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ABSTRACT
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Remote sensing (RS) is the act of processing and extracting meaningful features about
the ground and objects observed at a distance, usually from a much higher position from air-
craft and satellites. Due to the large field of coverage in RS imagery, object detection in these
images can be really useful, gathering a broad and concise notion of the objects present in cer-
tain areas. Due to their great capability of assimilating intricate patterns, Deep Learning (DL)
models have achieved state-of-the-art (SOTA) performance in computer vision tasks. In this
project, an extensive research is conducted on current DL-based object detection models and
a suitable model, YOLOv7, is chosen to serve as a baseline for modifications to enable a high
performance oriented bounding-box (OBB) detector in RS imagery. In supervised DL mod-
els, their final performance is very dependent on the quality of their training. To improve it,
large datasets covering the specific task are pursued, converging to the use of DOTA dataset.
Moreover, the concept of transfer learning is employed to allow the use of a pre-trained model
on a very large dataset with different tasks. The final model is evaluated on common object
detection metrics, such as the confusion matrix, precision, and recall curves. They validate the
detector, capable of identifying 16 object classes with SOTA performance: high accuracy, fast
and with the latest oriented bounding-box. Comparing the confusion matrices of the developed
model and YOLOv5-OBB (KAIXUAN, 2022), for instance, it correctly identifies with a prob-
ability of 0.97, 0.89, 0.67 and 0.67% the following classes: plane, baseball diamond, bridge
and ground track field. Meanwhile the YOLOv5-OBB obtains 0.96, 0.83, 0.6 and 0.6% for the
same respective classes. Another interesting point is the reduction from 0.73 to 0.69% in the
probability of mistaking the background for a small-vehicle. The model can further be trained
on custom datasets for detection in agriculture, livestock, militarily, etc., bringing implications
for many areas and activities. The repository containing all the codes used and developed in
this project is available at (SANTOS, 2022).

Keywords: Machine learning; Deep learning; Remote sensing imagery; Object detection; Ori-
ented bounding-box; YOLOv7; DOTA dataset..
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1 INTRODUCTION

This chapter motivates the reader about this paper’s subject by presenting its objectives

at section 1.1, followed by the justifications supporting the work done, at section 1.2, and finally,

at section 1.3, it exposes how the rest of the content is addressed.

1.1 Objectives

To get started, the objective is to review from initial and more traditional machine

learning-based object detectors to state of the art (SOTA) ones, comprehending their evolu-

tion and mechanisms of improvement. With the required knowledge, it is then chosen the most

adequate architecture and model to be implemented and provide a groundwork that is further

modified, based on SOTA methods and customized to work with remote sensing imagery.

With the obtained model, modern training methods, such as transfer learning concept

and some data augmentations, are researched and applied to the model training. The appropri-

ated dataset, with remote sensing images and object detection task, is also a target of research

in this paper. The most common metrics and losses in the literature, for machine learning-based

models, are evaluated throughout its training.

The final results are compared with other models available to the same task and dataset.

Their performance and possible constraints are all considered to generate a very detailed com-

parison between them. It is identified the improvements and issues of the model. The impacts

that this project brings and its many applications are then debated. Allowing a scientific regard

to keep perfecting models and acquiring even higher performance in future works.

1.2 Justification

Detection of objects in remote sensing images has an enormous variety of application:

checking for the presence of varied objects of interest in determined area, such as facilities,

villages, airports, the traffic of cars and boats, plantations, and multi-class object counting, etc.

Serving many purposes such as surveillance, defense, agriculture, environmental protection,

search-and-rescue, etc.

However, as it can be imagined and it is further addressed in this paper, at section 2.6,

establishing models to perform well the object detection task in remote sensing imagery is very
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complicated. Since the success of AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012)

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) (RUSSAKOVSKY

et al., 2015), it has been perceived the deep learning high capacities with respect to object

detection.

Since then, the evolution of deep learning-based object detector models has never stopped

and more specific applications, such as in remote sensing, started employing them. Due to rela-

tive recent development of deep learning approaches, this field is yet replete of uncertainties and

possibilities to improvement. By constraining the object detectors to remote sensing imagery,

there are many modifications passive of great enhancement.

1.3 Monograph organization

To allow a good development in machine learning (ML)-based object detection in remote

sensing, it is essential to address each individual part that constitutes it at first. Chapter 2

introduces the necessary knowledge about remote sensing: what it is, sensor types, different

resolutions, object detection in remote sensing, etc. Chapter 3 brings the fundamental concepts

of deep learning. The literature review, in chapter 4, addresses early object detectors and their

evolution; and SOTA deep learning (DL)-based object detectors in remote sensing imagery.

After creating the foundations from the basic knowledge to move on, chapter 5 presents

the proposed methodology. It goes throughout many implementations, mainly driven by the

results seen in chapter 6.

Finally, chapter 7 recapitulates different aspects from this paper and concludes about the

achieved results. Bringing to light what was accomplished and opening up many possibilities

for future work.
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2 REMOTE SENSING

Remote sensing is extracting relevant information about regions and objects through

images, i.e., without physically interact with them at some distance. It is demanded in different

activity fields, e.g., most Earth science disciplines, such as meteorology, geology, hydrology,

etc; commercial and economic prospecting; military intelligence, etc.

The images processed to extract information are called remote sensing images. Usually

these images are acquired through satellite or aircraft-based sensor technologies.

Fig. 2.1 – Global vision of remote sensing

Source: Adapted from (GISGEOGRAPHY, 2021).

From the signal received at the sensor and knowing the emitted signal beforehand, it is

possible to make different estimates of the surface or the object.

2.1 Sensor Types

Depending how the emitted signal is created, we can define two types of remote sensing

sensors (GISGEOGRAPHY, 2021):

• Passive sensor;

• Active sensor.

For passive sensors, the emitted signal that is later reflected and measured by the sensor

is not produced by itself, it comes from a different source. The most common radiation source

is the sunlight.
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Fig. 2.2 – Principle of operation of passive sensors

Source: Adapted from (GISGEOGRAPHY, 2021).

Active sensors, however, produce their won signal that is back-scattered at the region or

object they illuminate.

Fig. 2.3 – Principle of operation of active sensors

Source: Adapted from (GISGEOGRAPHY, 2021).

The active remote sensing is very useful whenever the application needs a synthetic

signal due to some desired properties or it wants an independence from the external radiation

source. For instance, whenever it uses sunlight it will be subject to the time of the day to gather

new data. Since the active sensor emits its own radiation, there is no need of sunlight. Fig. 2.2

and 2.3 show both systems.

2.2 Platforms for sensors

Sensors might be attached at different platforms. The most common are satellites, air-

planes and drones. Each of them has some advantages and disadvantages. Drones, UAVs,

airplanes and helicopters have very high resolution imagery and are free to choose the most

adequate path they will pass. However, they have small coverage extent, which is the advan-

tage of low Earth orbit satellites, but have coverage limited to orbital paths and deal with cloud

obstruction.
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2.3 Remote Sensing Image

Remote sensing images have different resolutions (DIRECT, 2022):

• spectral;

• spatial;

• radiometric and

• temporal.

Spectral resolution refers to the bandwidth and the sampling rate the sensor captures.

High spectral resolution has narrower bandwidth, e.g. 10 nm (DIRECT, 2022). Current Land-

sat collection has 7 bands, including several in the infrared spectrum, ranging from a spectral

resolution of 0.7 to 2.1 µm. The Hyperion sensor on Earth Observing-1 resolves 220 bands

from 0.4 to 2.5 µm, with a spectral resolution of 0.10 to 0.11 µm per band (WIKIPEDIA,

2021a).

Fig. 2.4 – Bands composition

Source: Adapted from (GISGEOGRAPHY, 2021).

Spatial resolution refers to the surface coverage by one single pixel in the image, defining

the smallest features that can be distinguished. Typically, pixels correspond to square areas

ranging in side length from 50 cm to 1 km (GISGEOGRAPHY, 2021; WIKIPEDIA, 2021a).
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Fig. 2.5 – 3 different resolution from the same area

Source: Adapted from (GISGEOGRAPHY, 2021).

The radiometric resolution refers to the dynamic range or the total number of levels to

discretize the signal that the sensor can record. A larger dynamic range for a sensor brings more

discernible details in the image. The Landsat 7’s sensor records 8-bit images, i.e., 256 unique

gray values of the reflected energy, while Ikonos-2 has an 11-bit radiometric resolution, i.e.,

2048 grey values (DIRECT, 2022).

The temporal resolution refers to the time elapsed between consecutive images taken of

the same area. Satellites depend on their orbits, they may be stationary or need to complete

a revolution in their orbit to revisit the same area (DIRECT, 2022). Fig. 2.6 shows multiple

satellites with their fields of sight.

Fig. 2.6 – Multiple satellites with their fields of sight

Source: Adapted from (GISGEOGRAPHY, 2021).

The temporal characteristic is relevant in time-series studies or those requiring an aver-

aged or mosaic image as in deforesting and land use change monitoring.
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2.4 Types of imagery

The electromagnetic spectrum may be decomposed into different spectral bands, from

long wavelengths like microwave to short wavelengths like X-rays, as shown in Fig. 2.7

Fig. 2.7 – Spectral bands from long to shortwaves

Source: Adapted from (GISGEOGRAPHY, 2021).

Human eyes are electromagnetic sensors at visible wavelengths, raging from red to vi-

olet. However, synthetic sensors can capture wavelengths beyond this range and thus, can see

signals from different bands that have different interactions (responses) with soils and objects.

For instance, the Normalized Difference Vegetation Index (NDVI) uses the response of both

visible and near-infrared bands to classify vegetation. NDVI is a standardized way to mea-

sure healthy vegetation. The higher it is, the healthier is the vegetation, because the vegetation

reflects more near-infrared (NIR) and green light compared to other wavelengths, but absorbs

more red and blue light (GISGEOGRAPHY, 2021).

It can be seen at Fig. 2.8.

Fig. 2.8 – NDVI for different vegetation

Source: Adapted from (GISGEOGRAPHY, 2021).
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Based on the number of operation bands and their narrowness, there are 2 types of

imagery:

• Multi-spectral and;

• Hyper-spectral.

Multi-spectral imagery is specified with few wide bands, as shown in Fig. 2.9.

Fig. 2.9 – Multi-spectral imagery with wide bands at infrared, near infrared and visible

Source: Adapted from (GISGEOGRAPHY, 2021).

Hyper-spectral imagery is specified with several narrow bands, as shown in Fig. 2.10.

Fig. 2.10 – Hyper-spectral imagery with several narrow bands at infrared, near infrared and visible

Source: Adapted from (GISGEOGRAPHY, 2021).

2.5 Angle of shooting

Depending on the angle of the optical axis, the image capture can be classified into one

of the following three categories: Nadir, High Oblique and Low Oblique. Each of these captures

the surface with different perspective deformations, as seen in the Fig. 2.11.
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Fig. 2.11 – Nadir, High Oblique and Low Oblique with their respective perspective deformation

Source: Adapted from (DIETRICH, 2016).

2.6 Object detection

Remote sensing possesses several tasks, e.g., parameter inversion, terrain surface classi-

fication, object detection, despeckling, topography of surface, multimodal data fusion, etc. This

paper focuses in the object detection task.

Object detection can be unfolded into two sub-tasks: object area delimitation and its

classification. Rather than other use cases, such as object analysis, it is not required very exact

process to perform object detection. Basically, it is required a model to be attuned to the range

of nuances to identify a certain class or category.

The object detection in remote sensing images follows the same principle as in a regular

image, constraining the images under remote sensing imagery peculiarities. Fig. 2.12 shows an

example of object detection in remote sensing images, where objects are identified with colored

bounding boxes around them, and each color indicates the class the object belongs to.
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Fig. 2.12 – Object detection in remote sensing images

Source: Adapted from (ZHUANG et al., 2019).

Establishing models capable to perform well this task, however, is not easy. Traditional

methods tried to extract hand-crafted features based on expert domain knowledge to charac-

terize objects, relying on template matching or through the use of traditional machine learning

approaches, such as Support Vector Machines (SVMs) (MAHONY et al., 2019; SHIN; BAL-

ASINGHAM, 2017).

Unfortunately, besides those approaches being thoughly generalizable for different datasets,

an object present in a remote sensing image may suffer from many deformations which may

completely decharacterize the object from its regular defined view. Fading the heuristically en-

gineered features to be unable to generically describe the objects under different modifications.

However, deep learning methods extract discriminative features proved to overcome very well

those aforementioned issues.

The success of AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) in the Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) (RUSSAKOVSKY et al.,

2015), with a large difference from the second position using traditional methods, has world-

wide demonstrated that machine learning methods had a huge occult potential for image pro-

cessing. Nowadays, these methods are becoming the leaders and preferred techniques applied
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to the majority of image processing.

2.6.1 Remote sensing imagery peculiarities

As seen in section 2.4, different types of imagery can produce images with different

number of channels. However, most applications encountered use the visible spectral band,

confined to RGB channels.

The objects of interest are mostly very small and have only small nuances to differentiate

them when compared to the whole image. Detection is a difficult task even for the human eye.

Since most models work by learning selective filters, by the images that pass through them, the

generated features are based on pixels. Thus, just a few pixels of a small object are not enough

to allow this process to perform well, when compared to larger objects. Also, small objects are

prone to be mislabeled, where their class may be omitted.

Another source of variations found specifically in remote sensing images is the perspec-

tive deformation and scaling implied by distance and angle of shooting.
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3 DEEP LEARNING

The recent evolution of computational calculation capacity has loosen the employment

and development of algorithms which require intense parallel calculation. Among other ap-

plications, deep learning has been astounding developed, with overwhelming success in many

fields. Unlike conventional methods, deep learning-based ones commonly untangle themselves

in hierarchical architectures, called deep neural networks. Whose name comes from a slight

resemblance to the human brain neurons to recognize patterns from input data.

Deep learning algorithms have a main principle of encoding input data into effective

feature presentations and then finding patterns in this latent representation to output predictions

from specific tasks. In remote sensing field, deep learning-based methods have been adopted for

a variety of tasks, including terrain surface classification, object detection, parameter inversion,

despeckling, specific applications in Interferometric SAR (InSAR), and SAR-optical data fusion

(ZHU et al., 2020).

Because of the diverse number of applications with many purposes and different data

with different intrinsic meaning, they need to be differently handled by deep learning algo-

rithms. Some major models and architectures have been developed to better correspond to

determined applications and improve their capabilities. Following, some relevant deep learning

concepts and models for image data processing are comprehensively reviewed.

3.1 Artificial neural network

Artificial neural network (ANN), or neural network (NN) for short in our context, may

be seen as a system of many nodes, or neurons, in a certain topology, possessing pondered

connections among them. The first layer of nodes is the NN input. Then, to be characterize as

a deep learning model, there are hidden layers, which are more nodes with their own pondered

connections. They may constitute from one to thousands of layers. Finally, there is the last layer,

called output layer, which is again more nodes connected from the hidden layer and carries the

expected result from the NN model.

Summarizing the 3 types of layers:

• input layer: input variables;

• hidden layers: layers of nodes between the input and output layers, varying from one to
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multiple layers;

• output layer: output variables.

Fig. 3.1 illustrates them.

Fig. 3.1 – Input, hidden and output layers

Source: Author.

Which can be further represent as the block diagram in Fig. 3.2.

Fig. 3.2 – Block diagram of a NN

Source: Author.

Which can be mathematically written as Eq. 3.1.

y = f(x;θ) = fL (fL−1 (. . . f2 (f1 (x;θ1) ;θ2) . . . ;θL−1) ;θL) (3.1)

Where x is the input; y = f(x;θ) is the output; θ(l) is the parameter set for the function

fl which represents the operations between all the nodes of layer l; and L is a hyperparameter

that defines the number of layers in the NN (BOURMAUD, 2020).

Looking back on Eq. 3.1, a NN might be seen as a parametric sub-functions composi-

tion. By choosing the NN hyperparameters, some of its properties can be defined:
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– size is the total number of nodes in the model;

– width is the number of nodes in a specific layer;

– depth is the total number of layers in a NN;

– representational capacity defines the type of functions that can be learned by the network

configuration;

– architecture is the specific arrangement of the layers and nodes in the network.

The deeper the neural network, more and more intricate and sophisticated operations

can be performed over the input data. However, although learning as much as possible from the

data is the goal, supervised deep learning models, that is our case, can suffer from overfitting.

More about this in the subsection 3.2, where the types of learning are presented.

3.2 Types of learning: supervised, unsupervised and reinforcement

Now the question that remains is, how these models learn? From the NN literature, for

instance the great (GOODFELLOW; BENGIO; COURVILLE, 2016) book, it can be found 3

formal ways: supervised, unsupervised and reinforcement.

– Supervised is the most popular learning. However, input data in this method has the biggest

constraint throughout them. It needs labeled datasets to be able to learn the objective

function, i.e., for each input, there is also its right response, also called ground truth.

Then, it can readjust itself to process the input and generate the output with the lowest

loss. For this type of learning, one big challenge is to create a generalizable model for

the data that hasn’t participated in the training phase. It is vital that training data truly

represents the true distribution of the entire dataset so it can handle all the unseen data

(ZHU et al., 2020). The overfitting occurs when a model learns too much from the training

data, including random noise that does not characterize the rest of the dataset. In practice

this happens when the training phase is too long for the amount of available training data,

passing too many times the same sample through the model and negatively affects the

model’s performance on new data (JOSEPH, 2020). Several techniques for minimizing

this harm have been developed, e.g., batch normalization (IOFFE; SZEGEDY, 2015),

which reduces internal covariate shift, and dropout (SRIVASTAVA et al., 2014), randomly

dropping units along with their connections.
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– Unsupervised is a type of learning that does not use labeled training data. Instead, it typically

tries to find and extract patterns in the input data. In deep learning, generative models like

autoencoders, variational auto-encoders (VAEs) (Kingma; Welling, 2013) and Generative

Adversarial Networks (GANs) (GOODFELLOW et al., 2014) are some of popular tech-

niques which work on unsupervised learning. Their primary goal is to generate output

data from the same distribution as input data. The trick to learn this distribution is to

also learn variance along with mean of latent representation at the encoder-decoder meet-

ing point and add a Kullback-Leibler (KL)-divergence based loss term to the standard

reconstruction loss function of the autoencoders (ZHU et al., 2020).

– Reinforcement reinforcement learning (RL) works similar to the human learning behavior.

An agent, or multiples, to parallelize the learning, is/are created to interact with the en-

vironment and pondered rewards are given always that it goes towards the right path or

accomplishes tasks as desired. Consequently, stimulating the agent to find the best actions

for given states. In a classical RL, approximators are employed to calculate the probabil-

ity of different actions in different states, generated by different types of neural networks

(MNIH et al., 2015).

3.3 Supervised learning

Subsection 3.2 has presented the different types of learning. Now let us stick with the

type of learning this paper’s models use, the supervised. The term "learn" in supervised learning

is the act of comparing its output results to the true answers (or labels) and then modifying itself

to improve its results for the next inference.

As soon as a model is compiled, all the weights spread out within it are either randomly

initialized or are precharged from a same model which has already been trained with some

different dataset. The second option is the basis for transfer learning technique and will be

discussed further. Either way, the model still needs to optimize itself for the new dataset seen

in its input to the desired task in the output.

The idea is that the model needs to understand when it is wrong. To quantify how

wrong the output prediction is, it is first necessary to define a loss function. The loss function

depends of the problem at hand, but it commonly involves minimizing the discrepancy between

the predicted output and the actual output (JOSEPH, 2020).
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For object detection, there are typically 2 problems, object positioning and its classifi-

cation. Giving thus 2 losses which are commonly combined to form an optimum joint loss for

training the NN. For the classification, a typical loss calculation is the binary cross-entropy loss.

The idea behind this function is that it compares the predicted distribution of whether an object

is from a class to the actual distribution, and attempts to minimize the differences between these

distributions (JOSEPH, 2020). Its expression is presented in Eq. 3.2.

J(θ) =
1

n

n∑
i=1

yi log [f (xi;θ)] + (1− yi) log [1− f (xi;θ)] (3.2)

Where n is the number of classes, θ is the weights to be adjusted, yi is the actual value,

xi is the input and f (xi;θ) is the predicted value.

For the object positioning, cross-entropy loss is no longer suitable, because now it be-

comes a regression problem. Rather, the mean squared error (MSE) loss is usually employed.

Its idea is that it will try to minimize the squared difference between the actual value and a

predicted value (JOSEPH, 2020). Its expression is presented in Eq. 3.3.

J(θ) =
1

n

n∑
ii

[yi − f (xi;θ)]2 (3.3)

After defining the adequate loss function for the concerned task, the NN can start its

process of optimizing its weights. The NN optimization should find the set of weights θ which

minimizes the calculated loss. If there was only one or a few weights, every combination

could be tested to find a global minimum. Due to this method infeasibility in view of many

weights, the gradient descent technique is employed, which is a first-order iterative optimization

algorithm for finding a local minimum of a differentiable function. Its equations are shown in

Eq. 3.4 and 3.5.

grad =
∂J(θ)

∂θ
(3.4)

θnew = θcurrent − η
∂J(θcurrent)

∂θcurrent
= θcurrent − η × gradcurrent (3.5)

Where η is the learning rate. In other words, it is the update step the algorithm takes at

each interaction. This hyperparameter is very important because it can determine if the model

will converge and how fast it will run, in risk of falling into a local minima. To mitigate this
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problem, many modern models have been employing adaptive learning rate, starting with bigger

steps and getting smaller as interactions pass (JOSEPH, 2020).

In a nutshell, the derivate of the loss function with respect to all the weights is calculated

to determine the direction of maximum ascent. Then the model can use this value to change its

weights to make the loss function drive downwards until it reaches a point of convergence at a

local minimum.

To develop Eq. 3.4, it is necessary the chain rule from calculus. A weight in the first

layer may figure out how much it affects the loss in the output by knowing how much it affects

the following layer’s weights and how much the following layer’s weights affect the output.

And this process follows for all the weights in all the layers from output to input. That is why

this process in the NN is known as back propagation.

Mathematically, if there is o = g(f(x)) with o = g(y) and y = f(x), the element to

element derivative can be written as in Eq. 3.6.

∂o

∂xi
=

M∑
j=1

∂o

∂yj

∣∣∣∣∣
y=f(x)

∂yj
∂xi

(3.6)

For instance, considering the scheme in Fig. 3.3, the derivative ∂o
∂x2

can be calculated

with Eq. 3.7.

Fig. 3.3 – Schematic for understanding back propagation between layers

Source: Author.

∂o

∂x2

=
∂o

∂y1

∣∣∣∣
y=f(x)

∂y1

∂x2

+
∂o

∂y2

∣∣∣∣
y=f(x)

∂y2

∂x2

+
∂o

∂y3

∣∣∣∣
y=f(x)

∂y3

∂x2

(3.7)

Once this decent is completed, the last obtained weights configures one of many ’opti-

mal’ possible sets for the model and dataset in the input. Actually, the random initialization of

weights and the random sequence which data from the dataset is input during the training may

direct the optimization towards different local minimums. This concept of variability of the
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final optimized model is called deep ensemble, which is currently target of exploitation (Abe

et al., 2022).

3.4 Types of layers

As detailed beforehand, a NN is a composition of layers that are equivalent to sub-

functions. Some common layer topologies, i.e., functions, have been developed due to their

capacities of feature extraction and data manipulation within a NN. Following some of them

and their hyperparameters:

– fully connected layer (FC layer) connects every neuron in one layer to every neuron in the

next layer. It is found in all different types of NNs ranging from standard neural networks

to convolutional neural networks (CNN). Its main issue is the computational complexity,

as their input grows, the combinatorial operation vector explodes (ISAKSSON, 2020).

Fig. 3.4 illustrates this topology.

Fig. 3.4 – Fully connected layer

Source: Author.

There are 3 main hyperparameters when applying this topology: activation function, num-

ber of neurons and dropout.

– convolution layer is largely employed for detecting features in images. It passes systemat-

ically multiplying different filters through patches of the entire input. These filters, also

called kernels, are sets of weights with the same number of dimensions that of the input,
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e.g., in a RGB image, the filter also has 3 dimensions. The result of this process in the

output is the response of the patches to these filters, similar to a correlation operation.

The filter describes the probabilities that a given pattern of pixels represents a feature

(ISAKSSON, 2020).

Each filter travels from left to right and top to bottom over the entire image to detect

features. The number of pixels by which the filter moves for the next iteration is called

the stride. Padding may be added around the input image to ensure that the filter always

fits within the total bounds of the image for a given stride (ISAKSSON, 2020). Fig. 3.5

illustrates this topology.

Fig. 3.5 – Convolution layer

Source: Adapted from (ISAKSSON, 2020).

There are some main hyperparameters when applying this topology: dimensionality,

patch size, stride, number of filters, padding strategy, activation function, dropout and

pooling.

– deconvolution layer is a transposed convolution operation that upsamples its input to higher

resolutions. The input typically is image pixels, feature maps generated from previous

convolution layer, etc. (ISAKSSON, 2020). Fig. 3.6 illustrates this topology.
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Fig. 3.6 – Deconvolution layer

Source: Adapted from (ISAKSSON, 2020).

There are some main hyperparameters when applying this topology: dimensionality,

stride, number of filters, padding strategy, activation function and dropout.

– recurrent layer possesses a logical connection from its previous state besides its normal

input, conferring it memory capability. Recurrent layers form the basis of recurrent neural

networks (RNNs) by maintaining a state across iterations, thus allowing sequential data

processing, like natural language and time series (ISAKSSON, 2020). Fig. 3.7 illustrates

this topology.

Fig. 3.7 – Recurrent layer

Source: Author.

Where V is the activation function, h is the weights for the connection of the hidden layer

to the hidden layer, X is the input layer, θ is weights for the connection of the input layer

to the hidden layer, W is the weights for the connection of the hidden layer to output

layer and O is the output layer. t indicates the time step. Notice that a prediction at t

needs information from later time steps.
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There are some main hyperparameters when applying this topology: dimensionality, type

of recurrent neural network (LSTM, GRU...), return sequence and dropout.

3.5 Deep learning models

Models are combinations of the aforementioned layers in subsection 3.4. Due to differ-

ent properties that a data may present, e.g., a time series, where the order in which the data is

input to the NN is meaningful, data processing may vary to become more appropriated. That

is why different NN models have been proposed, each theoretically implementing different ap-

proaches to handle the input. Following some consecrated models in the literature:

– Convolutional Neural Network (CNN) is capable of learning from low semantic (also called

low-level) and high resolution to high semantic (also called high level) and low resolution

feature maps from image pixels, as we move further up the stacks of convolutional and

pooling layers.

The first part of the NN is formally called backbone and is responsible for extracting very

discriminatory characterization in form of feature maps which then feeds subsequent task

heads to perform a final processing over these features to output a prediction over various

computer vision tasks. These parts can be seen at Fig. 4.17. One of the first recognized

CNNs is AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), which consists of

five convolutional layers, three max-pooling layers, and three fully-connected layers. By

only employing 3x3-sized convolutional kernels, VGGNet (Simonyan; Zisserman, 2014)

got a larger number of channels and more diverse features were obtained, which made it

obtain better performance than AlexNet.

ResNet (HE et al., 2015), U-Net (RONNEBERGER; FISCHER; BROX, 2015), and DenseNet

(HUANG; LIU; WEINBERGER, 2016) were later developed with even higher perfor-

mance. The key characteristic of all these architectures is not only connecting neighbor-

ing layers, but inserting skip connections that allow sharing features from different levels

in the NN. These new connections reduce the loss of information going deeper in the NN

and mitigates the vanishing gradients issue of deep networks (ZHU et al., 2020).

– U-Net has skip connections concatenating features from the first layer to last, second

to second last, and so on. In this way, it can transfer high-resolution features from
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initial layers to the end layers with high semantic features (RONNEBERGER; FIS-

CHER; BROX, 2015).

– ResNet uses skip connections across individual blocks and not across each layer (HE

et al., 2015).

– DenseNet has all its layers attached to all preceding layers, reducing the size of the

NN, but increasing memory usage (HUANG; LIU; WEINBERGER, 2016).

– Recurrent Neural Network (RNN) is founded on the recurrent units, which take the input

and also their previous state into account, creating a memory capacity. Therefore, its ap-

plications are mainly text and sequence-dependent data, e.g., time series, which require

retaining past information to interact with present information. One very popular archi-

tecture is the long short term memory (LSTM), which tackles the gradient diminishing

problem typically present (ZHU et al., 2020).

– Generative Adversarial Network (GAN) consists of 2 networks called generator and dis-

criminator. The generator must learn a latent space, through which generated samples are

based to have the same distribution as the training data and the discriminator tries to dis-

tinguish the origin of the sample. This philosophy is the basis for the creation of artificial

photo-realistic images, super-resolution, etc (ZHU et al., 2020).

– Transformer is similar to a LSTM, the transformer architecture converts one sequence into

another with the help of two parts, the encoder and decoder. Nonetheless, it has a great

technical improvement by applying an attention-mechanism.

3.6 Datasets

A dataset is a structured collection of data which should be easily accessible and ma-

nipulable. Data are observations or measurements represented as text, numbers, or multimedia

(USGS, 2018).

Knowing that supervised models learn only what it is subjected to by the input data, the

datasets must contain high quality descriptive data in large quantity. It is important to stimulate

the model to observe all possible variations to which the input data can be conditioned under

the same label. A richer training can allow a model to obtain deeper intricate patterns from

the data and achieve better inference accuracy. When the available dataset does not provide it
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sufficiently, data augmentation, in section 3.7, and transfer learning (TL), in section 3.8, are

methods to be considered to improve training.

3.6.1 Training, validation and test sets

Typically, a dataset is divided into training, validation and sometimes also test sets. The

training set feeds the model throughout the training phase to fit the model, while the validation

and test sets are retained.

After fitting the model to the training set, it is necessary to evaluate the performance

of the model to the task. Using the same training set to evaluate would result in a biased

score. Therefore the model is evaluated on the held-out set to give an unbiased estimation of its

performance. Thus, the validation set is employed to evaluate the model during training, but is

not used for training, allowing to check for overfitting. The test set is another side set to provide

an unbiased evaluation of the final fitted model (BROWNLEE, 2017).

The simplest way to split the entire data set is to define percentages for each set, e.g.

70, 20 and 10% for training, validation and test sets respectively. Once the data set has been

split, the data between them no longer mixes. A more sophisticated splitting is the k-fold cross-

validation instead of a separate validation dataset.

k-fold cross-validation splits the available dataset into k sets. The model is trained with

k − 1 sets and evaluated with the last remaining set. Then the model is reset from scratch

and trained with other k − 1 sets and evaluated with the other remaining set. It is repeated k

times until each set has been selected as the evaluation set (BROWNLEE, 2017). At the end of

this process, the model is usually summarized into the mean value and variance between the k

outcomes.

3.7 Data augmentation

Large datasets intrinsically cover basically all the variations that the input data may

suffer and data augmentation is not an indispensable needing. However, having a large dataset

to train a model for particular tasks is often unusual, given the large amount of time it takes to

label the data and possible difficulties in obtaining more data, depending of the application.

For small and medium datasets, the model is not capable to perform as well as it does

when trained with larger datasets, since it lacks the aforementioned variability in the input data
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to allow the extraction of deeper intricate patterns. In these cases, a way to improve it is trough

transformations performed on the input data, i.e., data augmentation.

The possible transformations to be applied depend on the nature of the input data and

model’s tasks. Most computer vision tasks employ transformations in the images such as flip-

ping, rotation, resizing, changing brightness and contrast, etc.

Remote sensing is a example of domain that contain many tasks that lack labeled data.

Data augmentation therefore plays a major role in it. However, due to the remote sensing

imagery eccentricity, the simple color and geometric transformations mentioned above do not

correspond to all the natural variations perceived.

(ILLARIONOVA et al., 2021) proposes a data augmentation for the semantic segmenta-

tion task that works with high-resolution georeferenced satellite images. Summarizing, it crops

objects from original images using their masks and pasts them to a new background. Thus,

every object and background can be augmented independently to increase the variability of

training images.

3.8 Transfer learning (TL)

Transfer learning (TL) is the process of transferring the "knowledge", i.e., the weights

from many connections among neurons, from a model to another. It has been gaining great

attention in current ML researches due to the results it envisions.

Consider a model which has been trained in a large dataset and perform very well in

some task, e.g., detecting motorcycles. One could try to implement a model partially like the

later to detect bicycles and use those weights as a starting point for training the new model.

This process can drastically reduce training time and allow training of larger models

under small data sets, reducing overfitting as well as data augmentation.

For a reinforcement learning perspective, reusing information from previously learned

tasks for the learning of new tasks has the potential to significantly improve the sample effi-

ciency of a learning agent (WIKIPEDIA, 2021b).

3.9 Object detection metrics

To evaluate the performance of an object detector and thus be able to compare different

detectors, it is necessary to establish metrics. In essence, the detection made can be classified
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as:

– True positive (TP) is a correct detection;

– False positive (FP) is an incorrect detection;

– True negative (TN) is when the background is correctly not detected as an object;

– False negative (FN) is when a ground-truth is missed (not detected).

3.9.1 Intersection over union (IoU)

To determine whether the detection bounding box is correct, the degree of overlap be-

tween ground truth and detection areas is checked. This metric is called intersection over union

(IoU) and can be defined as Eq. 3.8.

IoU =
areaoverlap

areaunion
=
areagroundTruth ∩ areadetection

areagroundTruth ∪ areadetection
(3.8)

By defining a threshold value for the IoU, the detection bounding box can be classified

between TP, FP, TN or FN.

3.9.2 Precision and recall

Two relevant metrics, precision and recall, are defined by evaluating the ratio between

the number of TPs, FPs and FNs. Precision is the degree of exactness of the model in identifying

only relevant objects, seen in Eq. 3.9. Recall measures the ability of the model to detect all

ground truths, seen in Eq. 3.10 (KOECH, 2020).

Precision =
TP

TP + FP
=

TP

allDetections
(3.9)

Recall =
TP

TP + FN
=

TP

allGroundTruths
(3.10)

A perfect model would have precision and recall equal to 1.

The precision-recall (PR) curve is a plot of precision and recall at varying values of

confidence score threshold in detection. Increasing the confidence score threshold increases the

number of FN and reduces the number of FP, which increases the precision and reduces the

recall. Decreasing the confidence score threshold produces the opposite, reduces the precision

and increases the recall.
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3.9.3 Average Precision (AP)

Average Precision (AP) is typically presented as AP@α. It means the area under the

precision-recall curve (AUC-PR) evaluated with α, the IoU threshold, and it can be defined as

in Eq. 3.11 (KOECH, 2020).

AP@α =

∫ 1

0

p(r) dr (3.11)

Where α is the IoU threshold, r is the recall value and p is the precision-recall curve

(AUC-PR). A high AP means high precision and high recall.

A very useful variation is the 11-point interpolation AP@α11, a plot of interpolated

precision scores at 11 equally spaced standard recall levels, 0.0, 0.1, 0.2, . . . 1.0. It is defined

as in Eq. 3.12 (KOECH, 2020).

AP@α11 =
1

11

∑
r∈R

pinterp (r) (3.12)

Where R = 0.0, 0.1, 0.2, ...1.0 and

pinterp (r) = max
r′:r′≥r

p (r′) (3.13)

The justification is that the PR curve is not monotonically decreasing, and for a deter-

mined recall, the model would not operate with lower precision given the presence of higher

precision for even higher recalls, therefore the metric takes the highest precision value for the

specific recall or higher.

3.9.4 Mean Average Precision (mAP)

The aforementioned AP, and its variations, are calculated individually for each class. To

synthesize the model’s performance, usually the AP values of all classes are averaged to obtain

the mean Average Precision (mAP). It can be defined as in Eq. 3.14.

mAP@α =
1

n

n∑
i=1

APi, for n classes. (3.14)

Another usual practice done when reporting models is to calculate the AP for a series

of IoU thresholds, α, and averaging them. E.g., AP@[.50:.5:.95] means the AP value averaged

over 10 different IoUs, ranging from 50% to 95% at 5% step-size (KOECH, 2020).
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3.9.5 F1 score

F1 score combines precision and recall into one metric by calculating the harmonic mean

between those two (CZAKON, 2022). It is a special case of the more general function F beta,

in Eq. 3.15.

Fbeta =
(
1 + β2

) precision ∗ recall
β2 ∗ precision + recall

(3.15)

The beta in the F-beta score defines the prevalence of recall over precision. The F1-score

weights recall and precision equally.

3.9.6 Confusion matrix

Confusion Matrix is a performance measurement for machine learning classification

(NARKHEDE, 2018). It is a matrix that contains the ground truth classes by the inferred classes.

It allows to check if the model is classifying correctly and which classes the model has more

difficulty to process and identify. Fig. 3.8 shows a simple confusion matrix with 2 classes,

giving 4 combinations.

Fig. 3.8 – Example of a confusion matrix with 2 classes

Source: Adapted from (NARKHEDE, 2018).
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3.10 Benchmarks for models

Due to the vast number of new models currently emerging, for all kinds of research

fields, e.g. computer vision, natural language processing, medical processing; and their many

tasks that can be tackled, it is necessary to track their progress in an organized way. Benchmarks

are available on the Internet, e.g., (PAPERSWITHCODE, 2022), where the leading-boards are

separated into their domain of performance, the task to be addressed, and the dataset on which

they were tested.

Important to emphasize the distinction between the performance of the same model

evaluated under different datasets. As presented in the section 3.6, the importance of datasets

for supervised learning, a model never has an absolute score, its performance is reported along

with the training and test datasets, since datasets can have different degrees of quality and

present different tasks with distinct difficulties.
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4 LITERATURE REVIEW

Before to present the DL-based object detection specifically for the remote sensing im-

agery application, section 4.1 reviews general image deep learning-based object detection. The

reason is to first understand DL-based object detectors, the main types, how they work and how

they evolve to achieve better performance.

Section 4.2 then presents the SOTA DL-based object detectors in remote sensing im-

agery.

4.1 Deep learning-based object detectors

Two main concepts of object detectors are present in the literature: region-based (two-

stage) and single shot (one-stage) object detector architectures.

4.1.1 Region-based object detector

Beginning the journey on object detection, there is the region-based object detector.

This kind of detector has a strong project condition, where 2 parts are necessary: one is going

to identify regions of interest (ROIs), and the other the class and the boundary box in these

regions.

A brute force approach is sliding different size windows throughout the image, from left

to right and up to down, as demonstrated in Fig. 4.1.

Fig. 4.1 – Windows sliding throughout the image

Source: Adapted from (HUI, 2018a).

At the end of the process, for each window there will be a collection of patches that are

later warped to a fixed size, as shown in Fig. 4.2.
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Fig. 4.2 – Patch being warped to a fixed rectangular size

Source: Adapted from (HUI, 2018a).

These final patches are fed into a CNN classifier for extracting features. Finally, these

features are inputted to a SVM classifier to identify the class and to a linear regressor for esti-

mating the boundary box, as shown in the block diagram in Fig. 4.3.

Fig. 4.3 – Block diagram for the sliding-window detector

Source: Adapted from (HUI, 2018a).

4.1.1.1 R-CNN

To reduce the unpractical number of patches of interest, a region proposal method is

established in lieu of the sliding window. And this is how R-CNN (GIRSHICK et al., 2013)

works. R-CNN is one of the first successful NN-based object detector. It first employs a region

proposal method to propose about 2000 ROIs, like shown in Fig. 4.4, that are subsequently

warped into a fixed size and individually fed into a CNN.
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Fig. 4.4 – The progression of the selective search algorithm. Several regions are discriminated and then

merged by their similitude

Source: Adapted from (UIJLINGS et al., 2013).

Finally, fully connected (FC) layers receive the CNN output features to classify the

object and refine the boundary box. The R-CNN workflow is shown in Fig. 4.5.

Fig. 4.5 – R-CNN workflow from an input image to its prediction

Source: Adapted from (HUI, 2018a).

4.1.1.2 Fast R-CNN

Since each one of the 2000 proposed patches are fed and processed by the CNN sepa-

rately, it ends performing 2000 features extractions. Thus, its training and inference times are

very slow. To avoid this problem, fast R-CNN (GIRSHICK, 2015) executes the feature extrac-

tion in the whole image first. The external region proposal method continues creating ROIs, but
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now it uses them to patch directly in the feature map, on these locations. Then, these patches are

warped to a fixed size using ROI pooling and feed FC layers for classification and localization.

The new workflow for the fast R-CNN is presented in the Fig. 4.6.

Fig. 4.6 – Fast R-CNN workflow from an input image to its prediction

Source: Adapted from (HUI, 2018a).

Because of this change in the feature extraction, fast R-CNN is 10 and 150 times faster,

in training and inference times, respectively. Also, a great improvement in this model to be

pointed out, is the straight path through NN-based components (feature extractor, classifier, and

the boundary box regressor). Allowing an end-to-end training with multi-task losses, combining

classification and localization losses and improving its accuracy (HUI, 2018a).

4.1.1.3 Faster R-CNN

Even though fast R-CNN had reduced training and inference times, the external region

proposal method does not allow processing parallelization, given the dependency across pixels

in the process of grouping regions. This drastically penalizes the whole model and losses the

important parallelization quality from the other DL-based components.

Faster R-CNN (REN et al., 2015) gets around exactly this design failure. Replacing

the external region proposal method by an internal DL-based network, called region proposal

network (RPN), which generates ROIs very faster than before and speeds up the whole model

several times. The new workflow for the faster R-CNN is presented in the Fig. 4.7.



47

Fig. 4.7 – Faster R-CNN workflow from an input image to its prediction

Source: Adapted from (HUI, 2018a).

The RPN takes the feature map from the CNN and makes class-agnostic region propos-

als using a CNN. The RPN’s output is then fed into 2 separate fully connected layers to predict

2 objectness scores (have or not an object) and a boundary box. The RPN architecture is shown

in Fig. 4.8.

Fig. 4.8 – RPN architecture

Source: Adapted from (HUI, 2018a).

For each location in the feature map, there are k guesses, stemming from k reference

boxes, also called priors or anchors. The idea is to cover possible object scales and aspect ratios

in the image, from which it predicts constrained offsets δX and δy that are relative to the top left

corner. In the Fig. 4.9, one anchor and its final prediction with offsets are shown.
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Fig. 4.9 – Example of an anchor and its offsets δX and δy predictions

Source: Adapted from (HUI, 2018a).

Fig. 4.10 clarifies all the predictions made for one sliding window.

Fig. 4.10 – Predictions made for one sliding window

Source: Adapted from (REN et al., 2015).

For each sliding window, an intermediate layer with 256 channels is generated in the

feature map, which is then used by the cls layer, to estimate 2 objectness scores, and reg layer,

to estimate the 4 boundary box’s coordinates. Because for each window there are k anchor

boxes, it is generated 2k scores in the cls layer and 4k coordinates in the reg layer. In the

faster R-CNN implementation, there are 9 anchor boxes, combination of 3 different scales and

3 different aspect ratios.

4.1.2 Single shot object detector

Another powerful kind of object detector is the single shot. As presented in subsection

4.1.1, faster R-CNN has a dedicated region proposal network followed by its classifier and
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boundary box regressor. Which makes it accurate but unfortunately also slow. An alternative

to reduce training and inference times could be forgetting the region proposal procedure and

estimating classes and boundary boxes directly from the feature map.

Single shot object detector slides a window over the whole feature map and predicts

the class and a refined boundary box overlapping the window region, i.e., there are not many

windows with different shapes sliding, but one window that works as an anchor to a predicted

boundary box. Because of this step reduction, single shot detectors trades accuracy with real-

time processing speed, tending to have more issues detecting too small or too big objects present

in the image (HUI, 2018b).

4.1.2.1 Single Shot MultiBox Detector (SSD)

Single Shot MultiBox Detector (SSD) (LIU et al., 2016) object detector employs a net-

work called VGG16, from the family of VGGNet (Simonyan; Zisserman, 2014), with 16 layers,

as feature extractor which feeds some convolution layers that finally make class and boundary

prediction. Because convolution layers reduce resolution, and then spatial dimension of their in-

put image, some implementations make multiple class and boundary boxes inferences by using

feature maps from different convolution layers depth. Fig. 4.11 shows this multi-scale feature

map inference.

Fig. 4.11 – Multi-scale feature map inference

Source: Adapted from (HUI, 2018b).

4.1.2.2 You only look once (YOLO)

Another single shot detector is You only look once (YOLO) (REDMON et al., 2015). It

uses the DarkNet (REDMON, 2013–2016) instead of VGG16 as feature extractor and concate-

nates multi-scale feature maps rather than performing independent detections, allowing feature-

richer inferences. DarkNet is small and efficient at the same time. It uses convolutional layers

instead of fully connected layers.



50

4.1.2.3 YOLO v2

YOLOv2 (REDMON; FARHADI, 2016) sets off from its predecessor and introduces a

bunch of new implementation improvements to go along correcting specific problems as it de-

velops. Each feature introduced and its final contribution to the model’s mean Average Precision

(mAP) can be seen in the Fig. 4.12.

Fig. 4.12 – Features introduced to the YOLO v2 model and their contributions to the mAP

Source: Adapted from (REDMON; FARHADI, 2016).

Batch normalization leads to significant improvements in convergence while eliminating

the need for other forms of regularization (IOFFE; SZEGEDY, 2015). The original YOLO

trains the classifier network at 224 × 224 and increases the resolution to 448 for detection. This

means the network has to simultaneously switch to learning object detection and adjust to the

new input resolution. For YOLO v2, the classification network is first fine tuned at the full 448

× 448 resolution for 10 epochs on ImageNet. This gives the network time to adjust its filters to

work better on higher resolution input. Then the resulting network is fine tuned on detection.

This configures the high resolution classifier.

The network can learn to adjust the boxes appropriately from hand picked anchor boxes,

but picking better priors for the network to start with, it can become easier for the network

to learn to predict good detections. So, instead of choosing priors by hand, it runs k-means

clustering on the training set bounding boxes to automatically find good priors. This modified

YOLO predicts detections on a 13 × 13 feature map. While this is sufficient for large objects,

it may benefit from finer grained features for localizing smaller objects. Faster R-CNN and

SSD both run their proposal networks at various feature maps in the network to get a range

of resolutions. YOLO v2 takes a different approach, simply adding a passthrough layer that

brings features from an earlier layer at 26 × 26 resolution. The passthrough layer concatenates
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the higher resolution features with the low resolution features by stacking adjacent features

into different channels instead of spatial locations, similar to the identity mappings in ResNet

(REDMON; FARHADI, 2016).

4.1.2.4 YOLO v3

YOLO v3 (REDMON; FARHADI, 2018) changes the former Darknet backbone net-

work for feature extraction to Darknet-53. This new backbone uses skip connections like the

residual network ResNet (HE et al., 2015), acquiring the same classification accuracy with less

billion floating-point operations (BFLOP) than ResNet-152, i.e., processing much faster the in-

put. Fig. 4.13 shows a comparison of the average precision on the MS COCO dataset (LIN

et al., 2014) (COCO AP) by the inference time for YOLO v3 and RetinaNet-50 and 101 (LIN

et al., 2017). RetinaNet is the first dense detector to employ Focal loss, proposed to address

class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss

assigned to well-classified examples (LIN et al., 2017).

Fig. 4.13 – Comparison of the COCO AP by the inference time between YOLO v3 and RetinaNet-50

and 101

Source: Adapted from (REDMON; FARHADI, 2018).

To help correcting the small objects detection low accuracy, YOLO v3 employs the

feature pyramid networks (FPN) (LIN et al., 2017). FPN is a feature extractor designed with

feature pyramid concept. This network is basically an attachment to the usual feature extractor
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network and provides better quality feature map. As shown in the Fig. 4.14, FPN is composed

of 2 pathways, a bottom-up, which is the usual feature extractor CNN, and a top-down.

Fig. 4.14 – FPN composition

Source: Adapted from (LIN et al., 2017).

To understand the importance of the top-down pathway, it is important to observe the

features’ progression inside the feature extractor, as shown in Fig. 4.15. As it goes deeper, the

features’ spatial resolution decreases as well as more high-level structures become present. In

other words, the resolution is reduced but the semantic value is increased.

Fig. 4.15 – Features’ resolution and semantic value progression inside the feature extractor

Source: Adapted from (HUI, 2018b).

The top-down pathway allows reconstructing higher resolution layers from semantic rich

layers. But these up-sampled reconstructed feature maps still lack precision, and then lateral

connections are established between reconstructed layers and the feature maps at same depth in

the bottom-up pathway.

4.1.3 Anchor-free methods

All the aforementioned detectors, one-stage and two-stages, except YOLO v1, are based

in biased information, given the prior anchor boxes or anchor boxes from which they depart

their detections and estimate objects’ bounding boxes.
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An alternative to get rid of these biased anchor boxes is through anchor-free approaches.

They perform detection in a per-pixel prediction fashion, eliminating hyper-parameters related

to anchor boxes and thus presenting less sensitive final detection performance.

YOLO v1 can be considered as one of the first anchor-free method because its bounding

box predictions are made only through the pixels close to the center of objects, since they are

considered to better characterize the object. However, this approach penalizes the model by

achieving low recall (REDMON; FARHADI, 2016).

Fully Convolutional One-Stage Object Detection (FCOS) (TIAN et al., 2019), differ-

ently, uses all points in the ground truth bounding boxes to predict bounding boxes. The sev-

eral low-quality detected bounding boxes are later suppressed by a new proposed center-ness

branch. The center-ness function decays from 1 to 0 as the location deviates from the center of

the object, as shown in Fig. 4.16.

Fig. 4.16 – The center-ness evaluated all over an image. Red, blue, and other colors denote 1, 0 and the

values between them, respectively

Source: Adapted from (TIAN et al., 2019).

FCOS’s architecture can be seen in Fig. 4.17.
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Fig. 4.17 – FCOS’s NN architecture

Source: Adapted from (TIAN et al., 2019).

4.1.4 Model development considerations

By looking at these object detectors, their problems and some of their past evolution,

it is possible to better understand how the object detection task naturally orients and defines

machine learning models capable of performing it.

One fact is that there is a trade-off between inference time and its accuracy. Single shot

detectors demonstrate themselves faster than R-CNN ones, but with lower accuracy as a price to

pay. Anchor-free models keep the simplicity of one-stage methods and are less biased without

the anchor boxes requirement. The most suitable detector depends on the application, balancing

between speed and accuracy required.

Besides meta-architectures and feature extractors, there are other smaller considerations

to the final model implementation. There are different loss functions and boundary box en-

condings that can be employed. For instance, in object detection, the localization loss may be

less pondered than its classification loss, stimulating the model to better locate objects. And

the boundary box may be represented as absolute values or square root of width and height to

normalize errors.

4.2 SOTA DL-based object detection in remote sensing imagery

A more complex detection has recently been adopted and developed for being able to

better fit the bounding box to arbitrarily oriented objects, with dense distribution and large

aspect ratio. Oriented object detection is a generalization of the earlier detection of horizontal

bounding boxes (HBB). Fig. 4.18 exemplifies the difference between them, where oriented

bounding boxes (OBB) are clearly tighter and more accurate to the true object area.
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Fig. 4.18 – Comparison between HBB and OBB representations for objects. (a) OBB representation. (b)

HBB representation.

Source: Adapted from (DING et al., 2021).

For this newer representation, the SOTA models can still be discriminated in two-stage

and one-stage, anchor-based or anchor-free, detectors.

4.2.1 Two-stage detectors

Two-stage object oriented detectors are largely limited by the regression loss calculation

(YANG et al., 2022). The typical regression loss in horizontal detection is ln-norms. ln-norms

are defined as in Eq. 4.1.

‖x‖n = n

√∑
i

|xi|n (4.1)

Where x can be a vector or matrix with i elements and n ∈ R is the norm order.

However, the detection metric is mostly dependent of the Skew Intersection over Union

(SkewIoU) score, exemplified in Fig 4.19, which is sensitive to the deviations of the object

positions between large aspect ratio objects (YANG et al., 2022).

Fig. 4.19 – Examples of compute SkewIoU. Intersection points are marked in black, and vertices inside

the other rectangle are marked in dark blue

Source: Adapted from (YANG et al., 2022).
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The mismatch between the detection metric and regression loss, which was already

present in horizontal detection, is even more accentuated in orientated detection. Fig. 4.20

demonstrates the inconsistency between SkewIoU and Smooth l1-loss, which is a combination

of l1-loss and l2-loss, seen in Eq. 4.2.

l1; smooth =

{
|x| if |x| > α
1
|α|x

2 if |x| ≤ α
(4.2)

Where α is a hyper-parameter, usually taken as 1. Smooth l1-loss combines the ad-

vantages of l1-loss, steady gradients for large values of x, and l2-loss, less oscillations during

updates when x is small (SREEKUMAR, 2019).

Fig. 4.20 – Inconsistency between the SkewIoU and regression-based loss Smooth L1

Source: Adapted from (YANG et al., 2022).

For a fixed angle deviation (indicated by the red arrow), SkewIoU decreases as the aspect

ratio increases, while the Smooth l1 loss does not change. The other way, when SkewIoU does

not change (indicated by the orange arrow), Smooth L1 loss increases as the angle deviation

increases (YANG et al., 2022).

Many solutions have been proposed in horizontal detection by using IoU loss and related

variants, e.g., GIoU (REZATOFIGHI et al., 2019). However, these solutions are difficult to

implement for oriented detection due to the complexity of computing the intersection between

rotated boxes (ZHOU et al., 2019).

Because of that, many studies have been made to find better performing approxima-

tions for SkewIoU loss. When comparing the error variance with the final performance, it

is evidenced that the consistency between metric and regression loss lies in the approximate

and exact SkewIoU loss trend-level consistency rather than value-level consistency. In other

words, it is more important to approximate the functions by their trend-level consistency, i.e.,

increasing and decreasing accordingly, than functions that produce similar values but do not
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have trend-level consistency. This property simplifies the difficult of designing new alternatives

(YANG et al., 2022).

Many works have been made in which the OBB is converted into a Gaussian distribu-

tion, avoiding square-like problems and boundary discontinuity (YANG; YAN, 2020; QIAN

et al., 2019). (YANG et al., 2021) converts the rotated bounding box into a 2-D Gaussian

distribution and approximates the indifferentiable rotational IoU induced loss by the Gaussian

Wasserstein distance (GWD) which can be learned efficiently by gradient back-propagation.

Similarly, (YANG et al., 2021) changes the design of rotated regression loss based on the re-

lation between rotated and horizontal detection. It converts the rotated bounding box into a

2-D Gaussian distribution and then calculates the Kullback-Leibler Divergence (KLD) between

the Gaussian distributions as the regression loss. (YANG et al., 2022) goes even further by

modeling the objects as Gaussian distribution and adopting a Kalman filter to inherently mimic

the mechanism of SkewIoU, in contrast to GWD and KLD that involves a human-specified

distribution distance metric.

4.2.2 One-stage anchor-based detectors

One-stage anchor-based detectors also have attention when treating with oriented detec-

tion, given their capacity to obtain high performance at lower complexity than two-stages de-

tectors, i.e., being faster computed, at horizontal detection. The new degree of freedom brings

an increase in the number of anchor boxes and the sensitivity of the IoU to changes of angle.

(ZHONG; AO, 2020) overcomes these problems by redesigning the matching strategy

between oriented anchors and ground truth boxes. It decouples the OBB into a HBB during

matching, thus reducing the instability of the angle to the matching process. Fig. 4.21 shows

the difference between matching strategies.
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Fig. 4.21 – Difference between rotating anchors matching and OBB rotation-decoupled matching strat-

egy. The red bounding box indicates the matched anchor

Source: Adapted from (ZHONG; AO, 2020).

The strategy is to first transform the OBB into the closest HBB and perform the matching

with an anchor. Only then, the matched anchor is rotated to further reduce the matching loss.

From the renowned YOLO family of models, introduced in 4.1.2, the last version adapted

to work with OBB is the YOLOv5 (AL., 2021), transformed into YOLOv5-OBB (KAIXUAN,

2022). To make YOLOv5 capable to deal with the new OBB detection, it was necessary to

change its data loader to fit the new annotation patterns, modify the loss function to consider

the rotation loss given by the new ability to spin the bounding-box to better adjust itself, adapt

its proposal filtering technique called non-maximum suppression (NMS) and other minor addi-

tions.

YOLOv7 (WANG; BOCHKOVSKIY; LIAO, 2022) is the newest YOLO model. In

addition to architecture optimization, it proposes methods for the optimization of the training

process. Focusing on some optimized modules and optimization methods which may strengthen

the training cost for improving the accuracy of object detection, but without increasing the

inference cost. It addresses model re-parameterization and dynamic label assignment topics.

Unfortunately YOLOv7 has not been adapted to work with OBB yet.
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5 DEVELOPMENT

The previous chapters have built the necessary knowledge to allow the development of

this paper’s DL-based object detector in remote sensing imagery. Based on the many SOTA

DL-based object detectors and their evolution from early models presented in chapter 4, it

is established a guide of essential definitions to come up with a functional DL-based object

detector model with SOTA performance.

First of all, the type of detection, horizontal or oriented object detection, might be de-

cided. As presented in 4.2, oriented object detection is a bit more complex given its freedom

to rotate the bounding-box on the object, but produces tighter and more accurate to the true

object’s area. Therefore this detection is chosen.

Once the type of detection has been chosen, the selection of an adequate dataset which

will be employed to train and evaluate the model is fundamental. Then, a concept between

the most present detectors in the literature, i.e., two-stage, one-stage anchor-based or one-stage

anchor-free, needs to be selected.

With this set of decisions, a variety of SOTA models are available to serve as the basis

of our new model. By evidencing the best qualities of different models, modifications may be

conducted on them to build an improved model for the chosen application.

5.1 Dataset

As seen in section 3.6, a dataset has a major impact on 2 important points. The knowl-

edge a supervised NN model can expect to learn relies entirely in the quality of the data on

which it is trained. Even a good model may perform poorly if its training data is not good

enough. In fact, a small model would perform better than a deeper model with little training

data.

A second point that cannot be neglected is the model benchmarks tied to each dataset.

For comparison purposes, it is reasonable to go after datasets available open-source, which

have already been tested by many models. It gives the perspective of a better comparison of the

obtained model and other models already made. Given the computational capacity available, it

is not possible to perform evaluations of many models on unpopular datasets to create our own

meaningful benchmark.

Therefore, it is chosen the Dataset for Object deTection in Aerial Images (DOTA) (DING
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et al., 2021) as the source for training and evaluation data. DOTA is a large-scale dataset for

object detection in aerial images. It can be used to develop and evaluate object detectors in

aerial images. The images are collected from different sensors and platforms. Each image is of

the size in the range from 800 × 800 to 20,000 × 20,000 pixels and contains objects exhibiting

a wide variety of scales, orientations, and shapes. The instances in DOTA images are annotated

by experts in aerial image interpretation by arbitrary (8 d.o.f.) quadrilateral (DING et al., 2021),

describing oriented bounding-box, which is required for the chosen oriented detection.

There are 3 available versions:

– DOTA-v1.0 contains 15 common categories: plane, ship, storage tank, baseball diamond,

tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small ve-

hicle, helicopter, roundabout, soccer ball field and swimming pool. It has 2,806 images

and 188, 282 instances. The proportions of the training set, validation set, and testing set

in DOTA-v1.0 are 1/2, 1/6, and 1/3, respectively.

– DOTA-v1.5 uses the same images as DOTA-v1.0, but the extremely small instances (less

than 10 pixels) are also annotated. Moreover, a new category, ”container crane” is added.

It contains 403,318 instances in total. The number of images and dataset splits are the

same as DOTA-v1.0.

– DOTA-v2.0 collects more Google Earth, GF-2 Satellite, and aerial images. There are 18

common categories, 11,268 images and 1,793,658 instances in DOTA-v2.0. Compared

to DOTA-v1.5, it further adds the new categories of ”airport” and ”helipad”. The 11,268

images of DOTA are split into training, validation, test-dev, and test-challenge sets.

Because DOTA-v2.0 is a very recent dataset, there are fewer models to be compared

in its benchmark and DOTA-v1.5 is judged as sufficient, with enough and high quality data.

Therefore, it is selected DOTA-v1.5 as the best option for the project and from now on, when

mentioned DOTA, it refers to DOTA-v1.5.

5.2 DL-based object detector concept and model choices

As seen in 4.1, each concept has its pros and cons. It is of interest to have good perfor-

mance but also to be fast, preferably inferring objects in real time. Thus, the concept selected
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is the one-stage detection, which is lighter, faster and presents similar performance to the two-

stages.

The choice between anchor-based and anchor-free detector is a question that goes fur-

ther into the models and their implementations available in the literature. A deep research in

the models implementations reveals some troubles. The vast majority of the models presented

with their results, performing oriented object detection, either do not make available their im-

plementation or then, present their implementation but not trained.

The effort of finding a pre-trained model is reasonable because of the concept of transfer

learning, present in 3.8. Better than initializing our model from random weights, modifying a

pre-trained model is much more efficient to obtain great performance. Although the model had

been trained for a different task, the absorbed knowledge of some intricate patterns are the same.

Another difficulty found when trying to use and modify some implementations is the

lack of organization and good programming practices. Debugging has been demonstrated hard

and for the implementations whose pre-trained weights were not made available, it is difficult

to confirm the good performance claimed by their authors.

Therefore, the model chosen as the basis for this paper’s DL-based oriented object de-

tection in RS imagery is the YOLOv7 (WANG; BOCHKOVSKIY; LIAO, 2022). This is a very

recent SOTA model (from July, 2022), with high performance and fast computation, as initially

desired. Because YOLOs versions are always precursors of new methods and changes to the

literature, they are very well documented and coded, which allows an easy understanding about

their implementations and their results are trustworthy.

Furthermore, YOLOv7 is available with its pre-trained weights in the COCO (LIN et al.,

2014) dataset, which is a very large dataset and thus, it comes with a good knowledge that can

be taken advantage to our application trough transfer learning. These are many reasons for

which it has been decided to work over this model.

5.3 Adapting YOLOv7 for OBB in RS imagery

YOLOv7 has been trained on COCO (LIN et al., 2014) dataset. This dataset has anno-

tations for a few different tasks: HBB object detection, keypoint detection, stuff segmentation,

panoptic segmentation, densepose, and image captioning. Given the interest to obtain an OBB

detector, the most similar option is the model trained for HBB detection.

To allow the model to be trained on DOTA dataset, with OBB detection, the first notice-
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able change is in its data loader. COCO and DOTA annotations are as follows:

– COCO labels: each object is annotated by an horizontal bounding box (HBB), which can be

denoted as (x, y, width, height) , where (x, y) denotes the top left image corner. Apart

from HBB, each instance is also labeled with a category id. Each line represents an

instance: (x, y, width, height), category_id.

– DOTA labels: each object is annotated by an oriented bounding box (OBB), which can be

denoted as (x1, y1, x2, y2, x3, y3, x4, y4) , where (xi, yi) denotes the i-th vertice of OBB.

The vertices are arranged in a clockwise order. Apart from OBB, each instance is also

labeled with a category and a difficulty which indicates whether the instance is diffi-

cult to be detected (1 for difficult, 0 for not difficult). Each line represents an instance:

x1, y1, x2, y2, x3, y3, x4, y4, category, difficulty.

Another necessary change is setting the number of neurons in the last layer of the

YOLOv7 head, called IDetect. Since COCO has 80 classes of objects, it has 80 final neurons

that output the probability and location for objects of each class. DOTA-v1.5 has 16 classes and

therefore there are 16 final neurons in the YOLOv7 head.

More complex modifications are necessary to the loss function. YOLOv7 loss function

is composed by a combination of losses: box loss, class loss and object loss. Since OBB

has a new degree of freedom, being able to spin the bounding-box to better adjust itself, it is

imperative to establish a rotation loss and add it to the combined loss.

Paying attention to some losses present in the literature, discussed in 4.2, regular re-

gression suffers the discontinuous boundaries problem, caused by angular periodicity or corner

ordering (YANG; YAN, 2020). Also in (YANG; YAN, 2020), it finds out that the problem stems

from the fact that the ideal predictions are beyond the defined range. It designs a new rotation

detection baseline, transforming angular prediction from a regression problem to a classification

task with little accuracy loss. Although the conversion from continuous regression to discrete

classification, the impact of the lost accuracy on the rotation detection task is negligible.

However, performing the classification thorough one-hot label still has two drawbacks

for rotation detection: the exchangeability of edges (EoE) problem from regression still remains

and regular classification loss is agnostic to the angle distance between the predicted label and

ground-truth, i.e., it does not consider that some classes are almost correct for angles relatively

close to the right rotation. To mitigate these problems, (YANG; YAN, 2020) designs a circular
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smooth label (CSL), which addresses the periodicity of the angle and increase the error tolerance

between adjacent angles.

Fig. 5.1 clarifies that CSL involves a circular label encoding with periodicity, and the

assigned label value is smooth with a certain tolerance. Now, instead of only considering a sin-

gle class as correct and any other as completely incorrect, it accounts some value for predicting

classes to rotation angles close to the right class. And it still overcomes the problem of EoE

thanks to its periodicity.

Fig. 5.1 – One-hot and circle smooth labels for angular classification. FL means focal loss

Source: Adapted from (YANG; YAN, 2020).

The expression of CSL can be seen in Eq. 5.1.

CSL(x) =

{
g(x), θ − r < x < θ + r
0, otherwise (5.1)

Where g(x) is a window function, r is the radius of the window function and θ represents

the angle of the current bounding box.

To transform this theory to implementation code and allow the integration into the

YOLOv7 model, YOLOv5 (AL., 2021) and YOLOv5-OBB (KAIXUAN, 2022) are analyzed.

YOLOv5-OBB also uses CSL and thus its loss implementation is very useful, requiring an

adaptation to work with the new YOLOv7 model.

Throughout the process of generating proposals, many regions around a same object

have similar scores to some extent and are considered as candidate regions, which leads to

hundreds of proposals. To solve this problem, a technique called non-maximum suppression
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(NMS) filters the proposals based on their confidence and IoU.

Thanks to (WHU, 2018), the NMS is implemented to OBB and its computations can be

performed directly on the GPU, which is many times faster and has already been employed in

YOLOv5-OBB.

Other minor additional functions are still necessary. An auxiliary function to transform

the rectangular bounding-box to the new polygonal coordinate and a function able to scale the

polygons as well as it was implemented to the rectangular bounding-box. The image annotator

for drawing the ground-truths and predictions in the images must also gain new capabilities in

order to be able to draw correctly the new bounding-boxes.

5.4 Training YOLOv7-OBB

As better described in 5.1, DOTA has very high resolution images and therefore the

images must be split into smaller images before training/testing to achieve better performance.

Thanks to (WHU, 2018), functions have already been made to perform the splitting. Trying to

keep an equal basis for the sake of further comparison, it is chosen to divide the images into

1024x1024 pixels with a gap of 240 pixels, as well as made in YOLOv5-OBB.

The initial model weights come from the pre-trained models available at (WANG; BOCHKOVSKIY;

LIAO, 2022). Table 5.1 shows the available pre-trained YOLOv7 models.

Table 5.1 – Available pre-trained YOLOv7 models on COCO dataset

Model Test Size APtest AP50
test AP75

test batch 1fps batch 32 average time
YOLOv7 640 51.4% 69.7% 55.9% 161fps 2.8 ms
YOLOv7-X 640 53.1% 71.2% 57.8% 114fps 4.3 ms
YOLOv7-W6 1280 54.9% 72.6% 60.1% 84fps 7.6 ms
YOLOv7-E6 1280 56.0% 73.5% 61.2% 56fps 12.3 ms
YOLOv7-D6 1280 56.6% 74.0% 61.8% 44fps 15.0 ms
YOLOv7-E6E 1280 56.8% 74.4% 62.1% 36fps 18.7 ms

Source: Adapted from (WANG; BOCHKOVSKIY; LIAO, 2022).

Where APtest is the AP value averaged over 10 different IoU thresholds, ranging from

50% to 95% at 5% step-size,AP test
50 andAP test

75 are the AP values for IoU thresholds of 50% and

75%, respectively. Batch 1 and 32 means that it has been loaded 1 and 32 images, respectively,

in each processed batch.

All these models are variations of YOLOv7, trained for different image resolutions and
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number of model parameters. Naturally, the larger the model, the higher the model performance,

but the slower its computation becomes. We decide to start with the smallest model, called

YOLOv7 in the table 5.1, because it already performs well and is light enough to work in many

circumstances.

Fig. 5.2 shows an example of the input image for training the model. It is a random

mosaic of the images available in DOTA, generated by the YOLOv7 data loader. Mosaics are

adopted as a form of data augmentation, since the images can be combined in a variety of ways,

further increasing the ability of the model to find objects in mixed scenarios.

Fig. 5.2 – Example of random input mosaic for training the model

Source: Author.

For training, there is a collection of hyperparameters that can be tuned in order to adjust

the progress of model weight updates. The table 5.2 has a list of the hyperparameters that

control the training, along with their description and values. The values adopted are a middle

ground between the values used in YOLOv7 and YOLOv5-OBB, which are very similar.

Throughout training, there are 5 losses that are kept under inspection: box loss, object-

ness loss, class loss, theta loss, and total loss (their combination). At the end of each epoch,

the evaluation data is tested on the model to generate 4 metrics: precision, recall, mAP0.5 and
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Table 5.2 – Training hyperparameters

Hyperparameter Value Description
lr0 0.01 initial learning rate (SGD=1E-2, Adam=1E-3)
lrf 0.2 final OneCycleLR learning rate (lr0 * lrf)
momentum 0.937 SGD momentum/Adam beta1
weight_decay 0.0005 optimizer weight decay 5e-4
warmup_epochs 3.0 warmup epochs
warmup_momentum 0.8 warmup initial momentum
warmup_bias_lr 0.1 warmup initial bias lr
box 0.05 box loss gain
cls 0.5 cls loss gain
cls_pw 1.0 cls BCELoss positive_weight
theta 0.5 theta loss gain
theta_pw 1.0 theta BCELoss positive_weight
obj 1.0 obj loss gain (scale with pixels)
obj_pw 1.0 obj BCELoss positive_weight
iou_t 0.20 IoU training threshold
anchor_t 4.0 anchor-multiple threshold
# anchors 3 anchors per output layer
fl_gamma 0.0 focal loss gamma (efficientDet default gamma=1.5)
hsv_h 0.015 image HSV-Hue augmentation (fraction)
hsv_s 0.7 image HSV-Saturation augmentation (fraction)
hsv_v 0.4 image HSV-Value augmentation (fraction)
degrees 180.0 image rotation (+/- deg)
translate 0.1 image translation (+/- fraction)
scale 0.5 image scale (+/- gain)
shear 0.0 image shear (+/- deg)
perspective 0.0 image perspective (+/- fraction), range 0-0.001
flipud 0.5 image flip up-down (probability)
fliplr 0.5 image flip left-right (probability)
mosaic 0.85 image mosaic (probability)
mixup 0.1 image mixup (probability)
copy_paste 0.0 image copy paste (probability)
paste_in 0.0 image copy paste (probability), use 0 for faster training
loss_ota 0 use ComputeLossOTA, use 0 for faster training
cls_theta 180 number of theta classes
csl_radius 2.0 number of radius classes

Source: Author.

mAP0.5:0.95.

Initially, the idea was to train the model using our local computer. However, the available

graphic card (GPU) NVIDIA RTX 2070 (NVIDIA, 2018) only has 8 GB of memory. For the

selected input size image of 1024x1024 pixels, the maximum number of images per batch,

supported by the GPU, is 2, whereas previously it was 75 in the YOLOv5-OBB fine-tuning
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process, due to the employment of many GPUs with more significant memory. Therefore, the

training was too slow. In fact, when training the model with this configuration, it was not

converging. As explained in (LARSSON, 2019), the size of the learning rate is limited, among

other factors, by the batch size. Updating weights from errors calculated in small batches is

noisier and can prevent the descent from completely converging to an optima at all. On the

other hand, it can also be good, helping it to dodge local minima.

By reducing the learning rate to 1/100 from the initial learning rate, i.e., 1e-4, the model

was capable of training and learning. Fig. 5.3 shows the evolution of the most important losses

and metrics throughout the training for 20 epochs.

Fig. 5.3 – Evolution of losses and metrics throughout the training with small initial learning rate

Source: Author.

The x-axis is the epoch number and the y-axis is the metrics/losses values. These results

suggest that the implemented model works. As it trains, lower its losses decrease and metrics

increase. It is still far from good though. Starting training with a very low learning rate greatly

reduces how much it improves with each interaction, so a large number of interactions would

be required. With an average of a few hours per epoch, training could take months.

Given the circumstances, it was necessary to search for different online solutions. Google

Collaboratory (GOOGLE, 2022a), or Colab, allows running python scripts on virtual machines

(VMs) with fine hardware, GPUs in particular, which are needed for model training. Resources

are limited, and to train our model, a Colab Pro+ subscription was required to gain enough

computational time to train the model. The codes were downloaded from the GitHub repository

(SANTOS, 2022) and the prepared dataset was first uploaded to Google Drive to be downloaded
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by the VM to train the model.

Using the A100 GPU (NVIDIA, 2022) with 40GB of memory, provided by the VM, it

was possible to increase the batch size to 18 images. Fig. 5.4 shows the evolution of the same

losses and metrics shown in Fig. 5.3 for 125 epochs with the same initial learning rate used in

the YOLOv7 and YOLOv5-OBB training.

Fig. 5.4 – Evolution of losses and metrics throughout the training with greater initial learning rate

Source: Author.

The x-axis is the epoch number and the y-axis is the metrics/losses values. Looking at

Fig. 5.4, one can see the great improvement of the model as epochs pass and box, objectness,

class and theta losses decrease, and precision, recall, mAP0.5 and mAP0.5:0.95 metrics increase,

as well as the validation box and objectness losses also decrease.

Around the 50th and 100th epoch, there are 2 abrupt changes in the losses. These were

caused by manual changes in the loss weights in an attempt to speed up the training process.

The more traditional way is to let the weight decay exponentially reduce the learning rate as

it trains, but given the limited computational time given in the VM, the losses were changed

manually. In chapter 6, more on the implications and possible damage to model training are

addressed.
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6 RESULTS

In this chapter, the usually evaluated metrics in object detection, described at section

3.9, are presented, analyzed and compared with YOLOv5-OBB results. The second part brings

some detections using the model, performed in some interesting areas.

6.1 Metrics

The first metric to be addressed is the confusion matrix. Fig. 6.1 presents our model’s

confusion matrix in contrast with YOLOv5-OBB.
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Fig. 6.1 – YOLOv7-OBB vs YOLOv5-OBB’s confusion matrix

(a) YOLOv7-OBB (our model)

(b) YOLOv5-OBB

Source: (a) Author. (b) Adapted from (KAIXUAN, 2022).

Comparing the confusion matrices, it is evident the higher performance of our model,

YOLOv7-OBB. For instance, it correctly identifies with a probability of 0.97, 0.89, 0.67 and

0.67% the following classes: plane, baseball diamond, bridge and ground track field. Mean-

while the YOLOv5-OBB obtains 0.96, 0.83, 0.6 and 0.6% for the same respective classes.

Another interesting point is the reduction from 0.73 to 0.69% in the probability of mistaking
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the background for a small-vehicle.

The only exception occurs for the container crane. While our model only correctly

identifies container cranes 0.07% of the time, YOLOv5-OBB manages 0.11%. This exception

might be explained by checking the class distribution from the training dataset, DOTA, fig. 6.2.

The container crane is the least present object in the entire dataset. One should bear in mind that

our model was trained for 125 epochs, while YOLOv5-OBB was trained on more than double

that, for 300 epochs. So there is a noticeable problem in reducing the number of epochs in our

training. It would be recommended to continue training further in more epochs, to allow the

model to see container cranes more often and learn them better.

Fig. 6.2 – Class distribution of DOTA

Source: Author.

The precision curve, shown at Fig. 6.3, allows to examine how changing the confidence

threshold changes the detection precision for each class of object. It would be desirable to

have the curves as high as possible, even at low confidence. Again, it can be seen that the

model performs differently for different object classes. Caused by the different complexities in

discriminating each object and by training on an unbalanced dataset. The container crane has a

distinctive deficient precision.
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Fig. 6.3 – Precision curve

Source: Author.

But increasing the confidence to achieve better precision is not good because of recall.

As can be seen in Fig. 6.4, recall tends to reduce by increasing the confidence threshold, simply

because if the confidence is higher, more objects are overlooked because they lack the necessary

confidence and then fewer objects are identified. Again, the container crane has a distinct

deficient recall.

Fig. 6.4 – Recall curve

Source: Author.

The precision-recall curve, Fig. 6.5, brings these two metrics together. Ultimately, the
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quest is to have high precision and high recall, but as seen in the previous curves, increasing re-

call makes it difficult to keep the precision high as well. All classes perform relatively similarly,

with the exception of the container crane.

Fig. 6.5 – Precision-recall curve

Source: Author.

The last curve that synthesizes the model performance is the F1 curve, in Fig 6.6. Similar

to the analysis of the other curves, the model tends to perform more or less the same for all

classes except for the container crane.

Fig. 6.6 – F1 curve

Source: Author.
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6.2 Detections

Statistically evaluating the model is of great importance. But now, this section brings

some results in practice. First, some areas in Brazil are chosen to be scanned and the objects

present in them, detected. All the images are taken directly from Google Maps (GOOGLE,

2022b).

The first interesting area is the Santa Maria Air Force Base, Rio Grande do Sul. The

model was able to detect the following objects: 1 airplane, 1 basketball court, 96 cars, 1 tennis

court and 1 helicopter.

Fig. 6.7 – Detection: Santa Maria Air Force Base, Rio Grande do Sul

Source: Author.

The second place is the campus in the Federal University of Santa Maria. In the Fig.
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6.8, 748 small-vehicles, 2 large-vehicles and 5 storage-tanks have been detected.

Fig. 6.8 – Detection: Federal University of Santa Maria Campus, Rio Grande do Sul

Source: Author.

The third area is the Planalto Bus Parking in Santa Maria. In the Fig. 6.9, 1 ground-

track-field, 56 small-vehicles and 35 large-vehicles have been detected.
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Fig. 6.9 – Detection: Planalto Bus Parking, SM, Rio Grande do Sul

Source: Author.

Another place is the airport of Congonhas, São Paulo, because of its high airplane traffic.

In the Fig. 6.10, 30 planes, 2 baseball-diamonds, 406 small-vehicles, 11 large-vehicles and 1

soccer-ball-field have been detected.
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Fig. 6.10 – Detection: Congonhas airport, São Paulo

Source: Author.

One last place to be evaluated is the port of Santos, São Paulo, because of its high ship

traffic. In the Fig. 6.11, 125 small-vehicles, 40 large-vehicles, 151 ships, 37 storage-tanks, 7

harbors and 1 swimming-pool have been detected.
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Fig. 6.11 – Detection: Port of Santos, São Paulo

Source: Author.
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7 CONCLUSION

This project met everything that was expected for the final work of the undergraduate

course. It covered all the aspects from a initial research about RS, passed to machine learning

architectures, capabilities, metrics, datasets, SOTA methods, etc. Finally, the union of this var-

ious knowledge culminated in the development of a DL-based model with SOTA performance

in RS imagery.

Throughout the research process, many possibilities emerged to solve the problem of

object detection in RS images, which could guide this work to different projects and perfor-

mance. The first choice made was the detection type, oriented detection, because it allows a

better fit of the bounding boxes to the objects. Next, the important trade-off between speed and

inference quality filtered the available models, choosing a fast one with still great performance.

YOLO-v7 has served as the basis model for our development, a fast and with great

performance model. However, since it only works with horizontal detection, it has been adapted

with a new loss function, CSL. The results demonstrate that the model was able to effectively

learn and reduce its losses as well as increase its metrics. Through a direct comparison with the

already implemented predecessor, YOLOv5-OBB, it became evident that the developed model

is superior detecting almost every object class in the DOTA-v1.5 dataset, except by the container

crane.

The insufficiency of achieving better detection with the container crane object class

was attributed to the smaller number of epochs for which the model was trained compared

to YOLOv5-OBB. Training DL-based models can be computationally very expensive and it

is a suggestion for future work to have better machines available for training to the limit of

the models, extracting the best of each model. Also as a suggestion for future work, it would

be interesting to try different losses, such as converting the rotating bounding box to a 2-D

Gaussian distribution and other approximations described in the section 4.2.

The final model can have many real implications. Using the DOTA-v1.5 dataset, the

model is capable of detecting 16 object classes in RS imagery: plane, ship, storage tank, base-

ball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle,

small vehicle, helicopter, roundabout, soccer ball field, swimming pool and container crane.

The model could be run in real time on incoming images of drones and other cameras, detecting

these objects that can then be used to count or perform logistics management in parking lots,
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streets, warehouses, etc.

By creating custom datasets with objects of interest is possible to retrain the model

and expand the number of detected objects. For example, the model could learn to detect

and distinguish plants, to count and estimate yield. It could even detect spots and marks that

could determine problems in the crop. For livestock, the model could count the animals and

detect animals lost in the field. In military applications, the model can detect different types of

exposed structures and armaments, as well as cars, traffic, and forest fires, in the Amazon forest

for example. The developed model even won as the highlight "Social Impact - Engineering", in

the II Symposium of Academic Exchange (SAE), UFSM, 2022.
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