load profile by area 

 

Source: Authors. 

 

Figure 4.3 – Expected exchanged power cost of TSOs and PAs 

 

Source: Authors. 

 

Figure 4.4 – Minimum, expected, and maximum power system total solar power 

  

Source: Authors. 
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Figure 4.5 – Minimum, expected, and maximum power system total wind power 

 

Source: Authors. 

The maximum exchanged power between TSO-TSO and TSO-PA is set to 500 MW 

and 200 MW, respectively. The RCEGA parameters include 25 generations, 20 chromosomes, 

0.75 cross-over probability and 0.15 mutation probability for all cases. The entire scheduling 

period is 1 day and is divided into 24-hour intervals. All cases (including the RCEGA coding) 

are entirely conducted in the PowerFactory 2019 SP4 environment using the DIgSILENT 

Programming Language (DPL) on a 2.50-GHz intel Core i3 CPU computer with 4 GB of RAM. 

4.1.2 Simulation Results Using Real-Coded Genetic Algorithm 

From the perspective of PAs, the total optimal generation outputs of the PAs and the 

power exchanged with the TSO in Area_3 considering the FC model is presented in Figure 4.6.  

 

Figure 4.6 – Total optimal generation outputs of PAs and power exchanged with TSO in 

Area_3 – FC Model 

 

Source: Authors. 
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As shown in Figure 4.6, the PAs exported 663.9 MW into the transmission system and 

imported 92.7 MW from the TSO for their optimal operations. The optimal thermal generation 

is 3768.4 MW and the power generated from PHS units is 198.5 MW for the entire scheduling 

period. The total optimal generation outputs of PAs and the power exchanged with the TSO in 

Area_3 considering the SD model is presented in Figure 4.7. 

 

Figure 4.7 – Total optimal generation outputs of PAs and power exchanged with TSO – SD 

Model 

 

Source: Authors. 

In Figure 4.7, the PAs exported 665.6 MW into the system and imported just 1.7 MW 

from TSO for their operations. The total thermal output is 3862.1 MW while the PHS power 

generated is 197.4 MW for the entire scheduling period. The total optimal generation outputs 

of PAs in Area_3 and the power exchanged with the TSO with the FD model are presented in 

Figure 4.8. 

 

Figure 4.8 – Total optimal generation outputs of PAs and power exchanged with TSO – FD 

Model 

 

Source: Authors. 
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As shown in Figure 4.8, the total power exported by the PAs into the power system is 

622.9 MW while a total of 45.1 MW is imported from the TSO. In this case, the total power 

generated from thermal units amounts to 3891.5 MW and the total power generated from PHS 

units is 161.6 MW for the entire scheduling period. 

Comparing Figure 4.6, 4.7, and 4.8, it turned out that the PAs imported more power 

from the transmission system with the FC model in comparison with the SD and FD models. 

This contradicts the objective of the PAs to sell more power in the transmission system. 

Following the objective to enable incentive-based participation for the PAs, the PAs exported 

most power into the transmission system with the SD model. On the other hand, to preserve 

the existing participants and enable equal operation opportunity for all entities, the exported 

and imported power of the PAs with the FD model is more effectively coordinated with the 

TSOs compared to the FC model.  

From the perspective of the TSO in Area_1, the total optimal generation outputs of the 

TSO_1 and its net power exchanged with the local PAs, Area_2 and Area_3 considering the 

FC model are presented in Figure 4.9.  

 

Figure 4.9 – Total optimal generation outputs of TSO_1 and net power exchanged with local 

PA_1, Area_2, and Area_3 – FC Model 

 

Source: Authors. 

As shown in Figure 4.9, the net power imports of TSO_1 from Area_2, Area_3 and 

local PA_1 are 722.9, 0.0, and 1314.8 MW, respectively. On the other hand, the TSO_1 

exported a net total of 0.0 MW to Area_2 and local PA_1, and 600 MW to Area_3. The TSO_1 

total power generated is 43511.5 MW. The total optimal generation outputs of TSO_1 and the 

net power exchanged with the Area_2 and Area_3 and local PA_1 considering the SD model 

are presented in Figure 4.10.  
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Figure 4.10 – Total optimal generation outputs of TSO_1 and net power exchanged with 

Area_2, Area_3 and local PA_1 – SD Model 

 

Source: Authors. 

As shown in Figure 4.10, the net power imports of TSO_1 from Area_2, Area_3, and 

local PA_1 are 98.5, 0.0, and 5198.1 MW, respectively. On the other hand, the TSO_1 exported 

a net total of 0.0 MW to Area_2 and PA_1, and 77.3 MW to Area_3. The TSO_1 total power 

generated is 39658.7 MW. The total optimal generation outputs of TSO_1 and the net power 

exchanged with the Area_2 and Area_3 and local PA_1 considering the FD model are 

presented in Figure 4.11. 

 

Figure 4.11 – Total optimal generation outputs of TSO_1 and net power exchanged with 

TSO, Area_3 and local PA_1 – FD Model 

 

Source: Authors. 

As shown in Figure 4.11, the TSO_1 net power import from Area_2, Area_3, and PA_1 

is 749.2, 0.0 and 777.3 MW, respectively. Meanwhile, TSO_1 exported a net total of 0.0 MW 

to Area_2 and PA_1, and 1258.4 MW to Area_3. The Area_1 total power generated is 44704.5 

MW. 
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Comparing Figure 4.9, 4.10 and 4.11, it turned out that the SD model indicates its 

effectiveness to incentivize and support regional integration as the PA_1 exported most power 

into the transmission system. Also, the TSO_1’s total power generated was reduced by 8.9% 

and the total power purchased from its neighbours (i.e., Area_2 and Area_3) was reduced by 

86.4% compared to the FC model. On the other hand, the effectiveness of the FD model to 

coordinate PA_1 operation with the TSO is demonstrated. The FD model reduced the PA_1 

exported power by 69.1% and improved the Area_1’s selling capacity by 52.3% compared to 

the FC model, thus ensuring a balance between the TSO_1 and PA_1.  

The power system operation costs with the FD, SD and FC models considering sub-

cases; with and without power exchange restrictions are presented in Table 4.1. On the other 

hand, the power system net-operation costs for the SD, FD, and FC models are shown in Table 

4.2. 
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Table 4.1 – Expected operation cost of TSOs and PAs for FD, SD, and FC Models 

Model Entity 
Thermal Operation Cost, $ 

Power Purchased, $ 
Total Operation Cost, $ 

From TSOs From PAs 

WTR WOR WTR WOR WTR WOR WTR WOR 

FD 

TSO 827,944 823,633 171,821 200,585 103,743 123,858 1,103,508 1,148,077 

PAs 172,127 177,792 27,352 20,476 - - 199,479 198,269 

TOTAL  1,302,987 1,346,345 

SD 

TSO 760,427 748,484 38,114 46,051 315,367 361,757 1,113,908 1,156,292 

PAs 207,882 217,362 3,150 2,322 - - 211,032 219,684 

TOTAL  1,324,940 1,375,975 

FC 

TSO 825,431 827,233 111,494 145,762 184,203 210,734 1,121,128 1,183,728 

PAs 178,522 185,850 60,751 48,825 - - 239,273 234,675 

TOTAL  1,360,401 1,418,403 

SUB-CASES: *WTR = With restrictions; *WOR = Without restrictions. 

Source: Authors. 

 

Table 4.2 – Power sold and net-operation costs considering FD, SD, and FC Models 

Model Entity 

Power Sold, $ Net Operation Cost (Thermal 

+ Purchased - Sold), $ 
Total Net-Operation Cost, $ 

To TSOs To PAs 

WTR WOR WTR WOR WTR WOR WTR WOR 

FD 
TSOs 171,821 200,585 27,352 20,476 904,334 927,015 1,000,070 1,001,426 

PAs 103,743 123,858 - - 95,736 74,411 

SD 
TSOs 38,114 46,051 3,150 2,322 1,072,643 1,107,919 968,309 965,845 

PAs 315,367 361,757 - - -104,335 -142,074 

FC 
TSOs 111,494 145,762 60,751 48,825 948,884 989,142 1,003,954 1,013,083 

PAs 184,203 210,734 - - 55,069 23,941 

SUB-CASES: *WTR = With restrictions; *WOR = Without restrictions. 

Source: Authors. 
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As shown in Table 4.1, the power system operation cost with the SD model was reduced 

by 2.6 and 3.0% with and without restrictions, respectively, compared to the costs obtained 

with the FC model. Similarly, the power system operation cost with the FD model was reduced 

by 4.2 and 5.1% with and without restrictions, respectively, when compared to the cost 

obtained with the FC model.  

As shown in Table 4.2, the SD model provided the power system with least net-

operation costs of $968,309 and $965,845with and without restrictions, respectively. Observe 

that the PAs net-operation costs with and without restrictions is -$104,335 and -$142,074, 

respectively, where the negative sign indicates surplus gain for the PAs. A decrease in the 

TSOs’ thermal operating cost is also noticed (see Table 4.1). Compared to the FC model, the 

SD model is more effective to create better investment opportunity for the PAs as it is profit 

oriented with quick investment recovery potential. 

In the case where the operation of PAs is over-prioritized, requiring the power system 

planner to improve the TSOs’ net-operation cost, the FD model is preferred in terms of net-

operation cost as it is 4.7 and 6.3% better than the FC counterpart with and without restrictions, 

respectively. Also notice that the ratios of the TSOs and PAs net-operation cost of (94.5/5.5) 

and (97.6/2.4) with the FC model are significantly lopsided in comparison with the ratios of 

the FD model which are (90.4/9.6) and (92.6/7.4) with and without restrictions, respectively.  

The impact of the uncertainty (i.e., the worst-case scenarios) on the proposed SD and 

FD models, and their FC counterpart model are presented in Figure 4.12. 

 

Figure 4.12 – Impact of the uncertainty on the SD, FD, and FC models 

 

Source: Authors. 

As shown in Figure 4.12, the operation cost (including the reserve cost) considering the 

worst-case (i.e., minimum deviations of the expected variables) scenario with the SD and FD 
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models are 9.6 and 1.8% less compared with the FC model. Similarly, the operation cost 

(including the reserve cost) considering the worst-case (i.e., maximum deviations of the 

expected variables) scenario with the SD and FD models are 17.2 and 7.7% less compared with 

the FC model.  

The RCEGA performance is further verified for varied number of chromosomes and 

generations. Although the RCEGA solution is indicated to vary according to problem 

complexity and parameters turning, conducting the solution with the SD and FD models still 

reduced the total operation cost by up to 5.5 and 9.4% compared to the FC model, as shown in 

Figure 4.13. 

 

Figure 4.13 – Performance comparison of SD, FD, and FC models under varying RCEGA 

parameters (G = number of generations, X = number of chromosomes) 

 

Source: Authors. 

4.2 CASE 2 - PERFORMANCE COMPARISON OF SELECT METAHEURISTIC 

ALGORITHMS 

The performance of the FD model is verified considering differential evolution and 

particle swarm optimization methods, and the results obtained for each method are compared 

with the one obtained for the genetic algorithm in terms of performance and speed. 

4.2.1 Parameter Settings – Case 2 

The parameters of the select MO algorithms are presented in Table 4.3. 
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Table 4.3 – The select MO parameters for the FD Model 
MO 

Algorithm 
MO Parameters 

Iteration No. 

(max) 

RCEGA 

Crossover probability, 

0.75 
No. of 

chromosomes, X = 

40 

No. of generation, 

G = 20 
800 

Mutation probability, 

0.15 

PSO 

Randomness coefficient, 

0.5 

No. of particles, X = 

20 

No. of generation, 

G = 30 
600 

Personal coefficient, 

0.65 

Global coefficient = 

0.85 

DE 

Differential factor = 0.5 
No. of agents, X = 

20 

No. of generation, 

G = 30 
600 Crossover probability = 

0.85 

Source: Authors. 

The simulation procedures are summarized as follows: 

Step 1: Simulate the centralized model using the select MO algorithms considering 

maximum number of iterations. 

Step 2: Simulate the FD model using the select MO algorithms considering maximum 

number of iterations. 

Step 3: Simulate the FD model using the select MO algorithms by varying X and G, 

respectively. 

 

The scheduling period is 1-day and is divided into 24-hour intervals. All cases 

(including DE, PSO and RCEGA coding) are performed in the DIgSILENT PowerFactory 

2020 SPA2 environment using DIgSILENT Programming Language (DPL) on a 2.50-GHz 

intel Core i3 4 GB RAM CPU computer. 

4.2.2 Simulation Results of the Select Metaheuristic Algorithms 

The total operation cost, reserve cost and execution time of the centralized model for 

the expected and worst-case (i.e., minimum, and maximum) scenarios using the select MO 

algorithms are presented in Table 4.4.  
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Table 4.4 – Operation cost, reserve cost and execution time of the centralized models 

MO Cost ($) 

CASE #Iteration (max) Execution 

Time 

(mins) 
Expected Minimum Maximum (G*X) 

RCEGA 

Operation 1,205,386 1,101,886 1,296,344 

G=20, X=40 303.2 Reserve - 421,819 7,077 

Total 1,205,386 1,523,705 1,303,421 

PSO 

Operation 1,228,208 1,122,682 1,340,564 

G=30, X=20 399.9 Reserve - 441,831 8,754 

Total 1,228,208 1,564,513 1,349,318 

DE 

Operation 1,214,056 1,075,232 1,336,920 

G=30, X=20 451.2 Reserve - 449,509 7,280 

Total 1,214,056 1,524,741 1,344,200 

Source: Authors. 

As shown in Table 4.4, the total operation cost of the centralized model for the expected 

case are $1,205,386, $1,228,208, and $1,214,056 using the RCEGA, PSO, and DE, 

respectively. For the worst-case (minimum) scenario, the total operation cost increased by 26.4, 

27.4, and 25.6% for the RCEGA, PSO and DE compared to their expected cases, respectively. 

Similarly, the total operation cost for the worst-case (maximum) scenario increased by 8.1, 9.9, 

and 10.7% for the RCEGA, PSO and DE compared to their expected cases, respectively. 

Observed that larger share of the reserve costs is incurred mostly from overestimating 

(minimum scenario) the renewable generation outputs. Also, the resulting execution time using 

the RCEGA, PSO and DE algorithms are 303.2, 399.9, and 451.2 mins, respectively. The total 

operation cost and execution time of the FD model using RCEGA algorithm is compared with 

its centralized counterpart model for the expected case in Figure 4.14.  

 

Figure 4.14 – The expected case total operation cost and execution time using the RCEGA 

 

Source: Authors. 

As shown in Figure 4.14, when iteration number 𝐼 = 800, the FD model achieved 5.2% 

reduction in the total operation cost but with 43.4% increase in total execution time compared 
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to its centralized counterpart model. However, when 𝐺 was halved such that 𝐼 = 400, the FD 

model achieved 15.3% reduction in the total execution time and 5.0% reduction in the total 

operation cost compared to its centralized counterpart model. Similarly, when 𝑋 was halved 

such that 𝐼 = 400, the FD model achieved 30.4% decrease in the total execution time and 1.2% 

reduction in the total operation cost compared to its centralized counterpart model. In 200 

iterations when 𝑋 and 𝐺 were both halved, the total execution time of the FD model further 

reduced by 63.9% but the total operation cost increased by just 0.4% compared to its centralized 

counterpart model. The total operation cost and execution time of the FD model using PSO 

algorithm is compared with its centralized counterpart model for the expected case in Figure 

4.15.  

 

Figure 4.15 – The expected case total operation cost and execution time using the PSO 

 

Source: Authors. 

As shown in Figure 4.15, when iteration number 𝐼 = 600, the FD model achieved 7.8% 

reduction in the total operation cost but with 45.5% increase in total execution time compared 

to its centralized counterpart model. When 𝐺 was halved such that 𝐼 = 300, the total execution 

time and operation cost of the FD model reduced by 32.8% and 5.7% respectively compared 

to its centralized counterpart model. Similarly, when 𝑋 was halved such that 𝐼 = 300, the total 

execution time and operation cost of the FD model reduced by 31.8% and 4.6%, respectively 

compared to its centralized counterpart model. In just 150 iterations when 𝑋 and 𝐺 were both 

halved, the total execution time and operation cost of the FD model reduced by 67.4% and 

1.8%, respectively compared to its centralized counterpart model. The total operation cost and 

execution time of the FD model using DE algorithm is compared with its centralized 

counterpart model for the expected case in Figure 4.16.  
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Figure 4.16 – The expected case total operation cost and execution time using the DE 

 

Source: Authors. 

As shown in Figure 4.16, when iteration number 𝐼 = 600,  the FD model achieved 

10.8% reduction in the total operation cost but with 52.9% increase in total execution time 

compared to its centralized counterpart model. However, when 𝐺 was halved such that iteration 

number 𝐼 = 300, the total execution time of the FD model reduced by 21.4% while the total 

operation cost reduced by 5.8% compared to its centralized counterpart model. Similarly, when 

𝑋 was halved such that 𝐼 = 300, the total execution time reduced by 26.0% and the total 

operation cost reduced by 3.4% compared to its centralized counterpart model. In 150 iterations 

when 𝑋 and 𝐺 were both halved, the total execution time of the FD model reduced by 62.4% 

but with 1.8% increase in the total operation cost compared to its centralized counterpart model. 

The total operation and reserve costs of the FD model and the centralized counterpart model 

using the select MO algorithms for the worst-case (minimum and maximum) scenarios are 

presented in Table 4.5. 
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Table 4.5 – Operation cost (OC), reserve cost (RC) and %change of the total operation cost (TC) of the FD model and its centralized counterpart 

models for the worst-case (minimum and maximum) scenarios 

Model #Iteration Scenario 

RCEGA PSO DE 

OC ($) RC ($) 

% 

Change 

in TC 

OC ($) RC ($) 

% 

Change 

in TC 

OC ($) RC ($) 

% 

Change 

in TC 

Centralized 𝑮,𝑿 
Min 1,101,886 421,819 - 1,122,682 441,831 - 1,075,232 449,509 - 

Max 1,296,344 7,077 - 1,340,564 8,754 - 1,336,920 7,280 - 

FD 

𝑮,𝑿 
Min 1,039,426 432,484 -3.4 962,131 432,484 -10.9 955,295 441,713 -8.4 

Max 1,191,383 7584 -8.0 1,174,078 6,435 -12.5 1,151,982 4,791 -13.9 

𝟎. 𝟓𝑮, 𝑿 
Min 1,029,980 433,355 -4.0 999,297 447,131 -7.5 1,020,567 431,714 -4.8 

Max 1,204,906 8,457 -6.9 1,161,365 6,511 -13.4 1,192,022 6,982 -10.8 

𝑮, 𝟎. 𝟓𝑿 
Min 1,094,241 415,430 -0.9 1,069,619 418,273 -4.9 1,043,921 442,381 -2.5 

Max 1,250,861 10,804 -3.2 1,242,180 9,130 -7.3 1,243,336 6,573 -7.0 

𝟎. 𝟓𝑮, 𝟎. 𝟓𝑿 
Min 1,127,863 440,548 2.9 1,079,867 432,426 -3.3 1,095,717 427,601 -0.1 

Max 1,260,545 10,474 -2.5 1,264,652 10,038 -5.5 1,286,713 9,529 -3.6 
*GA: G=20, X=40;   PSO: G=30, X=20;   DE: G=30, X=20. 

Source: Authors. 
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As shown in Table 4.5, it turned out that the FD model showed capacity to better 

manage operational uncertainties compared to the centralized counterpart model using the 

select MO algorithms. For the minimum case, the FD model reduced the total operation cost 

by 3.4, 10.9, and 8.4% using the RCEGA, PSO and DE at their maximum iteration compared 

to their centralized counterpart models, respectively. A similar trend could also be observed 

with the FD model when 𝑋 or 𝐺 were reduced to half across border for the select MO 

algorithms, except for RCEGA where when 𝑋 and 𝐺 were both reduced to half, the FD model 

increased the total operation cost by 2.9%. On the other hand, for the maximum case, the FD 

model reduced the total operation costs by up to 8.0, 13.4 and 13.9% for the RCEGA, PSO, 

and DE for all cases compared to their centralized counterpart models, respectively. 

4.3 CASE 3 - CONSIDERATION FOR BATTERY ENERGY STORAGE SYSTEMS 

For the case 3, the inclusion of the BESS system is investigated on the performance of 

the FD and FC models considering the real-coded genetic algorithm only. 

4.3.1 Parameter Settings – Case 3  

For this study, the BESS of the independent agents in all areas are used for peak load 

leveling. All the BESS in the system have same operational ratings. The rating of the BESS in 

terms of the maximum power injection at time 𝑡 and maximum capacity ratio is 80 MW/ 480 

MWh across all areas. This means that the BESS can reach full rated capacity or be completely 

drained in 6 hours for a unity round-trip efficiency. However, considering operational losses, 

the charging and discharging efficiency of the BESS is assumed to be 0.85. The minimum 

permissible State of Charge of the BESS is 0.25 while the maximum Depth of Discharge is 

assumed to be 0.75. Because of the introduction of the new BESS in the system for all agents, 

the RCEGA parameters e.g., the number of generations and chromosomes are set to be 30 and 

50, respectively, while cross-over and mutation probabilities are set to be 0.7 and 0.15, 

respectively, for the FD and FC models. The entire scheduling period is 1 day and is divided 

into 24-hour intervals. All cases (including the RCEGA coding) are entirely conducted in the 

PowerFactory 2022 environment using the DIgSILENT Programming Language (DPL) on a 

2.50-GHz intel Core i7 CPU computer with 8 GB of RAM. 

4.3.2 Simulation Results Considering Battery Energy Storage System (BESS) 

The simulation results considering battery energy storage for all agents in all areas are 
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presented in the following subsections. 

4.3.2.1 Battery Depth of Discharge and Power Injection – FC Model 

The battery power injection and hourly load of the TSO in Area 1 considering the FC 

model are presented in Figure 4.17. 

 

Figure 4.17 – Battery Power Injection and Total TSO’s Hourly Load 

 

Source: Authors. 

As shown in Figure 4.17, the BESS is discharged to level the peak load of the TSO. 

This occurred between the hour of 15 to 24. The battery depth of discharge and hourly capacity 

of the TSO BESS in Area 1 considering the FC model are presented in Figure 4.18. 

 

Figure 4.18 – Battery Depth of Discharge and Hourly Capacity. 

   

Source: Authors. 

As shown in Figure 4.18, the discharging of the BESS occurred after the 15th  hour until 

the 24th hour. The BESS depth of discharge and capacity at the end of the 24th hour are 61.3% 

and 173 MWh, respectively. The BESS operation for the local PAs and other TSOs in Area 2 
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and 3 are presented in Appendix C. 

4.3.2.2 Battery Depth of Discharge and Power Injection – FD Model 

The battery power injection and hourly load of the TSO in Area 3 considering the FD 

model are presented in Figure 4.19. 

 

Figure 4.19 – Battery Power Injection and Total TSO’s Hourly Load 

 
Source: Authors. 

As shown in Figure 4.19, the BESS is discharged to level the peak load of the TSO. 

This occurred between the hour of 1-3, 9-14, and 17-21. On the other hand, the batterry is 

charged during the hour of 3-8 and 14-16, respectively. Between the hour of 8-9 and 21-24, the 

BESS remained at resting state. The battery depth of discharge and hourly capacity of the TSO 

in Area 3 considering the FD model are presented in Figure 4.20. 

 

Figure 4.20 – Battery Depth of Discharge and Hourly Capacity. 

   
Source: Authors. 

As shown in Figure 4.20, the BESS depth of discharge and capacity at the end of the 
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24th hour is 70.5% and 141 MWh, respectively. The BESS operation for the local PAs and 

other TSOs in Area 1 and 2 are presented in Appendix C. 

4.3.2.3 Operation Cost with and without BESS – FD and FC Models 

The total operation cost of the grid is for the FD and FC models are presented in Table 

4.6. 

 

Table 4.6 – total operation cost of the grid is for the FD and FC models 
Model With BESS Without BESS 

Area1 Area2 Area3 Total Area1 Area2 Area3 Total 

FD 332,888 414,209 369,929 1,117,026 384,476 356,350 401,595 1,142,421 

FC 390,522 422,816 390,188 1,203,526 397,038 402,577 405,771 1,205,386 

%Change -14.8% -2.0% -5.2% -7.2% -3.2% -11.5% -1.0% -5.2% 

Source: Authors. 

As shown in Table 4.6, the inclusion of BESS in the grid operation resulted in 7.2% 

decrease in the total operation cost for the FD model when compared with the centralized 

counterpart model, over the operation horizon of 24-hour. Similarly, when compared with the 

case without BESS, the grid achieved 2.2% reduction in total operation cost for the FD model 

and just 0.2% reduction in the total operation cost for the FC model. These simulation results 

still indicate that the FD model is effectiveness in coordinating the operation of multiple entities 

when compared with the centralized FC counterpart model. 

4.4 SECTION SUMMARY IV 

Case studies have been performed on a modified Nigerian 330 kV 39-bus transmission 

systems having three TSOs each with three PAs to demonstrate the effectiveness of the 

proposed models. For the case 1, it turned out that the PAs imported more power from the 

transmission system with the FC model in comparison with the SD and FD models. This 

contradicts the objective of the PAs to sell more power in the transmission system. Following 

the objective to enable incentive-based participation for the PAs, the PAs exported most power 

into the transmission system with the SD model by reducing the TSO’s total power generated 

and total power purchased from the neighbouring areas by 8.9% and 86.4%, respectively. On 

the other hand, to preserve the existing participants and enable equal operation opportunity for 

all entities, the exported and imported power of the PAs with the FD model is more effectively 

coordinated with the TSOs compared to the FC model as the FD model reduced the PAs 

exported power by 69.1% and improved the overall area’s selling capacity by 52.3%. 

Furthermore, in terms of operation costs, the SD and FD models reduced the total operation 
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cost of the grid by 3.0 and 5.1%, respectively when compared with their centralized counterpart 

model. Similarly, the operation cost considering the worst-case minimum and maximum 

uncertainties of the SD and FD models are 17.2 and 7.7% less compared with the FC model. 

For the case 2, the performance of the FD model is further demonstrated using 

differential evolution and particle swarm algorithms. For the expected case when the number 

of iterations “I” is reduced by reducing the chromosome number “X” to half, the FD model 

reduced the total operation cost by 5.0, 5.7 and 5.8%, and the execution time by 15.3, 32.8 and 

21.4% using the RCEGA, PSO and DE compared to their centralized models, respectively. 

Also, when the number of iterations “I” is reduced by reducing the generations number “G” to 

half, the FD model also reduced the total operation cost by 1.2, 4.6 and 3.4% and the total 

execution time by 30.4, 31.8 and 26.0% using the RCEGA, PSO and DE, compared to their 

centralized models, respectively. Similarly for the case 3, the effectiveness of the FD to handle 

more complex multicarrier energy systems is demonstrated through extending the grid 

operations to include battery energy storage systems. The inclusion of BESS in the grid 

operation resulted in 7.2% decrease in the total operation cost for the FD model when compared 

with the centralized counterpart model, over the operation horizon of 24-hour.  
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5 CONCLUSION 

This paper presents a semi-decentralized and fully decentralized multiarea power 

system economic dispatch models considering local private aggregators based on meta-

heuristic method. The developed methodology, which was validated through several case 

studies, showed that the inclusion of PAs can provide several benefits to a power system. In 

terms of the system total operation cost and net-operation cost, the effectiveness of the FD 

model to coordinate the TSOs and PAs operations and the tendency to preserve their operation 

baselines were demonstrated. The results showed that the FD model outperformed its 

counterpart FC model by reducing the system total operation cost by 4.2% and 5.1%, and net-

operation costs by 0.4 and 1.2% with and without restrictions, respectively. The TSOs’ net-

operation cost also improved by 4.7 and 6.3% in comparison with the FC model with and 

without restrictions, respectively. It should be mentioned that the FD model is preferably 

suitable for the existing system operators as it indicates fair share of net-operation cost ratios 

between the TSOs and the newly included PAs. 

On the other hand, the SD model proved to be particularly useful for incentivizing and 

attracting private investors and new participants into the system as it indicates capacity for 

quick investment recovery for the PAs, especially, while considering the immediate results to 

meet the increasing power system operational needs. In terms of the system total operation 

cost, the SD model is superior to its FC counterpart by 2.6 and 3.0% with and without 

restrictions, and in terms of total net-operation cost, it stands out by 3.6 and 4.7% with and 

without restrictions, respectively. 

Considering the inclusion of multiple 𝐿𝐴𝑠 into the transmission grid operation using 

select meta-heuristic optimization methods including RCEGA, PSO and DE algorithms, the 

FD model, showed that much better operation cost could be achieved at the expense of 

execution time, and where lower execution time is required, the FD model could still result in 

better solutions when compared to the centralized counterpart model. For the expected case 

when the number of iterations 𝐼 = 𝑋 ∗ 0.5𝐺, the FD model reduced the total operation cost by 

5.0, 5.7 and 5.8%, and the execution time by 15.3, 32.8 and 21.4% using the RCEGA, PSO and 

DE compared to their centralized models, respectively. Also, when the number of iterations 

was reduced such that 𝐼 = 0.5𝑋 ∗ 𝐺, the FD model reduced the total operation cost by 1.2, 4.6 

and 3.4% and the total execution time by 30.4, 31.8 and 26.0% using the RCEGA, PSO and 

DE, compared to their centralized models, respectively. A similar trend was also observed for 
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the worst-case (minimum and maximum) scenarios. The results showed that the FD model 

reduced the total operation costs by up to 8.0, 13.4 and 13.9% using the select MO algorithms 

compared to their centralized counterpart models, respectively. 

Furthermore, the FD model at maximum iteration further reduced the total operation 

cost but with significant increase in the simulation time using the select MO algorithms. The 

results showed that the total operation cost of the FD model at maximum iteration reduced by 

5.2, 7.8, and 10.8% but increased the total execution time by 43.4, 45.5, and 52.9% using the 

RCEGA, PSO and DE compared to their centralized models, respectively. Also, the number of 

iterations of both RCEGA and DE may not be kept below 𝐼 = 0.5𝑋 ∗ 0.5𝐺 to obtain the desired 

results for the FD model. The results of the expected case showed that when 𝐼 = 0.5𝑋 ∗ 0.5𝐺, 

the FD model reduced the total execution time by 63.9 and 62.4% but increased the total 

operation cost by 0.4 and 1.8% for the RCEGA and DE, respectively. Meanwhile, using the 

PSO, the FD model reduced the operation cost and execution time for all cases compared to 

the centralized counterpart model.  

In addition, the FD model also promises to achieve better solutions for very complex 

systems having multiple energy matrix. When battery energy storages were added in to the grid 

operation, the FD model achieved 7.2% decrease in the total operation cost when compared 

with the centralized FC counterpart model over the operation horizon of 24-hour. This also 

indicates that the FD model could better reduce the overall operation cost for the grid as the 

grid operation and complexity increases. In conclusion, the results presented in this study 

proved the suitability of the select MO algorithms for coordinating the operations of multiple 

𝑇𝑆𝑂𝑠 and 𝑃𝐴𝑠 in a decentralized manner to minimize the total operation cost of the system.  

5.1 FUTURE STUDIES 

The developed SD and FD models have been presented as value-based trade-offs for 

power system planning including existing and new participants. Future studies can be 

conducted to integrate the SD and FD models into a single jointly operated model for power 

system planners. Also, determining optimal operation baselines for the TSOs and PAs as a 

multi-objective function on short- and long terms basis, and at same time investigating power 

system technical performance considering optimal allocation (i.e., size and location) of PAs in 

the power system areas could also be explored in a future work. A method for predictive data 

can also be developed as the proposed methodology needs a day-ahead forecast data which was 

obtained from the online database of some system operators.  
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APPENDICES 

Appendix A – Parameters of TSOs And PAs 

Table A.1 – Thermal unit name, output power limit, cost coefficients, and ramp rates limits 

for TSOs 

AREA 
Gen. 

Name 

Gen. Limits 

(MW) 

Gen. Costs 

Coefficients ($/hr) 

Gen. Valve-Point 

Effect Coefficients. 

Ramp Limits 

(MW/hr.) 

Min Max 𝒂𝒈,𝒊 𝒃𝒈,𝒊 𝒄𝒈,𝒊 𝒆𝒈,𝒊 𝒇𝒈,𝒊 Down Up 

AREA 1 

TG1 0 550 913.4 12.5 0.00421 300 0.035 300 300 

TG2 0 550 649.69 7.95 0.00313 300 0.035 300 300 

TG3 0 550 245 5.67 0.0032 180 0.025 300 300 

TG4 0 550 348 3.22 0.0032 120 0.025 300 300 

AREA 2 

TG1 0 550 148.89 5.35 0.0114 120 0.077 300 300 

TG2 0 550 647.83 7.97 0.00313 300 0.035 300 300 

TG3 0 550 280 6.34 0.00567 140 0.088 300 300 

TG4 0 550 647.83 7.97 0.00313 300 0.035 300 300 

AREA 3 

TG1 0 550 647.83 7.97 0.00313 300 0.035 300 300 

TG2 0 550 1055.1 8.33 0.05214 240 0.077 300 300 

TG3 0 550 555.1 3.33 0.02214 250 0.077 300 300 

TG4 0 550 345 2.26 0.0065 120 0.043 300 300 

 

Table A.2 – Thermal unit name, output power limit, cost coefficients, and ramp rates limits 

for PAs 

AREA 
Gen. 

Name 

Gen. Limits 

(MW) 

Gen Costs 

Coefficients. ($/hr) 

Ramp Limits 

(MW/hr) 

Min Max 𝒂𝒈,𝒊 𝒃𝒈,𝒊 𝒄𝒈,𝒊 Down Up 

AREA 1 

PA1 0 250 287.71 8.03 0.00357 100 100 

PA2 0 250 391.98 6.99 0.00492 100 100 

PA3 0 250 455.76 6.6 0.00573 100 100 

AREA 2 

PA1 0 250 326.9 4.4 0.0044 100 100 

PA2 0 250 354.1 7.6 0.0043 100 100 

PA3 0 250 365.9 7.7 0.0055 100 100 

AREA 3 

PA1 0 250 302.3 8.1 0.0019 100 100 

PA2 0 250 535.4 9.3 0.0052 100 100 

PA3 0 250 326.8 9.8 0.0082 100 100 

Appendix B – Hydro Generator Parameters 

Table B.1 – Reservoir storage capacity limits, plant discharge limits, reservoir end conditions 

and plant generation limits (MW) for TSO by area. 

AREA PLANT 
Vmin 

(104m3) 

Vmax 

(104m3) 

Vini 

(104m3) 

Vend 

(104m3) 

Qmin 

(104m3) 

Qmax 

(104m3) 

Phmin 

(MW) 

Phmax 

(MW) 

AREA 

1 - 3 

Plant1 80 150 100 120 5 15 0 500 

Plant2 60 120 80 70 6 15 0 500 

Plant3 100 240 170 170 10 30 0 500 

Plant4 70 160 120 140 6 20 0 500 
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• The hydropower plants coefficients of the TSO by area in Table B.2. 

Table B.2 – Hydropower plants coefficients 
 

AREA 1 - 3  
Plant 1 Plant 2 Plant 3 Plant 4 

C1 -0.0042 -0.004 -0.0016 -0.003 

C2 -0.42 -0.3 -0.3 -0.31 

C3 0.03 0.02 0.01 0.03 

C4 0.9 1.14 0.55 1.44 

C5 10 9.5 5.5 14 

C6 -50 -70 -40 -90 

• The hydraulic system network for the TSO are provided by area in Table B.3.  

Table B.3 – Hydraulic system network  
 

AREA 1 - 3 

Plant Ru (#) Td (hr.) 

Plant 1 0 2 

Plant 2 0 3 

Plant 3 2 4 

Plant 4 1 0 

*Ru = No. of upstream plants; *Td = Time delay to immediate downstream 

• The reservoir inflows rates for the TSO hydro power plant are provided by area in Table 

B.4. 

Table B.4 – Reservoir inflows rates (104m3). 

Hour 

AREA 1 - 3 

Hour 

AREA 1 - 3 

Reservoir Reservoir 

Plant 1 Plant 2 Plant 3 Plant 4 Plant 1 Plant 2 Plant 3 Plant 4 

1 10 8 8.1 2.8 13 11 8 4 0 

2 9 8 8.2 2.8 14 12 9 3 0 

3 8 9 4 1.6 15 11 9 3 0 

4 7 9 2 0 16 10 8 2 0 

5 6 8 3 0 17 9 7 2 0 

6 7 7 4 0 18 8 6 2 0 

7 8 6 3 0 19 7 7 1 0 

8 9 7 2 0 20 6 8 1 0 

9 10 8 1 0 21 7 9 2 0 

10 11 9 1 0 22 8 9 2 0 

11 12 9 1 0 23 9 8 1 0 

12 10 8 2 0 24 10 8 0 0 

 



77 
 

Appendix C – BESS Performance 

Figure C.1 – Battery Depth of Discharge and 

Hourly Capacity of PAs in Area 1: 

FC Model 

 

Source: Authors. 

 

Figure C.2 – Battery Power Injection and 

Total PAs’ Hourly Load in Area 

1: FC Model  

 

Source: Authors. 

 

 

 

 

 

 

 

Figure C.3 – Battery Depth of Discharge 

and Hourly Capacity of PAs in 

Area 2: FC Model 

 

Source: Authors. 

 

Figure C.4 – Battery Power Injection and 

Total PAs’ Hourly Load in Area 

2: FC Model  

 

Source: Authors. 
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Figure C.5 – Battery Depth of Discharge 

and Hourly Capacity of PAs in 

Area 3: FC Model 

 

Source: Authors. 

 

Figure C.6 – Battery Power Injection and 

Total PAs’ Hourly Load in Area 

3: FC Model 

 

Source: Authors. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.7 – Battery Depth of Discharge 

and Hourly Capacity of PAs in 

Area 1: FD Model: 

 

Source: Authors. 

 

Figure C.8 – Battery Power Injection and 

Total PAs’ Hourly Load in Area 

1: FD Model: 

 

Source: Authors. 

 

 

 

 

 

 

 

0

500

1000

1500

2000

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23

B
ES

S 
(M

W
h

)

B
ES

S 
(%

)

Time, hr

Cbess1 Cbess2 Cbess3

DoD1 DoD2 DoD3

0.0

100.0

200.0

300.0

400.0

500.0

-100

-50

0

50

100

150

200

1 3 5 7 9 11131517192123

Lo
ad

 (
M

W
)

B
ES

S 
(M

W
)

Time, hr

Pbess1 Pbess2 Pbess3 Load

0

500

1000

1500

2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19 21 23

B
ES

S 
(M

W
h

)

B
ES

S 
(%

)

Time, hr

Cbess1 Cbess2 Cbess3

DoD1 DoD2 DoD3

0.0

100.0

200.0

300.0

400.0

500.0

600.0

-100

-50

0

50

100

150

200

1 3 5 7 9 11131517192123

Lo
ad

 (
M

W
)

B
ES

S 
(M

W
)

Time, hr

Pbess1 Pbess2 Pbess3 Load



79 
 

 

 

 

Figure C.9 – Battery Depth of Discharge 

and Hourly Capacity of PAs in 

Area 2: FD Model: 

 

Source: Authors. 

 

Figure C.10 – Battery Power Injection and 

Total PAs’ Hourly Load in Area 

2: FD Model  

 

Source: Authors. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.11 – Battery Depth of Discharge 

and Hourly Capacity of PAs in 

Area 3: FD Model 

 

Source: Authors. 

 

Figure C.12 – Battery Power Injection and 

Total PAs’ Hourly Load in Area 

3: FD Model   

 

Source: Authors. 
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Figure C.13 – Battery Depth of Discharge 

and Hourly Capacity of TSO in 

Area 2: FC Model 

 

Source: Authors. 

 

Figure C.14 – Battery Power Injection and 

Total TSO’s Hourly Load in 

Area 2: FC Model 

 

Source: Authors. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.15 – Battery Depth of Discharge 

and Hourly Capacity of TSO in 

Area 3: FC Model 

 

Source: Authors. 

 

Figure C.16 – Battery Power Injection and 

Total TSO’s Hourly Load in 

Area 3: FC Model 

 

Source: Authors. 
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Figure C.17 – Battery Depth of Discharge 

and Hourly Capacity of TSO in 

Area 1: FD Model 

 

Source: Authors. 

 

Figure C.18 – Battery Power Injection and 

Total TSO’s Hourly Load in 

Area 1: FD Model 

 

Source: Authors. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.19 – Battery Power Injection and 

Total TSO’s Hourly Load in 

Area 2: FD Model 

 

Source: Authors. 

 

Figure C.20 – Battery Power Injection and 

Total TSO’s Hourly Load in 

Area 2: FD Model 

 

Source: Authors.
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