UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO

Jeferson Rodrigues Silva

ANÁLISE DA CORREÇÃO DO ERRO IONOSFÉRICO EM RECEPTORES GPS DE FREQUÊNCIA SIMPLES A PARTIR DA IMPLEMENTAÇÃO DO ALGORITMO DE KLOBUCHAR EM PYTHON

Santa Maria, RS 2021

Jeferson Rodrigues Silva

ANÁLISE DA CORREÇÃO DO ERRO IONOSFÉRICO EM RECEPTORES GPS DE FREQUÊNCIA SIMPLES A PARTIR DA IMPLEMENTAÇÃO DO ALGORITMO DE KLOBUCHAR EM PYTHON

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia de Computação da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de **Bacharel em Engenharia de Computação**. Defesa realizada por videoconferência.

ORIENTADORA: Prof.ª Andrea Schwertner Charão

COORIENTADOR: Prof. Adriano Petry

Santa Maria, RS 2021

Todos os direitos autorais reservados a Jeferson Rodrigues Silva. A reprodução de partes ou do todo deste trabalho só poderá ser feita mediante a citação da fonte.

Endereço: Rua Emily Dickinson, n. 103

^{©2021}

Fone (0xx) 55 99195 7240; End. Eletr.: jeferson.silva@ecomp.ufsm.br

Jeferson Rodrigues Silva

ANÁLISE DA CORREÇÃO DO ERRO IONOSFÉRICO EM RECEPTORES GPS DE FREQUÊNCIA SIMPLES A PARTIR DA IMPLEMENTAÇÃO DO ALGORITMO DE KLOBUCHAR EM PYTHON

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia de Computação da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de **Bacharel em Engenharia de Computação**.

Aprovado em 17 de fevereiro de 2021:

Andrea Schwertner Charão, Dra. (UFSM/PPGI) (Orientadora)

> Adriano Petry, Dr. (COESU/INPE) (Coorientador)

> Marcos Hideo Maruo, Dr. (UFSM)

Daniel Fernando Tello Gamarra, Dr. (UFSM)

Santa Maria, RS 2021

RESUMO

ANÁLISE DA CORREÇÃO DO ERRO IONOSFÉRICO EM RECEPTORES GPS DE FREQUÊNCIA SIMPLES A PARTIR DA IMPLEMENTAÇÃO DO ALGORITMO DE KLOBUCHAR EM PYTHON

AUTOR: Jeferson Rodrigues Silva ORIENTADORA: Andrea Schwertner Charão COORIENTADOR: Adriano Petry

A técnica de Disponibilidade Seletiva (SA - Selective Availability) foi desativada em 02 de maio de 2000, desde então a maior fonte de erros no posicionamento com o Sistema de Posicionamento Global (GPS) passou a ser relacionado à ionosfera. O erro ionosférico é diretamente proporcional ao conteúdo total de elétrons (TEC) presente ao longo da trajetória percorrida pelo sinal na ionosfera. O TEC sofre variações no tempo e no espaço e sofre influência de diversas variáveis tais como: ciclo solar, época do ano, hora do dia, localização geográfica e atividade geomagnética. Em sistemas de frequência simples a correção desses erros está associada à utilização de um modelo ionosférico que estima a quantidade de TEC presente na camada ionosférica e a avaliação deste modelos se dá pela análise de resultados pós-processados das correções aplicadas. Neste trabalho foram avaliados: arquivos IONEX de correções do serviço de Mapas Globais da Ionosfera (GIM) gerados pelo Serviço Internacional de GNSS (IGS) e a resposta ao algoritmo de Klobuchar concebida pelo pacote de aplicações de GNSS RTKLib. Para validação da resposta do RTKLib aos arquivos IONEX, foram gerados mapas a partir da implementação do algoritmo de Klobuchar em Python e como base de comparação foi utilizado a correção por dupla frequência, visto que esta corrige cerca de 99% dos erros associados à ionosfera. O método de pós-processamento aplicado pelo RTKLib mostrou-se eficaz, retornando os valores esperados, sendo assim os mapas do IGS foram mais precisos do que a correção aplicada pelo método de Klobuchar, justificando o seu uso pela comunidade científica como base de comparação na correção de erros em receptores GPS de frequência simples.

Palavras-chave: Receptores GPS. Frequência Simples. IGS. Python. Klobuchar. Correção Ionosférica

ABSTRACT

KLOBUCHAR ANALISYS OF IONOSPHERIC ERROR

AUTHOR: Jeferson Rodrigues Silva ADVISOR: Andrea Schwertner Charão CO-ADVISOR: Adriano Petry

The Selective Availability (SA) technique was deactivated on May 2, 2000, since then the biggest source of errors in positioning with the Global Positioning System (GPS) has come to be related to the ionosphere. The ionospheric error is directly proportional to the total electron content (TEC) present along the path taken by the signal in the ionosphere. TEC undergoes variations in time and space and is influenced by several variables such as: solar cycle, time of year, time of day, geographic location and geomagnetic activity. In simple frequency systems, the correction of these errors is associated with the use of an ionospheric model that estimates the amount of TEC present in the ionospheric layer and the evaluation of these models is done by analyzing the post-processed results of the applied corrections. In this work were evaluated: IONEX files of corrections from the Global Ionosphere Maps (GIM) service generated by the International GNSS Service (IGS) and the response to the Klobuchar algorithm designed by the GNSS application package RTKLib. To validate RTKLib's response to IONEX files, maps were generated from the implementation of the Klobuchar algorithm in Python and as a basis of comparison, double frequency correction was used, since it corrects about 99% of errors associated with the ionosphere. The post-processing method applied by RTKLib proved to be effective, returning the expected values, so the IGS maps were more accurate than the correction applied by the Klobuchar method, justifying its use by the scientific community as a basis for comparison in error correction in single frequency GPS receivers.

Keywords: GPS receivers. Simple Frequency. IGS. Python. Klobuchar. Ionospheric correction

LISTA DE FIGURAS

Figura 1.1 – Representação da constelação de Satélites GPS	11
Figura 1.2 – Representação do atraso associado a efeitos da ionosfera.	12
Figura 2.1 – Possíveis divisões da atmosfera terrestre.	16
Figura 2.2 – Subdivisões das camadas da ionosfera.	17
Figura 2.3 – Modelo do campo magnético da Terra	19
Figura 3.1 – Etapas do processo de análise.	25
Figura 3.2 – Fluxograma básico das funções presentes no algoritmo	26
Figura 3.3 – Verificação da data correta do arquivo	30
Figura 3.4 – Verificação do arquivo correto de antena.	31
Figura 3.5 – Alpha e Beta presentes num arquivo RINEX	32
Figura 3.6 – Mapa de TEC gerado a partir de um arquivo IONEX do IGS	32
Figura 3.7 – Fluxograma de funcionamento do script de execução	33
Figura 3.8 – Disposição da pasta de simulação referente a execução para o dia 12/01/2018.	34
Figura 4.1 - Gráfico do erro médio absoluto por estação utilizando os dados de correção	
do IGS	39
Figura 4.2 - Gráfico do erro médio absoluto por estação utilizando os dados de correção	
do modelo de Klobuchar implementado pelo RTKLIB	39
Figura 4.3 - Gráfico do erro médio absoluto por estação utilizando os dados de correção	
gerados do modelo de dupla frequência.	40
Figura 4.4 - Gráfico do erro médio absoluto por estação utilizando os dados de correção	
implementado neste trabalho	40

LISTA DE TABELAS

Tabela	2.1 – Aplicações do RTKLib.	23
Tabela	3.1 – Datas das avaliações e conversão para o modelo de tempo utilizado pelos	
	sistemas de navegação por satélites	28
Tabela	3.2 – Estações selecionadas para avaliação	29
Tabela	4.1 – Erro médio absoluto mensal simulado	37
Tabela	4.2 – Erro médio absoluto por estação	38
Tabela	4.3 – Médias e medianas gerais para todos os dias e estações simuladas	38

LISTA DE ABREVIATURAS E SIGLAS

GPS	Sistema de Posicionamento Global
GNSS	Sistema Global de Navegação Por Satélite
GLONASS	Sistema de Navegação Global via Satélite Russo
Galileo	Sistema de Navegação Global via Satélite da União Europeia
BeiDou	Sistema de Navegação Global via Satélite Chines
SBAS	Sistema de Aumento Baseado em Satélite
SPS	Serviço de Posicionamento Padrão
PPS	Serviço de Posicionamento de Precisão
DoD	Departamento de defesa dos Estados Unidos da América
NAVSTAR	NAVigation Satellite with Time And Ranging
TEC	Conteúdo Total de Elétrons
TECU	Unidade de TEC
IGS	Serviço Internacional de GNSS
CODE	Centre for Orbit Determination for Europe
ESA	European Space Agency
JPL	Jet Propulsion Laboratory
UPC	Universitat Politecnica Catalunya
GIM	Mapas Globais da Ionosfera
INPE	Instituto Nacional de Pesquisas Espaciais
RTKLib	Biblioteca Cinemática em Tempo Real
UV	Ultra Violeta
VTEC	TEC Vertical
STEC	TEC Inclinado
SA	Selective Avaibility - Disponibilidade Seletiva
IONEX	IONosphere map Exchange format
RINEX	Formato de Troca Independente do Receptor
GUI	Interface Gráfica de Usuário

CUI	Interface de Caracteres de Usuário
OBS	Arquivos RINEX de Observação
NAV	Arquivos Rinex de Navegação
CLK	Relógio
CDDIS	O sistema de Informação de Dados da Crustal Dynamics
URL	Localizador Uniforme de Recursos
ТСР	Protocolo de Controle de Transmissão
IP	Protocolo de internet
FTP	Protocolo de Transferência de Arquivos
HTTP	Protocolo de Transferência de Hipertexto
API	Interface de Programação de Aplicações
RTCM	Comissão Técnica de Rádio para Serviços Marítimos
IPP	Ponto de Furo Ionosférico

SUMÁRIO

1	INTRODUÇÃO	11
1.1	JUSTIFICATIVA	13
1.2	OBJETIVOS GERAIS	13
1.3	OBJETIVOS ESPECÍFICOS	13
2	REFERENCIAL TEÓRICO	15
2.1	IONOSFERA	15
2.2	VARIAÇÕES DO CONTEÚDO TOTAL DE ELÉTRONS (TEC)	16
2.2.1	Variações Temporais	17
2.2.2	Influência das variações na radiação solar	18
2.2.3	Efeitos da latitude e do campo magnético da Terra	18
2.3	CORREÇÕES IONOSFÉRICAS	18
2.3.1	Combinação Linear Livre da Ionosfera - ion-free	19
2.3.2	Mapas Globais da Ionosfera	20
2.3.3	Modelo de Klobuchar	20
2.4	PROCESSAMENTO DOS DADOS	22
3	METODOLOGIA	24
3.1	DESENVOLVIMENTO DO SOFTWARE PARA GERAÇÃO DOS MAPAS IO-	
	NEX	24
3.1.1	Algoritmo de Klobuchar	25
3.1.2	Algoritmo para visualização dos mapas	26
3.1.3	Algoritmo para geração de arquivos IONEX	27
3.2	CONFIGURAÇÃO DO AMBIENTE	27
		~ -
3.2.1	Instalação do RTKLib	27
3.2.1 3.2.2	Instalação do RTKLib Obtenção dos arquivos	27 27
3.2.1 3.2.2 <i>3.2.2.1</i>	Instalação do RTKLib Obtenção dos arquivos Órbita dos Satélites	27 27 29
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i>	Instalação do RTKLib Obtenção dos arquivos Órbita dos Satélites Correções de Clock	 27 27 29 29 29
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i>	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena	 27 27 29 29 30
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i>	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock Antena RINEX de Observação	27 27 29 29 30 30
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i>	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação	27 27 29 29 30 30 31
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i>	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX.	27 27 29 29 30 30 31 31
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib	 27 27 29 29 30 30 31 31 32
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 3.3	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO.	27 29 29 30 30 31 31 31 32 33
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 3.3 3.4	Instalação do RTKLibObtenção dos arquivos.Órbita dos SatélitesCorreções de Clock.AntenaRINEX de ObservaçãoRINEX de NavegaçãoMapas de TEC formato IONEX.Configuração do RTKLibEXECUÇÃO.AVALIAÇÃO	27 29 29 30 30 31 31 32 33 34
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 3.4 4	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO. AVALIAÇÃO RESULTADOS	27 29 29 30 30 31 31 31 32 33 34 36
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 3.3 3.4 4 4.1	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO. AVALIAÇÃO RESULTADOS ANÁLISE NUMÉRICA	 27 29 29 30 31 31 32 33 34 36
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 3.3 3.4 4 4.1 4.2	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO AVALIAÇÃO RESULTADOS ANÁLISE NUMÉRICA ANÁLISE GRÁFICA	27 29 <i>29</i> <i>30</i> <i>31</i> <i>31</i> <i>31</i> <i>32</i> <i>33</i> <i>34</i> <i>36</i> <i>37</i>
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 <i>3.4</i> 4 4.1 4.2 5	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO. AVALIAÇÃO RESULTADOS. ANÁLISE NUMÉRICA ANÁLISE GRÁFICA. CONCLUSÃO	 27 27 29 29 30 30 31 31 32 33 34 36 37 41
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 3.3 3.4 4 4.1 4.2 5	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO AVALIAÇÃO RESULTADOS ANÁLISE NUMÉRICA ANÁLISE GRÁFICA CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS	27 27 <i>29</i> <i>29</i> <i>30</i> <i>30</i> <i>31</i> <i>31</i> 32 <i>33</i> <i>34</i> 36 <i>37</i> 41 42
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 <i>3.4</i> 4 .1 4.2 5	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena. RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO. AVALIAÇÃO RESULTADOS. ANÁLISE NUMÉRICA ANÁLISE GRÁFICA CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS APÊNDICE A – TABELA COM MÉTRICAS DOS ERROS COLETADOS	27 29 29 30 30 31 31 32 33 34 36 36 37 41 42
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 <i>3.3</i> <i>3.4</i> 4 4.1 4.2 5	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO. AVALIAÇÃO RESULTADOS ANÁLISE NUMÉRICA ANÁLISE NUMÉRICA ANÁLISE GRÁFICA CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS APÊNDICE A – TABELA COM MÉTRICAS DOS ERROS COLETADOS EM METROS A PARTIR DAS ESTAÇÕES E DIAS SIMULADOS	27 29 <i>29</i> <i>29</i> <i>30</i> <i>31</i> <i>31</i> <i>32</i> <i>33</i> <i>34</i> <i>36</i> <i>37</i> <i>41</i> <i>42</i> <i>45</i>
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 <i>3.3</i> <i>3.4</i> 4 .1 4.2 5	Instalação do RTKLib Obtenção dos arquivos. Órbita dos Satélites Correções de Clock. Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO. AVALIAÇÃO AVALIAÇÃO AVALIAÇÃO AVALISE NUMÉRICA ANÁLISE NUMÉRICA ANÁLISE GRÁFICA CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS APÊNDICE A – TABELA COM MÉTRICAS DOS ERROS COLETADOS EM METROS A PARTIR DAS ESTAÇÕES E DIAS SIMULADOS APÊNDICE B – ALGORITMO DE IMPLEMENTAÇÃO DO MODELO	27 27 29 29 30 30 31 31 32 33 34 36 37 41 42 45
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 <i>3.4</i> 4 4.1 4.2 5	Instalação do RTKLib Obtenção dos arquivos Órbita dos Satélites Correções de Clock Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX. Configuração do RTKLib EXECUÇÃO. AVALIAÇÃO AVALIAÇÃO RESULTADOS. ANÁLISE NUMÉRICA ANÁLISE GRÁFICA CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS APÊNDICE A – TABELA COM MÉTRICAS DOS ERROS COLETADOS EM METROS A PARTIR DAS ESTAÇÕES E DIAS SIMULADOS APÊNDICE B – ALGORITMO DE IMPLEMENTAÇÃO DO MODELO DE KLOBUCHAR.	27 29 29 30 30 31 31 32 33 34 36 37 41 42 45 55
3.2.1 3.2.2 <i>3.2.2.1</i> <i>3.2.2.2</i> <i>3.2.2.3</i> <i>3.2.2.4</i> <i>3.2.2.5</i> <i>3.2.2.6</i> 3.2.3 <i>3.3</i> <i>3.4</i> 4 4.1 4.2 5	Instalação do RTKLib Obtenção dos arquivos Órbita dos Satélites Correções de Clock Antena RINEX de Observação RINEX de Navegação Mapas de TEC formato IONEX Configuração do RTKLib EXECUÇÃO AVALIAÇÃO RESULTADOS ANÁLISE NUMÉRICA ANÁLISE NUMÉRICA ANÁLISE GRÁFICA CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS APÊNDICE A – TABELA COM MÉTRICAS DOS ERROS COLETADOS EM METROS A PARTIR DAS ESTAÇÕES E DIAS SIMULADOS APÊNDICE B – ALGORITMO DE IMPLEMENTAÇÃO DO MODELO DE KLOBUCHAR APÊNDICE C – IMPLEMENTAÇÃO DA FUNÇÃO DE IMPRESSÃO DOS	27 27 29 29 30 30 31 31 32 33 34 36 37 41 42 45 55

APÊNDICE D – ALGORITMO DE IMPLEMENTAÇÃO DO GERADOR	
DE ARQUIVOS IONEX	59

1 INTRODUÇÃO

O GPS ou NAVigation Satellite with Time And Ranging (NAVSTAR-GPS), é um sistema de navegação por satélite desenvolvido pelo Departamento de Defesa dos Estados Unidos da América – DoD (Department of Defense). Com o intuito de ser a principal ferramenta de navegação das forças armadas americanas, foi declarado oficialmente operacional no ano de 1995. Em sua composição há um total de 24 satélites orbitando a terra e estações espalhadas pelo globo terrestre (JÚNIOR, 2019).

Figura 1.1 – Representação da constelação de Satélites GPS.

Fonte: Miguens (2000).

O sistema permite que usuários, em qualquer lugar da superfície terrestre tenham disponíveis pelo menos quatro satélites para que suas informações posicionais sejam identificadas e sua utilização pode ser feita em quaisquer condições climáticas. O princípio básico de funcionamento do GPS é dado pela medida da distância entre o usuário e os quatros satélites dentro de um sistema de referência adequado. A razão para o uso de quatro satélites é a falta de sincronismo entre os relógios dos satélites em si, e do usuário, caso contrário seriam necessárias apenas três coordenadas para a completa localização do usuário.

Cada satélite GPS transmite duas ondas portadoras: L1 com frequência igual a 1575,42 MHz e comprimento de onda λ de 19cm; e L2 com frequência de 1227,60 MHz e comprimento de onda de 24 cm. Essas frequências são geradas simultaneamente, o que permite ao usuário corrigir grande parte dos efeitos causado em razão da refração ionosférica (AMEN-DOLA, 2003). Ambos os sinais são modulados por mensagem de navegação de 30 segundos e transmitidas a 50 bits por segundo, contendo nos seus primeiros 18 segundos, informações da efemérides para o satélite que transmite o sinal, definindo sua posição em função do tempo. Os segundos restantes contêm informações de almanaque que definem as órbitas e as condições operacionais de todos os satélites do sistema. Os receptores GPS armazenam e usam os dados das efemérides para determinar a pseudo-distância ao satélite e aos dados de almanaque como subsídio para selecionar os quatro melhores satélites para emprego na obtenção da posição em qualquer hora ou local.

O serviço de GPS é oferecido em duas frentes: o Serviço de Posicionamento Padrão (SPS) e Serviço de Posicionamento Preciso (PPS). O SPS é um serviço gratuito de posicionamento e tempo padrão que está disponível gratuitamente para uso civil, comercial, científico, dentre outros usos ao redor do globo (MOOREFIELD, 2020). As especificações de performance do SPS são de 95% de nível de confiança de acordo com o Performance Analysis Reports at its National Satellite Test Bed (NSTB). O PPS proporciona melhores resultados, no entanto, o sistema é restrito ao uso militar e a usuários autorizados (GRIMES, 2007).

Os sinais L1 e L2 são modulados ainda por duas sequências binárias adicionais, o código C/A (coarse / acquisition code), para aquisição e navegação, e o código P (precision code), para medições de precisão, após a obtenção e sincronização do sinal pelo receptor. A portadora L1 é modulada pelo código C/A e pelo código P, a portadora L2 apenas pelo código P.

Os receptores GPS apresentam erros de posicionamento que estão relacionados com a refração ionosférica. Os equipamento mais robustos funcionam com o sistema de dupla frequência, sendo assim conseguem reduzir o erro associado a ionosfera em até 99%, o que representa alguns centímetros de erro resultante. Os equipamentos mais difundidos trabalham com frequência simples, obtendo apenas uma portadora do sinal enviado, estes por sua vez fazem o uso de algum modelo de correção para diminuir o total do erro aferido pela camada ionosférica ao sinal (MARQUES, 2014).

Figura 1.2 – Representação do atraso associado a efeitos da ionosfera.

Fonte: Klobuchar (1987).

1.1 JUSTIFICATIVA

Uma das alternativas para minimizar o erro ionosférico causado nas comunicações entre o satélite e o receptor GPS de frequência simples é a utilização de algum modelo ionosférico. Nesses sistemas, a qualidade da correção depende da qualidade do modelo ionosférico utilizado. Estudos foram feitos a fim de comparar a eficácia entre os diferentes tipos de modelos, no entanto, o constante processo de avaliação das soluções, em variadas condições auxiliam a obter de maneira fidedigna a resposta ao erro nessas simulações.

A partir dos resultados obtidos em (BENTO, 2019) levantou-se a hipótese de que o processo de correção via arquivos IONEX pela biblioteca RTKLib apresentasse erros de posicionamento, visto que os dados obtidos apontaram para uma melhor correção do método de Klobuchar implementado internamente via RNX2RTKP mesmo quando comparado com os mapas globais da ionosfera gerados pelo IGS. Dado que os mapas de TEC do IGS são referência na correção do erro associado a ionosfera (MATSUOKA M.T.; CAMARGO; COSTA, 2009), o estudo desenvolvido neste trabalho foi desenvolvido para validar a corretude do software de processamento RTKLib nos processos de correção ionosférica a partir do envio de mapas de TEC no formato IONEX e nas correções geradas a partir dos seus cálculos internos.

Foram comparados arquivos de correção IONEX do IGS, o algoritmo de Klobuchar implementado internamente pela biblioteca RTKLib (TAKASU, 2013), a correção por dupla frequência e os mapas de TEC no formato IONEX gerados pelo algoritmo desenvolvido neste trabalho para validar a eficácia do processamento pelo RTKLib.

1.2 OBJETIVOS GERAIS

Este projeto tem como objetivo a avaliação de diferentes métodos de correção do erro ionosférico nos receptores GPS de frequência simples. Para isso foram avaliadas diferentes estações ao redor do globo, em diferentes dias de um ano, com o auxílio do software de pósprocessamento RNX2RTKP, uma aplicação do pacote de programas de código aberto para posicionamento padrão e preciso com o GNSS. Posteriormente estes dados foram comparados com os dados obtidos pelo software desenvolvido para mesmo fim, para verificar a possibilidade de ocorrência de erros nesse processo.

1.3 OBJETIVOS ESPECÍFICOS

Instalar o RTKLib, estudar os tipos de arquivos necessários para execução dos testes, obter os arquivos com informações das constantes de Klobuchar para o cálculo do tempo de atraso na comunicação, implementar em Python uma versão do algoritmo de Klobuchar para correção do erro ionosférico em receptores GPS de frequência simples, comparar os valores obtidos a partir dessa implementação com valores obtidos pelo software RTKLib e verificar a possibilidade da existência de erros a partir do processamento de arquivos IONEX por parte da aplicação RNX2RTKP frente a arquivos de correção do IGS, modelo de Klobuchar implementado neste projeto e a correção de Klobuchar implementada pela própria aplicação de pós-processamento.

2 REFERENCIAL TEÓRICO

Neste capítulo serão apresentados os principais conceitos sobre o princípio de funcionamento do Sistema Global de Posicionamento, características da ionosfera relevantes ao escopo de trabalho, modelagem ionosférica e a caracterização das ferramentas utilizadas para análise de pós-processamento aplicadas ao projeto.

2.1 IONOSFERA

Os sinais de GPS estão sujeitos a diversos efeitos que ocasionam erros no posicionamento, desde os satélites, à propagação do sinal, ao receptor ou até mesmo erros que afetam a própria estação receptora. Os erros podem estar relacionados a diferentes características e estados dos meios envolvidos na transmissão, recepção e tráfego dos dados (MONICO, 2008; SEEBER, 2003).

Os sinais enviados pelos satélites se propagam pela atmosfera terrestre até chegarem ao receptor. Nesse caminho eles são submetidos a diferentes regiões atmosféricas onde ocorrem diferentes tipos de alterações na natureza desses pulsos eletromagnéticos, tais como mudança de direção e velocidade de propagação, na potência e na polarização. A atmosfera terrestre pode ser dividida em função de suas características de ionização, temperatura, campo magnético e propagação de ondas eletromagnéticas (SEEBER, 2003). Em relação a propagação de ondas temos uma subdivisão onde ocorrem as principais diferenças em relação às outras camadas no sentido da propagação de sinais eletromagnéticos. Essa subdivisão se dá através das camadas chamadas de ionosfera e troposfera.

A troposfera é a camada mais baixa da atmosfera terrestre, está localizada no início da atmosfera terrestre até aproximadamente 40 km de altura. A propagação de sinais nessa camada depende majoritariamente da quantidade de vapor de água presente nesta faixa do espaço e da temperatura. Para sinais com frequências abaixo de 30 GHz (LEICK; RAPOPORT; TATARNI-KOV, 2015), a troposfera comporta-se como um meio não dispersivo, sendo assim, a refração não depende da frequência do sinal transmitido, depende apenas das propriedades termodinâmicas do ar. Sendo assim, sinais UHF (Ultra High Frequency), que compreendem uma faixa de frequência de 300 MHz a 3 GHz, onde estão incluídos os sinais GPS (L1 = 1575,42 MHz e L2 = 1227,60 MHz), são propagados de forma não dispersiva na troposfera.

A ionosfera é a camada localizada aproximadamente entre 80 e 1000 km de altitude. A característica que difere essa camada das demais é a alta quantidade de elétrons livres presentes em sua composição, razão pela qual a propagação de sinais é altamente influenciada quando percorre essa faixa da atmosfera. Por ser um meio dispersivo, a ionosfera afeta a modulação e a fase da onda portadora do sinal, causando um efeito de retardo e avanço, respectivamente

Figura 2.1 – Possíveis divisões da atmosfera terrestre.

Altitude (Km)	Temperatura	lonização	Campo Magnético	Propagação	Geral
100 000		Protonosfera			
10 000	Termosfera		Magnetosfera	lonosfera	Atmosfera Suporior
1000	-	lonosfera			Superior
100	Mesosfera				
10	Estratosfera	Neutrosfera	Dinamosfera	Troposfera	Atmosfera Inferior

Fonte: Adaptado de Seeber (2003)

nesses atributos da onda (LEICK; RAPOPORT; TATARNIKOV, 2015). O retardo é o atraso ionosférico, que afeta o comprimento aparente do caminho que o sinal percorre.

2.2 VARIAÇÕES DO CONTEÚDO TOTAL DE ELÉTRONS (TEC)

Para compreender como se comporta o erro ionosférico devemos analisar quem são os agentes causadores e o princípio intrínseco das variações na quantidade de elétrons na atmosfera. É sabido que a variação do TEC é ocasionada por um conjunto de fatores associados que alteram o comportamento da distribuição eletrônica na camada ionosférica, dentre os fatores estão alterações no fluxo ionizante solar, atividade magnética, estação do ano, horário local, localização do receptor e direção de visualização (KLOBUCHAR, 1987).

Outro ponto a se observar é que a ionosfera tem subdivisões em camadas, essas subcamadas estão divididas em função de suas alturas e das suas intensidades de ionização (SEEBER, 2003) conforme ilustrado na figura 2.2.

Alguns dos aspectos mais importantes do ponto de vista da análise de variação do TEC são:

Figura 2.2 – Subdivisões das camadas da ionosfera.

Fonte: (BENTO, 2019)

2.2.1 Variações Temporais

Numa escala de tempo diurna temos variações na quantidade de elétrons livres presentes na ionosfera. Tal variação surge da característica do sol de emitir radiação ultravioleta (UV), alterando assim a densidade das subcamadas da ionosfera. Graças a esse processo há uma maior recombinação dos elétrons o que faz com que as camadas D, E e F1 desapareçam ao anoitecer, e a camada F2 tem uma redução na quantidade de elétrons. A camada F2 é conhecida por seu comportamento imprevisível e distinto, enquanto em período de solstício de inverno as outras camadas apresentam queda na quantidade de TEC essa camada comporta-se de maneira diferente, apresentando um aumento na quantidade de TEC associada a ela. Muito do que se observa dessa camada é resultado de uma combinação de processos, sendo assim difícil isolar seus efeitos. A densidade máxima de TEC em F2 é encontrada entre o período de 12h e 16h (hora local). A causa das variações diárias não são entendidas em sua totalidade, mas no geral são originadas por flutuações na atividade solar e ventos de grande altitudes que alteram a distribuição das partículas neutras das quais são compostas a ionosfera e suas subcamadas.

Sazonalmente também ocorrem variações na densidade de elétrons das camadas D, E e F1. A alteração se dá pelo fato de ocorrerem mudanças no ângulo de elevação do sol de acordo com cada estação do ano. Desse modo a radiação atinge a Terra mais obliquamente no verão do que no inverno ocasionando uma menor taxa de absorção e um aumento na ionização. No inverno a camada F1 diurna desaparece, ao mesmo tempo que a camada E é reduzida, em contrapartida F2 comporta-se de forma oposta, apresentando um aumento na ionização (em até 20%) durante os ciclos diurnos. Esse efeito é conhecido como anomalia sazonal de latitude média, e decorre das alterações nas proporções de elementos gasosos e moléculas presentes em cada período sazonal (WEBSTER, 1994).

2.2.2 Influência das variações na radiação solar

As variações na quantidade de raios UV emitido pelo sol tem um efeito considerável nos níveis de ionização presentes na camada ionosférica terrestre. Em momentos de declínio da atividade solar ocorre a incidência de buracos coronais, que são fontes de correntes de vento solar de alta velocidade. Em condições normais há sempre a ejeção de partículas carregadas por parte do sol na forma de vento solar e com velocidade de até 300 km/s, quando em período de baixa atividade solar o fluxo dessas partículas chegam a 500 km/s e formam espirais que envolvem a Terra em eventos casuais (WEBSTER, 1994).

A radiação solar também sofre variações decorrentes das erupções solares, em períodos de alta atividade solar. As erupções são aumentos rápidos localizados de energia na superfície do sol, e tem duração de vários minutos. A energia expelida na forma de raios X penetra até a região D da camada ionosférica e provoca um aumento nos níveis de ionização de até dez vezes. Normalmente as camadas E e F permanecem inalteradas perante a esse efeito e somente o lado da Terra exposto a luz do dia será afetado (WEBSTER, 1994).

2.2.3 Efeitos da latitude e do campo magnético da Terra

O nível de radiação que incide sobre uma área da Terra é diretamente impactado pela variação na latitude geográfica, como consequência da variação do ângulo zenital do sol. Nos pólos em períodos de baixa no ângulo zenital, tais como ocorre no inverno, a escuridão predomina sobre o período com iluminação solar. Como consequência, e tomando uma generalização grosseira, as regiões de latitudes médias são relativamente livres de anomalias ionosféricas, ao mesmo tempo que as regiões equatoriais possuem níveis altos de densidade de elétrons e as regiões polares comportam-se de maneira imprevisível (WEBSTER, 1994).

O campo geomagnético pode ser aproximado por um dipolo centrado cujo eixo está inclinado aproximadamente 11° em relação ao eixo de rotação da Terra, conforme ilustrado na figura 2.3. O equador geomagnético é o plano perpendicular ao eixo magnético, análogo ao plano do equador geográfico, que é perpendicular ao eixo geográfico. O campo geomagnético terrestre tem influência na alteração da densidade de elétrons e controla o movimento das partículas ionizadas na camada ionosférica. Sendo assim, qualquer variação no campo irá refletir nas condições de transporte do meio ionizado (KIRCHHOFF, 1991).

2.3 CORREÇÕES IONOSFÉRICAS

Com o avanço da ciência e com um poder computacional cada vez mais elevado, diversas alternativas para minimizar os erros ionosféricos em receptores GPS foram criadas. Nos receptores de dupla frequência a combinação linear (ion-free) é amplamente utilizada (FAUSTINO,

Fonte: Adaptado de McNAMARA (1991)

2006). Já nos dispositivos de frequência simples, uma alternativa é o uso de alguma modelagem ionosférica, para tal existe uma vasta gama de modelagens cada qual com seu propósito e aplicação. Neste trabalho iremos abordar o modelo idealizado por Klobuchar (KLOBUCHAR, 1987), mas existem outros com grande número de aplicações, tais como os modelos: NeQuick (RADICELLA; NAVA; COÏSSON, 2008), SUPIM-DAVS (PETRY; VELHO; SOUZA,), IGS (MATSUOKA M.T.; CAMARGO; COSTA, 2009), dentre outros.

2.3.1 Combinação Linear Livre da Ionosfera - ion-free

Nos sistemas GPS de dupla frequência pode-se aplicar a combinação linear livre da ionosfera (ionosphere-free). Esta combinação utiliza-se do fato de que os sinais em diferentes frequências sofrem diferentes atrasos de propagação pela ionosfera. Assim, quando utilizada, essa técnica corrige até 99,9% da distorção causada nas portadoras L1 e L2. Os efeitos causados nas portadoras podem ser de primeira, segunda e terceira ordens. A correção utilizando essa técnica se mostra eficaz porque cerca de 99% dos efeitos ionosféricos estão relacionados apenas ao TEC e são de ordem primária. Os efeitos de segunda e terceira ordens estão associados a densidade máxima de elétrons nas diferentes regiões da ionosfera e ao conteúdo total de elétrons inclinado (MARQUES, 2014).

2.3.2 Mapas Globais da Ionosfera

Em 1998 o IGS iniciou a produção de mapas globais que disponibilizam valores de conteúdo total de elétrons vertical (VTEC) calculados dados GNSS coletados a partir de sua rede de receptores (MATSUOKA, 2007). Atualmente os mapas estão sendo produzidos por quatros centros de análise juntamente com o IGS: CODE, ESA, JPL e UPC. O GIM (Mapas Globais da Ionosfera) final produzido pela instituição é calculado pelo UPC, este contém uma solução unificada contendo os mapas com estimativa de VTEC calculado por cada centro pertencente ao grupo (ROCHA, 2015).

Os Mapas Globais da Ionosfera do IGS são disponibilizados no formato IONEX com valores de VTEC distribuídos em uma grade bidimensional de resolução espacial 5° x 2.5° em longitude e latitude, respectivamente. A resolução temporal de cada mapa é de duas horas. As grades são distribuídas de 87.5° ao norte até 87.5° ao sul em latitude e de 180° ao oeste a 180° ao leste em longitude, considerando a altura da camada da ionosfera igual a 450 km (IGS, 2021).

A precisão dos mapas gerados pelo IGS variam de acordo com a região do globo, do número de estações GPS utilizadas, do período de atividade da ionosfera, dentre outros fatores (CODE, 2021).

2.3.3 Modelo de Klobuchar

Para minimizar o erro devido à ionosfera nas observáveis GPS para usuários do sistema de frequência simples uma das alternativas é fazer o uso de algum modelo matemático de mapeamento e correção ionosférica. Um dos modelos mais conhecidos e aplicados é o modelo que foi desenvolvido por John A. Klobuchar (KLOBUCHAR, 1987).

Também conhecido como broadcast, o modelo consiste no cálculo do atraso ionosférico a partir do uso de 8 coeficientes ($\alpha_n \in \beta_n$, n = 0, 1, 2, 3) que são transmitidos como mensagem de navegação por satélites distribuídos ao redor do globo (HOFMANNWELLENHOF, 1998). Para descrever a variação diurna da ionosfera o modelo utiliza-se da função cosseno com amplitude máxima às 14:00 horas locais. O cálculo da amplitude e período são feitos a partir dos dados de latitude geomagnética e dos coeficientes transmitidos pelo satélite. Para o período noturno o atraso em L1 é constante e definido como sendo igual a 5 nanossegundos. Este valor pode ser convertido para unidades de TEC (TECU) ou metros (MATSUOKA; CAMARGO, 2002) variando de acordo com a aplicação.

Para obter o atraso final na comunicação entre o satélite e receptor em L1 o usuário precisa conhecer os dados de latitude Φ_l longitude λ_u ângulo de elevação *E* e o azimute *A* do satélite GPS para qual se deseja fazer a correção. Também é necessária a obtenção dos valores de α_n e β_n que são transmitidos como parte da mensagem enviada pelo satélite (KLOBUCHAR, 1987). A sequência de cálculos é feita da seguinte maneira:

 Primeiro calcula-se o ângulo formado a partir do geocentro entre o receptor e o ponto ionosférico (ψ) a partir da seguinte relação:

$$\psi = \frac{0.0137}{E + 0.11} + 0.02 \tag{2.1}$$

 A latitude do ponto ionosférico (Φ_l), esse valor está condicionado na faixa 0.416 ≤ Φ_l ≤ 0.416:

$$\Phi_l = \Phi_u + \cos A \tag{2.2}$$

$$\Phi_l \begin{cases}
0.416, \text{ se } \Phi_l > 0.416 \\
-0.416, \text{ se } \Phi_l < 0.416
\end{cases}$$
(2.3)

• A longitude sub-ionosférica (λ_l):

$$\lambda_l = \lambda_u + \frac{\psi \sin A}{\cos \phi_l} \tag{2.4}$$

• Latitude geomagnética (Φ_m):

$$\Phi_m = \Phi_l + 0.064 \cos(\lambda_l - 1.617) \tag{2.5}$$

• Tempo local do ponto ionosférico para a época de observação (*t*):

$$t = 4.32 \times 10^4 \lambda_l + GPStime \tag{2.6}$$

• O fator de inclinação (*F*):

$$F = 1.0 + 16 \times (0.53 - E)^3$$
(2.7)

• E por fim, o atraso ionosférico em segundos (*T*_{iono}) para a frequência L1 do sinal então é obtido, através de:

$$T_{iono} = F \times \left[5 \times 10^{-9} + \sum_{n=0}^{3} \alpha_n \Phi_m^n \times \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)\right]$$
(2.8)

Onde,

$$x = \frac{2\pi(t - 50400)}{\sum_{n=0}^{3} \beta_n \Phi_m^n}$$
(2.9)

Embora o modelo tenha sido criado para calcular o erro na frequência L1 do sinal, pode-se obter o valor para frequência L2 a partir da multiplicação da resultante do atraso ionosférico pela constante 1.65 na segunda frequência do sinal L2 (KLOBUCHAR, 1987).

2.4 PROCESSAMENTO DOS DADOS

O processamento dos dados obtidos a partir dos receptores GPS pode ser realizado em tempo real ou num tempo após a aquisição desses dados, o pós-processamento. Este segundo método faz a obtenção de dados da mesma forma, no entanto, diferente do que temos no processamento em tempo de execução, a obtenção dos dados não ocorre em tempo real. Para o pós-processamento é necessário fazer o uso de um arquivo de intercâmbio de dados de receptor RINEX (Receiver Independent Exchange Format) para o processamento dos dados.

Na rede há diversos tipos de softwares com diferentes características para análise de pós-processamento dos dados brutos de receptores GPS. Neste trabalho o software utilizado foi o RTKPost, módulo disponível na biblioteca RTK (TAKASU, 2013). O motivo para escolha do RTKLib foi que o pacote é open source e têm uma vasta gama de ferramentas e suportes para o processamento e análise de dados das mais variadas fontes de sistemas de posicionamento.

O RTKLib tem suporte a:

- Possibilidade de trabalhar com vários sistemas de posicionamento e navegação global baseado em satélites (GNSS): GPS, GLONASS, Galileo, QZSS, BeiDou e SBAS.
- Vários modos de posicionamento GNSS, para processamento em tempo real e pós processamento.
- Uma variedade de formatos e protocolos padrão para o GNSS.
- Diferentes mensagens proprietárias de receptores GNSS.
- Comunicação externa via: Serial, TCP/IP, NTRIP, arquivo de log local (gravação e reprodução) e FTP/HTTP (download automático).
- Fornece muitas funções de biblioteca e APIs (interfaces de programa de aplicativo): funções de satélites e sistemas de navegação, matriciais e vetoriais, de tempo e string, transformação de coordenadas, funções de entrada e saída, de rastreio de depuração, funções dependentes da plataforma, modelos de posicionamento, modelos de atmosfera, modelos de antena, modelos geoidais, transformação de dados, funções RINEX, efemérides e funções de relógio, efemérides precisas e funções de relógio, funções de dados brutos do receptor, funções RTCM, funções de solução, conversor KML do Google Earth, funções SBAS, funções de entrada e saída de dados de fluxo, resolução de ambiguidade total, posicionamento preciso, posicionamento pós-processamento, funções de servidor de fluxo, funções de servidor RTK, funções de download (BENTO, 2019).

Aplicações GUI (Interface Gráfica de Usuário) possuem maior facilidade para o usuário final, pois os aplicativos contam com elementos gráficos para facilitar a navegação pelas funções de cada programa. Já as aplicações CUI (Interface de Caractere de Usuário) permitem maior agilidade com execuções paralelas e menor tempo de configuração em cada etapa.

Tabela 2.1 – Aplicações do RTKLib.

Função	GUI AP	CUI AP
AP Launcher	RTKLAUNCH	
RealTime Positioning	RTKNAVI	RTKRCV
Communication Server	STRSVR	STR2STR
PostProcessing Analysis	RTKPOST	RNX2RTKP
RINEX Converter	RTKCONV	CONVBIN
Plot Solutions and Observation Data	RTKPLOT	
Downloader for GNSS Products and Data	RTKGET	
NTRIP Browser	SRCTBLBROWS	

Fonte: Adaptado de Takasu (2007)

O RTK possui aplicações com interface gráfica e aplicações de caracteres de usuário, ambas apresentam as mesmas funcionalidades ficando a cargo do projetista qual aplicação mais se enquadra no seu caso de uso.

3 METODOLOGIA

Nesta seção estão detalhados os passos necessários para a avaliação dos quatro métodos de correção ionosférica em receptores GPS selecionados para este trabalho: correção a partir do modelo de Klobuchar via arquivos IONEX obtidos pelo software implementado, correção pelo método de Klobuchar via RTKLib, correção via arquivos IONEX gerados pelo IGS e a correção por dupla frequência. No total foram definidas 4 etapas para conclusão desse processo, e o fluxo dessas etapas estão ilustradas na figura 3.1.

A primeira etapa consiste no desenvolvimento de um software capaz de reproduzir o algoritmo idealizado por Klobuchar no ano de 1987 (KLOBUCHAR, 1987). O software precisa ser capaz de, além de calcular os resultados para o modelo de correção, converter os valores de atraso ionosférico para VTEC e por fim, armazenar esses dados num arquivo do tipo IONEX.

A partir da geração dos arquivos é necessária a configuração do ambiente de execução com os processos de instalação da biblioteca RTKLib para a análise e pós-processamento desses arquivos, a definição dos dias e estações que serão avaliados para a obtenção dos arquivos necessários para a simulação, o download dos dados a partir das estações do IGS e por fim a configuração do RTKLib.

Findada as duas etapas de preparação, é iniciada então a execução de fato dos posicionamentos, com os arquivos coletados a partir da primeira e segunda etapas do projeto. Os posicionamentos obtidos são comparados com as coordenadas geográficas de cada estação utilizada, e são estimados os erros de posicionamento.

Por último é feita a avaliação dos dados gerados a partir dos posicionamentos para os dias e estações selecionados.

3.1 DESENVOLVIMENTO DO SOFTWARE PARA GERAÇÃO DOS MAPAS IONEX

Para desenvolver um código capaz de gerar mapas IONEX a partir do modelo Klobuchar foram necessários alguns ajustes antes da implementação do algoritmo acontecer de fato. Primeiramente foi implementado um modelo mais simples do algoritmo, para cálculo de apenas um mapa em um instante de tempo pré-definido e com valores de latitude, longitude, ângulo de elevação, azimute, tempo, alfas e betas todos constantes. Para o teste, os valores foram extraídos do artigo original do Klobuchar. A partir dos resultados obtidos pode-se verificar a eficácia do algoritmo para o teste numérico e iniciar a implementação do algoritmo completo com a geração dos mapas e transformação dos resultados em coordenadas de um arquivo IONEX utilizado para a correção ionosférica baseada na quantificação de TEC presente na ionosfera. O software foi implementado utilizando a linguagem Python na versão 3.8.5, pela facilidade na implementação de listas para armazenar os dados e da vasta disponibilidade de bibliotecas para cálculo Figura 3.1 – Etapas do processo de análise.

Fonte: Autor.

numérico. Foi realizada primeiro a implementação do algoritmo para o cálculo e geração dos mapas e posteriormente o algoritmo de geração do arquivo IONEX.

3.1.1 Algoritmo de Klobuchar

A partir da primeira versão do algoritmo, outra versão que não utilizava diversos valores constantes da versão original foi implementada a fim de verificar possíveis melhorias em diferentes tipos de implementação dos cálculos das variáveis empregadas no algoritmo de Klobuchar pela comunidade científica e empresarial focada neste ramo científico. No entanto, nos primeiros testes já ficou evidente que o ganho de precisão nos cálculos não era significativo. Optou-se então pela implementação do algoritmo na forma idêntica ao que foi proposto no artigo original (Klobuchar, 1987).

O software recebe três dados de entrada: a data da simulação (em UTC), os parâmetros alfa e beta que serão utilizados para os cálculos dos valores de atraso ionosférico para cada dia e o tempo em GPS time. Outras duas entradas foram definidas como constantes para fins de geração dos mapas: o ângulo de elevação que recebeu o valor de 90°, visto que estamos interessados apenas na contribuição vertical do TEC; e o azimute que foi setado em 0° uma vez que para elevações de 90° seu valor não têm influência no valor final obtido.

Para geração dos 13 mapas necessários por dia foi implementada a função calculaKlob que recebe os parâmetros de tempo que serão entregues, a função de cálculo (klobuchar) e também faz a criação das listas e o armazenamento de cada coordenada de latitude, longitude e seu respectivo valor de TEC associado. Neste ponto foi necessária a conversão dos valores de atraso (em nanosegundos) obtidos pela função de cálculo para valores de TEC. Para essa conversão foi utilizada a fórmula 3.1 (KARIA; PATHAK, 2011), após a conversão a função de cálculo armazena o valor em sua posição sequencial na lista final para a geração do arquivo IONEX.

O funcionamento básico do software está demonstrado no Fluxograma da figura 3.2, para o maior entendimento de seu funcionamento, o código encontra-se no segundo apêndice B deste artigo.

$$\delta_{ion}(f) = \frac{40.3 \times TEC}{f^2} \tag{3.1}$$

Figura 3.2 – Fluxograma básico das funções presentes no algoritmo.

Fonte: Autor.

3.1.2 Algoritmo para visualização dos mapas

Para verificar se os mapas gerados têm o comportamento esperado foi desenvolvido a função geraMapas para visualização de cada mapa gerado. Neste trabalho implementamos o

total de 13 mapas para cada arquivo diário, seguindo o padrão IGS já existente. Sendo assim os 13 mapas são gerados a partir dos dados calculados pelo algoritmo de correção ionosférica, a visualização dos mapas é produzida através do algoritmo de mapeamento e por fim a informação pode ser consumida a partir de um browser interpretador de arquivos html.

3.1.3 Algoritmo para geração de arquivos IONEX

Como produto final, precisamos dos arquivos IONEX (com extensão .18i) para realizar a simulação a partir do RTKLib. Desta forma foi realizada a implementação da função escreveIonex que é capaz de transformar os dados obtidos através das correções empregadas em um arquivo de texto seguindo os padrões adotados para este tipo de arquivo. A implementação dessa função pode ser vista no apêndice D e segue o Fluxograma apresentado para o algoritmo de correção.

3.2 CONFIGURAÇÃO DO AMBIENTE

Conforme visto na seção anterior, o ambiente do RTKLib pode ser acessado através de uma interface gráfica ou a partir de comandos através da interface de linha de comando do sistema operacional. Neste trabalho utilizamos o RTKLib em sua versão 2.4.3 e suas aplicações CUI para facilitar o processamento e a mecânica de envios dos arquivos. O sistema operacional utilizado foi o Pop!_OS em sua versão 20.04 LTS.

3.2.1 Instalação do RTKLib

A instalação do RTKLib dependerá da versão do software e modelo de aplicação que o usuário optar utilizar. As informações detalhadas para a instalação nos diferentes sistemas operacionais e diferentes versões podem ser acessadas no site oficial do RTKLib http://www.rtklib.com.

3.2.2 Obtenção dos arquivos

A obtenção dos arquivos de processamento deve seguir passos específicos pois existe a interdependência entre arquivos, dado que várias estações geram diferentes arquivos de correções. Neste trabalho utilizamos a ferramenta de pós-processamento RNX2RTKP presente no

Data	Dia Juliano	Semana GPS
12.01.2018	012	1983
12.02.2018	043	1988
12.03.2018	071	1992
12.04.2018	102	1996
12.05.2018	132	2000
12.06.2018	163	2005
12.07.2018	193	2009
12.08.2018	224	2014
12.09.2018	255	2018
12.10.2018	285	2022
12.11.2018	316	2027
12.12.2018	346	2031

Tabela 3.1 – Datas das avaliações e conversão para o modelo de tempo utilizado pelos sistemas de navegação por satélites.

Fonte: Autor.

pacote AP CUI que é semelhante a versão GUI do RTKPost. Ambas as ferramentas possuem a característica de calcular soluções de posicionamentos em diversos modos.

Para calcular soluções de posicionamentos o RNX2RTKP precisa dos dados dos arquivos para as correções. Os arquivos utilizados nesse processo são: RINEX de Observação, RINEX de Navegação, Antena, IONEX (não necessário na avaliação por dupla frequência), Correções de Clock e Órbita dos Satélites. Esses arquivos estão disponíveis no site do CD-DIS (The Crustal Dynamics Data Information System ou Sistema de Informação de Dados da Dinâmica Crustal) da NASA (Administração Nacional da Aeronáutica e Espaço) e são referenciados pelo site do IGS. Os arquivos de simulação são referenciados ao dia juliano ou a semana GPS, portanto após escolher as datas nas quais serão feitas as avaliações, deve-se obter a correlação dessas datas em dia juliano e a semana GPS para efetuar os downloads dos arquivos. A semana GPS foi iniciada no dia 5 de janeiro de 1980 às 00h00. Nos sistemas de navegação essa semana modular tem um intervalo de duração de 0 à 1023, aproximadamente 20 anos. Ao final desse intervalo o contador retorna a semana 0, em um processo denominado rollover. Sistemas que não integram o processo de rollover em seus códigos fonte apresentam erros relacionados ao tempo, podendo estar configurados para aproximadamente 20 anos antes da sua data atual. Esse erro tende a ser multiplicado conforme passamos por um novo processo de rollover acentuando assim a faixa de erro temporal conforme nos distanciamos da semana GPS inicial. Neste trabalho analisaremos 12 dias de diferentes meses do ano de 2018. Essa relação entre dia juliano e semana GPS para as datas utilizadas encontra-se na tabela 3.1. Para fazer a conversão da data em UTC (Coordinated Universal Time ou Tempo Universal Coordenado) para esse padrão utilizado pelos sistemas navegação foi utilizado o site <https://www.labsat.co.uk/index.php/en/gps-time-calculator>.

A partir das datas foram escolhidas 10 estações espalhadas pelos vários continentes a

Nome	País	Latitude(°)	Longitude(°)	Altitude (m)
bor1	Polônia	52.27	17.07	124.9
nyal	Noruega	78.93	11.86	79.0
godz	Estados Unidos	39.02	-76.82	14.5
bogt	Colômbia	4.64	74.08	2576.8
albh	Canadá	48.39	-123.48	32.0
chpi	Brasil	-22.68	-44.98	617.4
alic	Austrália	-23.67	13.88	603.4
bjfs	China	39.60	115.89	87.4
hrao	África do Sul	-25.89	27.68	1414.3
pdel	Portugal	37.74	-25.66	110.8

Tabela 3.2 – Estações selecionadas para avaliação.

Fonte: Autor.

fim de captar as diferenças e possíveis erros na ionosfera tomando uma escala o mais global possível. As estações usadas estão listadas na tabela 3.2. Após selecionar os dias e as estações para simulação foram realizados os downloads dos arquivos correpondentes para a correção. No total são 6 arquivos contendo diferentes informações acerca da atmosfera, tempo, posição, dentre outras variáveis de navegação importantes para o cálculo da quantidade total de elétrons presente na ionosfera.

3.2.2.1 Órbita dos Satélites

Esse arquivo contém informações acerca das órbitas de movimento do satélite ao redor da Terra. Esses arquivos são importantes para a identificação da velocidade gravitacional e a força centrífuga na qual o satélite permanece em uma órbita estável ao redor do globo terrestre. Para o download deste arquivo deve-se atentar à abertura e verificação dos dados, pois para cada semana GPS são disponibilizados 7 arquivos com o mesmo nome, mudando apenas o seu último dígito. Com a inspeção pode ser feita a verificação da data em formato UTC conforme ilustrado na figura 3.3. Os arquivos utilizados neste trabalho foram os arquivos IGR (órbitas rápidas) e foram acessados a partir do site: https://cddis.nasa.gov/archive/gnss/products/\T1\">https://cddis.nasa.gov/archive/gnss/products/\T1\" textquotedblrightSemanaGPS\T1\textquotedblright/> (CDDIS, 2019).

3.2.2.2 Correções de Clock

Similar ao arquivo de correções de órbitas de satélites temos que obter também o arquivo para correção de clock. Tal arquivo é primordial para a correção de erros relacionados à sincronia dos relógios e de escala de tempo do sistema de navegação. Nesse arquivo também é possível fazer a verificação das estações, pois nele estão contidas informações das estações que

1 #cP <mark>2018</mark>	1 12	0 0 0.0	00000000		96 OR	BIT IO	GS14 HL	M IGS			
2 ## 1983	432000.	000000000	900.0	000000	00 581	30 0.0	0000000	000000			
3 + 32	G01G02	G03G04G05	G06G07G	08G090	G10G11	G12G13	3G14G15	G16G17			
4 +	G18G19	G20G21G22	G23G24G	25G260	627G28	G29G30	9G31G32	00			
	00	0 0 0	0 0	0 0	00	00	900	00			
6 +	00	0 0 0	0 0	0 0	00	00	900	00			
7 +	00	0 0 0	0 0	0 0	00	0 0	900	00			
8 ++	22	2 0 2	22	22	22	2 2	2 2 2	22			
9 ++	22	2 2 2	22	22	22	2 2	2 2 2	00			
10 ++	00	0 0 0	00	0 0	00	0 0	0 0	00			
11 ++	00	0 0 0	0 0	0 0	00	0 0	0 0	00			
12 ++	00	0 0 0	0 0	0 0	00	0 0	0 0	00			
13 % c G c	c GPS cc	c cccc cc	cc cccc	cccc	ccccc	cccc	ccccc	ccccc			
14 %c cc c	c ccc cc	c cccc cc	cc cccc	cccc	ccccc	cccc	c ccccc	ccccc			
15%f 1.2	500000	1.0250000	00 0.0	000000	00000	0.000	0000000	000000			
16%f 0.0	000000	0.0000000	00 0.0	000000	00000	0.000	0000000	000000			
17%i 0	Θ	Θ Θ	Θ	Θ		0	Θ	0			
18%i 0	Θ	Θ Θ	Θ	Θ		0	Θ	Θ			
19 /* RAPI	D ORBIT	COMBINATI	ON FROM	WEIGH	ITED A	VERAGE	E OF:				
20/* cod	emr esa	gfz jpl n	gs sio 🛛	usn wł	าน						
21 /* REFE	RENCED T	O IGS TIM	Ē (IGST) AND	TO WE	IGHTE) MEAN	POLE:			
22 /* PCV:	IGS14_19	77 OL/AL:	FES2004	NONE		Y ORE	з:СМВ С	LK:CMB			
23 * 2018	1 12	0 0 0.0	0000000								
24 PG01	-565.753	846 -1549	5.19223	6 -216	65.97	4990	-23.	102647	9	88	116
25 PG02 -2	0234.186	879 1493	7.46664	986	508.84	2182	230.	719834	10	57	122
26 PG03 -	9362.983	831 -2076	4.55399	4 -137	19.28	0170	-11.	525389	7	6 10	112
27 PG04 2	0613.110	842 412	4.39425	0 161	170.44	2071 9	9999999.	999999			

Figura 3.3 – Verificação da data correta do arquivo.

Fonte: Adaptado de (BENTO, 2019)

utilizam tais correções. O processo para o download deste arquivo é similar ao usado para obter o .sp3, o mesmo se encontra na mesma pasta no servidor necessitando somente a alteração da extensão do arquivo para .clk. Este arquivo fornece outro dado importante para a simulação que é o indicativo de qual arquivo de antena utilizar, conforme pode ser visto na figura 3.4.

3.2.2.3 Antena

Os arquivos de antena, também conhecidos como ANTEX fornecem correções para os centros de fase, que é a fonte aparente de radiação de acordo com o ângulo de elevação, o azimute e a frequência do sinal. Os arquivos .atx podem ser encontrados a partir da url <https://files.igscb.org/pub/station/general/pcv_archive/>.

3.2.2.4 RINEX de Observação

O RINEX (Receiver Independent Exchange Format ou Formato de Troca Independente do Receptor) é um arquivo de informações de observação, mensagem de navegação e dados meteorológicos referentes a um determinado dia e estação. No geral o arquivo é dividido entre cabeçalho e a seção de dados (BENTO, 2019). O cabeçalho contém informações gerais da estação, antena, distâncias, entre outros. Já a seção de dados reúne dados de pseudo-distâncias

	<u> </u>	• • • •	~~~	1	•		1	
L 1	auro 4 /	1 Vori	100000	do oro	1111170	corroto	do	ontono
1 ' I	$y_{111}a_{1}y_{4}$		IL AL AU I					
	Suru J.		i cuçuo	$u \cup u \cup u$			$\omega \omega$	unicomu.
	()		<u>`</u>					

161 YSSK 12329M003 -3465321165 2638269293 4644085308SOLN	STA NAME / NUM
162 ZAMB 34601M001 5415352956 2917210156 -1685888633SOLN	STA NAME / NUM
163 ZECK 12351M001 3451174412 3060335619 4391955766SOLN	STA NAME / NUM
164 31 # OF	SOLN SATS
165 G01 G02 G03 G05 G06 G07 G08 G09 G10 G11 G12 G13 G14 G15 G16 PRN	LIST
166 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 PRN	LIST
167 G32 PRN	LIST
168 G igs14 1977 <mark>.atx</mark> SYS	/ PCVS APPLIED
169 END (OF HEADER
170 AR GPST 2018 01 12 00 00 0.000000 2 -8.846014769293e-09 0.0	00000000000e+00
171 AR ABMF 2018 01 12 00 00 0.000000 2 2.833614934551e-08 1.8	24597911460e-11
172 AR ADIS 2018 01 12 00 00 0.000000 2 1.256428251582e-04 3.1	99597646670e-11
173 AR AJAC 2018 01 12 00 00 0.000000 2 3.511218894341e-08 2.33	28131194210e-12
174 AR ALBH 2018 01 12 00 00 0.000000 2 -2.275072637528e-04 2.1	53966203650e-11
175 AR ALGO 2018 01 12 00 00 0.000000 2 -7.779406077089e-06 1.0	43592940410e-11
176 AR ALIC 2018 01 12 00 00 0.000000 2 1.590306998331e-08 1.5	18642383260e-11
177 AR ANKR 2018 01 12 00 00 0.000000 2 3.410993641907e-09 9.8	10300997950e-12
178 AR AREQ 2018 01 12 00 00 0.000000 2 -2.004859996168e-04 1.2	52960231320e-11
179 AR ARTU 2018 01 12 00 00 0.000000 2 -7.808213265149e-08 2.1	03807014480e-11
180 AR ASPA 2018 01 12 00 00 0.000000 2 -3.782896056539e-08 2.4	80088107370e-11

Fonte: Adaptado de (BENTO, 2019)

de código, fase e o instante de observação referente ao relógio do receptor. O arquivo de observação pode ser baixado a partir do link <https://cddis.nasa.gov/archive/gnss/data/daily/YYY/DDD/YYo/bor10120>. Para o download do arquivo correto é necessário atentar-se para o preenchimento correto das informações, substituindo YYYY pelo ano em formato UTC, DDD pelo dia juliano e YY pelos dois últimos dígitos do ano (ex: 2018/193/18o).

3.2.2.5 RINEX de Navegação

O arquivo de efemérides de transmissão, também conhecido por broadcast, contém dados de posição, velocidade e relógio para todos os satélites da constelação GPS em cada dia. Neste arquivo estão as constantes alpha e beta utilizadas no cálculo da correção ionosférica a partir do modelo de Klobuchar conforme vimos na seção 2.3.3.

3.2.2.6 Mapas de TEC formato IONEX

Os arquivos IONEX são os principais arquivos gerados a partir dos modelos de correção baseados no conteúdo total de elétrons da ionosfera. Neste arquivo estão os valores de TEC calculados para cada coordenada de latitude e longitude do globo. Neste trabalho utilizamos dois arquivos IONEX diferentes, para averiguar possíveis distorções por parte do software RTKLib no tratamento desses arquivos. O primeiro é o arquivo fornecido pelo IGS. Esse é o arquivo referência em relação a arquivos de correção ionosférica IONEX, visto que o IGS possui diversos centros distribuídos ao redor do globo que fornecem um conjunto distinto de mapas, utilizaremos o IGS Combined que é o mapa final de referência gerado pela instituição. Os arquivos do IGS estão disponíveis na rede a partir da url <https://cddis.nasa.gov/archive/gnss/products/

1 2	cci	2 RIN	2 EXN	V1.	6.0	UX	NA\ CDI	/IGAT DIS	TION [ATA	1	3-JUI	18 1	L7:31		RINEX PGM /	VERSIC RUN BY)N / T\ / DA1	/PE TE
3	IG	S BI	ROAE	DCAS	ΤЕ	PHE/	MERIS	S FIL	.E							COMMEN	νT		
- 4		0	.465	57D-	08	0.1	1490[)-07	-0.59	060D-	07 -0	.1192	2D-06			ION AL	LPHA		
5		0	.798	37D+	05	0.8	31920)+05	-0.65	554D+	05 -0	.4588	3D+06			ION BE	ETA		
6		-0	.372	2529	029	846[)-08·	-0.14	2108	54715	2D-13	58	39824	2	009	DELTA-	-UTC: A	0,A1,T	⊺,W
7		18	3													LEAP S	SECONDS	5	
8																END OF	F HEADE	R	
9	1	18	7	12	0	0	0.0	-0.64	85032	19176	9D-04	-0.37	751665	564481	D-11	0.000	000000	0000D+0	00
10		0	.870	0000	000	0000)+02·	-0.13	398125	50000	0D+03	0.40	000166	562300	D-08	-0.184	4997087	'503D+0)1
11		-0	.740	9587	711	334[0-05	0.80	02887	2471	3D-02	0.10	068040	972857	D-04	0.515	5367481	041D+0)4
12		0	.345	5600	000	0000	0+06	0.94	99490	2610	8D-07	0.27	782690	922720	D+01	-0.856	5816768	646D-0)7
13		0	.972	2178	400	138[00+0	0.17	67812	25000	0D+03	0.65	578904	43046	D+00	-0.763	3603235	711D-0	8
14		0	.203	3222	750	758[0-09	0.10	00000	00000	0D+01	0.20	09000	000000	D+04	0.000	000000	0000D+0	00
15		0	.200	0000	000	0000	0+01	0.00	00000	00000	0D+00	0.55	587935	544769	D-08	0.870	000000	0000D+0)2
16		0	.338	3418	000	0000	0+06	0.40	00000	00000	0D+01	0.00	00000	000000	D+00	0.000	000000	0000D+0	00
17	2	18	7	12	0	0	0.0	0.60)46518	36834	3D-04	-0.10	068656	527458	D-10	0.000	000000	0000D+0	00
18		0	.940	0000	000	0000)+02·	-0.11	195937	75000	0D+03	0.45	582333	372974	D-08	-0.152	2481432	168D+0)1
19		- 0	. 595	5487	654	209[0-05	0.17	91819	9650	0D-01	0.10	062452	279312	D-04	0.515	5377709	961D+0)4
20		0	.345	5600	000	0000	D+06	0.26	582209	0148	9D-06	0.27	720643	399765	D+01	0.376	5254320	145D-0)6

Figura 3.5 – Alpha e Beta presentes num arquivo RINEX.

Fonte: Autor.

ionex/YYYY/>. O segundo é o arquivo gerado a partir da implementação do algoritmo de Klobuchar que foi apresentado na seção 3.1, codificado em formato IONEX.

Figura 3.6 – Mapa de TEC gerado a partir de um arquivo IONEX do IGS.

Fonte: Autor.

3.2.3 Configuração do RTKLib

O RTKPost é o software de pós-processamento que utilizamos neste trabalho. Para a configuração inicialmente foram gerados arquivos de configuração para cada tipo de simulação feita nesse trabalho, totalizando 4 arquivos: simulação com receptores de dupla frequência, com mapas de TEC no formato IONEX disponibilizados pelo IGS, pelo modelo de Klobuchar gerado

pelo próprio software do RTKLib e pelo arquivo IONEX gerado a partir do código desenvolvido neste trabalho. Esses arquivos foram replicados para cada dia de avaliação e foram alterados conforme os inputs necessários para cada posicionamento. Os inputs são os caminhos dos arquivos de antena, para o caso da simulação no modelo de dupla frequência e no modelo com correção pelo método de Klobuchar pelo próprio RTK, para as simulações via mapa de TEC os arquivos de mapa tiveram que ser devidamente informados nessa etapa de configuração.

Para a configuração completa seriam necessários ainda os caminhos dos arquivos de correções de clock, RINEX de navegação e órbitas dos satélites para todos os 4 tipos de correção. Para agilizar o processo de forma a minimizar os tempos de configurações optou-se por setar esses parâmetros via scripts de execução que serão denotados na próxima seção.

3.3 EXECUÇÃO

Para a execução da simulação a partir do software de pós-processamento RTKLib, reunimos em pastas todo o conjunto de arquivos coletados conforme foi visto nas seções anteriores deste capítulo. A partir desse ponto os arquivos precisam ser selecionados como parâmetros de entrada no software de processamento. Esse processo é demasiado lento caso o usuário desse conjunto de bibliotecas opte por configurar manualmente cada execução dos posicionamentos e fazer os inputs dos arquivos para cada dia e tipo de simulação desejada. Sendo assim, neste trabalho foi utilizado um conjunto de scripts de configuração previamente criados em trabalhos anteriores, conforme pode ser visto na seção de execução do software em (BENTO, 2019).

Figura 3.7 – Fluxograma de funcionamento do script de execução.

O fluxo de funcionamento do script é dado pela entrada de quatro parâmetros: dia juliano, caminho para os arquivos RINEX de navegação, arquivo de correção de clock e órbitas dos satélites. A partir desses parâmetros o script acessa o arquivo RINEX de observação, faz a leitura dos dados e entrega ao RNX2RTKP, que por sua vez juntamente com os dados de configuração recebidos pelos arquivos apresentados na seção anterior realiza o processamento dos dados e devolve um arquivo de saída do tipo ".pos"para cada método de correção empregado na simulação. Os arquivos de saída são alocados pelo script em pastas contendo o nome do método de correção utilizado para sua geração. Neste trabalho ao fim da execução são obtidos 10 arquivos para cada dia e método utilizado, totalizando 40 arquivos de saída, visto que foram 10 estações simuladas empregando 4 métodos diferentes de correção. Estes arquivos contém as informações de posicionamento que serão avaliadas. Ao final da execução obtemos a configuração com as pastas e arquivos modelados conforme ilustrado na figura 3.8. A partir desse ponto a avaliação dos dados pode ser iniciada.

Fonte: Autor.

3.4 AVALIAÇÃO

Os arquivos gerados pelo software de pós-processamentos são armazenados em pastas com o nome do modelo de correção utilizado. O conteúdo desses arquivos é dividido entre o cabeçalho e a parte de dados. Os dados são as informações em coordenadas x, y e z estimadas

a cada trinta segundos, com início no dia e horário indicado nos arquivos de correção e final no dia e horário do último mapa de correção gerado também a partir dos arquivos de correção.

Os mapas VTEC do IGS tem uma resolução temporal de 2 horas, portanto foi adotado para o projeto do algoritmo de criação dos arquivos de mapas gerados essa mesma resolução. Como fluxo de projeto, também foi adotado essa mesma faixa de tempo para a análise dos dados, sendo assim as posições coletadas para estudo foram as posições x, y e z coletadas no período de 00h00 até as 22h00, com um intervalo de tempo entre amostras de 2 horas, com uma tolerância de 10 minutos, em razão de algumas estações não conseguirem completar o envio da sua amostra de pós-processamento em determinados horários.

Inicialmente seria implementada uma função de comparação de distâncias para fazer os cálculos entre as distâncias obtidas através dos arquivos pós-processados e os valores conhecidos de posicionamento das estações escolhidas para análise, visto que esses dados estão presentes nos arquivos RINEX de observação em coordenadas x, y e z. Entretanto, aproveitando o software desenvolvido em trabalho anterior (BENTO, 2019), essa comparação de distâncias não precisou ser implementada. Uma vez que os dados obtidos nos posicionamentos e os dados de coordenadas das estações estão no mesmo formato, para obter a menor distância entre os dois pontos (utilizada como medida de erro) pode-se utilizar a distância Euclidiana para fazer esse cálculo. Ao fim do processo de análise do programa, a saída é mostrada na tela contendo a estimativa de erro baseada na distância entre a estação analisada e o ponto calculado, a partir dos arquivos de correção fornecidos pelo RNX2RTKP.

4 RESULTADOS

Neste capítulo são apresentados os resultados das simulações feitas a partir dos 4 métodos de correção ionosférica em receptores GPS de frequência simples. São apresentadas as principais diferenças numéricas e visuais de cada resposta gerada para cada estação e dia escolhidos para análise. A simulação foi realizada a partir do total de doze dias escolhidos para a avaliação conforme ilustrado na tabela 3.2.

4.1 ANÁLISE NUMÉRICA

O resultado das avaliações diárias e mensal do conjunto de estações trazem algumas informações sobre a sazonalidade dos erros obtidos. Segundo (JUNIOR, 2002) existem dois períodos em que os valores de TEC atingem seus valores máximos que são nos meses de junho e dezembro nos hemisférios norte e sul respectivamente. A partir da tabela 4.1 podemos visualizar que, pelo fato das estações selecionadas estarem em sua grande maioria localizadas na região sul do hemisfério, as alterações do ciclo solar dessa camada refletem na quantidade de erro produzido pelos modelos simulados no último mês do ano. Há ainda o período onde a quantidade de TEC alcança seus valores mínimos, o chamado solstício de inverno que ocorre no hemisfério sul entre os meses de junho a setembro, nesse intervalo é esperado que os valores do erro atinjam seus valores mínimos, conforme também pode ser visto na tabela 4.1.

O modelo de Klobuchar foi utilizado a partir de duas fontes diferentes. Esperava-se que os valores de erros tivessem uma diferença de magnitude, com erros mais acentuados na correção desenvolvida neste trabalho. Isto se dá porque a avaliação do modelo a partir do RNX2RTKP não têm em seu processo interno uma etapa de geração de mapas IONEX com grade de resolução espacial limitada, tal qual a limitação imposta na geração de mapas IONEX de TEC implementada na etapa de desenvolvimento do software deste trabalho. Assim os resultados obtidos ficaram dentro do esperado com uma correção mais precisa por parte do modelo implementado via RNX2RTKP.

Podemos verificar, conforme previsto pela teoria apresentada na seção 2.3, que dentre os modelos de correção ionosférica existentes o método de correção por dupla frequência é que possui os melhores resultados, chegando a ter uma margem de erro média de apenas 70 cm. Os modelos de Klobuchar implementado pelo software RTKLib e os mapas gerados a partir dos centros do IGS obtiveram resultados semelhantes, embora na média geral o IGS tenha alcançado resultados um pouco superiores ao RTKLib. Grosso modo, podemos considerar tais modelos equivalentes se considerarmos somente os resultados atingidos levando em consideração os resultados mostrados na tabela 4.3. No entanto, ao analisarmos as medianas obtidas nos testes, observamos que o modelo do IGS se saiu melhor que o modelo de Klobuchar, o que também

Data	IGS (m)	RTKLib (m)	Gerado (m)	Freq. Dupla (m)
12.01.2018	3.6223	3.6938	7.8481	0.6825
12.02.2018	3.9524	3.7779	6.1959	0.7444
12.03.2018	4.4691	4.3121	9.5971	0.7456
12.04.2018	3.2130	3.6566	8.5999	0.6916
12.05.2018	3.5907	3.1844	6.4821	0.6708
12.06.2018	3.1475	2.8063	6.3854	0.6328
12.07.2018	2.4374	3.1965	4.9874	0.6358
12.08.2018	3.4759	3.0061	4.9572	0.7533
12.09.2018	3.0192	3.5569	8.8635	0.7722
12.10.2018	4.0095	3.8065	7.8345	0.6957
12.11.2018	3.8628	3.9736	7.2854	0.6852
12.12.2018	3.3732	3.6163	7.9396	0.7713

Tabela 4.1 – Erro médio absoluto mensal simulado.

Fonte: Autor.

era esperado. Esses mapas descrevem melhor os dados de TEC, já que utilizam observações de diversas localidades e estimativas variadas resultando em um mapa final, comprovando assim a eficácia dos mapas globais da ionosfera gerados pelo IGS. O modelo de Klobuchar implementado a partir deste trabalho teve os piores resultados, obtendo uma média geral de erro de pouco mais de 7 metros e mediana com valor aproximado de 6 metros. Se comparado com os outros métodos aqui implementados, o valor com menor acurácia era esperado, devido às simplicidade de modelagem ionosférica utilizada no seu processo de criação e a pequena quantidade de funções que englobam a versão final do software. Ainda assim, para um modelo empírico relativamente simples, traz uma representatividade para modelagem ionosférica importante.

Conforme visto na seção 2.2.3 os valores de TEC sofrem variações de acordo com o campo magnético e efeitos de latitude da Terra. Sendo assim, podemos corroborar que as estações localizadas em regiões de menor latitude obtiveram um erro associado maior, como no caso da estação ALIC que, mesmo utilizando o método mais preciso, obteve erro acima de 1.75 metros, como mostra a tabela 4.2.

4.2 ANÁLISE GRÁFICA

A partir da coleta dos dados na última etapa deste trabalho pode-se gerar mapas do erro por estação. Com base nesses mapas podemos visualizar nas figuras 4.1, 4.2, 4.3 e 4.4 a corretude dos métodos empregados, avaliando os erros obtidos por cada região testada. Aqui fica explícito que em todos os modelos utilizados a estação australiana obteve a pior correção dentre todas as bases, obtendo uma quantidade de erro associado maior em todos os métodos avaliados. Conforme foi abordado na seção 2.2.3 regiões de baixa latitude sofrem com efeitos relacionados ao ângulo zenital do sol em relação a Terra, tornando as regiões mais próximas

Estação	IGS(m)	RTKLib (m)	Gerado (m)	Freq. Dupla (m)
BOR1	3.1525	3.9638	7.1013	1.0643
GODZ	2.4913	2.2594	5.0688	0.5441
HRAO	2.5272	3.5295	7.2872	0.6118
BJFS	3.6036	4.2681	9.8435	0.7854
PDEL	3.2844	3.1189	6.5961	0.7587
ALBH	2.7044	2.1209	4.5407	0.5150
NYAL	3.5491	4.7057	5.8872	0.6934
ALIC	5.3335	4.6424	13.5418	1.7717
CHPI	3.2912	2.7326	5.7808	0.3530
BOGT	5.0863	4.0220	5.4023	0.3919

Tabela 4.2 – Erro médio absoluto por estação.

Fonte: Autor.

Tabela 4.3 – Médias e medianas gerais para todos os dias e estações simuladas.

Métrica	IGS(m)	RTKLib (m)	Gerado (m)	Freq. Dupla (m)
Média	3.4967	3.5353	7.1991	0.7044
Mediana	2.4776	2.9551	5.9420	0.5632

Fonte: Autor.

dos pólos mais imprevisíveis em relação ao erros.

Pode-se também verificar que apesar de obter a pior correção dentre os modelos, a implementação do algoritmo criado neste trabalho mostrou-se coerente como os demais métodos na questão de distribuição dos erros por estação, o que valida o trabalho aqui implementado tanto na questão dos mapas gerados, quanto no tocante a correta avaliação do erro a partir do RTKLib via mapas IONEX. Figura 4.1 – Gráfico do erro médio absoluto por estação utilizando os dados de correção do IGS.

Fonte: Autor.

Figura 4.2 – Gráfico do erro médio absoluto por estação utilizando os dados de correção do modelo de Klobuchar implementado pelo RTKLIB.

Figura 4.3 – Gráfico do erro médio absoluto por estação utilizando os dados de correção gerados do modelo de dupla frequência.

Fonte: Autor.

Figura 4.4 – Gráfico do erro médio absoluto por estação utilizando os dados de correção implementado neste trabalho.

5 CONCLUSÃO

Dispositivos GPS estão cada vez mais presentes no cotidiano da população mundial. Atualmente esses dispositivos estão presentes em smartphones, computadores, veículos e nos mais variados componentes tecnológicos que necessitam de uma resposta de posicionamento em relação ao globo. Assim, obter melhores correções, com custo cada vez menor para o erro relacionado a resposta desses equipamentos é um passo importante da evolução tecnológica relativa aos sistemas de posicionamento. Vimos que o erro associado a esses dispositivos atualmente está relacionado com a refração ionosférica e que em dispositivos de dupla frequência a correção destes erros é altamente eficaz. No entanto, esse tipo de correção não está disponível para todos e seu custo é elevado. Dessa forma, surgem alternativas mais econômicas e com bom nível de precisão como acontece nos casos das correções implementadas a partir de um modelo ionosférico, que geralmente são empregadas para corrigir os efeitos da ionosfera em sistemas GPS com o uso de apenas uma frequência do seu sinal emitido.

Neste trabalho foram avaliados 2 modelos de correção ionosférica, com o auxílio de uma poderosa ferramenta de pós-processamento de dados relacionados a sistemas de posicionamento. Um algoritmo foi desenvolvido para a implementação do modelo Klobuchar, com isso foi possível obter todos os arquivos necessários para os testes. Sendo assim, foram analisados arquivos de correção ionosférica desenvolvidos pelo Serviço Internacional de GNSS e arquivos obtidos através do algoritmo desenvolvido. Como base de comparação foram feitos testes com os modelos de dupla frequência e o modelo de Klobuchar disponíveis a partir do software RTKLib.

Os resultados da avaliação ficaram dentro do esperado para todos os métodos avaliados. Pode-se validar o comportamento esperado com respostas mais precisas a partir dos mapas de TEC no formato IONEX gerados pelo Serviço Internacional de GNSS do que a resposta obtida pelo método de Klobuchar gerada pelo RTKLib. A partir da comparação dos resultados obtidos através dos modelos testados, ficou evidenciada a eficácia do RTKLib no processamento de correções ionosféricas, tanto recebendo como entrada mapas do tipo IONEX quanto pela implementação dos modelos pelos seus algoritmos internos.

As funções implementadas como a geração gráfica dos mapas de TEC e dos arquivos IONEX podem ser adaptados para quaisquer aplicações, variando apenas a sua chamada, ademais as técnicas aqui utilizadas para a análise podem servir como base para testes de correções ionosféricas em geral. Conhecidos os aspectos básicos apresentados a partir deste trabalho, levanta-se a possibilidade de em trabalhos futuros avaliar o comportamento para diferentes períodos enriquecendo a resposta obtida com um maior número de estações, dias, ciclos solares mais intensos e com pertubações geomagnéticas aparente.

REFERÊNCIAS BIBLIOGRÁFICAS

AMENDOLA, G. V. **Análise do comportamento da Ionosfera a partir de medidas em HF**. 2003. 105 f. Dissertação (Mestrado em Engenharia Elétrica) — Instituto Militar de Engenharia, Rio de Janeiro, 2003.

BENTO, V. D. **Avaliação de correções do erro ionosférico em receptores GNSS de frequência simples**. 2019. 88 f. Monografia (Trabalho de Conclusão de Curso) — Curso de Graduação em Engenharia de Computação, Universidade Federal de Santa Maria, Santa Maria, 2019.

CODE. Center for Orbit Determination in Europe, Astronomy Institute University of Berne (AIUB). [S.1.], 2021. Acesso em 12 jan. 2021. Disponível em: https://www.aiub.unibe.ch/research/code____analysis_center/index_eng.html.

FAUSTINO, R. C. **Posicionamento por ponto preciso e está e cinemático: Implementação e análise**. 2006. 106 f. Dissertação (Mestrado em Ciências Cartográficas) — Universidade Estadual Paulista, Presidente Prudente, 2006.

GRIMES, J. G. **Global Position System Precise Positioning Service Performance Standard**. Washington, 2007. 156 p. Acesso em 01 fev. 2021. Disponível em: https://www.gps.gov/technical/ps/2007-PPS-performance-standard.pdf>.

IGS. International GNSS Service. [S.1.], 2021. Acesso em 12 jan. 2021. Disponível em: https://www.igs.org/>.

JUNIOR, E. S. D. F. O sistema GPS como ferramenta para avaliação da refração ionosférica no Brasil. 2002. 200 f. Tese (Doutorado em Engenharia) — Universidade de São Paulo, São Paulo, 2002.

JÚNIOR, P. d. T. S. **Posicionamento por pontos multi-gnss: Análise dos sistemas, sinais e modelos ionosféricos**. 2019. 107 f. Dissertação (Mestrado em Ciências Cartográficas) — Universidade Estadual Paulista, Presidente Prudente, 2019.

KARIA, S. P.; PATHAK, K. N. Gps based tec measurements for a period august 2008–december 2009 near the northern crest of indian equatorial ionospheric anomaly region. **J. Earth Syst**, v. 5, p. 851–858, 2011.

KIRCHHOFF, V. W. J. H. Introdução à geofísica espacial. São Paulo: Nova Stella, Ed.USP/FAPESP, 1991. 149 p.

KLOBUCHAR, J. A. Ionospheric time-delay algorithm for single frequency gps users. **IEEE Transactions on Aerospace and Electronic Systems**, AES-23, n. 3, p. 325–331, 1987.

LEICK, A.; RAPOPORT, L.; TATARNIKOV, D. **GPS satellite surveying.** New Jersey: John Wiley & Sons, 2015. 792 p.

MARQUES, H. A. Análise dos efeitos ionosféricos de ordem superior no ciclo solar 24 e influência no posicionamento gnss absoluto. **Boletim de Ciências Geodésicas**, v. 20, n. 4, p. 879–901, 2014.

MATSUOKA, M. T. **Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS: Avaliação na região brasileira**. 2007. 264 f. Tese (Doutorado em Ciências Cartográficas) — Universidade Estadual Paulista, Presidente Prudente, 2007.

MATSUOKA, M. T.; CAMARGO, P. de O. Correção ionosférica utilizando o modelo de klobuchar e o modelo regional da ionosfera: Avaliação da performance no posicionamento por ponto. In: **Anais do Simpósio Brasileiro de Geomática**. São Paulo: Congresso Brasileiro de Cartografia, 2002. p. 052–060.

MATSUOKA M.T.; CAMARGO, P.; COSTA, O. Desempenho do modelo global da ionosfera do igs: avaliação no posicionamento por ponto na região sul do brasil em período de alta atividade solar. In: **Boletim de Ciências Geodesicas**. Curitiba: Congresso Brasileiro de Cartografia, 2009. p. 208–223.

MCNAMARA, L. The ionosphere: communications, surveillance, and direction finding. Florida: Krieger Publishing Company, 1991. 237 p.

MIGUENS, A. P. Navegação: A Ciência e a Arte: Navegação eletrônica e em condições especiais. 1. ed. Rio de Janeiro: DHN, 2000. v.3, 1222 p.

MONICO, J. F. G. **Posicionamento pelo GNSS.** Presidente Prudente: Editora Unesp, 2008. 480 p.

MOOREFIELD, J. F. D. Global Position System Standard Positioning Service Performance Standard. Washington, 2020. 196 p. Acesso em 01 fev. 2021. Disponível em: https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf>.

PETRY, A.; VELHO, H. F. C.; SOUZA, J. R. de. Sistema para previsao operacional da dinamica da ionosfera baseado no modelo supim.

RADICELLA, S. M.; NAVA, B.; COÏSSON, P. Ionospheric models for gnss single frequency range delay corrections. **Física de la Tierra**, p. 27–39, 2008.

ROCHA, G. D. D. C. Avaliação e mitigação dos efeitos ionosféricos no posicionamento por ponto preciso GNSS no Brasil. 2015. 106 f. Dissertação (Mestrado em Ciências Geodésicas e Tecnologias da Geoinformação) — Universidade Federal de Pernambuco, Recife, 2015.

SEEBER, G. Satellite geodesy, 2nd completely revised and extended edition. Berlim: Walter de Gruyter GmbH & Co. KG, 2003. 589 p.

TAKASU, T. **RTKLIB: An Open Source Program Package for GNSS Positioning**. [S.l.], 2007. Acesso em 12 jan. 2021. Disponível em: http://www.rtklib.com/>.

. **RTKLIB ver. 2.4.2 Manual**. [S.1.], 2013. Disponível em: http://www.rtklib.com/prog/manual_2.4.2.pdf>.

WEBSTER, I. R. A regional model for the prediction of ionospheric delay for single frequency users of the Global Positioning System. [S.l.]: University of New Brunswick, 1994.

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
012	BOR1	DISPERSÃO	0.703	2.032	1.935	0.438
012	BOR1	MÉDIA	2.146	4.012	2.312	0.619
012	BOR1	MEDIANA	1.925	3.389	1.729	0.509
012	GODZ	DISPERSÃO	2.505	1.537	1.510	0.152
012	GODZ	MÉDIA	2.561	1.872	5.358	0.367
012	GODZ	MEDIANA	1.633	1.287	4.845	0.353
012	HRAO	DISPERSÃO	2.769	3.327	1.671	0.146
012	HRAO	MÉDIA	3.050	4.871	10.046	0.455
012	HRAO	MEDIANA	1.947	3.956	10.380	0.442
012	BJFS	DISPERSÃO	0.381	1.073	0.978	0.096
012	BJFS	MÉDIA	1.089	3.289	6.609	1.037
012	BJFS	MEDIANA	0.994	3.028	6.198	1.067
012	ALBH	DISPERSÃO	1.168	2.389	1.890	0.040
012	ALBH	MÉDIA	2.013	2.280	6.810	0.385
012	ALBH	MEDIANA	1.694	0.992	5.823	0.383
012	NYAL	DISPERSÃO	1.021	0.326	0.670	0.243
012	NYAL	MÉDIA	2.558	4.103	3.853	0.738
012	NYAL	MEDIANA	2.302	4.167	4.056	0.649
012	PDEL	DISPERSÃO	2.933	5.089	3.383	0.270
012	PDEL	MÉDIA	8.049	4.631	13.606	0.742
012	PDEL	MEDIANA	7.242	2.569	13.008	0.673
012	ALIC	DISPERSÃO	2.733	3.957	2.040	0.183
012	ALIC	MÉDIA	4.883	5.550	11.270	1.712
012	ALIC	MEDIANA	4.389	4.487	10.375	1.671
012	СНРІ	DISPERSÃO	1.033	1.948	2.328	0.128
012	СНРІ	MÉDIA	2.389	2.623	11.247	0.426
012	CHPI	MEDIANA	1.819	1.581	10.374	0.362
012	BOGT	DISPERSÃO	2.541	3.607	1.214	0.094
012	BOGT	MÉDIA	7.500	3.529	8.547	0.300
012	BOGT	MEDIANA	6.021	2.349	8.141	0.269
043	BOR1	DISPERSÃO	0.917	2.337	0.595	0.078
043	BOR1	MÉDIA	3.429	4.739	8.233	0.705
043	BOR1	MEDIANA	3.743	3.738	8.250	0.674
043	GODZ	DISPERSÃO	1.080	1.017	1.474	0.178
043	GODZ	MÉDIA	2.739	1.509	8.492	0.359

APÊNDICE A – TABELA COM MÉTRICAS DOS ERROS COLETADOS EM METROS A PARTIR DAS ESTAÇÕES E DIAS SIMULADOS

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
043	GODZ	MEDIANA	2.404	1.206	7.951	0.325
043	HRAO	DISPERSÃO	2.122	2.085	2.057	0.696
043	HRAO	MÉDIA	4.759	5.030	6.935	0.695
043	HRAO	MEDIANA	4.223	3.878	6.600	0.465
043	BJFS	DISPERSÃO	2.330	1.490	0.816	0.304
043	BJFS	MÉDIA	2.935	4.794	8.064	0.866
043	BJFS	MEDIANA	2.639	4.995	8.044	0.770
043	ALBH	DISPERSÃO	2.663	4.198	1.935	0.271
043	ALBH	MÉDIA	2.033	2.506	5.070	0.746
043	ALBH	MEDIANA	0.872	0.853	4.301	0.629
043	NYAL	DISPERSÃO	1.132	3.035	1.577	0.064
043	NYAL	MÉDIA	2.499	4.874	5.333	0.773
043	NYAL	MEDIANA	2.121	3.607	4.885	0.752
043	PDEL	DISPERSÃO	1.174	1.913	0.237	0.199
043	PDEL	MÉDIA	1.354	2.878	2.888	0.714
043	PDEL	MEDIANA	0.833	2.027	2.840	0.642
043	ALIC	DISPERSÃO	2.180	2.404	0.973	0.450
043	ALIC	MÉDIA	7.340	5.116	9.837	1.777
043	ALIC	MEDIANA	6.522	4.458	9.419	1.635
043	СНРІ	DISPERSÃO	5.209	2.848	0.227	0.145
043	СНРІ	MÉDIA	10.707	2.995	2.674	0.445
043	CHPI	MEDIANA	8.230	1.379	2.660	0.368
043	BOGT	DISPERSÃO	2.896	0.706	2.392	0.015
043	BOGT	MÉDIA	3.376	3.338	4.002	0.330
043	BOGT	MEDIANA	2.189	3.086	3.295	0.334
071	BOR1	DISPERSÃO	3.349	3.283	3.330	0.425
071	BOR1	MÉDIA	2.379	4.488	6.630	0.777
071	BOR1	MEDIANA	1.421	3.531	5.439	0.611
071	GODZ	DISPERSÃO	4.438	3.833	3.699	0.054
071	GODZ	MÉDIA	2.837	3.206	7.190	0.679
071	GODZ	MEDIANA	1.191	1.939	5.474	0.677
071	HRAO	DISPERSÃO	0.761	2.833	0.256	0.609
071	HRAO	MÉDIA	2.492	4.757	9.371	0.564
071	HRAO	MEDIANA	2.221	3.527	9.314	0.324
071	BJFS	DISPERSÃO	2.484	3.244	2.657	0.593
071	BJFS	MÉDIA	6.911	5.917	17.731	0.823
071	BJFS	MEDIANA	6.038	6.513	16.929	0.663
071	ALBH	DISPERSÃO	0.935	2.477	1.886	0.236

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
071	ALBH	MÉDIA	1.510	1.748	2.255	0.642
071	ALBH	MEDIANA	1.130	0.851	1.723	0.544
071	NYAL	DISPERSÃO	0.559	2.578	2.170	0.157
071	NYAL	MÉDIA	2.462	3.700	3.778	0.739
071	NYAL	MEDIANA	2.407	2.619	3.320	0.679
071	PDEL	DISPERSÃO	1.969	3.196	1.690	0.380
071	PDEL	MÉDIA	6.385	5.554	20.996	0.860
071	PDEL	MEDIANA	6.167	4.555	20.943	0.683
071	ALIC	DISPERSÃO	3.325	5.125	3.193	0.170
071	ALIC	MÉDIA	11.469	7.993	22.869	1.742
071	ALIC	MEDIANA	11.113	6.337	21.754	1.667
071	СНРІ	DISPERSÃO	1.481	1.853	0.817	0.433
071	СНРІ	MÉDIA	1.584	1.865	4.323	0.287
071	СНРІ	MEDIANA	1.046	0.866	3.883	0.145
071	BOGT	DISPERSÃO	3.347	1.769	0.513	0.051
071	BOGT	MÉDIA	7.452	4.464	4.992	0.400
071	BOGT	MEDIANA	5.297	3.385	4.793	0.393
102	BOR1	DISPERSÃO	1.369	0.736	0.701	0.186
102	BOR1	MÉDIA	4.858	5.312	10.856	0.592
102	BOR1	MEDIANA	4.413	4.988	10.734	0.541
102	GODZ	DISPERSÃO	0.611	1.946	1.169	0.159
102	GODZ	MÉDIA	1.777	2.231	3.065	0.583
102	GODZ	MEDIANA	1.593	1.637	2.439	0.491
102	HRAO	DISPERSÃO	2.314	2.968	1.258	0.490
102	HRAO	MÉDIA	2.197	3.244	10.592	0.515
102	HRAO	MEDIANA	1.178	2.051	10.917	0.347
102	BJFS	DISPERSÃO	1.862	3.491	2.022	0.064
102	BJFS	MÉDIA	6.368	6.177	18.852	0.713
102	BJFS	MEDIANA	6.275	6.378	18.303	0.703
102	ALBH	DISPERSÃO	2.252	3.183	2.133	0.603
102	ALBH	MÉDIA	2.342	2.147	4.826	0.715
102	ALBH	MEDIANA	1.461	1.170	4.158	0.561
102	NYAL	DISPERSÃO	2.273	2.176	1.443	0.112
102	NYAL	MÉDIA	2.515	4.999	2.752	0.658
102	NYAL	MEDIANA	1.693	4.543	2.442	0.634
102	PDEL	DISPERSÃO	3.170	2.734	1.522	0.147
102	PDEL	MÉDIA	2.388	2.910	10.611	0.709

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
102	PDEL	MEDIANA	1.213	1.983	10.191	0.665
102	ALIC	DISPERSÃO	2.005	1.604	1.988	0.916
102	ALIC	MÉDIA	3.730	3.559	14.376	1.917
102	ALIC	MEDIANA	2.969	3.296	13.335	1.639
102	CHPI	DISPERSÃO	1.929	3.503	0.809	0.196
102	CHPI	MÉDIA	2.082	2.431	3.622	0.207
102	CHPI	MEDIANA	1.066	0.912	3.447	0.154
102	BOGT	DISPERSÃO	3.058	3.217	1.826	0.210
102	BOGT	MÉDIA	3.804	3.556	4.851	0.297
102	BOGT	MEDIANA	2.378	2.718	3.979	0.226
132	BOR1	DISPERSÃO	0.658	0.797	1.789	0.048
132	BOR1	MÉDIA	2.704	3.406	12.541	0.481
132	BOR1	MEDIANA	2.475	3.127	12.391	0.494
132	GODZ	DISPERSÃO	2.111	3.292	0.915	0.407
132	GODZ	MÉDIA	2.417	2.047	3.990	0.466
132	GODZ	MEDIANA	1.919	0.944	4.081	0.346
132	HRAO	DISPERSÃO	3.947	3.277	3.386	0.314
132	HRAO	MÉDIA	4.562	3.658	5.746	0.846
132	HRAO	MEDIANA	2.486	2.219	3.824	0.698
132	BJFS	DISPERSÃO	2.079	2.371	1.176	0.070
132	BJFS	MÉDIA	2.672	4.447	3.711	0.766
132	BJFS	MEDIANA	2.034	4.297	3.853	0.752
132	ALBH	DISPERSÃO	2.076	2.722	1.095	0.026
132	ALBH	MÉDIA	5.097	3.092	7.035	0.393
132	ALBH	MEDIANA	4.665	2.188	7.054	0.383
132	NYAL	DISPERSÃO	5.632	6.362	4.877	1.003
132	NYAL	MÉDIA	5.252	5.013	10.468	0.826
132	NYAL	MEDIANA	3.340	3.186	8.806	0.532
132	PDEL	DISPERSÃO	3.947	3.277	3.386	0.314
132	PDEL	MÉDIA	4.562	3.658	5.746	0.846
132	PDEL	MEDIANA	2.486	2.219	3.824	0.698
132	ALIC	DISPERSÃO	1.677	1.781	1.319	0.391
132	ALIC	MÉDIA	3.493	3.402	9.117	1.821
132	ALIC	MEDIANA	2.943	3.054	8.646	1.705
132	CHPI	DISPERSÃO	1.451	2.210	1.080	0.482
132	CHPI	MÉDIA	1.526	1.927	5.792	0.306
132	CHPI	MEDIANA	1.070	1.010	5.679	0.104

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
132	BOGT	DISPERSÃO	4.085	1.554	1.466	0.079
132	BOGT	MÉDIA	6.465	2.982	1.092	0.267
132	BOGT	MEDIANA	4.589	2.632	0.487	0.237
163	BOR1	DISPERSÃO	1.321	1.734	5.394	0.530
163	BOR1	MÉDIA	3.090	3.661	10.026	0.579
163	BOR1	MEDIANA	2.635	3.278	7.892	0.492
163	GODZ	DISPERSÃO	1.957	0.377	0.258	0.154
163	GODZ	MÉDIA	1.756	0.987	2.206	0.438
163	GODZ	MEDIANA	1.052	1.192	2.284	0.416
163	HRAO	DISPERSÃO	3.653	4.379	3.391	0.389
163	HRAO	MÉDIA	1.858	3.125	12.168	0.522
163	HRAO	MEDIANA	0.640	1.843	10.300	0.403
163	BJFS	DISPERSÃO	1.479	2.991	1.809	0.335
163	BJFS	MÉDIA	5.258	3.988	8.731	0.504
163	BJFS	MEDIANA	5.009	3.116	8.402	0.405
163	ALBH	DISPERSÃO	4.333	3.668	3.506	0.064
163	ALBH	MÉDIA	4.297	2.684	7.678	0.462
163	ALBH	MEDIANA	2.514	1.192	6.056	0.438
163	NYAL	DISPERSÃO	0.726	1.262	2.545	0.067
163	NYAL	MÉDIA	3.684	2.874	2.784	0.570
163	NYAL	MEDIANA	3.478	2.374	1.662	0.570
163	PDEL	DISPERSÃO	3.738	3.664	3.003	0.303
163	PDEL	MÉDIA	4.057	2.329	5.530	0.786
163	PDEL	MEDIANA	2.461	0.988	4.290	0.692
163	ALIC	DISPERSÃO	2.836	2.995	2.605	0.320
163	ALIC	MÉDIA	3.007	3.226	11.689	1.783
163	ALIC	MEDIANA	1.857	2.459	10.852	1.660
163	СНРІ	DISPERSÃO	0.620	0.452	0.465	0.282
163	СНРІ	MÉDIA	2.334	1.560	1.798	0.242
163	СНРІ	MEDIANA	2.050	1.506	1.644	0.109
163	BOGT	DISPERSÃO	2.185	1.411	0.892	0.558
163	BOGT	MÉDIA	2.132	3.764	1.805	0.473
163	BOGT	MEDIANA	1.085	3.392	1.486	0.296
193	BOR1	DISPERSÃO	3.468	2.974	3.442	0.471
193	BOR1	MÉDIA	3.246	3.357	6.398	0.585
193	BOR1	MEDIANA	1.938	2.236	5.421	0.513
193	GODZ	DISPERSÃO	2.324	1.671	1.446	0.454
193	GODZ	MÉDIA	1.622	1.834	2.327	0.421

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
193	GODZ	MEDIANA	0.735	1.473	1.986	0.293
193	HRAO	DISPERSÃO	0.895	1.537	1.094	0.347
193	HRAO	MÉDIA	1.420	2.630	6.205	0.536
193	HRAO	MEDIANA	1.061	2.220	5.820	0.431
193	BJFS	DISPERSÃO	1.407	2.695	0.834	0.046
193	BJFS	MÉDIA	4.524	4.549	6.261	0.671
193	BJFS	MEDIANA	4.196	3.646	6.236	0.680
193	ALBH	DISPERSÃO	1.636	1.283	1.813	0.245
193	ALBH	MÉDIA	2.418	1.491	2.632	0.424
193	ALBH	MEDIANA	1.721	0.848	1.992	0.331
193	NYAL	DISPERSÃO	0.558	0.512	0.804	0.091
193	NYAL	MÉDIA	2.757	3.374	4.076	0.448
193	NYAL	MEDIANA	2.737	3.519	4.248	0.471
193	PDEL	DISPERSÃO	2.053	1.488	2.706	0.330
193	PDEL	MÉDIA	1.682	2.291	3.144	0.763
193	PDEL	MEDIANA	0.957	1.917	2.007	0.668
193	ALIC	DISPERSÃO	1.135	1.363	1.445	0.101
193	ALIC	MÉDIA	1.933	3.251	5.641	1.783
193	ALIC	MEDIANA	1.846	2.567	5.059	1.750
193	СНРІ	DISPERSÃO	2.287	4.343	2.411	0.174
193	СНРІ	MÉDIA	2.055	5.076	8.902	0.413
193	CHPI	MEDIANA	1.467	3.472	8.048	0.339
193	BOGT	DISPERSÃO	1.422	1.486	0.661	0.187
193	BOGT	MÉDIA	2.739	4.112	3.442	0.314
193	BOGT	MEDIANA	2.225	3.578	3.206	0.259
224	BOR1	DISPERSÃO	0.696	0.996	1.180	0.341
224	BOR1	MÉDIA	2.266	2.962	3.782	0.594
224	BOR1	MEDIANA	2.139	2.718	3.615	0.567
224	GODZ	DISPERSÃO	0.843	0.669	0.679	0.131
224	GODZ	MÉDIA	2.051	1.901	2.669	0.468
224	GODZ	MEDIANA	1.895	1.838	2.505	0.452
224	HRAO	DISPERSÃO	0.278	1.438	0.757	0.734
224	HRAO	MÉDIA	1.567	2.354	1.410	0.743
224	HRAO	MEDIANA	1.534	2.120	1.041	0.524
224	BJFS	DISPERSÃO	3.811	0.579	1.587	0.250
224	BJFS	MÉDIA	3.161	2.913	3.978	1.148
224	BJFS	MEDIANA	1.952	2.954	3.432	1.078
224	ALBH	DISPERSÃO	3.283	2.035	1.840	0.541

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
224	ALBH	MÉDIA	2.966	1.487	3.573	0.396
224	ALBH	MEDIANA	1.838	0.637	2.959	0.234
224	NYAL	DISPERSÃO	3.227	3.654	3.831	0.318
224	NYAL	MÉDIA	3.435	4.031	4.088	0.620
224	NYAL	MEDIANA	2.571	3.187	2.970	0.568
224	PDEL	DISPERSÃO	0.359	1.348	0.571	0.759
224	PDEL	MÉDIA	2.338	2.569	3.856	0.924
224	PDEL	MEDIANA	2.415	1.952	3.912	0.699
224	ALIC	DISPERSÃO	2.571	1.740	2.799	0.171
224	ALIC	MÉDIA	6.316	3.014	9.813	1.728
224	ALIC	MEDIANA	5.487	2.170	8.463	1.687
224	СНРІ	DISPERSÃO	2.049	2.423	0.486	0.304
224	СНРІ	MÉDIA	4.656	4.257	7.194	0.427
224	СНРІ	MEDIANA	3.666	2.904	7.149	0.324
224	BOGT	DISPERSÃO	3.621	3.129	3.184	0.322
224	BOGT	MÉDIA	5.903	4.572	9.207	0.485
224	BOGT	MEDIANA	4.524	3.467	9.205	0.386
255	BOR1	DISPERSÃO	0.961	1.964	1.950	0.628
255	BOR1	MÉDIA	2.132	4.430	6.940	0.694
255	BOR1	MEDIANA	1.803	3.559	7.120	0.537
255	GODZ	DISPERSÃO	1.225	1.928	0.392	0.560
255	GODZ	MÉDIA	2.132	2.930	9.895	0.870
255	GODZ	MEDIANA	1.720	2.129	9.961	0.689
255	HRAO	DISPERSÃO	0.861	0.502	1.236	0.182
255	HRAO	MÉDIA	1.923	2.449	3.562	0.644
255	HRAO	MEDIANA	1.606	2.359	3.138	0.602
255	BJFS	DISPERSÃO	2.744	2.436	2.919	0.151
255	BJFS	MÉDIA	2.975	4.677	14.163	0.902
255	BJFS	MEDIANA	1.935	4.094	13.206	0.940
255	ALBH	DISPERSÃO	1.167	3.464	1.813	0.581
255	ALBH	MÉDIA	2.431	1.798	3.154	0.451
255	ALBH	MEDIANA	2.047	0.449	2.435	0.279
255	NYAL	DISPERSÃO	2.268	3.573	2.729	0.050
255	NYAL	MÉDIA	3.099	6.379	10.402	0.609
255	NYAL	MEDIANA	2.124	5.254	9.154	0.636
255	PDEL	DISPERSÃO	0.451	1.939	0.703	0.390
255	PDEL	MÉDIA	2.210	2.166	5.172	0.804
255	PDEL	MEDIANA	2.096	1.404	5.003	0.673

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
255	ALIC	DISPERSÃO	3.509	1.248	2.727	0.667
255	ALIC	MÉDIA	6.209	3.010	19.308	1.875
255	ALIC	MEDIANA	4.668	2.472	19.631	1.697
255	CHPI	DISPERSÃO	4.716	4.895	2.756	0.587
255	СНРІ	MÉDIA	3.601	3.993	9.918	0.271
255	СНРІ	MEDIANA	0.955	1.679	8.788	0.074
255	BOGT	DISPERSÃO	3.709	1.198	0.505	1.022
255	BOGT	MÉDIA	3.475	3.738	5.566	0.602
255	BOGT	MEDIANA	1.412	3.141	5.459	0.276
285	BOR1	DISPERSÃO	2.861	1.007	1.962	0.285
285	BOR1	MÉDIA	3.363	4.074	5.156	0.637
285	BOR1	MEDIANA	2.196	3.781	4.634	0.576
285	GODZ	DISPERSÃO	1.227	2.920	2.028	0.554
285	GODZ	MÉDIA	3.613	3.005	4.456	0.567
285	GODZ	MEDIANA	3.326	2.074	3.743	0.403
285	HRAO	DISPERSÃO	0.302	0.631	0.621	0.255
285	HRAO	MÉDIA	2.576	3.389	2.946	0.617
285	HRAO	MEDIANA	2.604	3.281	3.081	0.504
285	BJFS	DISPERSÃO	1.390	1.621	1.415	0.593
285	BJFS	MÉDIA	2.819	4.939	12.172	0.694
285	BJFS	MEDIANA	1.914	4.828	11.832	0.515
285	ALBH	DISPERSÃO	0.636	2.922	0.663	0.392
285	ALBH	MÉDIA	2.666	1.848	3.868	0.404
285	ALBH	MEDIANA	2.439	0.781	4.210	0.307
285	NYAL	DISPERSÃO	2.533	0.561	0.537	0.081
285	NYAL	MÉDIA	4.122	4.006	6.494	0.653
285	NYAL	MEDIANA	3.072	4.020	6.576	0.661
285	PDEL	DISPERSÃO	3.871	3.524	2.320	0.196
285	PDEL	MÉDIA	3.176	2.910	11.131	0.731
285	PDEL	MEDIANA	1.457	1.572	10.170	0.692
285	ALIC	DISPERSÃO	5.193	4.247	9.526	0.095
285	ALIC	MÉDIA	10.520	6.736	20.190	1.664
285	ALIC	MEDIANA	8.763	6.009	18.813	1.671
285	СНРІ	DISPERSÃO	0.340	1.127	0.947	0.127
285	CHPI	MÉDIA	3.673	1.896	3.497	0.544
285	СНРІ	MEDIANA	3.767	1.410	3.270	0.504
285	BOGT	DISPERSÃO	1.493	2.649	1.511	0.554
285	BOGT	MÉDIA	3.933	5.261	5.787	0.447

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
285	BOGT	MEDIANA	3.268	3.779	5.720	0.262
316	BOR1	DISPERSÃO	3.237	4.638	2.040	0.127
316	BOR1	MÉDIA	6.476	4.852	7.691	0.556
316	BOR1	MEDIANA	5.158	3.073	7.201	0.534
316	GODZ	DISPERSÃO	0.644	3.187	1.570	0.090
316	GODZ	MÉDIA	2.030	3.478	4.486	0.576
316	GODZ	MEDIANA	1.829	2.197	3.642	0.525
316	HRAO	DISPERSÃO	1.382	2.500	0.874	0.847
316	HRAO	MÉDIA	2.753	4.480	10.601	0.800
316	HRAO	MEDIANA	2.365	3.801	10.772	0.486
316	BJFS	DISPERSÃO	1.632	1.919	0.821	0.497
316	BJFS	MÉDIA	2.888	3.160	7.857	0.402
316	BJFS	MEDIANA	2.587	2.578	7.995	0.234
316	ALBH	DISPERSÃO	1.271	2.357	1.085	0.242
316	ALBH	MÉDIA	2.133	1.683	3.755	0.454
316	ALBH	MEDIANA	1.550	0.930	3.446	0.384
316	NYAL	DISPERSÃO	2.533	0.561	0.535	0.081
316	NYAL	MÉDIA	4.122	4.006	6.459	0.653
316	NYAL	MEDIANA	3.072	4.020	6.538	0.661
316	PDEL	DISPERSÃO	4.129	2.841	3.023	0.107
316	PDEL	MÉDIA	4.005	2.230	5.712	0.639
316	PDEL	MEDIANA	2.607	1.324	4.530	0.612
316	ALIC	DISPERSÃO	1.752	2.766	4.003	0.071
316	ALIC	MÉDIA	4.070	5.300	16.453	1.664
316	ALIC	MEDIANA	3.744	4.846	15.814	1.690
316	CHPI	DISPERSÃO	2.566	3.301	2.954	0.663
316	CHPI	MÉDIA	2.748	2.758	5.786	0.473
316	CHPI	MEDIANA	2.092	1.559	4.598	0.276
316	BOGT	DISPERSÃO	1.939	3.799	1.189	0.416
316	BOGT	MÉDIA	4.494	4.449	5.387	0.445
316	BOGT	MEDIANA	3.626	2.964	5.393	0.274
346	BOR1	DISPERSÃO	0.654	0.876	0.382	0.365
346	BOR1	MÉDIA	1.669	3.808	6.458	0.771
346	BOR1	MEDIANA	1.641	3.418	6.310	0.658
346	GODZ	DISPERSÃO	2.826	1.239	2.183	0.224
346	GODZ	MÉDIA	4.361	2.114	6.100	0.739
346	GODZ	MEDIANA	3.403	1.674	5.335	0.659

DIA GPS	ESTAÇÃO	MÉTRICA	IGS	RTKLIB	GERADO	DUAL
346	HRAO	DISPERSÃO	0.599	0.863	3.465	0.921
346	HRAO	MÉDIA	3.724	4.155	10.020	0.714
346	HRAO	MEDIANA	3.619	3.945	11.294	0.469
346	BJFS	DISPERSÃO	0.441	0.826	0.667	0.097
346	BJFS	MÉDIA	1.381	2.368	8.387	0.898
346	BJFS	MEDIANA	1.345	2.387	8.157	0.882
346	ALBH	DISPERSÃO	2.183	2.315	0.633	0.465
346	ALBH	MÉDIA	2.521	2.687	4.890	0.707
346	ALBH	MEDIANA	1.740	1.408	4.608	0.565
346	NYAL	DISPERSÃO	1.803	4.089	2.234	0.213
346	NYAL	MÉDIA	3.218	5.684	10.729	0.847
346	NYAL	MEDIANA	2.868	4.424	10.123	0.738
346	PDEL	DISPERSÃO	0.454	2.532	0.462	0.264
346	PDEL	MÉDIA	1.572	3.744	2.325	0.724
346	PDEL	MEDIANA	1.579	2.428	2.160	0.653
346	ALIC	DISPERSÃO	0.412	2.027	1.956	0.390
346	ALIC	MÉDIA	1.797	5.553	12.992	1.795
346	ALIC	MEDIANA	1.759	6.024	12.951	1.698
346	CHPI	DISPERSÃO	1.027	1.621	3.577	0.285
346	СНРІ	MÉDIA	3.719	1.552	5.434	0.180
346	CHPI	MEDIANA	3.346	1.107	4.227	0.068
346	BOGT	DISPERSÃO	2.188	3.335	0.419	0.136
346	BOGT	MÉDIA	9.453	4.498	11.249	0.337
346	BOGT	MEDIANA	8.466	3.126	11.093	0.295

APÊNDICE B – ALGORITMO DE IMPLEMENTAÇÃO DO MODELO DE KLOBUCHAR

```
import matplotlib.pyplot as plt
2 import numpy as np
3 from crialonex import escrevelonex
4 from geraMapas import gera_mapas
5 import math
7 # Fun o de convers o
8 deg2semi = 1/180
9 semi2rad = np.pi
10 deg2rad = np.pi/180
11
12 # Lista para armazenamento dos resultados
13 lat = []
14 lon = []
15 \text{ erro} = []
16
17 # Algoritmo de Klobuchar
18 def klobuchar(i, j, E, A, Time_GPS, Alpha, Beta):
      E = E * deg2semi
19
20
      i = i*deg2semi
      j = j*deg2semi
21
22
23
      # Earth-centered angle
      psi_i = 0.0137/(E + 0.11) - 0.022
                                                        #in semicircles
24
25
      # Subionosphere latitude
26
      phi_i = i + psi_i*np.cos(A*deg2rad)/np.pi
27
28
      if phi_i > 0.416:
29
          phi_i = 0.416
30
      elif phi_i < -0.416:</pre>
31
          phi_i = -0.416
32
33
      # Subionosphere longitude
34
      lambdal = j + (psi_i*np.sin(A*deg2rad)/np.pi)/(np.cos(phi_i*180*
35
     deg2rad)/np.pi)
36
      # Geomagnetic latitude
37
      phi_m = phi_i + 0.064*np.cos((lambdal-1.617)*np.pi)/np.pi
38
39
      # Local time
40
      t = 4.32E+04*lambdal + Time_GPS
41
```

```
t -= math.floor(t / 86400.0) * 86400.0
42
43
      # Slant factor
44
      F = 1.0 + 16*pow((0.53 - E), 3.0)
45
46
      # Compute x
47
      Ai = Alpha[0] + Alpha[1] * phi_m + Alpha[2] * phi_m**2 + Alpha[3] *
48
     phi_m**3
      if Ai < 0:</pre>
49
          Ai = 0
50
      Bi = Beta[0] + Beta[1] * phi_m + Beta[2] * phi_m**2 + Beta[3] *
51
     phi_m**3
      if Bi < 72000:
52
          Bi = 72000
53
54
      x = 2*np.pi*(t-50400)/Bi
55
56
      # Compute Tiono for L1 frequency
57
      if np.abs(x) < 1.57:
58
          L1 = 2.99792458E8 * F * (5E-9 + Ai * (1.0 + x * x * (-0.5 + x *
59
     x / 24.0)))
          return L1
60
      else:
61
          L1 = ((5E-9) * F) * 2.99792458E8
62
          return L1
63
64
65 def calculaKlob(times):
      pos = 0
66
      for x in np.arange(87.5, -88.5, -2.5):
67
          for y in range(-180, 181, 5):
68
               lat.insert(pos, x)
69
               lon.insert(pos, y)
70
               tec = 10*klobuchar(x, y, 90, 0, times+gpsTime, Alpha, Beta)
     *((1575.42*1E+6)**2)/(40.3*1E+16)
               erro.insert(pos, int(tec))
72
               pos += 1
73
74
75 if __name__ == "__main__":
76
      # Vari veis para cada dia GPS
77
      mes = 5
78
      Alpha= [0.7451E-08, 0.2235E-07, -0.5960E-07, -0.1192E-06]
79
      Beta = [0.8602E+05, 0.8192E+05, -0.1311E+06, -0.5243E+06]
80
      gpsTime = 1210118418
81
82
83
      # Vari veis para o c lculo do Algoritmo de Klobuchar
      A = 0
84
```

```
#azimuth
      E = 90
85
      #elevation angle
86
      Cchamada para a fun o de c lculo com varia o de tempo de 7200
87
       seg (2hs)
      for i in range(0, 86401, 7200):
88
           calculaKlob(i)
89
90
      # Guarda os valores de latitudes [-87.5...87.5]
91
      latitudes = []
92
      for i in np.arange(87.5, -88.5, -2.5):
93
           latitudes.append(i)
94
      # Grava os valores de erro num array do numpy
95
      x = np.array(erro)
96
      y = np.array(latitudes)
97
98
      # Escreve no arquivo IONEX
99
      escreveIonex(x, y, mes)
100
101
      # Gera listas para impress o de mapas no browser
102
      lati = []
103
      longi = []
104
      posi = 0
105
       suberro = []
106
      for xis in np.arange(87.5, -88.5, -2.5):
107
           for y_ in range(-180, 181, 5):
108
               lati.insert(posi, xis)
109
               longi.insert(posi, y_)
110
               posi += 1
      # La o para percorrer pelos valores gerados e gerar um mapa
113
      position = 0
114
       for i in range(0, len(erro), 5183):
115
           for j in range(i, i+5183):
116
               suberro.insert(position, x[j])
               position += 1
118
           gera_mapas(suberro, lati, longi)
119
           position = 0
120
```

APÊNDICE C – IMPLEMENTAÇÃO DA FUNÇÃO DE IMPRESSÃO DOS MAPAS

```
import plotly.express as px
2 import plotly.graph_objects as go
3 from matplotlib import pyplot as plt
4 from matplotlib import cm
5
6 def plotTec(lat, lon, erro):
     fig = go.Figure()
7
     fig.add_trace(go.Scatter(
8
         x = lon,
9
         y = lat,
10
          marker=dict(size=15, cmax=max(erro), cmin=min(erro), color=erro,
11
      colorbar=dict(title="TEC"),colorscale="portland"), mode="markers"))
12
     fig.show()
13
```

APÊNDICE D – ALGORITMO DE IMPLEMENTAÇÃO DO GERADOR DE ARQUIVOS IONEX

```
1 import numpy as np
2
3 def escreveIonex(erro, lat, mes):
      arquivo = open("jeff0120.18i", "w")
4
      # Dia que sera escrito no cabe alho de cada submapa
5
      dia = 12
6
      # Indice para percorrer pelas posi es do array de resultados
7
      ind = 0
8
      # Indice para percorrer pelas posi es do array de latitudes
9
      ind_{lat} = 0
10
      # Indice auxiliar para as quebras de linha do arquivo
11
      pos_linha = 0
12
      # Salva a quantidade de mapas que foram gerados
13
      num_tec_map = 1
14
      hora = 0
15
      arquivo.write(" 1.0
                                         IONOSPHERE MAPS GPS
16
            IONEX VERSION / TYPE\n"
17 "BROADCAST IONOSPHERE MODEL FOR DAY 043, 2018
                                                                 COMMENT
              \n"
   2018
             "+<mark>str</mark>(mes)+"
18 "
                              12 0 0
                                              0
     EPOCH OF FIRST MAP \n"
              "+<mark>str</mark>(mes)+"
19 " 2018
                             13
                                  0 0
                                                  0
    EPOCH OF LAST MAP \n"
20 " 7200
                                                                 INTERVAL
              \n"
21 <sup>II</sup>
                                                                 # OF MAPS
   13
    IN FILE \n"
22 "
   NONE
                                                                 MAPPING
     FUNCTION \n"
       0.0
23 "
                                                                 ELEVATION
     CUTOFF
             \n"
24 "
   6371.0
                                                                 BASE RADIUS
              \n"
25 "
   2
                                                                 MAP
     DIMENSION
                    \n"
26 "
     350.0 350.0
                   0.0
                                                                 HGT1 / HGT2
      / DHGT \n"
27 "
     87.5 -87.5
                   -2.5
                                                                 LAT1 / LAT2
      / DLAT \setminus n''
                  5.0
28 " -180.0 180.0
                                                                 LON1 / LON2
     / DLON \n"
29
                                                                 EXPONENT
      -1
```

\n" 30 "TEC/RMS values in 0.1 TECU; 9999, if no value available COMMENT \n " 31 " END OF n"HEADER for ind in range(len(erro)): 32 if (pos_linha % 16 == 0): 33 arquivo.write("\n") 34 if (ind % 73 == 0) and ind != 0: 35 $pos_linha = 0$ 36 $ind_lat += 1$ 37 #arquivo.write("\n") 38 if (ind % 5183 == 0 and ind != 0): 39 $ind_{lat} = 0$ 40 hora += 241 if hora == 24: 42 hora = 043 dia += 1 44 if(hora <= 18):45 arquivo.write("\n "+str(num_tec_map)+" 46 END OF TEC MAP") if(hora>18): 47 arquivo.write("\n "+str(num_tec_map)+" 48 END OF TEC MAP") 49 num_tec_map += 1 50 #imprime cabe alho do a por hora 51 if pos_linha == 0 and ind % 5183 == 0: 52 if hora < 18:</pre> 53 arquivo.write("\n "+str(num_tec_map)+" 54 START OF TEC MAP $\n"$) if hora >= 18: 55 arquivo.write("\n "+str(num_tec_map)+" 56 START OF TEC MAP $\n"$) 57 if pos_linha == 0 and ind % 5183 == 0: 58 if hora < 10: 59 arquivo.write(" 2018 5 "+<mark>str</mark>(dia)+" "+str(60 hora)+" 0 EPOCH OF CURRENT MAP") 0 if hora >= 10: 61 arquivo.write(" 2018 5 12 "+str(hora)+" 0 62 0 EPOCH OF CURRENT MAP") 63 #imprime o cabe alho do mapa por latitude 64 if (pos_linha == 0): 65 #print(lat[ind_lat]) 66 if len(str(int(lat[ind_lat]))) == 2: 67

```
arquivo.write("\n "+ str(lat[ind_lat]) +"-180.0 180.0
68
        5.0 350.0
                                              LAT/LON1/LON2/DLON/H \n")
             if len(str(int(lat[ind_lat]))) == 1:
69
                  arquivo.write("\n "+ " "+str(lat[ind_lat]) +"-180.0
70
           5.0 350.0
                                                    LAT/LON1/LON2/DLON/H \n"
     180.0
     )
              if len(str(int(lat[ind_lat]))) == 3:
71
                  arquivo.write("\n "+ str(lat[ind_lat]) +"-180.0 180.0
72
       5.0 350.0
                                            LAT/LON1/LON2/DLON/H \n")
          if len(str(erro[ind])) == 1:
73
              arquivo.write(" ")
74
         if len(str(erro[ind])) == 2:
75
              arquivo.write(" ")
76
          arquivo.write(" " + str(erro[ind]))
77
          pos_linha += 1
78
79
      arquivo.write("\n
                          "+<mark>str</mark>(num_tec_map)+"
80
                                END OF TEC MAP\n")
      arquivo.write("
81
            END OF FILE")
      arquivo.close()
82
```