UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

PAULO HENRIQUE ENGELMANN DE OLIVEIRA

IDENTIFICAÇÃO DE REGIÃO DE DEFEITO EM REDES ELÉTRICAS DE DISTRIBUIÇÃO POR MEIO DO PROCESSAMENTO DE ALARMES DO SISTEMA DE SUPERVISÃO, CONTROLE E AQUISIÇÃO DE DADOS

PAULO HENRIQUE ENGELMANN DE OLIVEIRA

IDENTIFICAÇÃO DE REGIÃO DE DEFEITO EM REDES ELÉTRICAS DE DISTRIBUIÇÃO POR MEIO DO PROCESSAMENTO DE ALARMES DO SISTEMA DE SUPERVISÃO, CONTROLE E AQUISIÇÃO DE DADOS

Dissertação apresentada ao Curso de Mestrado Programa de Pós-Graduação em Engenharia Elétrica, Área de Concentração em Processamento de Energia, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para a obtenção do grau de Mestre em Engenharia Elétrica

Orientador: DANIEL PINHEIRO BERNARDON

Oliveira, Paulo Henrique Engelmann de

IDENTIFICAÇÃO DE REGIÃO DE DEFEITO EM REDES ELÉTRICAS DE DISTRIBUIÇÃO POR MEIO DO PROCESSAMENTO DE ALARMES DO SISTEMA DE SUPERVISÃO, CONTROLE E AQUISIÇÃO DE DADOS / Paulo Henrique Engelmann de Oliveira. - 2022.

111 p.; 30 cm

Orientador: Daniel Pinheiro Bernardon Dissertação (mestrado) - Universidade Federal de Santa Maria, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica, RS, 2022

1. Lógicas de Agrupamento 2. Proteção 3. Eventos 4. Alarmes 5. SCADA I. Bernardon, Daniel Pinheiro II. Título.

Sistema de geração automática de ficha catalográfica da UFSM. Dados fornecidos pelo autor(a). Sob supervisão da Direção da Divisão de Processos Técnicos da Biblioteca Central. Bibliotecária responsável Paula Schoenfeldt Patta CRB 10/1728.

Declaro, PAULO HENRIQUE ENGELMANN DE OLIVEIRA, para os devidos fins e sob as penas da lei, que a pesquisa constante neste trabalho de conclusão de curso (Dissertação) foi por mim elaborada e que as informações necessárias objeto de consulta em literatura e outras fontes estão devidamente referenciadas. Declaro, ainda, que este trabalho ou parte dele não foi apresentado anteriormente para obtenção de qualquer outro grau acadêmico, estando ciente de que a inveracidade da presente declaração poderá resultar na anulação da titulação pela Universidade, entre outras consequências legais.

©2022

Todos os direitos autorais reservados a PAULO HENRIQUE ENGELMANN DE OLIVEIRA. A reprodução de partes ou do todo deste trabalho só poderá ser feita mediante a citação da fonte.

Endereço: Avenida Roraima, 1000, Prédio 10, Bairro Camobi, Santa Maria, RS, 97105-900 Endereço Eletrônico: pauloheo@gmail.com

Paulo Henrique Engelmann de Oliveira

IDENTIFICAÇÃO DE REGIÃO DE DEFEITO EM REDES ELÉTRICAS DE DISTRIBUIÇÃO POR MEIO DO PROCESSAMENTO DE ALARMES DO SISTEMA DE SUPERVISÃO, CONTROLE E AQUISIÇÃO DE DADOS

Dissertação apresentada ao Curso de Mestrado Programa de Pós-Graduação em Engenharia Elétrica, Área de Concentração em Processamento de Energia, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para a obtenção do grau de **Mestre em Engenharia Elétrica**

Aprovado em 26 de janeiro de 2022:

Daniel Pinheiro Bernardon, Dr. Eng. (UFSM)
(Presidente/Orientador)

Aécio de Lima Oliveira, Dr. Eng. (UFSM)

Paulo Ricardo da Silva Pereira, Dr. Eng. (UNISINOS)

Santa Maria, RS, Brasil 2022 Dedico este trabalho, e suas horas de dedicação à: Meus pais, José Pedro (in memoriam) e Lenise e; Minha esposa, Daniele.

AGRADECIMENTOS

A Lenise Beatriz Engelmann de Oliveira e José Pedro Niches de Oliveira (*in memoriam*), meus pais, pelo imenso incentivo e exemplo. Sou grato pelos valores que me foram transmitidos e todos os esforços para que o pilar mais importante, a educação, fosse sólido.

A Daniele Uarte de Matos, minha esposa e companheira, por seu amor e compreensão. Agradeço o apoio e cuidado, principalmente nestes momentos em que nossa família está crescendo. Aos meus filhos Felipe e Vicente que entenderam a ausência do pai em certos momentos.

As minhas irmãs, Milla, Christie e Ligia pela amizade e suporte. Por serem exemplo de empenho e dedicação.

A minha sogra, Rosi, pela ajuda com os pequenos para que o trabalho fosse findado.

Ao professor orientador, Daniel P. Bernandon, pela confiança para o desenvolvimento das pesquisas e trabalhos. A RGE Sul e sua equipe de operação, que juntamente com a Universidade Federal de Santa Maria, propiciaram a realização dos testes e resultados.

A equipe da Megatecnologia nas pessoas do Augusto Görgen, Eduardo Martins e Santos Viana, pelo desenvolvimento do *software* e suporte nos testes e configurações.

Aos amigos e colegas de grupo de pesquisa do CEESP, que auxiliaram muito para a elaboração deste trabalho.

Aos secretários do PPGEE, André Ross Borniatti e Luciana Kapenlinski pela responsabilidade e auxílio nas questões do curso.

A amigos da AES Sul e RGE Sul, como Maicon J. S. Ramos, Maikel S. Ramos (in memoriam), Julio S. Fonini e Rafael W. Barbosa, pelas conversas, aprendizados e apoio.

E aos demais amigos e pessoas que no convívio contribuíram para minha formação.

Por fim para os professores membros da comissão avaliadora, pelo profissionalismo e importantes contribuições ao trabalho desenvolvido.

"Se você só tiver disposto a realizar o que é fácil, a vida será difícil. Mas se concordar em fazer o que é difícil a vida será fácil."

(T. Harv Eker)

"Saber que você precisa mudar não é suficiente. Você precisa ter a coragem de fazer essa mudança."

(Robert T. Kiyosaki)

"O homem que nunca erra nada faz." (Bernard Shaw)

RESUMO

IDENTIFICAÇÃO DE REGIÃO DE DEFEITO EM REDES ELÉTRICAS DE DISTRIBUIÇÃO POR MEIO DO PROCESSAMENTO DE ALARMES DO SISTEMA DE SUPERVISÃO, CONTROLE E AQUISIÇÃO DE DADOS

AUTOR: Paulo Henrique Engelmann de Oliveira ORIENTADOR: Daniel Pinheiro Bernardon

O sistema de distribuição de energia elétrica é um indicador econômico e sua qualidade e continuidade é um fator importante. Paralelamente as redes estão em constante evolução para aprimorar sua funcionalidade, exemplos claros disso são as redes elétricas inteligentes e a geração distribuída, juntamente com indicadores técnicos a cada dia mais exigentes. As distribuidoras de energia no Brasil buscam com isso incluir novos e mais equipamentos para identificação da condição da rede como a inserção de mais religadores telecomandados. A inclusão destas funcionalidades juntamente com um número de equipamento telecomandados exige uma metodologia de operação que impõem desafios e oportunidades, por vezes necessitando de apoios computacionais para um melhor atendimento. Nesse sentido, este trabalho tem como objetivo a avaliação e apresentação de lógicas de agrupamento das informações dos equipamentos telecomandados da rede de distribuição e identificação dos trechos de rede sob defeito e indicação de manobras possíveis. Para o desenvolvimento das lógicas foi utilizada a metodologia de avaliação das correlações das informações advindas dos equipamentos telecomandados aplicando lógicas combinacional e sequencial. Como diferencial é utilizado o método de janela de amostragem a fim de garantir que todas as informações dos equipamentos estão presentes para apresentação do resultado. Para validar a metodologia proposta são considerados estudos de casos de redes reais, onde as lógicas de agrupamento foram aplicadas. Os resultados encontrados mostraram a eficácia do método, encontrando soluções de acordo com o previsto e avaliação em campo. A aplicação das lógicas de agrupamento proporciona uma melhora na visualização dos eventos facilitando as ações por parte do operador mesmo em redes manobradas, utilizando as informações de campo.

Palavras-chave: Lógicas de Agrupamento. Proteção. Eventos. Alarmes. SCADA

ABSTRACT

DEFECT REGION IDENTIFICATION IN ELECTRIC DISTRIBUTION NETWORKS BY PROCESSING ALARMS IN THE SUPERVISION, CONTROL AND DATA ACQUISITION SYSTEM

AUTHOR: Paulo Henrique Engelmann de Oliveira ADVISOR: Daniel Pinheiro Bernardon

The electricity distribution system is an economic indicator, and its quality and continuity are an important factor. At the same time, networks are constantly evolving to improve their functionality, clear examples of this are intelligent electrical networks and distributed generation, together with technical indicators that are more demanding. The energy distributors in Brazil are looking to include new and more equipment to identify the condition of the network, such as the insertion of more remote controlled reclosers. The inclusion of these features together with a number of remotely controlled equipment requires an operating methodology that poses challenges and opportunities, sometimes requiring computer support for a better service. In this sense, this work aims to evaluate and present logics for grouping information from remote-controlled equipment in the distribution network and identifying the faulty network sections and indicating maneuvers. For the development of the logics, the methodology of evaluation of the correlations of the information coming from the remotecontrolled equipment used, applying combinational and sequential logics. As a differential, the sampling window method is used to ensure that all equipment information is present to present the result. To validate the proposed methodology, case studies of real networks are considered, where the grouping logics were applied. The results found showed the effectiveness of the method, finding solutions as planned and evaluating it in the field. The application of grouping logic provides an improvement in the visualization of events, facilitating actions by the operator, even in switched networks, using field information.

Keywords: Grouping Logics. Protection. Events. Alarms.SCADA.

LISTA DE FIGURAS

Figura 1 – Rede de distribuição exemplo	27
Figura 2 – Rede de distribuição com destaque para o trecho protegido	30
Figura 3 – Rede com destaque ao trecho livre	31
Figura 4 - Arquiteturas de uso do DNP3	37
Figura 5 – Lógica utilizada para sinalização do ponto EST	46
Figura 6 – Lógica de indicação da comunicação	47
Figura 7 – Lógica de sinalização da disponibilidade	48
Figura 8 – Lógica de indicação da sinalização de Falta CA	49
Figura 9 – Lógica de indicação de bloqueio	50
Figura 10 – Lógica de sinalização da inclusão da proteção SGF	51
Figura 11 – Lógica de sinalização da inclusão da proteção de neutro 51N	51
Figura 12 – Lógica de sinalização da inclusão da função de religamento automático	52
Figura 13 – Lógica de indicação de status "Manobrado"	53
Figura 14 – Lógica de sinalização do modo de operação do equipamento	54
Figura 15 - Lógica de indicação do tipo de falta Monofásica	56
Figura 16 – Lógica de indicação do tipo de falta Bifásica	58
Figura 17 – Lógica de indicação do tipo de falta Trifásico	59
Figura 18 - Lógica de indicação de falta do tipo SGF	60
Figura 19 - Lógica de indicação das demais faltas em Alimentadores	61
Figura 20 – Topologia de rede ideal (sistema 100% seletivo)	67
Figura 21 – Coordenograma dos dispositivos de proteção (sistema 100% seletivo)	
Figura 22 – Topologia de rede Nº 1 (Elevada corrente de curto-circuito)	68
Figura 23 – Sinalizações dos equipamentos no sistema SCADA	69
Figura 24 – Coordenograma dos dispositivos de proteção (topologia de rede Nº 1)	69
Figura 25 – Topologia de rede Nº 2 (Baixa corrente de curto-circuito)	70
Figura 26 – Modelo de atributos para identificação dos equipamentos sinalizados no So	CADA.
	71
Figura 27 – Coordenograma dos dispositivos de proteção (topologia de rede Nº 2)	71
Figura 28 – Topologia de rede Nº 3 (Falha na comunicação em algum religador)	72
Figura 29 – Modelo de atributos para identificação dos equipamentos sinalizados no So	CADA.
	73
Figura 30 – Coordenograma dos dispositivos de proteção (topologia de rede Nº 3)	74

Figura 31 — Topologia de rede Nº 4A (Sinalização da função SGF entre religadores, todos	com
a função habilitada)	75
Figura 32 – Modelo de atributos para identificação dos equipamentos sinalizados no SCA	ADA.
	76
Figura 33 – Coordenograma dos dispositivos de proteção (topologia de rede Nº 4A)	76
Figura 34 – Fluxograma do Processo de Avaliação para o TLP	78
Figura 35 – Resultado evento 296 – Visão geral da solução	89
Figura 36 – Resultado Evento 296 – Visão aproximada da rede de operação com destaque	para
os trechos livres e protegidos	90
Figura 37 – Resultado evento 316 – Visão geral da solução	92
Figura 38 – Resultado evento 317 – Visão geral da solução	94

LISTA DE TABELAS

Tabela 2.1 – Tipo de operação equipamentos telecomandados	27
Tabela 3.1 – Campo para identificação do equipamento - SUBSTN.DEVTYP	42
Tabela 3.2 – Campo para datação do evento - FIELD_TIME	43
Tabela 3.3 – Campo para datação do término do processamento - PROC_TIME	43
Tabela 3.4 – Estados possíveis ponto EST	46
Tabela 3.5 – Estados possíveis ponto COMM	47
Tabela 3.6 – Estados possíveis ponto MODO	49
Tabela 3.7 – Estados possíveis ponto FTCA	49
Tabela 3.8 – Estados Possíveis BLOQ	50
Tabela 3.9 – Estados Possíveis ISGF	51
Tabela 3.10 – Estados Possíveis I51N	52
Tabela 3.11 – Estados Possíveis I79	52
Tabela 3.12 – Valores Indicação STAT	54
Tabela 3.13 – Valores possíveis da informação MODO	55
Tabela 3.14 – Tabela de Resultados Função PROT	61
Tabela 4.1 - Resultado aplicação lógica de agrupamento das informações dos equipamento	entos 70
Tabela 4.2 - Resultado aplicação lógica de agrupamento das informações dos equipa	amentos
	72
Tabela 4.3 – Resultado aplicação lógica de agrupamento das informações dos equipa	amentos
	74
Tabela 4.4 - Resultado aplicação lógica de agrupamento das informações dos equipa	amentos
	77
Tabela 5.1 – Taxas de dados e latência para uma conexão móvel ativa	81
Tabela 5.2 – Latência em requisição HTTP simples	81
Tabela 5.3 – Tempos Resumo Para os Diferentes Links de Comunicação	81
Tabela 5.4 – Equipamentos com Sinalização de Bloqueio	83
$Tabela\ 5.5-Informações\ agrupadas\ dos\ equipamentos\ envolvidos\ no\ evento\ 308$	84
Tabela 5.6 – Equipamentos limite entre Trecho Livre e Protegido Evento 308	85
Tabela 5.7 – Manobra sugerida em relação ao Evento 308	85
Tabela 5.8 – Informações Agrupadas dos equipamentos envolvidos no evento 307	86
Tabela 5.9 – Equipamentos limite entre Trecho Livre e Protegido Evento 307	86
Tabela 5.10 – Manobra sugerida em relação ao Evento 307	88

Tabela 5.11 – Resultado Processamento Lógicas de Agrupamento	88
Tabela 5.12 – Manobra sugerida em relação ao Evento 296	90
Tabela 5.13 – Resultado Processamento Lógicas de Agrupamento Evento 316	91
Tabela 5.14 – Manobras sugeridas para o evento 316	93
Tabela 5.15 – Resultado Processamento Lógicas de Agrupamento Evento 317	93
Tabela 5.16 – Manobras sugeridas para o evento 317	95
Tabela A.0.1 - Pontos Analógicos de Religadores	101
Tabela A.0.2 - Pontos Digitais de Religadores	102
Tabela A.0.3 - Pontos Digitais de Alimentadores	104
Tabela A.0.4 - Pontos Analógicos de Alimentadores	109

LISTA DE ABREVIATURAS E SIGLAS

79 - Função de religamento automático

51F - Proteção de sobrecorrente temporizada de fase
 51N - Proteção de sobrecorrente temporizada de neutro

ADMS - Advanced Distribution Management System
ANEEL - Agência Nacional de Energia Elétrica

ASIFI - Average System Interruption Frequency Index
BDGD - Base de Dados Geográfica da Distribuidora

BLOQ - Bloqueio de religamento

CAIFI - Customer Average Interruption Frequency Index

CH - Chave de manobraCOMM - Estado da comunicação

CPFL - Companhia Paulista de Força e Luz

DEC - Duração Equivalente de Interrupção por Unidade Consumidora

DIC - Duração de Interrupção Individual por Unidade Consumidora ou Ponto de Conexão

DICRI - Duração da Interrupção Individual ocorrida em Dia Crítico por Unidade Consumidora ou

Ponto de Conexão

DISP - Estado de disposição do dispositivo

DJ - Disjuntor

DMIC - Duração Máxima de Interrupção Individual por Unidade Consumidora ou Ponto de

Conexão

DNP - Distributed Network Protocol

ENS - Energy Not Supplied
EST - Estado do dispositivo

FA - Fase A
FB - Fase B
FC - Fase C

FEC - Frequência Equivalente de Interrupção por Unidade Consumidora

FIC - Frequência de Interrupção Individual por Unidade Consumidora ou Ponto de Conexão

FTCA - Falta Alimentação Alternada (CA)

FU - Chave Fusível

GD - Geração Distribuída

I51N - Estado de inclusão da proteção de sobrecorrente temporizada de neutro

179 - Estada de inclusão da função doe religamento automático

IEC - International Electrotechnical Commission

LISTA DE VARIÁVEIS

tpooling - Tempo de pooling
ttimeout - Tempo de timeout
tlatência - Tempo de latência
B - Taxa de Nyquist
fs - Frequência do sinal

Retries - Retentativas

 t_{comm} - Tempo de comm

 $t_{amostragem}$ - Tempo de amostragem

I_{pick-up} - Tempo de pick-up

SUMÁRIO

1.	INTRODUÇÃO	18
1.1	MOTIVAÇÃO E JUSTIFICATIVA	19
1.2	OBJETIVO	20
1.3	DELIMITAÇÕES DO TRABALHO	21
1.4	ORGANIZAÇÃO DOS CAPÍTULOS	21
2.	REVISÃO BIBLIOGRÁFICA	23
2.1	CONCEITOS BÁSICOS	23
2.1.1	Seletividade e coordenação	24
2.1.1.1	Seletividade	25
2.1.1.2	Coordenação	25
2.2	CONCEITO GERAL	26
2.2.1	Equipamentos	27
2.2.1.1	Disjuntor - DJ	28
2.2.1.2	Fusível - FU	28
2.2.1.3	Religador - RL	28
2.2.1.4	Chave Seccionadora – CH	29
2.3	TRECHOS PROTEGIDOS	29
2.4	TRECHOS LIVRES	30
2.5	MÉTODOS DE DETECÇÃO DE DEFEITO	31
2.5.1	Detecção de defeitos através de equipamentos	31
2.5.1.1	Ondas Viajantes	31
2.5.1.2	Localizadores de Falta	32
2.5.2	Detecção do Local do Defeito através de Métodos Matemáticos	33
2.6	PROTOCOLO DE COMUNICAÇÃO	33
2.6.1	DNP3 - Distributed Network Protocol version 3	34
2.6.1.1	Variações	38
2.6.1.2	Funcionamento	
3.	MÉTODO DE AGRUPAMENTO DOS DADOS DIGITAIS E ANALÓGIC	
	41	
3.1	PREMISSAS E INFORMAÇÕES	41
3.2	PONTOS DE IDENTIFICAÇÃO E DATAÇÃO	41
3.2.1	SUBSTN.DEVTYP	42

3.2.2	FIELD_TIME	42
3.2.3	PROC_TIME	43
3.3	PONTOS DIGITAIS DO SISTEMA SCADA	44
3.3.1	Estado do Equipamento - EST	45
3.3.2	Situação da Comunicação - COMM	46
3.3.3	Verificação de Disponibilidade - DISP	47
3.3.4	Falta de Alimentação - FTCA	49
3.3.5	Religamento Sem Sucesso - BLOQ	50
3.3.6	Estado da Proteção SGF - ISGF	50
3.3.7	Estado da Proteção de Neutro - I51N	51
3.3.8	Estado da Função de Religamento Automático - I79	52
3.4	PONTOS DIGITAIS COMPOSTOS DO SISTEMA SCADA	53
3.4.1	Condição Referente ao Estado - STAT	53
3.4.2	MODO	54
3.4.3	PROT	55
3.5	PONTOS ANALÓGICOS DO SISTEMA SCADA	62
3.5.1	Correntes das Fases	62
3.5.2	Correntes de Curto-Circuito	62
3.5.3	Pick-up 51F	63
3.5.4	Pick-up 51N	63
3.5.5	Pick-up SGF	63
3.6	TAXA DE AMOSTRAGEM E VALORES DE TEMPO	63
3.6.1	Teorema da Amostragem	64
3.6.2	Processo de Amostragem	64
3.6.3	Aplicação em Sistemas de Comunicação	65
4.	IDENTIFICAÇÃO DE TRECHOS SOB DEFEITO	67
4.1	TOPOLOGIA DE REDE A PARTIR DAS PROTEÇÕES SINALIZADAS	67
4.1.1	Topologia de rede ideal (condição genérica)	67
4.1.2	Topologia de rede nº 1: Elevado valor na corrente de Icc	68
4.1.3	Topologia de rede nº 2: Baixo valor na corrente de Icc	70
4.1.4	Topologia de rede nº 3: Falha de comunicação em algum religador	72
4.1.5	Topologia de rede nº 4: Sinalização por SGF entre religadores	74
5.	RESULTADOS	79
5.1	IMPLEMENTAÇÃO DAS LÓGICAS DE AGRUPAMENTO	79

5.2	APLICAÇÃO DA METODOLOGIA	79
5.2.1	Protocolo de Comunicação	80
5.2.2	Datação dos Eventos	82
5.2.2.1	Configuração dos Pontos	82
5.2.3	Eventos	83
6.	CONCLUSÃO	96
6.1	TRABALHOS FUTUROS	97
6.2	TRABALHOS PUBLICADOS	97
REFEI	RÊNCIAS	98
ANEX	O 1 - LISTA DE PONTOS DIGITAIS E ANALÓGICOS DO SISTEMA	101

1. INTRODUÇÃO

O fornecimento de energia elétrica é um indicador de desenvolvimento humano e econômico De acordo com (ABAIDE, 2005) a energia elétrica também é um indicador de desenvolvimento humano e econômico, tendo seu fornecimento onde a qualidade e a confiabilidade apresentam influência direta na sociedade. A eletrificação de uma determinada região com apenas a implantação de infraestrutura das redes de energia não apresenta garantias de desenvolvimento por si só elevado, pois a disponibilidade, a qualidade e a segurança deste fornecimento influenciam diretamente neste quesito. A necessidade de apresentar alternativas

Os sistemas de distribuição de energia brasileiro tem passado por mudanças objetivando melhorar o desempenho para os consumidores quanto as questões técnicas quanto econômicas.

A evolução dos sistemas de distribuição de energia ocorre por questões de demandas da sociedade, estratégias corporativas e por novas tecnologias de mercado. Conceitos e tendências largamente amplamente discutidos no passado academicamente são apresentados com maior força começam a ser uma realidade, como a Geração Distribuída (GD) e as *Smart Grids* (SG). A geração distribuída se refere ao conceito em que há geração mais próxima ou inserida no centro de consumo, causando alteração no modelo de grandes fontes de energia distantes do centro de consumo. Esse conceito influência diretamente toda a cadeia de geração, transmissão e distribuição de energia, onde não haverá mais o padrão radial de fluxo de energia. Já o conceito *smart grid* diz a respeito à operação e observação das redes de distribuição, onde antes se tinha uma visão de uma rede fortemente estática, com poucas informações em tempo real quanto a condição operativa. Com a utilização de novas tecnologias e metodologias de monitoramento e gerenciamento, insere-se uma versatilidade na estrutura de operação (BROWN, 2008).

A implementação do conceito *smart grid* em suas diversas fases e conceitos é uma realidade e uma necessidade para as distribuidoras de energia no Brasil. Esta transformação proporciona um aumento no número exponencial de equipamentos supervisionados remotamente e/ou tele comandados nas redes de distribuição (DIAS, 2017), o que apresenta uma maior complexidade na operação de tempo real em oposição a uma maior flexibilidade nas manobras de recomposição da rede na busca da melhora nos indicadores de continuidade (BERNARDON et al., 2011).

A implementação da GD e *smart grids*, entre outros, e juntamente a outras tecnologias inseridas no setor de distribuição de energia elétrica, tem como objetivo flexibilizar e incrementar a capacidade de gerenciamento da rede. Melhorando o desempenho na prestação doe serviço até para o consumidor final, proporcionando qualidade e robustez nos serviços. Porém isso esse incremento e essa flexibilização refletem em modificações gerais nos quesitos de estudo, análise, planejamento e operação (BERNARDON et al., 2014). Com esses desenvolvimentos, acabam-se por inserir novas complexidades na rede que podem ter de apresentar tanto impactos positivos quanto negativos, caso seu funcionamento e/ou operação não sejam adequados.

A tecnologia metodologia tradicional de confiar na operação e manutenção baseada nas ações humanas encontra dificuldades não podem atender aos requisitos de inteligência, automação e recomposição na era das grandes redes elétricas inteligentes. Dadas iniciativas dos agentes na busca por inovação, a tecnologia de algoritmos computacionais e comunicação sem fio oferece a possibilidade de realizar a automação das redes de energia (GUILIN et al., 2019).

Frente às demandas que surgem, uma dentre todas das áreas envolvidas que carece de atenção especial é a de automação necessita ser aperfeiçoada, no sistema elétrico é essencial ter meios para automatizar as ações dos equipamentos, proporcionando uma célere e correta tomada de ação quando da atuação da proteção dos equipamentos em campo. Conjuntamente há a necessidade de proporcionar ao operador meios de apresentar de forma clara a condição da rede de operação, proporcionando aos mesmos condições de direcionar as ações de manutenção as equipes de campo de forma mais precisa. No Brasil, em sua maioria as redes de distribuição de energia elétrica são aéreas e com cabos nus, o que ocasiona uma maior exposição a fatores externos que podem vir a causar falhas por descargas atmosféricas, contato com galhos de arvores, colisões com veículos, entre outros (RAMOS, 2014).

1.1 MOTIVAÇÃO E JUSTIFICATIVA

A evolução inserção de novas tecnologias nos sistemas de energia é uma realidade a cada dia mais presente com as *smart grids* implementadas em suas diferentes fases, etapas e/ou conceitos, coletando e disponibilizando uma série de informações em tempo real e sendo armazenadas em bases de dados históricas. O volume de informação entregue a operação em tempo real aumenta exponencialmente com a advento de novos dispositivos e sistemas integrados a rede de operação, acarretando uma maior complexidade na operação de tempo real,

conjuntamente apresentando também uma maior flexibilidade operativa e consequente com o objetivo de melhorar nos indicadores de técnicos de tempo de interrupção, DEC, e frequência de interrupção, FEC, das companhias.

Diante de um cenário econômico em que as distribuidoras de energia trabalham no Brasil, onde os investimentos precisam ser assertivos e com fluxo de caixa restritivo que não permite grandes investimentos para substituição geral de todos os sistemas e equipamentos, há a necessidade de se incorporar aos equipamentos existentes a utilização de algoritmos desenvolvidos e incorporados aos *softwares* de supervisão e controle, como sistema de supervisão e aquisição de dados *SCADA* (*Supervisory Control And Data Acquisition*) – e sistemas avançados de gerenciamento como o – ADMS (*Advanced Distribution Management System*) – para auxiliar no tratamento das informações e tomada de decisão.

Essa dissertação diante destes inúmeros equipamentos que transmitem informações, onde existem diversas tecnologias, propõe uma sistemática de organizar e se utilizar de todas estas informações dos inúmeros equipamentos que transmitem informações, independentemente de sua tecnologia, para auxiliar na operação e recomposição dos sistemas de distribuição. Organizando estas informações e apresentando lógicas de agrupamento para posterior indicação da condição da rede de operação é a proposta deste trabalho.

1.2 OBJETIVO

Essa dissertação tem como objetivo o desenvolvimento e avaliação geral de lógicas de agregação e tratamento das informações dos equipamentos telecomandados de redes de distribuição com o intuito de indicar a região sob defeito considerando a posição da rede de operação e coordenação dos ajustes de proteção dos equipamentos telecomandados.

- Modelar lógicas de interpretação e agregação de informações dos equipamentos telecomandados pertinentes para atender o objetivo geral, utilizando os eventos e alarmes dos diferentes equipamentos e suas diferentes nomenclaturas transformando em uma informação objetiva.
- Utilizar-se das propriedades dos protocolos de comunicação para identificar valores válidos e tratar as informações com base em parâmetros pré-estabelecidos. Tendo o uso de protocolos desenvolvidos para o uso no sistema elétrico que apresentam informações como estampa de tempo na origem do evento, bem como a condição da qualidade da comunicação

com o dispositivo, possibilitando validar as informações para tratamento nas lógicas de agrupamento.

- Utilizar-se de valores digitais e analógicos para obtenção das informações e indicação do trecho sob defeito.
- Desenvolver uma metodologia para o tratamento das informações juntamente as propriedades dos protocolos juntamente com os tempos de aquisição das informações.
- Quantificar e avaliar a efetividade das lógicas de agrupamento e indicação de manobras considerando casos reais.

1.3 DELIMITAÇÕES DO TRABALHO

Este trabalho tem como propósito principal o desenvolvimento de lógicas que se utilizarão das informações dos equipamentos telecomandados de uma rede de distribuição para sinalização do trecho sob defeito entre equipamentos, considerando estado atual da rede de operação e suas possíveis descoordenações. Dessa forma, o conceito de identificação de trecho sob defeito vem no sentido de sinalizar uma região entre equipamentos. A coordenação será avaliada com base nos dados existentes nos sistemas e valores de curto-circuito enviados pelos equipamentos telecomandados. Os conceitos citados, serão descritos ao longo do trabalho.

1.4 ORGANIZAÇÃO DOS CAPÍTULOS

A dissertação está apresentada e condicionada na seguinte forma:

Capítulo 0: No capítulo inicial a intenção é apresentar os principais dispositivos utilizados para a proteção de sobrecorrentes em sistemas de distribuição, com suas características de funcionamento e peculiaridades em aplicações.

Capítulo 3: Esta parte do trabalho visa apresentar as lógicas desenvolvidas e os tempos de amostragem determinados para uma completa solução a partir das informações dos equipamentos de campo.

Capítulo 4: Como deseja-se avaliar diferentes cenários e condições da rede de operação este capítulo apresenta cenários com as respostas esperadas para cada situação.

Capítulo 5: Neste capítulo são apresentados resultados que foram encontrados com a metodologia proposta.

Capítulo 0: Por fim serão apresentadas as conclusões e principais contribuições desse trabalho, bem como as sugestões para trabalhos futuros.

E nos Apêndices, estão dados e modelos que foram utilizados na metodologia proposta.

2. REVISÃO BIBLIOGRÁFICA

Os sistemas de supervisão e aquisição de dados, SCADA, conectam-se aos dispositivos de campos a fim de coletar informações quanto as medições realizadas e o estado do equipamento que se transformam em eventos, alarmes e/ou outras sinalizações visuais (exemplo a troca de estado do equipamento) a fim de apresentar para o operador a real condição dos equipamentos em campo durante desarmes e/ou um evento ou manobras. Esta coleta de informações visa fornecer os dados necessários para tomada de decisão do operador a fim de que quais ações serão realizadas.

Quando há um desarme de um equipamento telecomandado, a primeira ação a ser realizada é a de identificar o provável local do defeito, oportunizando assim a segregação de trechos da rede de distribuição a fim de oportunizar a ação de reenergização os trechos que não possuem defeito. Esta ação de identificação e classificação dos trechos quanto a condição dos mesmos denominamos Trechos Livres e Protegidos.

Este capítulo apresentará os um resumo de trabalhos desenvolvidos com o intuito de detecção de defeitos em redes de distribuição de energia elétrica. Por últimos será apresentado o conceito de trecho livre e trecho protegido a partir da técnica proposta por este trabalho.

Este capítulo refere-se aos estudos e trabalhos desenvolvidos com o intuito de detecção de defeito em redes de distribuição de energia elétrica. O capítulo é separado a partir da identificação dos métodos aplicados, funcionalidades agregadas e sua utilização.

2.1 CONCEITOS BÁSICOS

Os sistemas de distribuição e transmissão de energia elétrica são compostos por longas redes, que em sua maioria são aéreas e constituídas de cabos nus. Devido a extensão e a exposição é possível ocorrer falhas ou faltas de diversas naturezas. Sendo assim, tornam-se essenciais meios para a proteção desses sistemas. Para isso, utilizam-se os dispositivos de proteção de diversas tecnologias e formas de atuação, destacando as chaves fusíveis, chaves fusíveis repetidoras, religadores com comando e sistema de detecção de defeito eletromecânicos ou eletrônicos, disjuntores associados a relés de proteção com sistema de detecção de alteração de corrente do tipo eletromecânico, eletrônico ou microprocessado. Uma

característica importante da distribuição de energia, é a radialidade das redes em sua operação, e com isso, tem-se esquemas específicos na sua proteção (SUPANNON; JIRAPONG, 2016).

Diante de falhas ou faltas sobre as redes, podem ocorrer sobrecorrentes, sobretensões e causar falhas de isolação. As causas de falhas em redes de distribuição podem ser diversas como por exemplo: descargas atmosféricas, rompimento de condutores, instabilidades sistêmicas, contato de vegetação nos cabos, colisões de veículos, entre outros (RAMOS, 2014).

Existem vários tipos de dispositivos com diferentes funcionalidades e aplicações, sendo que a proteção completa do sistema depende da composição dos dispositivos. A proteção tem duas principais funções:

- Proteger pessoas, animais e o patrimônio público e privado.
- Proteger os equipamentos instalados ao longo do sistema elétrico.

Segundo (MAMEDE FILHO; MAMEDE, 2011), pode-se dividir os dispositivos empregados na proteção de sistemas elétricos em dois principais tipos:

- Fusíveis: Operam pela fusão de um elemento metálico desenvolvido com características especificas de tempo versus corrente.
- Relés: Representam uma gama de dispositivos que podem ter diferentes funções, podendo monitorar diversos parâmetros elétricos (corrente, tensão, frequência etc.) e com isso promover proteção não apenas baseado na corrente como são os fusíveis.

Quanto aos dispositivos utilizados, nos últimos anos não houve nenhuma mudança expressiva as principais evoluções foram quanto a tecnologia empregada, o que permitiu a parametrização de valores mais refinados e muitas vezes um mesmo dispositivo apresentar diferentes funções de proteção.

2.1.1 Seletividade e coordenação

A importância da proteção dentro de um sistema elétrico, em um mesmo alimentador, é importante pois há muitos dispositivos, em partes pela necessidade de proteção de retaguarda, e com o intuito de reduzir a quantidade de clientes afetada. A correta aplicação desses dispositivos depende das características físicas/elétricas dos mesmos, como a capacidade de interrupção, tempo mínimo de atuação, protocolo de comunicação entre outros. Outro fator fundamental são os ajustes e parametrizações desses equipamentos, os quais irão buscar a rápida eliminação curtos-circuitos e minimização de danos (IEEE, 2001).

Os ajustes e parametrizações dos dispositivos se relacionam basicamente com a sensibilidade ao nível de corrente de operação, sequência de operação, níveis de corrente de curtos-circuitos mínimos e máximos, tipos de dispositivos, ajustes desses dispositivos tanto a jusante e a montante, restrições operacionais desses dispositivos. Esses quesitos são muito importantes, pois há um amplo número de dispositivos de proteção nas redes de distribuição em série, de modo que com a operação indevida de um equipamento, ocorre a desenergização de consumidores maior que o necessário, impactando diretamente os indicadores de continuidade da concessionária (COMASSETTO et al., 2008).

2.1.1.1 Seletividade

Primeiramente devemos avaliar, na proteção de sistemas de elétricos de potência, a seletividade, isto é, à sensibilidade do nível de corrente para sua atuação. Nas chaves fusíveis a seletividade refere-se a corrente nominal do elo fusível, já para os dispositivos microprocessados, como os religadores, refere-se a corrente de pick-up (I_{pick-up}) a qual pode ser ajustada conforme a necessidade levando em consideração o tipo, modelo e o fabricante desse equipamento.

Muitos dos dispositivos terão o comportamento de ligação em série e com isso serão aplicados os conceitos de proteção primária e de retaguarda. A proteção primária se refere a mais próxima da falta ou operação anormal da rede, sendo que estes dispositivos deverão atuar rapidamente e desligar somente a real área afetada. A proteção de retaguarda é sensibilizada e aciona quando a proteção primária apresenta falha na abertura, causando uma situação anormal no sistema. A atuação da proteção retaguarda apresenta um tempo maior de atuação em relação a primária, e acarretará o desligamento de um número maior de clientes. A proteção de retaguarda pode ser apenas um ou mais dispositivos. Nesse contexto, ambos os equipamentos (primário e de retaguarda) deverão ser seletivos para o curto-circuito.

2.1.1.2 Coordenação

O bom desempenho da proteção nos sistemas de distribuição o passa inicialmente na sensibilização dos dispositivos frente aos níveis de corrente de falta que estes devem atuar ou não, sendo compreendido como seletividade. Não obstante há uma preocupação quanto a sequência de operação dos equipamentos conforme a divisão entre primários e de retaguarda.

A fim de garantir que a sequência de atuação seja atendida, existe o que é denominada coordenação entre os dispositivos. O objetivo é avaliar as parametrizações das diversas curvas de proteção dos equipamentos em relação aos tempos de atuação, verificando se há tempo mínimo a fim de garantir a correta sequência de operação.

Esta análise é complexa pelos seguintes motivos: diferentes equipamentos com suas respectivas características de atuação e suas relações entre equipamento primário e de retaguarda. De modo geral, a coordenação visa o comportamento ao longo das curvas de atuação entre os dispositivos de proteção. Para que se garanta a correta sequência de operação, o tempo de atuação do dispositivo de retaguarda deve ser maior, atendendo uma diferença de tempo mínimo (Δtmín) com o tempo do equipamento primário. Assim há a certeza que o dispositivo de retaguarda só atuará depois da proteção primária e no caso da falha desta.

2.2 CONCEITO GERAL

As redes de distribuição de energia apresentam muitos dispositivos, em partes pela necessidade de proteção de retaguarda, mas também com o objetivo de diminuir a área afetada por determinada falta (BOASKI, 2018), dentre estes dispositivos encontramos chaves fusíveis, chaves sem proteção e religadores. Quando um dispositivo é telecomandado permite ao usuário visualizar seu estado atual e enviar comandos, é possível observar a condição da rede de distribuição sob algumas condições.

Dada a rede da Figura 1 para fins de exemplificar a forma de indicação da representação dos tipos de trechos.

RL-3 RL-1 DJ-2 NF NF FU-5 DJ-3 CH-1 NA NF FU-2

Figura 1 – Rede de distribuição exemplo

Fonte: Próprio autor.

A fim de detalhar a condição da rede de operação apresentada na Figura 1 a Tabela 2.1 apresenta o tipo de operação de cada equipamento telecomandado, onde somente as FU's não são telecomandadas, sendo os demais dispositivos tendo telecomando.

Tabela 2.1 – Tipo de operação equipamentos telecomandados

<u> Equi</u>namento Tino de Oneração

Equipamento	Tipo de Operação
DJ-1	Proteção
DJ-2	Proteção
DJ-3	Proteção
RL-1	Proteção
RL-2	Proteção
RL-3	Modo Chave
RL-4	Proteção
RL-5	Proteção
CH-1	Chave sem Proteção (interligação
RL-6	Chave (interligação)

Fonte: Próprio autor.

Equipamentos 2.2.1

Dada a necessidade de apresentar os conceitos para cada tipo de equipamento apresentado, os itens a seguir descrevem, de forma simplificada, o funcionamento geral dos equipamentos bem com sua forma de atuação quando da ocorrência de uma falta na rede de distribuição.

2.2.1.1 Disjuntor - DJ

Os disjuntores são dispositivos de interrupção de falhas que habilitam ou interrompem o fluxo de corrente para os componentes do sistema de energia. Quando os contatos principais de um disjuntor se fecham, o disjuntor conduz a corrente do sistema de potência até que os contatos se abram. Quando os contatos principais abrem, o circuito de potência é aberto e o fluxo de corrente é interrompido até que os contatos sejam fechados novamente. Como os disjuntores são projetados para transportar e interromper tanto a corrente de carga quanto a corrente de falta (curto-circuito), os disjuntores são usados como dispositivos de comutação, bem como dispositivos de interrupção de faltas (SLEVA, 2018).

Os disjuntores do sistema de potência não são dispositivos de acionamento automático, operam mediante comando externo para abertura/Trip ou fechamento. Os comandos podem ser provenientes de operação manual ou advindas de relés de proteção que detectaram condição anormal. Para o estudo em questão denominamos a associação do disjuntor com seus respectivos relés de proteção simplesmente como DJ.

2.2.1.2 Fusível - FU

Os fusíveis são dispositivos de proteção de sobrecorrente monofásicos com um elemento de abertura do circuito que é aquecido e aberto pela passagem de corrente através dele (SLEVA, 2018). Os fusíveis são usados para detectar e isolar curtos-circuitos em transformadores, em capacitores, em cabos, em derivações monofásicas de redes de distribuição trifásicas, bifásicas ou monofásicas. Para o estudo em questão denominamos o dispositivo como FU.

2.2.1.3 Religador - RL

Os religadores são dispositivos de comutação mecânicos independentes usados em sistemas de distribuição para detectar e isolar automaticamente condições de defeito. Apresentam o dispositivo de abertura e fechamento associado diretamente a um relé de proteção que é responsável pelos comandos de abertura e fechamento do dispositivo. O nome religador é baseado em sua capacidade de religar automaticamente e, assim, testar o circuito a jusante

quanto a falhas sustentadas em uma sequência de religamento predeterminada. Os religadores podem ser unidades trifásicas ou monofásicas (SLEVA, 2018).

As redes de distribuição apresentam geralmente religadores dispostos ao longo de toda a sua extensão, propiciando a segregação dela em trechos que visa reduzir a quantidade de clientes interrompidos quando da ocorrência de uma falta e permitir o seccionamento dela quando ocorrer a necessidade. Para o estudo em questão denominamos o dispositivo como RL.

2.2.1.4 Chave Seccionadora – CH

As chaves seccionadoras são dispositivos instalados na rede de distribuição de energia destinados a seccionar os trechos a jusante ou interligar redes. Podem ser monofásicas ou trifásicas podem ser seu acionamento manual ou motorizado, havendo a possibilidade de realizar o mesmo via telecomando. Para o estudo em questão denominamos o dispositivo como CH.

2.3 TRECHOS PROTEGIDOS

Dada a rede exemplo apresentada na Figura 1 quando há uma falta na mesma, dado os dispositivos de proteção instalados na mesma e sua seletividade e coordenação, haverá o desligamento de todo o trecho a jusante do dispositivo de proteção que atuou. A denominação trecho protegido é para a parcela da rede de distribuição que se encontra a jusante do dispositivo de seccionamento mais próximo ao local do defeito até o primeiro dispositivo de seccionamento após o defeito.

A Figura 2 apresenta graficamente o trecho protegido destacado em vermelho, região onde o defeito ocorreu que se encontra entre os dispositivos RL-3, FU-4 e RL-4. Este trecho de rede deve passar por inspeção em campo a fim de verificar o defeito apresentado e corrigi-lo para posterior energização. Os clientes presentes a jusante do RL-3, a priori, estão desligados até a tomada de ação por parte da operação.

SE DJ-1 RL-1 RL-3 RL-4 RL-5 RL-6 DJ-2

NF NF RL-2 CH-1 DJ-3

FU-2

Figura 2 – Rede de distribuição com destaque para o trecho protegido

Fonte: Próprio autor.

2.4 TRECHOS LIVRES

Dada a rede apresentada na Figura 1 Todo trecho que se encontra sem defeito e assim pode ser reenergizado após segregação do defeito a jusante ou a montante do trecho livre. A energização é realizada através do fechamento de chave de interligação ou da própria fonte da rede. A denominação trecho livre é para a parcela da rede de distribuição que se encontra a jusante do dispositivo de seccionamento após o defeito e demais trechos de rede que podem ser energizados.

A Figura 3 apresenta graficamente o trecho livre destacado em verde, região que ficou desligada devido a ocorrência do defeito entre os dispositivos RL-3, FU-4 e RL-4. Os clientes presentes a jusante do RL-3, a priori, estão desligados até a tomada de ação por parte da operação e estão livres para serem energizados a partir de interligações disponíveis.

SE DJ-1 RL-1 RL-3 RL-4 RL-5 RL-6 DJ-2

NF NF NF PU-5 NF NA NF PU-2

Figura 3 – Rede com destaque ao trecho livre

Fonte: Próprio autor.

2.5 MÉTODOS DE DETECÇÃO DE DEFEITO

Este capítulo refere-se aos estudos e trabalhos desenvolvidos com o intuito de detecção de defeito em redes de distribuição de energia elétrica. O capítulo é separado a partir da identificação dos métodos aplicados, funcionalidades agregadas e sua utilização.

2.5.1 Detecção de defeitos através de equipamentos

Sistemas de detecção de defeito baseados em novos equipamentos a serem instalados no sistema de distribuição, seja no início do alimentador ou em pontos específicos na rede de distribuição são uma solução para localização do local do defeito. Dentre os métodos apresentados com os equipamentos indicados podemos destacar dois sistemas, detecção por ondas viajantes e localizadores de falta.

2.5.1.1 Ondas Viajantes

Referências apresentam métodos diversos para detecção do local do defeito onde dividindo em categorias, a primeira utiliza os componentes de alta frequência de correntes e tensões através de ondas viajantes (RANGARI; YADAV, 2018). Este método é semelhante ao proposto para linhas de transmissão e é complexo e oneroso. Onde há no mercado nacional

somente um equipamento que realiza tal proteção utilizando esta metodologia. Que por sua vez é destinado para linhas de transmissão.

A proteção baseada nas ondas viajantes também pode ser aplicada para aumentar a confiabilidade dos sistemas de proteção quando fontes de energia não convencionais estão envolvidas.

A localização de faltas baseada nas impedâncias de um terminal é amplamente utilizada para fornecer diretrizes para que as equipes de manutenção possam encontrar a seção defeituosa em uma linha de transmissão o mais rápido possível. No entanto, este método é afetado por várias condições que podem causar imprecisões na localização da falta, tais como acoplamento mútuo de sequência-zero, erros na modelagem da sequência-zero, não-homogeneidade do sistema, infeeds do sistema, saturação do transformador de corrente, e assim por diante (ZIMMERMAN; COSTELLO, 2005). O método TWFL não é afetado por tais condições e pode fornecer informações extremamente precisas sobre a localização da falta em alguns milissegundos. TWFL baseado em duas extremidades usa os tempos de chegada das ondas viajantes nos terminais local e remoto para estimar a localização da falta. A implementação do método TWFL baseado em um terminal é um desafio, mas não é impossível (ABBOUD; DOLEZILEK, [s.d.]). Usando as informações de apenas um terminal, é possível determinar a localização da falta com base nas diferenças de tempo entre a chegada da primeira onda viajante e a chegada das reflexões da falta

No entanto, as ondas viajantes que são lançadas a partir de uma falta não dependem das fontes de energia; portanto, a proteção baseada em ondas viajantes pode ser aplicada e ajustada para operar corretamente mesmo quando o modelo da fonte de energia não é completamente conhecido.

A (BARSCH et al., 2013) declara que a capacidade de prever e modelar as fontes de corrente de falta é fundamental para ajustar corretamente os relés de proteção, mas isto é muito difícil de ser feito para fontes de energia não convencionais, tais como plantas de energia renováveis.

2.5.1.2 Localizadores de Falta

Outros propõem a implementação de novos equipamentos na rede distribuição (GUILIN et al., 2019), o que pode tornar oneroso o processo.

2.5.2 Detecção do Local do Defeito através de Métodos Matemáticos

Utilização de métodos de estimação de estados para identificação do local do defeito em (JANSSEN; SEZI; MAUN, 2011), utiliza valores compostos de tensão em corrente no nós existentes (módulo e ângulo) para determinação no ponto da falta. Em redes estáticas apresenta índices elevados de assertividade, mas não apresenta manobras e dificuldades em ramos muito próximos de impedância para faltas monofásicas.

Os métodos na segunda categoria usam as tensões e correntes nos terminais dos alimentadores junto aos parâmetros da linha e das cargas para determinação do local do defeito utilizando-se de métodos matemáticos para determinação do local do defeito (M. SPERANDIO et al., 2011) (NEZAMI; DEHGHANI, 2014), (SARVI; TORABI, 2011).

2.6 PROTOCOLO DE COMUNICAÇÃO

A comunicação dos dispositivos de campo com o sistema de monitoramento centralizado apresenta dois requisitos principais a fim de determinar a condição de comunicação e os parâmetros a serem adotados para processamento das informações. Os requisitos são:

- Meio de comunicação estabelece o tipo de link por onde a informação irá trafegar.
 Exemplo satélite, telefonia móvel, fibra óptica etc.
- Protocolo estabelece a linguagem a ser utilizada, entre os dispositivos, para estabelecer a comunicação através do meio.

Os meios de comunicação principais adotados no cenário das distribuidoras de energia no Brasil, por ordem de utilização, são:

- Telefonia Móvel (GPRS, 3G, 4G);
- Rádio:
- Fibra Óptica;
- Satélite;

Os protocolos utilizados para o sistema elétrico são:

- DNP3;
- IEC-60870-5-104;
- IEC-60870-5-101;
- Modbus;
- IEC61850:

• BACnet.

Cada protocolo apresenta sua particularidade quanto a aplicação, forma de uso e interoperabilidade. Diante disso, apresentaremos o DNP3 devido ao mesmo ser utilizado durante o processo deste trabalho, sendo o mesmo responsável pela comunicação de boa parte dos dispositivos da distribuidora estudada.

2.6.1 DNP3 - Distributed Network Protocol version 3

O DNP3 foi originalmente criado pela Westronic, Inc. (GE Harris) em 1990. Em 1993, o DNP3. o conjunto de documentos de especificação do protocolo DNP3 Basic 4 foi lançado em domínio público, entregue por um grupo de usuários em 1993 (MAKHIJA; SUBRAMANYAN, [s.d.]). O desenvolvimento do protocolo DNP3 foi um esforço abrangente para alcançar a interoperabilidade aberta e baseada em padrões entre computadores e dispositivos em subestações, RTUs (*Remote Terminal Units*), IEDs (*Intelligent Electronic Device*) e estações mestres (exceto comunicações entre estações mestres) para a indústria de energia elétrica ("Overview of DNP3 Protocol", [s.d.]). Fora projetado especificamente para aplicações de controle e aquisição de dados e concentra suas informações de aplicação na área de transmissão de dados de concessionárias de energia elétrica ("1379-2000 - IEEE Recommended Practice for Data Communications Between Remote Terminal Units and Intelligent Electronic Devices in a Substation | IEEE Standard | IEEE Xplore", [s.d.]). DNP3 é um protocolo não proprietário que está disponível para qualquer indivíduo através do endereço eletrônico www.dnp.org.

O IEEE adotou DNP3 como IEEE Std 1815-2010 em 23 de julho de 2010. [1] IEEE Std 1815 foi copatrocinado pelo Comitê de Transmissão e Distribuição e Comitê de Subestações da IEEE Power & Energy Society, com informações adicionais dos Usuários DNP Grupo.

Em abril de 2012, o IEEE aprovou a Std 1815-2012 para publicação. IEEE Std 1815-2010 foi descontinuado. A versão 2012 do padrão inclui recursos para Autenticação Segura Versão 5. A versão anterior de autenticação segura em IEEE 1815-2010 usava apenas chaves pré-compartilhadas. A nova versão é capaz de usar a infraestrutura de chave pública e facilita mudanças de chave remotas.

A documentação para implementação e sua especificação principal estão detalhados nos documentos:

• DNP3 - Basic 4 Document Set.

- DNP3 Data Link Layer.
- DNP3 Transport Functions.
- DNP3 Application Layer Specification.
- DNP3 Data Object Library.

O protocolo foi projetado para otimizar a transmissão de informações na aquisição de dados e comandos de controle de uma estação de controle para os dispositivos. Não é um protocolo de uso geral como os encontrados na Internet para transmissão de e-mail, documentos de hipertexto, consultas SQL (*Structured Query Language*), multimídia e arquivos volumosos. Destina-se a aplicações SCADA (*Supervisory Control and Data Acquisition*) ("A DNP3 Protocol Primer", [s.d.]).

O DNP3 possui recursos significativos que o torna robusto, eficiente e interoperável. Comparado a protocolos mais antigos utilizados em subestações, como o Modbus, em compensação o DNP3 apresenta maior complexidade. Ele oferece flexibilidade e funcionalidade, entre seus recursos e flexibilidade, o que inclui:

- Opções de saída;
- Configuração segura/transferência de arquivos;
- Endereçamento para mais de 65.000 dispositivos em um único link;
- Sincronização de temporal e eventos com datação na origem;
- Mensagens de *broadcast*;
- Enlace de dados e confirmação da camada de aplicação;

O DNP3 foi originalmente projetado com base em três camadas do modelo OSI (*Open System Interconnection*) que estabelece as sete camadas para protocolos. As camadas utilizadas pelo DNP3 são:

- Aplicação;
- Enlace de dados;
- Física.

A camada de aplicação é baseada em objetos fornecidos para a maioria dos formatos de dados genéricos. A camada de enlace de dados fornece vários métodos de recuperação de dados, como pesquisa de classes e variações de objetos. A camada física geralmente define uma interface RS-232 ou RS-485 simples ("Features of DNP3", [s.d.]). Diante destas camadas o protocolo proporciona detecção de erros através do uso intenso de códigos de verificação de redundância cíclica, garantindo integridade na troca de informações.

As mensagens da camada de aplicação são fragmentadas. O tamanho máximo de cada fragmento é determinado pelo tamanho do buffer do dispositivo receptor (não padronizado). O intervalo normal é de 2048 a 4096 bytes.

Observe que um fragmento de camada de aplicação de tamanho 2.048 deve ser dividido em 9 frames pela camada de transporte, e um tamanho de fragmento de 4.096 precisa de 17 frames. A experiência demonstra que, para sistemas que operam em ambientes de alto ruído, as comunicações por vezes são mais bem-sucedidas se o tamanho do fragmento for significativamente reduzido. ("A DNP3 Protocol Primer", [s.d.])

Nas comunicações de campo, o uso racional da banda de comunicação é um diferencial, assim o DNP3 apresenta uma eficiência aprimorada quanto a largura. Esta eficiência é obtida através de relatórios de dados orientados a eventos, organizados em três buffers associados às "Classes" 1, 2 e 3. O dispositivo monitora todos os pontos de dados e gera eventos quando os dados devem ser reportados (por exemplo, quando muda o valor). Cada um desses eventos é colocado em um dos três buffers, associados às "Classes" 1, 2 e 3. Além desses, a Classe 0 é definida como o status "estático" ou atual dos dados monitorados.

O DNP3 foi desenvolvido com os seguintes objetivos:

- a. Alta integridade de dados: O DNP3 a camada de Data Link usa uma variação do formato de quadro IEC 870-5-1 (1990) do FT3. Ambos os quadros da camada de enlace de dados e as mensagens da camada de aplicação podem ser transmitidos usando o serviço de confirmação.
- b. Estrutura Flexível: A Camada de Aplicação do DNP3 é baseada em objeto, com uma estrutura que permite uma variedade de implementações, mantendo a interoperabilidade.
- c. Múltiplas aplicações: DNP3 pode ser usado em vários modos, incluindo:
 - 1) Somente polling;
 - 2) Relatório de polling por exceção;
 - 3) Relatório por exceção não solicitado (modo inativo);
 - 4) Mescla dos modos 1) 3).

Também pode ser usado com várias camadas físicas, e um protocolo em camadas é adequado para operação em redes locais e algumas redes de longa distância.

d. Fluxo de dados minimizada: o DNP3 foi projetado para links de dados de pares de fios existentes, com taxas de bits operacionais tão baixas quanto 1200 b/s, e tenta usar um mínimo da banda de transmissão enquanto mantém a flexibilidade. A seleção do método de relatório de dados, como relatório por exceção, reduz ainda mais o fluxo de dados.

e. Padrão aberto: DNP3 é um padrão em evolução não proprietário controlado por um grupo de usuários cujos membros incluem fornecedores de RTU, IED e estação principal e representantes da comunidade de consultoria de sistemas e concessionárias de energia elétrica.

O protocolo proporciona uma série de arquiteturas de operação, Figura 4. Operando no modo Mestre/Escravo, permite a comunicação par-a-par, múltiplos escravos (Multi-drop), hierarquizado permitindo a segregação de redes. A operação como concentrador de dados, convertendo protocolos de campo para DNP3 e vice-versa e envio para níveis superiores.

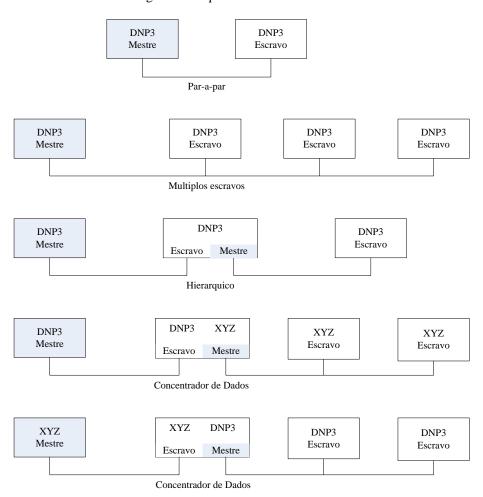


Figura 4 - Arquiteturas de uso do DNP3

Fonte: Adaptado de ("A DNP3 Protocol Primer", [s.d.])

Em termos do modelo OSI (*Open System Interconnection*) para redes, DNP3 especifica um protocolo de camada 2. Ele fornece multiplexação, fragmentação de dados, verificação de erros, controle de link, priorização e serviços de endereçamento da camada 2 para dados do

usuário. Ele também define uma função de transporte (algo semelhante à função da camada 4) e uma camada de aplicação (camada 7) que define funções e tipos de dados genéricos adequados para aplicações SCADA comuns. O quadro DNP3 se assemelha bastante, mas não é idêntico ao quadro IEC 60870-5 FT3. Ele faz uso intenso de códigos de verificação de redundância cíclica para detectar erros.

2.6.1.1 Variações

O DNP3 possui provisões para representar dados em diferentes formatos. O exame dos formatos de dados analógicos é útil para entender a flexibilidade do DNP3. Dados estáticos, de valor presente e analógicos podem ser representados por números de variação como segue:

- 1. Valores inteiros de 32-bit com sinalizador;
- 2. Valores inteiros de 16-bit com sinalizador;
- 3. Valores inteiros de 32-bit:
- 4. Valores inteiros de 16-bit;
- 5. Valores de ponto flutuante de 32-bit com sinalizador;
- 6. Valores de ponto flutuante de 64-bit com sinalizador.

O sinalizador referido é um único octeto com campos de bit indicando o estado da fonte, indicando se está: on-line, em reinicialização, as comunicações foram perdidas com uma fonte *downstream*, com os dados forçados e, com o valor acima do intervalo.

Nem todos os dispositivos DNP3 podem transmitir ou interpretar todas as seis variações. Os dispositivos DNP3 devem ser capazes de transmitir as variações mais simples para que qualquer receptor possa interpretar o conteúdo.

Os dados analógicos do evento podem ser representados por estas variações:

- 1. Valores inteiros de 32-bit com sinalizador;
- 2. Valores inteiros de 16-bit com sinalizador;
- 3. Valores inteiros de 32-bit com sinalizador e data-hora do evento;
- 4. Valores inteiros de 16-bit com sinalizador e data-hora do evento;
- 5. Valores de ponto flutuante de 32-bit com sinalizador;
- 6. Valores de ponto flutuante de 64-bit com sinalizador;
- 7. Valores de ponto flutuante de 32-bit com sinalizador e data-hora do evento;
- 8. Valores de ponto flutuante de 64-bit com sinalizador e data-hora do evento.
 - O sinalizador tem os mesmos campos de bits das variações estáticas.

2.6.1.2 Funcionamento

A Unidade Terminal Remota é inicialmente interrogada com o que DNP3 denomina uma "Pesquisa de Integridade" (uma leitura combinada de dados de Classe 1, 2, 3 e 0). Isso faz com que a unidade terminal remota envie todos os eventos armazenados em buffer e todos os dados do ponto estático para a estação mestre. Em seguida, o Mestre pesquisa os dados do evento lendo a Classe 1, Classe 2 ou Classe 3. A leitura das classes pode ser realizada em conjunto ou cada classe pode ser lida em uma taxa diferente, fornecendo um mecanismo para criar diferentes prioridades de relatório para as diferentes classes. Após uma pesquisa de integridade, apenas alterações significativas de dados são enviadas. Isso pode resultar em uma recuperação de dados significativamente mais responsiva do que pesquisar tudo, o tempo todo, independentemente de ter mudado significativamente.

A Unidade Terminal Remota também pode ser configurada para relatar espontaneamente dados de Classe 1, 2 ou 3, quando estiverem disponíveis.

O protocolo DNP3 suporta sincronização de tempo com uma RTU. O protocolo DNP possui variantes com carimbo de data / hora de todos os objetos de dados de ponto para que, mesmo com *polling* pouco frequente da RTU, ainda seja possível receber dados suficientes para reconstruir uma sequência de eventos do que aconteceu entre os *polls*.

O protocolo DNP3 possui uma biblioteca substancial de objetos orientados a pontos comuns. O foco desta extensa biblioteca era eliminar a necessidade de dados de mapeamento de bits sobre outros objetos, como geralmente é feito em muitas instalações Modbus. Por exemplo, variantes de número de ponto flutuante estão disponíveis, portanto, não há necessidade de mapear o número em um par de registradores de 16 bits. Isso melhora a compatibilidade e elimina problemas como *endianness*.

Uma Unidade Terminal Remota para o protocolo DNP3 pode ser um dispositivo embutido pequeno e simples, ou pode ser um rack grande e complexo cheio de equipamentos. O Grupo de usuários DNP estabeleceu quatro níveis de subconjuntos do protocolo para conformidade com a RTU. O DNP *Users Group* publicou procedimentos de teste para os Níveis 1 e 2, as implementações mais simples.

O protocolo é robusto, eficiente e compatível com uma ampla gama de equipamentos, mas se tornou mais complexo e sutil com o tempo. Aplicações industriais cada vez mais exigentes são parte do desafio. Além disso, os conceitos do SCADA são tecnicamente simples, mas as aplicações de campo que integram vários tipos de equipamentos podem se tornar

complexas para configurar ou solucionar problemas devido a variações nas implementações do fornecedor.

3. MÉTODO DE AGRUPAMENTO DOS DADOS DIGITAIS E ANALÓGICOS

Nesse capítulo será apresentada a metodologia utilizada para tratamento das informações dos equipamentos telecomandados, resultando em dados unificados para tratamento dos eventos. Também serão apresentadas as lógicas de agrupamento e tratamento dos diversos tipos de sinalizações presentes nos equipamentos bem como a forma de tratamento dos diversos métodos de comunicação utilizados. As informações destes tratamentos devem indicar a condição atual dos equipamentos para posterior processamento de validação e indicação dos trechos sob defeito e dos trechos livres para energização.

3.1 PREMISSAS E INFORMAÇÕES

O método de agrupamento dos dados digitais e analógicos dos equipamentos, denominado interpretador de alarmes, deve coletar as informações, tratar quando aplicável, e apresentar a condição e o estado atual dos equipamentos de forma ordenada. Estas informações são coletadas através de comunicação com o sistema SCADA, na falta desta, o operador deve ter a possibilidade de inserir esta informação manualmente, a fim de alimentar o sistema.

3.2 PONTOS DE IDENTIFICAÇÃO E DATAÇÃO

A primeira etapa do processo de tratamento das informações é a de identificação e datação das informações digitais. Cada equipamento deve ser único, estabelecendo-se como uma chave primária para o processamento. Juntamente a identificação, a datação dos eventos e alarmes na origem é essencial, pois permite estabelecer a diferença entre o momento da ocorrência do evento que provém do campo e do momento da finalização do processamento, permitindo estabelecer uma sequência cronológica dos eventos entre todos os equipamentos envolvidos, independente do meio de comunicação.

Assim seguem especificações das informações:

- SUBSTN.DEVTYP Identifica o equipamento e o seu tipo, concatenando estas informações. No sistema utilizado concatena os dados do equipamento presentes tabela de chaves primárias DIGITAL_KEY;
- FIELD_TIME Data e hora proveniente do registro do equipamento em campo, utilizado para determinação do instante de início do evento e associação entre sinalizações de diferentes equipamentos;
- PROC_TIME Data e hora gerada pelo sistema de agrupamento para indicação do instante em que o processo de agrupamento de análise é concluída. Valor interno para uso em validações não apresentado ao usuário.;

3.2.1 SUBSTN.DEVTYP

Informação alfanumérica que tem por finalidade identificador o equipamento telecomandado a que se referem as informações. Utiliza-se os identificadores do sistema existente a fim de garantir a utilização de informações já existentes e de garantia que não haverá duplicidade de equipamentos. O campo DEVTYP apresenta o tipo de equipamento, há a necessidade de utilização para identificação dos alimentadores das subestações, a Tabela 3.1 apresenta o resumo do campo. Segue exemplo da sequência:

- SLE.AL1 identificação de um alimentador;
- ALE00012.REL identificação de um religador;
- AGU03058.REG identificação de um regulador;
- 1023568.CHA identificação de uma chave tripolar

Tabela 3.1 - Campo para identificação do equipamento - SUBSTN.DEVTYP

Campo	Tipo	Descrição
SUBSTN.DEVTYP	Alfanumérico	Código alfa numérico de identificação dos equipamentos.

Fonte: Próprio Autor

3.2.2 FIELD_TIME

Informação de data e hora proveniente do equipamento de campo obtida extraída a partir do recebimento de eventos do evento gerado pelos pontos digitais que são gerados a partir de atuações de proteção, bloqueio de funções ou alteração do estado do dispositivo. No caso em

que há processamento das informações, utiliza-se o valor de FIELD_TIME mais antigo. A Tabela 3.2 apresenta um resumo do campo.

Nos casos de agrupamento e/ou lógica dos pontos vinculados a proteção e sinalização de bloqueio, a informação de data e hora deverá ser a do equipamento de campo. A utilização de data e hora da base da dados ou de processamento acarretará a perda de informação e de vínculo entre as informações de outros equipamentos.

Tabela 3.2 – Campo para datação do evento - FIELD_TIME

Campo	Tipo	Descrição
FIELD_TIME	Estampa de tempo	Data e hora do evento proveniente dos alarmes do
		equipamento.

Fonte: Próprio Autor

3.2.3 PROC_TIME

Informação de data e hora proveniente do sistema de processamento e agrupamento das informações. Representa o instante em que o sistema realizou o processamento de todas as informações e apresentou o resultado para o operador. Tabela 3.3 apresenta um resumo do campo.

A diferença entre o PROC_TIME e FIELD_TIME representa o tempo total da solução já acrescidas as latências dos meios de comunicação, obtenção dos dados relevantes e processamento geral das informações, acrescido da janela de tempo utilizada para recebimento de todas as informações.

Tabela 3.3 - Campo para datação do término do processamento - PROC_TIME

Campo	Tipo	Descrição
PROC_TIME	Estampa de tempo	Data e hora do término do processamento das informações.

3.3 PONTOS DIGITAIS DO SISTEMA SCADA

Baseado em sistemas de identificação de região de defeito (ANL, 2013) e em eventos reais analisados juntamente com os alarmes e sinalizações disponíveis nos equipamentos no sistema SCADA, os pontos digitais foram determinados e indicados conforme segue:

- EST Sinaliza o estado do religador equipamento podendo ser Ligado,
 Desligado ou Indefinido. Esta informação pode ser inserida manualmente;
- STAT Sinaliza a condição do equipamento quanto a sua troca de estado (EST) foi quanto a origem devido da alteração se ocorreu devido a defeito atuação de proteção ou manobra (comandado)comando realizado pelo operador. Os estados previstos são normal, comandado ou proteção;
- COMM Sinalização da condição de comunicação do equipamento nos estados comunicando ou não comunicando;
- MODO Sinalização do modo de operação do religadorequipamento quanto a as funções de proteção habilitadas sendo:
 - , podendo ser Proteção função de interrupção da carga quando ocorrer um defeito a jusante do equipamento, que sensibilize as funções de proteção programadas;
 - Seccionalizador ou função de seccionar trecho de rede a jusante após detecção de sequência de defeitos a jusante;
 - Chave função de seccionar trecho de rede sem proteção programada, podendo sinalizar a sensibilização de proteções sem atuação. Esta informação pode ser inserida manualmente devido a possibilidade de alteração do estado por parte do operador ou equipe em campo;
- DISP Sinalização da disponbilidade do equipamento para operação remota, considerando os alarmes de disponibilidade e chaves de seleção de comando do equipamento.
 O estados são disponível ou indisponível. Esta informação pode ser inserida manualmente;
- FTCA Sinalização da condição de alimentação do equipamento e consequentemente da rede distribuição ao qual o mesmo está instalado. Os estados previstos são normal ou falta CAEsta informação pode ser inserida manualmente;
- PROT Sinalização do tipo de falta extinta pelo equipamento sendo elas: monfásica, bifásica, bifásica a terra, trifásica, ou *Sensitive Ground Fault* (SGF) ou outra;

- BLOQ Sinalização de bloqueio do equipamento quando não há sucesso no(s)
 ciclo(s) de religamento. A partir desta sinalização o processo de verificação do trecho livre e protegido é iniciado;
- INCSGF Sinalização de habilitação da função de proteção Sensitive Ground
 Fault (SGF);
- INC51N Sinalização de habilitação da função de proteção temporizada de Neutro - 51N;
- INC79 Sinalização de habilitação da função de proteção de religamento automático - 79:

As informações são geradas a partir dos pontos digitais dos equipamentos, onde havendo a necessidade aplica-se lógicas combinacionais ou sequencias para obtenção da informação. A utilização das informações de diferentes origens com o intuito de apresentar uma lógica unificada para todos os equipamentos disponíveis, assim o detalhamento de cada ponto e seu tipo de equipamento de origem pode ser verificado no APÊNDICE A. A maior parte das informações de processamento apresentam a opção de inserção manual da informação, a entrada é indicada pelo nome do ponto seguido do sufixo -M.

O detalhamento destas sinalizações segue nos próximos subcapítulos.

3.3.1 Estado do Equipamento - EST

Indica o estado atual do equipamento de forma digital, sendo os estados possíveis: ligado e desligado. No caso estudado esta informação é proveniente de um ponto duplo que indica quatro possibilidades, acrescentando os estados indeterminado e indefinido. Para estes casos o processamento força a indicação destas duas possibilidades não contempladas como desligado. A Figura 5 apresenta a lógica desenvolvida para sinalização da informação. A Tabela 3.1 apresenta os estados possíveis de saída.

SUBSTN.DEVTYP_EST2

SUBSTN.DEVTYP_DIFI

SUBSTN.DEVTYP_EST

SUBSTN.DEVTYP_EST

SUBSTN.DEVTYP_EST

SUBSTN.DEVTYP_EST

SUBSTN.DEVTYP_EST-M

LEGENDA:

Informação proveniente da classe de religadores e chaves

Informação proveniente da classe de de isjunitores associados ao respectivo relé de proteção

Informação apresenta possibilidade de ser inserida de forma manual

Resultado da lógica de agrupamento

Figura 5 – Lógica utilizada para sinalização do ponto EST

Tabela 3.4 – Estados possíveis ponto EST

Descrição	Campo	Valor
Equipamento DESLIGADO	EST	0
Equipamento LIGADO	EST	1

Fonte: Próprio Autor

3.3.2 Situação da Comunicação - COMM

Sinalização digital para indicação do estado da comunicação com o equipamento. Esta sinalização utiliza a propriedade *GOOD* que se utiliza da informação de qualidade da informação, proveniente do protocolo de comunicação, paras os pontos analógicos de corrente IA, IB e IC e armazenadas na base de dados. A associação é dada pelo conjunto das informações de qualidade adicionado a um temporizador do tipo *Time Off Delay* para permitir uma temporização da indicação de comunicação do equipamento. A Figura 6 apresenta a lógica desenvolvida para sinalização da informação.

Foram adotados os valores de corrente pelo fato delas possuírem menor quantidade de variantes na base de dados utilizada e presente em todos os equipamentos utilizados para a solução. Como características dos sistemas de monitoramento e particularmente o utilizado para os testes, os dados analógicos são armazenados ciclicamente em intervalos de 60s independentemente da condição da comunicação com o equipamento de campo, sendo armazenado o último valor válido recebido no intervalo de tempo mencionado. Os dados digitais são armazenados pelo método de exceção, ou seja, somente quando o equipamento de campo envia atualização das informações ou em uma mudança de estado. A Tabela 3.5 apresenta os estados possíveis de saída.

LEGENDA: Informação proveniente da classe de religadores e chaves SUBSTN.DEVTYP_IA_GOOD Informação proveniente da classe de disjuntores associados ao respectivo relé de proteção SUBSTN.DEVTYP IB GOOD SUBSTN.DEVTYP_IC_GOOD Informação apresenta possibilidade de ser inserida de forma manual SUBSTN.DEVTYP_COMM SUBSTN.DEVTYP_IA_GOOD Resultado da lógica de agrupamento TOFF t=180s Informação interna para controle de processo $SUBSTN.DEVTYP_IB_GOOD$ $SUBSTN.DEVTYP_IC_GOOD$ Resultado da lógica de agrupamento

Figura 6 – Lógica de indicação da comunicação

Tabela 3.5 – Estados possíveis ponto COMM

Descrição	Campo	Valor
Equipamento sem comunicação/falha	COMM	0
Equipamento comunicando	COMM	1

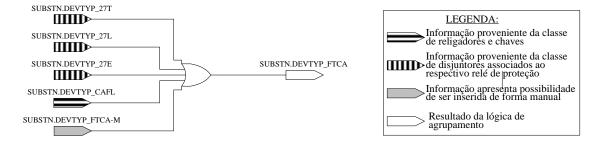
Fonte: Próprio Autor

3.3.3 Verificação de Disponibilidade - DISP

Sinalização que tem por finalidade indicar a condição quanto a disponibilidade do equipamento para a operação através do meio de comunicação. Implica na validação do estado de permissão de controle remoto, quanto a alarmes críticos ou demais informações que indisponibilizarão a operação remota do equipamento. A Figura 7 apresenta a lógica desenvolvida para sinalização da informação. A Tabela 3.6 apresenta os estados possíveis de saída.

SUBSTN.DEVTYP_43LR LEGENDA: SUBSTN.DEVTYP_DR Informação proveniente da classe de religadores e chaves SUBSTN.DEVTYP_DREL Informação proveniente da classe de disjuntores associados ao respectivo relé de proteção $SUBST\underline{N.DEVTYP_DRIF}$ Informação apresenta possibilidade de ser inserida de forma manual SUBSTN.DEVTYP_FALH Resultado da lógica de agrupamento SUBSTN.DEVTYP_HLT SUBSTN.DEVTYP_MLRE SUBSTN.DEVTYP_43LR SUBSTN.DEVTYP_43TC SUBSTN.DEVTYP_BBA1 SUBSTN.DEVTYP_BBAB SUBSTN.DEVTYP_BBFC SUBSTN.DEVTYP_BFC SUBSTN.DEVTYP_SF6 SUBSTN.DEVTYP_CCMO SUBSTN.DEVTYP_43TC SUBSTN.DEVTYP_CATF SUBSTN.DEVTYP_SF6B SUBSTN.DEVTYP_SF6I SUBSTN.DEVTYP_BBA2 SUBSTN.DEVTYP_DISP SUBSTN.DEVTYP_CAB $\times\!\!\times\!\!\!\times$ SUBSTN.DEVTYP_CCCO SUBSTN.DEVTYP_MOLA SUBSTN.DEVTYP_BLV $SUBSTN.DEVTYP_MDCM$ SUBSTN.DEVTYP_CAB1 SUBSTN.DEVTYP_CAB2 SUBSTN.DEVTYP_CACO SUBSTN.DEVTYP_MDCA SUBSTN.DEVTYP_RGBL SUBSTN.DEVTYP_DR SUBSTN.DEVTYP_DISP-M

Figura 7 – Lógica de sinalização da disponibilidade


Tabela 3.6 – Estados possíveis ponto MODO

Descrição	Campo	Valor
Equipamento INDISPONÍVEL	DISP	0
Equipamento DISPONÍVEL	DISP	1

3.3.4 Falta de Alimentação - FTCA

Sinalização da condição de ausência de tensão na fonte de alimentação do equipamento que é proveniente da rede de distribuição. Informação não apresenta temporização a fim de permitir a rápida atuação em caso de desarmes. A Figura 8 apresenta a lógica desenvolvida para sinalização da informação. A Tabela 3.7 apresenta os estados possíveis de saída.

Figura 8 – Lógica de indicação da sinalização de Falta CA

Fonte: Próprio Autor

Tabela 3.7 – Estados possíveis ponto FTCA

Descrição	Campo	Valor
Equipamento SEM falta CA	FTCA	0
Equipamento COM falta CA	FTCA	1

3.3.5 Religamento Sem Sucesso - BLOQ

Sinalização apresenta que o equipamento de proteção realizou seu(s) ciclo(s) de religamento sem sucesso, permanecendo desligado. Esta informação é utilizada para iniciar o processamento de análise do trecho livre e protegido.

O bloqueio é indicado de duas formas: através da sinalização interna do equipamento ou de lógica combinacional. A Figura 9 apresenta utilizada para sinalização desta informação. A Tabela 3.8 apresenta os estados possíveis de saída.

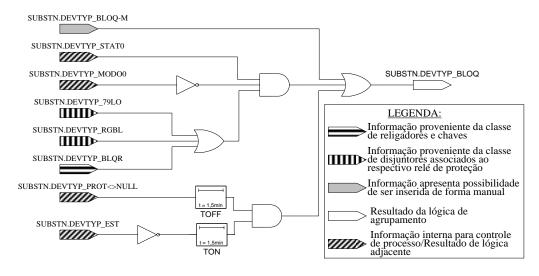


Figura 9 – Lógica de indicação de bloqueio

Fonte: Próprio Autor

Tabela 3.8 – Estados Possíveis BLOQ

Descrição	Campo	Valor
Equipamento NÃO bloqueado	BLOQ	0
Equipamento BLOQUEADO	BLOQ	1

Fonte: Próprio Autor

3.3.6 Estado da Proteção SGF - ISGF

Sinalização da ativação da função de proteção SGF, a Figura 10 apresenta a lógica utilizada, sendo neste caso uma sinalização direta, não necessitando de tratamento.

Figura 10 - Lógica de sinalização da inclusão da proteção SGF

A Tabela 3.9 apresenta os estados possíveis de saída.

Tabela 3.9 – Estados Possíveis ISGF

Descrição	Campo	Valor
Proteção EXCLUÍDA	ISGF	0
Proteção INCLUÍDA	ISGF	1

Fonte: Próprio Autor

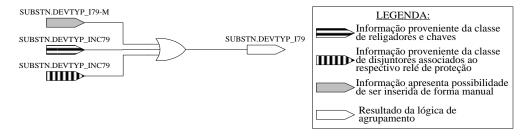
3.3.7 Estado da Proteção de Neutro - I51N

Sinalização da ativação da função de proteção de sobrecorrente de neutro temporizada 51N, a Figura 11 apresenta a lógica utilizada, sendo neste caso uma sinalização direta, não necessitando de tratamento.

Figura 11 – Lógica de sinalização da inclusão da proteção de neutro 51N

A Tabela 3.10 apresenta os estados possíveis de saída.

Tabela 3.10 – Estados Possíveis I51N


Descrição	Campo	Valor
Proteção EXCLUÍDA	I51N	0
Proteção INCLUÍDA	I51N	1

Fonte: Próprio Autor

3.3.8 Estado da Função de Religamento Automático - I79

Sinalização da ativação da função de religamento automático 79, a Figura 12 apresenta a lógica utilizada, sendo neste caso uma sinalização direta, não necessitando de tratamento.

Figura 12 – Lógica de sinalização da inclusão da função de religamento automático

Fonte: Próprio Autor

A Tabela 3.11 apresenta os estados possíveis de saída.

Tabela 3.11 – Estados Possíveis I79

Descrição	Campo	Valor
Proteção EXCLUÍDA	I79	0
Proteção INCLUÍDA	I79	1

3.4 Pontos Digitais Compostos Do Sistema SCADA

Dando sequência as informações digitais, há os dados digitais que associados apresentam valores analógicos para melhor tratamento computacional, denominados assim de digitais compostos. Estas informações podem ser utilizadas bit a bit ou o com o valor composto com o uso de todos os bits.

3.4.1 Condição Referente ao Estado - STAT

Sinaliza a circunstância em que o equipamento sofreu alteração de estado quanto a manobra ou defeito. Esta sinalização advém do processamento de comandos realizados e/ou sinalização proteção atuada, juntamente com o estado do equipamento.

Tendo em vista que para tal sinalização se faz uso de lógica sequencial, se faz necessário a criação de um "RESET" a fim de normalizar o ponto de forma cíclica. Este procedimento pode ser realizado 5min após a alteração do estado do equipamento ou automaticamente quando ocorrer alteração de sua posição. A Figura 13 apresenta a lógica utilizada.

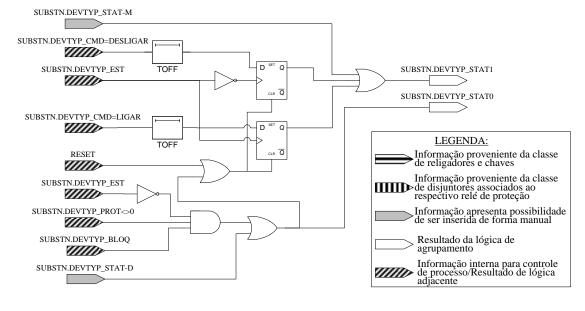
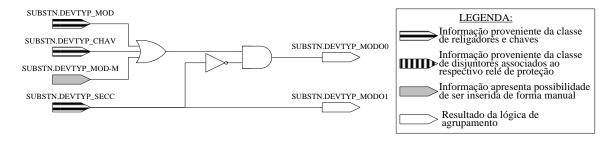


Figura 13 – Lógica de indicação de status "Manobrado"

A Tabela 3.12 apresenta os estados possíveis de saída.


Tabela 3.12 – Valores Indicação STAT

Descrição	Valor / Estado	
Indicação de status do equipamento se manobrado ou não	STAT1	STAT0
Equipamento Ok	0	0
Equipamento Eliminou Defeito	0	1
Equipamento Manobrado	1	0
Não permitido / inexistente	1	1

3.4.2 **MODO**

Sinalização da função do modo de operação do religador quanto as funções de proteção habilitadas. Atendendo a premissa de que haja coordenação entre as proteções dos dispositivos instalados na rede de distribuição utiliza-se o recurso de transformar religadores em simples chaves tripolares telecomandadas ou operando como seccionalizadores, além da operação como religador. Esta informação determina se o equipamento irá atuar na existência de uma falta a jusante, dentro de sua região de proteção ou se somente irá sinalizar a passagem de corrente de defeito. A Figura 14 apresenta a lógica utilizada.

Figura 14 – Lógica de sinalização do modo de operação do equipamento

Fonte: Próprio Autor

Nos alimentadores esta informação é suprimida tendo em vista que todos operam com as proteções habilitadas, não havendo outras formas de operação. A Tabela 3.13 apresenta os estados possíveis de saída.

Tabela 3.13 – Valores possíveis da informação MODO

Descrição	Valor / Estado			
Indicação do modo de operação do equipamento	MODO1	MODO0		
Equipamento em modo RELIGADOR (proteção)	0	0		
Equipamento em modo CHAVE	0	1		
Equipamento em modo SECCIONALIZADOR	1	X		

3.4.3 **PROT**

Sinaliza o tipo de falta atuada ou sinalizada pelos equipamentos a partir das indicações de cada equipamento. Esta informação é composta por dados digitais agrupados de forma a compor uma informação analógica conforme segue. A Figura 15 apresenta a lógica utilizada.

O bit menos significativo do ponto PROT (2⁰), denominado PROT0, é a sinalização da proteção monofásica. A priori a sinalização dos equipamentos é composta pela indicação do ponto de neutro (N) ou a somente uma fase atingida (FA, FB ou FC). Utilizando-se uma forma exclusiva pode-se determinar que havendo a sinalização de somente uma fase associada a sinalização de neutro teremos a extinção de uma falta monofásica, isso se a proteção 51N estiver habilitada/incluída.

SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_5FA LEGENDA: Informação proveniente da classe de religadores e chaves SUBSTN.DEVTYP_FB Informação proveniente da classe de disjuntores associados ao respectivo relé de proteção SUBSTN.DEVTYP_FB Informação apresenta possibilidade de ser inserida de forma manual SUBSTN.DEVTYP_5FB Resultado da lógica de agrupamento SUBSTN.DEVTYP_FC Informação interna para controle de processo/Resultado de lógica adjacente SUBSTN.DEVTYP_FC SUBSTN.DEVTYP_5FC SUBSTN.DEVTYP_51N SUBSTN.DEVTYP_51N1 SUBSTN.DEVTYP_51N2 SUBSTN.DEVTYP_5N SUBSTN.DEVTYP_N SUBSTN.DEVTYP_PROT0 SUBSTN.DEVTYP_50N SUBSTN.DEVTYP_50N1 SUBSTN.DEVTYP_50N2 SUBSTN.DEVTYP_50N3 SUBSTN.DEVTYP_51N1 SUBSTN.DEVTYP_51N2 SUBSTN.DEVTYP_51FN1 $SUBSTN.DEVTYP_5FN$ SUBSTN.DEVTYP_50FN SUBSTN.DEVTYP_51N SUBSTN.DEVTYP_50N SUBSTN.DEVTYP_I51N

Figura 15 - Lógica de indicação do tipo de falta Monofásica

SUBSTN.DEVTYP_PROT0-M

O próximo bit do ponto PROT (2¹), denominado PROT1, sinaliza faltas do tipo bifásica. Em faltas do tipo bifásica + terra o ponto PROT1 é sinalizado juntamente com o ponto PROT0. A Figura 16 apresenta a lógica utilizada.

SUBSTN.DEVTYP_PROT1 SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_5FA LEGENDA: SUBSTN.DEVTYP_FB Informação proveniente da classe de religadores e chaves SUBSTN.DEVTYP_FB Informação proveniente da classe de disjuntores associados ao respectivo relé de proteção SUBSTN.DEVTYP_5FB Informação apresenta possibilidade de ser inserida de forma manual SUBSTN.DEVTYP_FC Resultado da lógica de agrupamento SUBSTN.DEVTYP_FC Informação interna para controle de processo/Resultado de lógica adjacente SUBSTN.DEVTYP_5FC SUBSTN.DEVTYP_PROT1 SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_5FA SUBSTN.DEVTYP_FB SUBSTN.DEVTYP_FB SUBSTN.DEVTYP_5FB SUBSTN.DEVTYP_FC SUBSTN.DEVTYP_FC SUBSTN.DEVTYP_5FC SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_FA SUBSTN.DEVTYP_5FA SUBSTN.DEVTYP_FB SUBSTN.DEVTYP_FB SUBSTN.DEVTYP_5FB SUBSTN.DEVTYP_FC SUBSTN.DEVTYP_FC SUBSTN.DEVTYP_5FC

Figura 16 – Lógica de indicação do tipo de falta Bifásica

O bit PROT2 (2²) sinaliza a proteção trifásica que é caracterizada pela sensibilização das 3 fases, FA, FB e FC. Juntamente a esta proteção foram associadas as proteções de fase instantânea 50F. A fim de evitar indicações indevidas há um bloqueio de sinalização quando da atuação de qualquer proteção à terra. A Figura 17 apresenta a lógica utilizada.

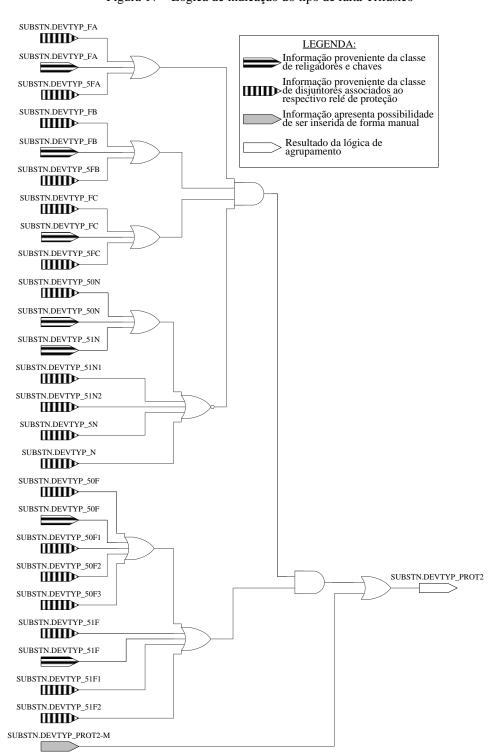


Figura 17 – Lógica de indicação do tipo de falta Trifásico

A atuação da proteção do tipo SGF altera a avaliação da rede, por isso se faz necessário uma sinalização distinta em PROT dada em PROT3 (2³). Qualquer outra indicação não é considerada e sua sinalização é simples através de uma lógica do tipo E entre a sinalização do equipamento e o estado de inclusão desta proteção. A Figura 18 apresenta a lógica utilizada.

SUBSTN.DEVTYP_SGFT

SUBSTN.DEVTYP_PROT3

LEGENDA:
Informação proveniente da classe de religadores e chaves
Informação proveniente da classe de disjuntores associados ao respectivo relé de proteção
Informação apresenta possibilidade de ser inserida de forma manual

Resultado da lógica de agrupamento

Figura 18 - Lógica de indicação de falta do tipo SGF

Fonte: Próprio Autor

O bit mais significativo de PROT apresenta as demais proteções em PROT4 (2⁴). Estas proteções são apresentadas na sua maioria nas subestações e seus alimentadores, auxiliando nas recomposições dos sistemas. Trata-se de uma lógica "OU" com as proteções não listadas anteriormente, como frequência, tensão, diferencial, transferência de disparo entre outras. A Figura 19 apresenta a lógica utilizada.

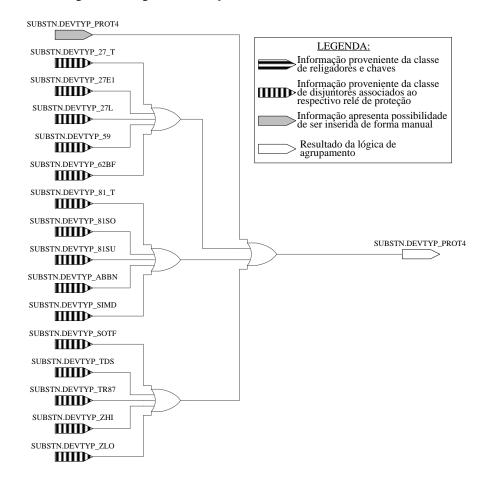


Figura 19 - Lógica de indicação das demais faltas em Alimentadores

A Tabela 3.14 apresenta os estados possíveis das saídas.

Tabela 3.14 – Tabela de Resultados Função PROT

Descrição	Valor / Estado						
Indicação de atuação da proteção, de forma geral	PROT4	PROT3	PROT2	PROT1	PROT0		
Não houve atuação da proteção	0	0	0	0	0		
Atuação da proteção monofásica	0	0	0	0	1		
Atuação da proteção bifásica	0	0	0	1	0		
Atuação da proteção bifásica + terra	0	0	0	1	1		
Atuação da proteção trifásica	0	0	1	0	0		
Atuação da proteção SGF	0	1	X	X	X		
Atuação de outras proteções	1	X	X	X	X		

3.5 Pontos Analógicos Do Sistema SCADA

As informações seguintes tratam dos dados analógicos utilizados para o processamento das informações. Como padrão aplicado pela distribuidora e avaliado neste trabalho, as informações não apresentam estampa de tempo e não são bufferizados. Esta estratégia, dentre outras vantagens, a principal é de redução do consumo da banda de comunicação e volume de dados enviados.

As informações utilizadas seguem nos subcapítulos, sendo todas as informações comum para equipamentos do tipo religador, chave e disjuntor.

3.5.1 Correntes das Fases

As correntes dos equipamentos são informações importantes para utilização em estimadores de estados, que apresentam o intuito de otimizar e apurar os dados de carregamento do sistema sob análise. Neste sistema não se engloba cálculos de fluxo de potência, somente análise de eventos. Para estas informações não há tratamento dos dados, sendo as informações diretas do sistema.

- IA Corrente da fase A;
- IB Corrente da fase B;
- IC Corrente da fase C;
- N Corrente de neutro.

3.5.2 Correntes de Curto-Circuito

As correntes dos equipamentos são informações importantes para utilização em estimadores de estados, que apresentam o intuito de otimizar e apurar os dados de carregamento do sistema sob análise. Neste sistema não se engloba cálculos de fluxo de potência, somente análise de eventos. A informação é armazenada pelo equipamento no instante em que há o *pickup* de qualquer proteção habilitada. Havendo o *trip* subsequente, o valor é registrado no dispositivo e enviado para o sistema de monitoramento.

- IACC Corrente de curto-circuito detectada na fase Aquando da atuação da proteção;
- IBCC Corrente de curto-circuito detectada na fase B quando da atuação da proteção;
- ICCC Corrente de curto-circuito detectada na fase C quando da atuação da proteção.

3.5.3 Pick-up 51F

Valor analógico com a informação de pick-up da função de sobrecorrente de fase temporizada. Esta informação pode ser proveniente do equipamento de campo ou inserida manualmente no sistema.

3.5.4 Pick-up 51N

Valor analógico com a informação de pick-up da função de sobrecorrente de neutro temporizada. Esta informação pode ser proveniente do equipamento de campo ou inserida manualmente no sistema.

3.5.5 Pick-up SGF

Valor analógico com a informação de pick-up da função sensitiva da terra temporizada. Esta informação pode ser proveniente do equipamento de campo ou inserida manualmente no sistema.

3.6 TAXA DE AMOSTRAGEM E VALORES DE TEMPO

Dadas as informações dos sistemas digitais há a necessidade de se estabelecer as taxas de atualização a fim de garantir a correta utilização de todas as informações. Conforme o teorema da amostragem de Nyquist (NYQUIST, 2002).

3.6.1 Teorema da Amostragem

Dado um sinal limitado em banda é condicionado a quão rápida é sua variação no tempo, e, consequentemente, qual o nível de detalhe ele pode transmitir num intervalo de tempo. O teorema da amostragem de Nyquist assegura que as amostras discretas uniformemente espaçadas são uma representação completa do sinal, se sua largura de banda for menor do que a metade da taxa de amostragem. A Equação 3.1(3.2 formaliza os conceitos gerais, seja x(t), a representação de um sinal contínuo no tempo e seja X(f) sua transformada de fourier:

$$X(f) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} x(t)e^{-i2\pi ft}dt$$
 (3.1)

O sinal x(t), é limitado em banda (frequência), B, se: X(f) = 0 para qualquer |f| > B

A condição suficiente para uma exata reconstrução a partir das amostras em uma taxa de amostragem uniforme f_s (em amostras por unidade de tempo) é: $f_s > 2B$ ou, de modo equivalente é apresentado na Equação 3.2:

$$B = \frac{f_s}{2} \tag{3.2}$$

A proporção 2B é chamado de Taxa de Nyquist e é uma propriedade do sinal limitado em banda, enquanto $f_s/2$ é chamado de Frequência de Nyquist e é uma propriedade deste sistema de amostragem.

O intervalo de tempo entre amostras sucessivas é referido como intervalo de amostragem dada pela Equação 3.3:

$$T \stackrel{\text{def}}{=} \frac{1}{f_{s}} \tag{3.3}$$

e as amostras de x(t), são: x(nT) onde $n \in \mathbb{Z}$

O teorema da amostragem de Nyquist leva a um procedimento para a reconstrução do x(t) original a partir de amostras uniformemente espaçadas e, respeitando-se as condições iniciais, garante que essa reconstrução seja exata.

3.6.2 Processo de Amostragem

O teorema descreve dois processos em processamento de sinais: um processo de amostragem, no qual um sinal contínuo no tempo é convertido em um sinal de tempo discreto,

e um processo de reconstrução, no qual o sinal contínuo original é recuperado do sinal de tempo discreto.

O sinal contínuo varia no tempo (ou espaço em uma imagem digitalizada, ou outra variável independente em alguma outra aplicação) e o processo de amostragem é realizado medindo-se o valor do sinal contínuo a cada T unidades de tempo (ou espaço), o que é chamado de intervalo de amostragem. Na prática, para sinais que são funções do tempo, o intervalo de amostragem é tipicamente pequeno, na ordem de milissegundos, microssegundos ou menos. Isto resulta em uma sequência de números, chamados de amostras, que representam o sinal original. Cada amostra é associada com o instante no tempo quando ela foi tomada. A recíproca do intervalo de amostragem (1/T) é a frequência de amostragem denominada fs, a qual é medida em amostras por unidades de tempo. Se T é expressa em segundos, então fs é expressa em Hz.

A reconstrução do sinal original é um processo de interpolação que matematicamente define um sinal contínuo no tempo x(t) a partir de amostras discretas x[n] e, às vezes, entre os instantes de amostragem nT.

3.6.3 Aplicação em Sistemas de Comunicação

Dada a informação enviada pelos sistemas de comunicação remotos que estão dispersos ao longo do caminho elétrico ao sistema de supervisão e controle (*SCADA*) e, havendo a necessidade de obter informações de todos os dispositivos para uma tomada de decisão, há a necessidade de aguardar um tempo adequado para tomada de decisão. Dada a forma de comunicação com os dispositivos de campo, onde cada equipamento envia de forma individualizada seus eventos, este tempo de "espera" é necessário a fim de garantir que os dados apresentados estejam todos disponíveis para processamento e indicação do correto local de defeito.

Dada a característica do sistema de comunicação e protocolo utilizado no sistema elétrico, os dispositivos remotos podem adotar duas formas básicas de envio das informações ao sistema de supervisão e controle:

 Mensagem por pooling – método de comunicação onde o mestre solicita informações aos escravos em intervalos de tempo pré-estabelecido. Apresenta frequência definida para envio das informações, quando há conexão estabelecida. Mensagem Não-Solicitada – método de comunicação onde o dispositivo escravo envia informações de eventos e variações sem a necessidade de solicitação do mestre. Não apresenta frequência definida para envio das informações.

Associada a frequência de obtenção das informações, há o tempo de espera para a recepção e o envio dos dados entre os dispositivos mestre e escravo denominado *Timeout*. Este parâmetro é dado usualmente em milissegundos é ajustado conforme o tipo de meio utilizado, devido as latências, e o volume de informações a serem obtidas a fim de garantir o correto envio dos dados.

Outra configuração a ser adotada é a quantidade de retentativas (*Retries*) de conexão e envio/recepção de informações entre os dispositivos. Este parâmetro auxilia a manter a conexão *n* vezes durante o processo de comunicação antes de ser reiniciada, quando da perda total da conexão.

Dadas as configurações e parâmetros a serem adotados pelos dispositivos, o tempo de comunicação é determinado pela Equação 3.4.

Onde

$$t_{Comm} = (t_{pooling} + t_{Timeout}) \times Retries \tag{3.4}$$

Definindo as necessidades conforme o Teorema de Nyquist, temos a Equação 3.2, assim podemos definir genericamente que $2B > t_{comm}$.

Se o sistema operar de forma perfeita, sem latências ou perdas de pacotes e sem necessidade de retentativas: $2B > t_{pooling}$.

Em condições reais, com latências associadas onde $t_{Timeout} \neq 0$ a Equação 3.4 é verdadeira. Mas pode-se obter tempos elevados o que inviabilizaria a utilização destes tempos. Reduzindo a quantidade de retentivas, ou seja, desprezando que há mais de uma nova tentativa Retries = 1, reduzimos o tempo necessário conforme indicado na Equação 3.5:

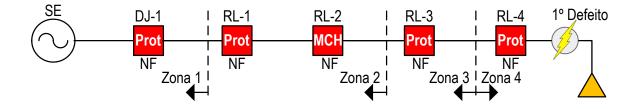
$$t_{Comm} = t_{pooling} + t_{Timeout} (3.5)$$

Onde para satisfazer o teorema da amostragem onde $2B > t_{Comm}$, a janela a ser utilizada é dada por pela Equação 3.6:

$$2B = 2 \times t_{Comm} \tag{3.6}$$

4. IDENTIFICAÇÃO DE TRECHOS SOB DEFEITO

Este Capítulo tem o intuito de apresentar de forma genérica como se dará a indicação do trecho sob defeito, de agora em diante denominado trecho protegido, e os trechos liberados para reenergização, denominados de trecho livre.


4.1 TOPOLOGIA DE REDE A PARTIR DAS PROTEÇÕES SINALIZADAS

Baseado nas necessidades do sistema de Self-Healing para identificação e classificação dos trechos de rede, neste item são apresentadas as topologias de rede a serem consideradas com base nas funções de proteção atuadas ou sinalizadas.

4.1.1 Topologia de rede ideal (condição genérica)

No cenário ideal o sistema é 100% seletivo, os equipamentos de proteção somente atuam para defeitos a jusante. Esta condição é bastante afetada pelos níveis de curto-circuito do referido sistema, sendo que à medida que os níveis de curto-circuito aumentam, mais complexa é a coordenação e seletividade dos elementos de proteção. A Figura 20 apresenta o sistema ideal com o coordenograma de proteção na Figura 4.2.

Figura 20 – Topologia de rede ideal (sistema 100% seletivo).

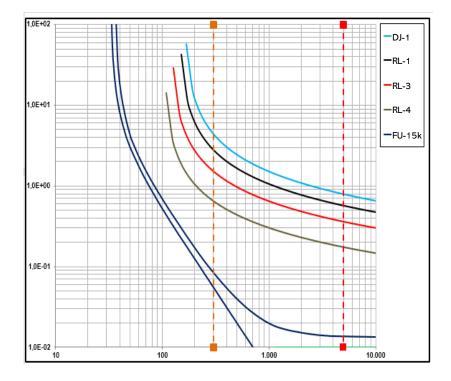


Figura 21 – Coordenograma dos dispositivos de proteção (sistema 100% seletivo).

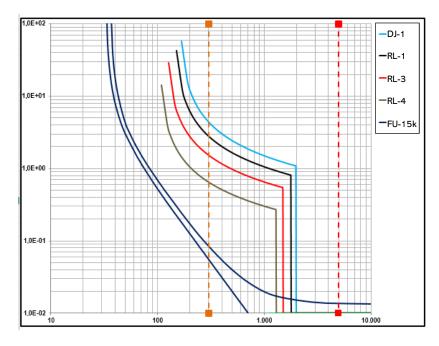
Fonte: (RAMOS et al., 2018) adaptado pelo autor

4.1.2 Topologia de rede nº 1: Elevado valor na corrente de Icc

Trecho Protegido

No cenário onde as correntes de curto-circuito são elevadas, não é possível garantir 100% de seletividade devido aos ajustes das proteções instantâneas. A Figura 22 apresenta topologia de rede onde é possível identificar os trechos livres e protegidos baseando-se nos alarmes sinalizados no sistema SCADASCADA e ilustrados na Figura 23.

Figura 22 – Topologia de rede N° 1 (Elevada corrente de curto-circuito).


Figura 23 – Sinalizações dos equipamentos no sistema SCADA.

N. Sinalizações RI-1. S. N. Sinalizações RI-2. S. N. Sinalizações RI-3. S. N. Sinalizações RI-3.

Sinalizações DJ-1	S N	Sinalizações RL-1	S N	Sinalizações RL-2	S N	Sinalizações RL-3	S N	Sinalizações RL-4	S N
Proteção 51N		Proteção 51N		Proteção 51N		Proteção 51N		Proteção 51N	
Proteção 51F	\mathbf{V}	Proteção 51F	ightharpoons	Proteção 51F		Proteção 51F		Proteção 51F	
Proteção SGF		Proteção SGF		Proteção SGF		Proteção SGF		Proteção SGF	
Proteção 79L	\mathbf{V}	Proteção 79L		Proteção 79L		Proteção 79L		Proteção 79L	
Fase A	\mathbf{v}	Fase A	ightharpoons	Fase A	$leve{}$	Fase A		Fase A	
Fase B	\mathbf{v}	Fase B	ightharpoons	Fase B	$leve{}$	Fase B		Fase B	
Fase C		Fase C		Fase C		Fase C		Fase C	
Neutro		Neutro		Neutro		Neutro		Neutro	
Comunicando	$\overline{\mathbf{v}}$	Comunicando	✓ □	Comunicando	✓ □	Comunicando	✓ □	Comunicando	$\mathbf{\nabla}$
Proteções DJ-1		Proteções RL-1		Proteções RL-2		Proteções RL-3		Proteções RL-4	
Ajuste 51F	190	Ajuste 51F	150	Ajuste 51F	-	Ajuste 51F	120	Ajuste 51F	105
Ajuste 51N	100	Ajuste 51N	75	Ajuste 51N	-	Ajuste 51N	50	Ajuste 51N	30
Ajuste SGF	-	Ajuste SGF	60	Ajuste SGF	-	Ajuste SGF	35	Ajuste SGF	-
Ajuste 79	2	Ajuste 79	3	Ajuste 79	-	Ajuste 79	2	Ajuste 79	1
Sinalizações DJ-1		Sinalizações RL-1		Sinalizações RL-2		Sinalizações RL-3		Sinalizações RL-4	
ICC Fase A	2221	ICC Fase A	2112	ICC Fase A	1989	ICC Fase A	-	ICC Fase A	-
ICC Fase B	2300	ICC Fase B	2191	ICC Fase B	2068	ICC Fase B	-	ICC Fase B	-
ICC Fase C	120	ICC Fase C	102	ICC Fase C	85	ICC Fase C	-	ICC Fase C	-

Na Figura 24 percebe-se que elevados valores de corrente de curto-circuito sensibilizam todos os equipamentos de proteção.

Figura 24 – Coordenograma dos dispositivos de proteção (topologia de rede N° 1).

A Tabela 4.1 apresenta o resultado após aplicação das lógicas de agrupamento paralelamente aplica-se as comparações das correntes de curto-circuito e pick-up das proteções para determinação das regiões protegidas e livres.

Tabela 4.1 - Resultado aplicação lógica de agrupamento das informações dos equipamentos

Equipamento	Estado	os / Valore	?S								
	EST	COMM	DISP	FTCA	BLOQ	ISGF	I51N	I79	STAT	MODO	PROT
DJ-1	0	1	1	0	1	0	1	1	1	0	2
RL-1	1	1	1	1	0	1	1	1	0	0	2
RL-2	1	1	1	1	0	0	1	1	0	1	2
RL-3	1	1	1	1	0	1	1	1	0	0	0
RL-4	1	1	1	1	0	0	1	1	0	0	0

Fonte: Próprio Autor

4.1.3 Topologia de rede nº 2: Baixo valor na corrente de Icc

Neste cenário as correntes de curto-circuito são baixas, logo, é possível obter seletividade entre os dispositivos de proteção à medida que os níveis de corrente reduzem devido a impedância da falta. A Figura 25 apresenta topologia de rede onde é possível identificar os trechos livres e protegidos baseando-se nos alarmes sinalizados no *SCADA* e ilustrados na Figura 26.

Figura 25 – Topologia de rede Nº 2 (Baixa corrente de curto-circuito).

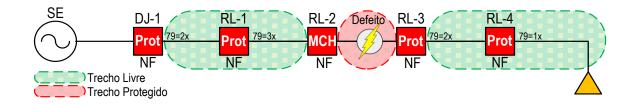


Figura 26 – Modelo de atributos para identificação dos equipamentos sinalizados no SCADA.

Sinalizações DJ-1	S N	Sinalizações RL-1	S N	Sinalizações RL-2	S N	Sinalizações RL-3	S N	Sinalizações RL-4	S N
Proteção 51N		Proteção 51N	ightharpoons	Proteção 51N		Proteção 51N		Proteção 51N	
Proteção 51F		Proteção 51F		Proteção 51F		Proteção 51F		Proteção 51F	
Proteção SGF		Proteção SGF		Proteção SGF		Proteção SGF		Proteção SGF	
Proteção 79L		Proteção 79L	ightharpoons	Proteção 79L		Proteção 79L		Proteção 79L	
Fase A		Fase A	ightharpoons	Fase A	$\mathbf{\nabla}$	Fase A		Fase A	
Fase B		Fase B		Fase B		Fase B		Fase B	
Fase C		Fase C		Fase C		Fase C		Fase C	
Neutro		Neutro	\mathbf{r}	Neutro	\mathbf{v}	Neutro		Neutro	
Comunicando	\mathbf{v}	Comunicando	\mathbf{V}	Comunicando	\mathbf{v}	Comunicando	\mathbf{V}	Comunicando	\mathbf{v}
Proteções DJ-1		Proteções RL-1		Proteções RL-2		Proteções RL-3		Proteções RL-4	
Ajuste 51F	190	Ajuste 51F	150	Ajuste 51F	-	Ajuste 51F	120	Ajuste 51F	105
Ajuste 51N	100	Ajuste 51N	75	Ajuste 51N	-	Ajuste 51N	50	Ajuste 51N	30
Ajuste SGF	-	Ajuste SGF	60	Ajuste SGF	-	Ajuste SGF	35	Ajuste SGF	-
Ajuste 79	2	Ajuste 79	3	Ajuste 79	-	Ajuste 79	2	Ajuste 79	1
Sinalizações DJ-1		Sinalizações RL-1		Sinalizações RL-2		Sinalizações RL-3		Sinalizações RL-4	
ICC Fase A	-	ICC Fase A	300	ICC Fase A	290	ICC Fase A	-	ICC Fase A	-
ICC Fase B	-	ICC Fase B	50	ICC Fase B	45	ICC Fase B	-	ICC Fase B	-
ICC Fase C	-	ICC Fase C	52	ICC Fase C	46	ICC Fase C	-	ICC Fase C	-

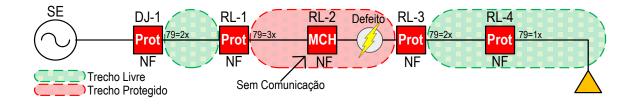
Na Figura 27 percebe-se que para baixos valores de corrente de curto-circuito, o sistema torna-se 100% seletivo, ou seja, somente desliga o equipamento a montante do defeito.

Figura 27 – Coordenograma dos dispositivos de proteção (topologia de rede Nº 2).

A Tabela 4.2 apresenta o resultado após aplicação das lógicas de agrupamento paralelamente aplica-se as comparações das correntes de curto-circuito e pick-up das proteções para determinação das regiões protegidas e livres.

Tabela 4.2 – Resultado aplicação lógica de agrupamento das informações dos equipamentos

Equipamento		Estados / Valores											
	EST	COMM	DISP	FTCA	BLOQ	ISGF	I51N	I7 9	STAT	MODO	PROT		
DJ-1	1	1	1	0	0	0	1	1	0	0	0		
RL-1	0	1	1	0	1	1	1	1	1	0	1		
RL-2	1	1	1	0	0	0	1	1	0	1	1		
RL-3	1	1	1	0	0	1	1	1	0	0	0		
RL-4	1	1	1	0	0	0	1	1	0	0	0		


Fonte: Próprio Autor

4.1.4 Topologia de rede nº 3: Falha de comunicação em algum religador

Neste cenário as correntes de curto-circuito são baixas, logo, é possível obter seletividade entre os dispositivos de proteção, considerando que eles comunicam perfeitamente com o sistema SCADA. O exemplo a ser descrito abaixo pode ser aplicado para condições com baixas correntes de curto-circuito ou para altas correntes.

A Figura 28 apresenta topologia de rede onde é possível identificar os trechos livres e protegidos baseando-se nos alarmes sinalizados no SCADA, e ilustra o equipamento "MCH" com falha de comunicação, devendo o mesmo ser desconsiderado na solução.

Figura 28 – Topologia de rede Nº 3 (Falha na comunicação em algum religador).

Fonte: (RAMOS et al., 2018) adaptado pelo autor

A Figura 29 ilustra os atributos dos religadores que compõe a solução, sendo possível perceber que o equipamento "MCH" apresenta falha na comunicação e nenhuma sinalização para referida falta na rede de distribuição.

Figura 29 – Modelo de atributos para identificação dos equipamentos sinalizados no SCADA.

Sinalizações DJ-1	S N	Sinalizações RL-1	S N	Sinalizações RL-2	S N	Sinalizações RL-3	S N	Sinalizações RL-4	S N
Proteção 51N		Proteção 51N	₹	Proteção 51N		Proteção 51N		Proteção 51N	
Proteção 51F		Proteção 51F		Proteção 51F		Proteção 51F		Proteção 51F	
Proteção SGF		Proteção SGF		Proteção SGF		Proteção SGF		Proteção SGF	
Proteção 79L		Proteção 79L	ightharpoons	Proteção 79L		Proteção 79L		Proteção 79L	
Fase A		Fase A	\square	Fase A		Fase A		Fase A	
Fase B		Fase B		Fase B		Fase B		Fase B	
Fase C		Fase C		Fase C		Fase C		Fase C	
Neutro		Neutro	\Box	Neutro		Neutro		Neutro	
Comunicando		Comunicando	$\overline{\mathbf{v}}$	Comunicando		Comunicando	\square	Comunicando	$\overline{\mathbf{v}}$
Proteções DJ-1		Proteções RL-1		Proteções RL-2		Proteções RL-3		Proteções RL-4	
Ajuste 51F	190	Ajuste 51F	150	Ajuste 51F	-	Ajuste 51F	120	Ajuste 51F	105
Ajuste 51N	100	Ajuste 51N	75	Ajuste 51N	-	Ajuste 51N	50	Ajuste 51N	30
Ajuste SGF	-	Ajuste SGF	60	Ajuste SGF	-	Ajuste SGF	35	Ajuste SGF	-
Ajuste 79	2	Ajuste 79	3	Ajuste 79	-	Ajuste 79	2	Ajuste 79	1
Sinalizações DJ-1		Sinalizações RL-1		Sinalizações RL-2		Sinalizações RL-3		Sinalizações RL-4	
ICC Fase A	-	ICC Fase A	300	ICC Fase A	-	ICC Fase A	-	ICC Fase A	-
ICC Fase B	-	ICC Fase B	50	ICC Fase B	-	ICC Fase B	-	ICC Fase B	-
ICC Fase C	-	ICC Fase C	52	ICC Fase C	-	ICC Fase C	-	ICC Fase C	-

Fonte: Próprio Autor

A Figura 30 apenas apresenta o coordenograma deste sistema.

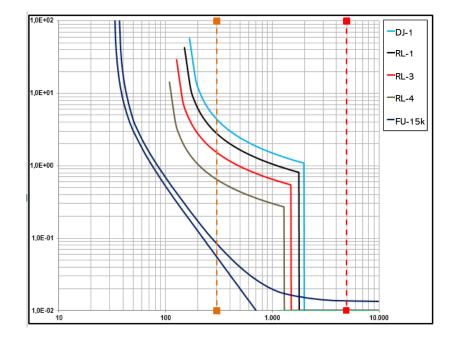


Figura 30 – Coordenograma dos dispositivos de proteção (topologia de rede Nº 3).

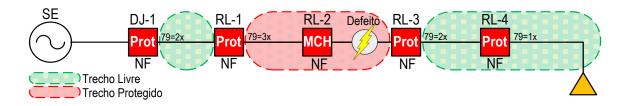
Fonte: (RAMOS et al., 2018) adaptado pelo autor

A Tabela 4.3 apresenta o resultado após aplicação das lógicas de agrupamento paralelamente aplica-se as comparações das correntes de curto-circuito e pick-up das proteções para determinação das regiões protegidas e livres.

Tabela 4.3 – Resultado aplicação lógica de agrupamento das informações dos equipamentos

Equipamento		Estados / Valores										
	EST	COMM	DISP	FTCA	BLOQ	ISGF	I51N	I7 9	STAT	MODO	PROT	
DJ-1	1	1	1	0	0	0	1	1	0	0	0	
RL-1	0	1	1	0	1	1	1	1	1	0	1	
RL-2	-	0	-	-	-	0	1	1	-	1	-	
RL-3	1	1	1	0	0	1	1	1	0	0	0	
RL-4	1	1	1	0	0	0	1	1	0	0	0	

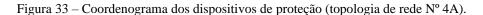
Fonte: Próprio Autor

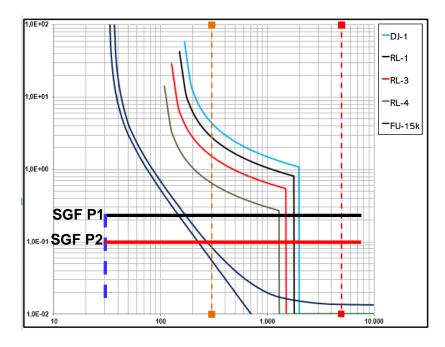

4.1.5 Topologia de rede nº 4: Sinalização por SGF entre religadores

Neste cenário as correntes de curto-circuito são muito baixas, logo, não é possível desenergizar a rede de distribuição através das proteções tradicionais (51F e 51N). Uma

alternativa atualmente utilizada pelas equipes de proteção das distribuidoras é a função *Sensitive Ground Fault* (SGF), a qual atua para valores muito baixos de corrente e com elevada temporização. Os exemplos descritos abaixo consideram a existência da função SGF em todos os religadores.

A Figura 31 apresenta topologia de rede onde é possível identificar os trechos livres e protegidos baseando-se nos alarmes sinalizados no SCADA. Neste exemplo todos os religadores possuem a função SGF habilitada. A Figura 32 ilustra os atributos dos religadores que compõe a solução, sendo possível perceber que o equipamento "MCH" não sinaliza para defeitos com baixa corrente, onde a proteção SGF é sensibilizada. A Figura 33 apenas apresenta o coordenograma deste sistema.


Figura 31 – Topologia de rede Nº 4A (Sinalização da função SGF entre religadores, todos com a função habilitada).



Fonte: (RAMOS et al., 2018) adaptado pelo autor

Sinalizações DJ-1 N Sinalizações RL-1 N Sinalizações RL-2 N Sinalizações RL-3 N Sinalizações RL-4 Proteção 51N Proteção 51N Proteção 51N Proteção 51N Proteção 51N Proteção 51F Proteção 51F Proteção 51F Proteção 51F Proteção 51F Proteção SGF Proteção SGF Proteção SGF Proteção SGF Proteção SGF Proteção 79L Proteção 79L Proteção 79L Proteção 79L Proteção 79L Fase A Fase A Fase A Fase A Fase A Fase B Fase B Fase B Fase B Fase B ╗ Fase C Fase C Fase C Fase C Fase C ~ Neutro Neutro Neutro Neutro Neutro \Box \Box \checkmark \square Comunicando Comunicando Comunicando Comunicando Comunicando Ajuste 51F 190 Ajuste 51F 150 Ajuste 51F Ajuste 51F 120 Ajuste 51F 105 Ajuste 51N 100 75 50 30 Aiuste 51N Aiuste 51N Aiuste 51N Aiuste 51N 30 Ajuste SGF Ajuste SGF 30 Ajuste SGF Ajuste SGF Ajuste SGF Ajuste 79 Ajuste 79 3 Ajuste 79 Ajuste 79 Ajuste 79 Sinalizações DJ-1 Sinalizações RL-ICC Fase A ICC Fase B ICC Fase C ICC Fase C ICC Fase C ICC Fase C ICC Fase C

Figura 32 - Modelo de atributos para identificação dos equipamentos sinalizados no SCADA.

Fonte: (RAMOS et al., 2018) adaptado pelo autor

A Tabela 4.4 apresenta o resultado após aplicação das lógicas de agrupamento paralelamente aplica-se as comparações das correntes de curto-circuito e pick-up das proteções para determinação das regiões protegidas e livres.

Tabela 4.4 – Resultado aplicação lógica de agrupamento das informações dos equipamentos

Equi	Estados / Valores											
pame nto	EST	COMM	DISP	FTCA	BLOQ	ISGF	I51N	179	STAT	MODO	PROT	
DJ-1	1	1	1	0	0	0	1	1	0	0	0	
RL-1	1	1	1	0	1	1	1	1	1	0	8	
RL-2	1	1	1	1	0	0	1	1	-	1	-	
RL-3	1	1	1	1	0	1	1	1	0	0	0	
RL-4	1	1	1	1	0	0	1	1	0	0	0	

A Figura 34 apresenta o fluxograma do processo de identificação dos trechos sob defeito ou livre a partir das informações dos equipamentos após agrupamento e tratamento das informações.

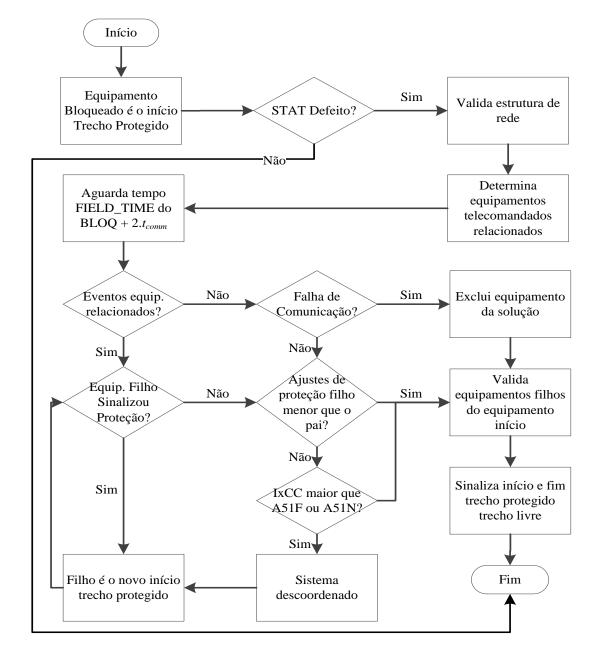


Figura 34 – Fluxograma do Processo de Avaliação para o TLP

Dada a sequência de avaliação dos pontos dos equipamentos e suas informações buscase identificar o real trecho sob defeito a partir da organização, ordenação e agrupamento das informações dos equipamentos telecomandados. O trecho é identificado a partir da identificação do equipamento que deveria proteger o trecho dada as características do defeito e as características configuradas nos equipamentos.

5. RESULTADOS

Neste capítulo serão apresentados os resultados obtidos nos testes realizados com a metodologia apresentada anteriormente, onde foram realizadas confirmações da implementação das lógicas no sistema suporte e posteriormente a aplicação das lógicas e seus resultados. O sistema suporte utilizado é de propriedade da empresa Mega Tecnologia e que possui as informações de topologia e estado da rede de distribuição. Os dados foram obtidos de uma distribuidora de energia elétrica do sul do Brasil.

5.1 IMPLEMENTAÇÃO DAS LÓGICAS DE AGRUPAMENTO

Nesta etapa foram realizados testes quanto a condição das lógicas de agrupamento dos eventos a fim de garantir que a implementação das lógicas descritas estava de acordo com o proposto para posteriormente aplicar a metodologia na sua forma geral. Utilizando o sistema da empresa Mega Tecnologia, onde os dados das redes de distribuição da empresa que estamos utilizando as informações dos equipamentos telecomandados já estão carregados, foram aplicadas as lógicas e processamento delas com saída dos resultados. Os dados utilizados consistem das informações do sistema de supervisão do período de 22 a 28/nov/2016.

Apresentados os resultados somente se equipamentos que possuem evento associado, ou seja, há indicação de bloqueio de algum equipamento cuja estrutura de rede o equipamento é filho ou pai.

O resultado desta etapa foi satisfatório, pequenas correções e alterações foram realizadas no decorrer dos testes a fim de garantir o correto funcionamento e processamento das informações.

5.2 APLICAÇÃO DA METODOLOGIA

Utilizando dados da rede de distribuição conjuntamente com informações de alarmes e dados analógicos dos equipamentos telecomandados de uma distribuidora de energia do sul do Brasil foram realizados os testes nas lógicas de agrupamento.

5.2.1 Protocolo de Comunicação

Avaliados os protocolos de comunicação utilizados nos equipamentos da rede de distribuição, onde todos operam com protocolo DNP3 TCP/IP por meio de comunicação de rede de telefonia celular 3G e link satélite. Quando a metodologia utilizada para recebimento das mensagens apresentada é de resposta por *pooling* em redes de telefonia celular 3G. Assim os tempos ajustados são:

- t_{pooling} 4s;
- $t_{timeout}$ 30s.

Aplicando a Equação 3.5 e 3.6 o tempo total para a janela de amostragem das informações é de 68s. Este tempo é aplicado para todos os dispositivos, tanto para os que operam por mensagens por *pooling* quanto por mensagens não-solicitadas, independente do meio de comunicação.

Para o caso dos equipamentos que utilizam link satélite, os parâmetros do protocolo e do sistema é o seguinte:

- t_{pooling} 0s;
- t_{timeout} 32s.

Sendo a latência deste sistema de comunicação:

• $t_{latencia} \leq 30s$.

Este tempo é devido a característica do meio de comunicação e do link, onde há a necessidade de se utilizar alguns artifícios a fim de viabilizar a comunicação através desta tecnologia. Estes artifícios são realizados por parte da operadora e gestora do link de comunicação, sendo a mesma transparente para o equipamento em campo e o sistema de supervisão.

Por utilizar o método de comunicação utilizado é por mensagem não solicitada $t_{pooling}$ é zero e $t_{timeout}$ aplicando a Equação 3.5 o tempo de amostragem é de 64s.

Nos equipamentos que operam por mensagem não solicitada e tecnologia de comunicação celular 3G, os parâmetros utilizados no sistema de supervisão são os seguintes:

- $t_{pooling}$ 0s;
- $t_{timeout}$ 10s.

Dada a latência deste sistema de comunicação dada por (GRIGORIK, 2013) onde este parâmetro está atrelado não a largura de banda, mas aos protocolos utilizados. A Tabela 5.1 apresenta os valores teóricos para as diferentes gerações em conexões ativas.

Tabela 5.1 – Taxas de dados e latência para uma conexão móvel ativa

Geração	Taxa de dados	Latência
2G	100–400 kbit / s	300–1000 ms
3G	0,5-5 Mbit / s	100–500 ms
4G	1–50 Mbit / s	<100 ms

Fonte: Adaptado de (GRIGORIK, 2013)

A característica dos sistemas e aplicando os tempos práticos temos a Tabela 5.2 com os tempos de latência total que variam conforme a tecnologia e demais configurações do protocolo utilizados pela operadora de telefonia.

Tabela 5.2 – Latência em requisição HTTP simples

	3 <i>G</i>	4G
Controle	200 a 2,500 ms	50 a 100 ms
Pesquisa DNS	200 ms	100 ms
Solicitação TCP	200 ms	100 ms
Solicitação TLS	200–400 ms	100–200 ms
Requisição HTTP	200 ms	100 ms
Latência Total	200 a 3500 ms	100 a 600 ms

Fonte: Adaptado de (GRIGORIK, 2013)

Dadas as informações, utiliza-se o pior cenário onde:

• $t_{latencia} \leq 3.5s$.

Por utilizar o método de comunicação utilizado é por mensagem não solicitada $t_{pooling}$ é zero e $t_{timeout}$ aplicando a Equação 3.5 o tempo de amostragem é de 20s.

A Tabela 5.3 resume os tempos para cada método de comunicação com os equipamentos de campo e o tempo indicado para janela de amostragem para funcionamento do sistema.

Tabela 5.3 – Tempos Resumo Para os Diferentes Links de Comunicação

Link	Método de Recebimento	$\mathbf{t}_{\mathrm{pooling}}$	$t_{timeout}$	t _{latência}	$t_{amostragem}$
Celular 3G	Pooling	4s	30s	3,5s	68s
Satélite	Mensagem Não Solicitada	0s	32s	30s	64s
Celular 3G	Mensagem Não solicitada	0s	10s	3,5s	20s

Fonte: Próprio Autor

Verificando as informações e aplicação da metodologia de janela de amostragem a partir da Equação 3.5 e respeitando que há a necessidade de utilizar o maior tempo, assim a o tempo de amostragem utilizado é de 68s.

Esta janela de amostragem deve ser aplicada ao tempo de recepção das informações, ou seja, a data e hora de recebimento das informações advindas do campo. Esta dependência é devido aos tempos de os eventos estarem sincronizados com os sistemas de operação, onde a datação do evento é realizada pelo dispositivo de campo que é sincronizado periodicamente, mantendo assim todo o parque de equipamentos telecomandados na mesma base temporal.

5.2.2 Datação dos Eventos

Tendo em vista que a necessidade de se analisar a cronologia dos eventos a fim de identificar o início e o fim dele, classificando qual o primeiro dispositivo a realizar a identificação do defeito e demais ações se faz necessário utilizar-se da propriedade do protocolo doe comunicação que trata da datação do evento na origem. Para que a informação esteja na mesma base temporal para todos os dispositivos se faz necessário a utilização de uma base única, buscando assim uma sincronização entre todos os dispositivos.

O protocolo DNP3 apresenta como característica a possibilidade de realizar o sincronismo temporal através do próprio protocolo, sem a necessidade de inclusão de outros dispositivos, como um relógio sincronizado por GPS em cada dispositivo. Desta forma o sistema SCADA possui uma base temporal única, disponibilizada através da infraestrutura de Tecnologia da Informação, que envia a cada 4h o sinal de sincronismo para cada dispositivo já conectado, além do sinal de sincronismo na conexão/reconexão.

Apesar da latência apresentada pelos meios de comunicação, a sincronização é realizada com o incremento destes tempos entre os dispositivos, buscando a redução das diferenças a cada novo sincronismo, apresentando uma base sincronizada para determinação dos eventos.

5.2.2.1 Configuração dos Pontos

Como forma de otimização do uso da banda de comunicação, reduzindo os custos de tráfego de informações, utiliza-se as seguintes configurações quanto a tráfego de informações:

Pontos Digitais – são todos alocados em *buffer's* com data e hora para envio para o dispositivo *Master* (SCADA) com confirmações de entrega de datagramas ou ACK (*Acknowledgement*), garantindo assim a confiabilidade de dados;

Pontos Analógicos – não são alocados em *buffer's* e sem data e hora, enviando o último valor com sinalização do estado: *on-line*, forçado ou congelado. Aplicação conjunta de banda morta ajustada para cada grandeza e elemento a ser sinalizado, utilizando confirmações de entrega de datagramas ou ACK (*Acknowledgement*), garantindo assim a confiabilidade de dados

5.2.3 Eventos

Dadas as informações dos equipamentos telecomandados do período de 22 a 28 de novembro, realizado o processamento das informações disponíveis dos mesmos e realizado o processamento das lógicas de agrupamento. Dados os eventos apresentados na Tabela 5.4, que consistem nos equipamentos que sinalizaram bloqueio (BLOQ), verifica-se que para cada equipamento com indicação de bloqueio é gerado um identificador do evento na coluna *ID_Evento*.

Tabela 5.4 – Equipamentos com Sinalização de Bloqueio

ID_Evento	Substn.Devtyp	Data
265	ALE - 1669.REL	22/nov
266	ALE - 89.REL	22/nov
269	CAC - 3101.REL	29/nov
296	SLE - 1532.REL	29/nov
307	UNI - 3110.REL	22/nov
308	ALE - 1687.REL	28/nov
310	ALE - 12.REL	28/nov
311	SGA - 106.REL	29/nov
316	URU - 19.REL	28/nov
317	URU - 2346.REL	28/nov

Fonte: Próprio Autor

A sequência dos testes realizadas foi de validar as informações quanto a condição da rede de distribuição e as alternativas de manobras devido a condição atual dela. A avaliação consistiu nas seguintes análises:

- Estrutura da rede de distribuição verificação da hierarquia da rede de distribuição na condição de repouso a fim de garantir que a rede utilizada é idêntica à rede em uso pelo software;
- Equipamentos telecomandados validado os equipamentos que possuem telecomando e sua condição atual quanto a situação em operação, como equipamentos em by-pass ou não;
- Manobras verificadas as manobras existentes na rede de distribuição em Tempo Real e validada quanto a representação no sistema utilizado para os testes. Garantindo assim a solução de uma forma abrangente e consistente com o uso em tempo real.
- Equipamentos socorro equipamentos do tipo NA disponíveis para realização de manobras para interligação de trechos. Nos testes iniciais foram considerados todas as chaves socorro possíveis, sendo elas telecomandadas ou não, nos testes completos da ferramenta foram ajustados o uso somente de equipamentos telecomandados.

Após a avaliação de todos os itens indicados e estando todas de acordo foi possível dar sequência aos testes primeiramente em formato de validação de estrutura. Nestes testes o resultado esperado era a identificação dos equipamentos que compõem o trecho protegido, indicando de forma tabular os cada um.

O primeiro evento avaliado foi o 308 devido ao mesmo apresentar trecho pequeno de rede a jusante do equipamento sob bloqueio e não há manobras possíveis para o caso, pois o trecho é radial. A Tabela 5.5 apresenta as informações agrupadas dos equipamentos envolvidos no evento 308. Estas informações são resultado do processamento das lógicas de agrupamento, obtidas após o tempo de amostragem determinado no item 5.2.1.

Tabela 5.5 – Informações agrupadas dos equipamentos envolvidos no evento 308

Item	ID.	Su yp	INFO	RMA	ÇÕES	AGRU	PADA	S					
ä	Ever	bstn.1	EST	CON	IOM	DISP	FTC	PRO	ISGF	I51N	179	STA	BLO
	nto	Devt		M	ŏ		>	H	1			-	Ø
1	308	ALE - 1687.REL	0	1	0	1	0	1	0	1	1	1	1
2	308	ALE4.AL2	1	1	0	1	0	0	0	1	1	0	0
3	308	ALE - 82.REG	1	1	0	1	0	0	0	0	0	0	0

Fonte: Próprio Autor

Verificando as informações agrupadas a avaliação consistiu na validação dos equipamentos que compõem o trecho protegido, este a jusante do religador ALE - 1687. A Tabela 5.6 apresenta os equipamentos envolvidos no trecho protegido.

Tabela 5.6 – Equipamentos limite entre Trecho Livre e Protegido Evento 308

ID_Evento	Equipamento Bloqueio	Chave Limite	Tipo	Elo Instalado
308	ALE - 1687	ALE - 1327	FULB	* K-010
308	ALE - 1687	ALE - 1437	FULB	* K-025
308	ALE - 1687	ALE - 241	FUSI	* K-015
308	ALE - 1687	ALE - 64	FULB	* K-025
308	ALE - 1687	ALE - 844	REPE	* K-025
308	ALE - 1687	ALE - 9887	FULB	* K-010
308	ALE - 1687	ALE - 9896	FULB	* K-010

Fonte: Próprio Autor

A validação foi satisfatória, apresentando todos os equipamentos de forma correta. Dada a característica do trecho ser radial o resultado da sugestão de manobra deve ser nulo, ou seja, indicar que não existe. A Tabela 5.7 apresenta o resultado indicado no sistema.

Tabela 5.7 – Manobra sugerida em relação ao Evento 308

ID_Evento	Equipamento Bloqueio	Operação	Matrícula	Tipo	Alimentador
308	ALE - 1687	Abrir	Não há		
308	ALE - 1687	Fechar	Não há		

Fonte: Próprio Autor

Assim os testes com o evento 308 foram satisfatórios.

Seguindo a análise de outro evento de forma tabular, o evento 307 iniciado pelo equipamento UNI - 3110 foi escolhido para análise, a Tabela 5.8 apresenta as informações agrupadas dos equipamentos envolvidos no evento. Estas informações são resultado do processamento das lógicas de agrupamento, obtidas após o tempo de amostragem determinado no item 5.2.1.

Tabela 5.8 – Informações Agrupadas dos equipamentos envolvidos no evento 307

Item	<u> </u>	Subs				INFO	RMAÇ	ÕES A	GRUP A	ADAS			
n	_Evento	bstn.Devtyp	EST	COMM	MODO	DISP	FTCA	PROT	ISGF	I51N	179	STAT	BLOQ
1	307	UNI - 3110.REL	0	1	0	1	0	3	0	1	1	1	1
2	307	SAN1.AL5	1	1	0	1	0	0	0	1	1	0	0
3	307	SAN - 4953.REG	1	1	0	1	0	0	0	0	0	0	0
4	307	UNI - 117.REL	1	1	0	1	1	0	1	1	1	0	0
5	307	UNI - 10000.REG	1	1	0	1	1	0	0	0	0	0	0
6	307	ROS - 1596	0	1	1	1	0	0	0	0	0	0	0

O alimentador em que este equipamento se encontra tem por características apresentar longos trechos em área rural, contabilizando 2 reguladores em série para atendimento aos clientes.

A Tabela 5.9apresenta os equipamentos envolvidos nos trechos protegidos. A lista é extensa devido ao longo trecho detectado para o defeito.

Tabela 5.9 – Equipamentos limite entre Trecho Livre e Protegido Evento 307

ID_Evento	Equipamento Bloqueio	Chave Limite	Tipo	Elo Instalado
307	UNI - 3110	ITC - 100	FULB	* K-025
307	UNI - 3110	ITC - 11600	FULB	* K-010
307	UNI - 3110	ITC - 11601	FULB	* K-010
307	UNI - 3110	ITC - 11974	FULB	* k-006
307	UNI - 3110	ITC - 12156	FULB	* K-010
307	UNI - 3110	ITC - 147	FULB	* K-015
307	UNI - 3110	ITC - 314	FULB	* K-015
307	UNI - 3110	ITC - 400	REPE	* K-015
307	UNI - 3110	ITC - 461	FULB	* K-010
307	UNI - 3110	ITC - 487	FULB	* K-010
307	UNI - 3110	ITC - 514	FUSI	* K-010
307	UNI - 3110	ITC - 515	FUSI	* K-010
307	UNI - 3110	ITC - 617	FUSI	* K-010
307	UNI - 3110	ITC - 662	FULB	* K-015
307	UNI - 3110	ITC - 99	FUSI	* K-010
307	UNI - 3110	MAC - 12149	FULB	* K-010
307	UNI - 3110	MAC - 12254	FULB	* K-010
307	UNI - 3110	MAC - 12510	FULB	* K-010
307	UNI - 3110	MAC - 1275	FULB	* K-010
307	UNI - 3110	MAC - 185	FULB	* K-015
307	UNI - 3110	MAC - 1954	FULB	* K-010

ID_Evento	Equipamento Bloqueio	Chave Limite	Tipo	Elo Instalado
307	UNI - 3110	MAC - 1955	FULB	* K-010
307	UNI - 3110	MAC - 1959	FULB	* k-006
307	UNI - 3110	MAC - 1962	FULB	* K-010
307	UNI - 3110	MAC - 1969	FULB	* K-010
307	UNI - 3110	MAC - 1977	FULB	* K-010
307	UNI - 3110	MAC - 1980	FULB	* K-010
307	UNI - 3110	MAC - 463	FULB	* K-010
307	UNI - 3110	MAC - 674	FULB	* K-010
307	UNI - 3110	SBO - 11416	FULB	* K-010
307	UNI - 3110	SBO - 12066	FULB	* K-010
307	UNI - 3110	SBO - 12092	FULB	* K-010
307	UNI - 3110	SBO - 12135	FULB	* k-006
307	UNI - 3110	SBO - 12161	FULB	* K-010
307	UNI - 3110	SBO - 126	FUSI	* K-015
307	UNI - 3110	SBO - 355	FULB	* k-006
307	UNI - 3110	SBO - 455	FULB	* K-015
307	UNI - 3110	SBO - 456	FULB	* K-015
307	UNI - 3110	SBO - 457	FUSI	* K-015
307	UNI - 3110	SBO - 458	FULB	* k-006
307	UNI - 3110	SBO - 633	FULB	* K-010
307	UNI - 3110	SBO - 766	FULB	* K-010
307	UNI - 3110	SBO - 795	FULB	* K-010
307	UNI - 3110	UNI - 11574	FULB	* k-006
307	UNI - 3110	UNI - 11619	FULB	* K-010
307	UNI - 3110	UNI - 11790	FULB	* k-006
307	UNI - 3110	UNI - 118	FULB	* K-015
307	UNI - 3110	UNI - 11831	FULB	* K-010
307	UNI - 3110	UNI - 11940	FULB	* k-006
307	UNI - 3110	UNI - 12087	FULB	* K-010
307	UNI - 3110	UNI - 12230	FULB	H-0.5
307	UNI - 3110	UNI - 12434	FULB	* K-010
307	UNI - 3110	UNI - 179	FULB	* K-015
307	UNI - 3110	UNI - 192	FULB	* K-010
307	UNI - 3110	UNI - 263	REPE	* K-025
307	UNI - 3110	UNI - 368	FULB	* K-010
307	UNI - 3110	UNI - 390	FUSI	* K-010
307	UNI - 3110	UNI - 392	FULB	* K-015
307	UNI - 3110	UNI - 414	FULB	* K-010
307	UNI - 3110	UNI - 472	FULB	* K-010
307	UNI - 3110	UNI - 512	FULB	* k-006
307	UNI - 3110	UNI - 513	FUSI	* K-015
307	UNI - 3110	UNI - 552	FULB	* K-010
307	UNI - 3110	UNI - 633	FULB	* k-006
307	UNI - 3110	UNI - 637	FULB	* K-015
307	UNI - 3110	UNI - 638	FULB	* K-010

Os conjuntos sugeridos de manobra foram avaliados comparando-se a definição prévia dos trechos sob defeito, com a configuração instantânea da rede baseada no sistema de Operação, a fim de validar a existência do caminho elétrico sugerido pela lógica. O caso avaliado é apresentado na Tabela 5.10, com referência de seu evento de origem.

Tabela 5.10 – Manobra sugerida em relação ao Evento 307

ID_Evento	Equipamento Bloqueio	Operação	Matrícula	Tipo	Alimentador
307	UNI - 3110	Abrir	ITC - 147	FULB	
307	UNI - 3110	Fechar	ITC - 12496	FUSI	SBO - 32 ITACURUBI

Fonte: Próprio Autor

Verifica-se que o sistema sugeriu operação de chaves manuais a fim de garantir o menor trecho desenergizado, pois o regulador UNI - 10000 é filho do religador gerador do evento e por não ter apresentado sinalização de passagem de defeito adotou-se a chave mais próxima a este dispositivo para abertura. Desta forma o sistema apresentou resposta condizente com o esperado, restando a validação das imagens e indicações em tela para os operadores.

Configurado o sistema para apresentar como solução somente dispositivos telecomandados para as manobras para verificação da solução dos eventos que seguem.

Avaliando o evento 296, a Tabela 5.11 apresenta as informações dos equipamentos telecomandados que possuem relação direta com a solução dele. Estas informações são resultado do processamento das lógicas de agrupamento, obtidas após o tempo de amostragem determinado.

Tabela 5.11 – Resultado Processamento Lógicas de Agrupamento

Item	ID.	Sui yp	INFO	INFORMAÇÕES AGRUPADAS									
n	Evento	bsin.Devi	EST	COMM	MODO	DISP	FTCA	PROT	ISGF	I51N	179	STAT	BLOQ
1	296	SLE - 1532.REL	0	1	0	1	0	1	0	1	1	0	1
2	296	SLE.AL03	1	1	0	1	0	0	0	1	1	0	0
3	296	SLE - 3101.REL	1	1	0	1	1	0	1	1	1	0	0
4	296	SLE - 2274.REL	0	1	0	1	0	0	0	1	1	0	0
5	296	SLE - 3144.REL	1	1	0	1	1	0	1	1	1	0	0
6	296	SLE - 937.REL	1	0	1	1	0	0	1	1	1	0	0
7	296	SLE - 2175.REL	0	1	1	1	0	0	0	0	0	0	0
8	296	SLE - 2205.REL	0	1	1	1	0	0	0	0	0	0	0
9	296	SLE - 2290.REL	0	0	1	0	0	0	0	1	1	0	0

Dadas as informações de condição dos equipamentos telecomandados relacionados ao evento e utilizando as informações da estrutura de rede na condição atual resultou na obtenção dos trechos livres e trechos protegidos (TLP). Ou seja, foram identificadas as condições dos trechos a jusante de cada equipamento telecomandado quanto a estarem livre para energização, sem defeito, ou trecho que foi protegido pelo equipamento protetor devido a ocorrência de defeito em algum ponto.

Dado o evento 296 identificado pela sinalização de bloqueio do equipamento SLE - 1532 com a sinalização de proteção monofásica. A resposta, de forma visual, pode ser verificada na Figura 35, recurso este disponível na ferramenta da empresa MegaTecnologia.

Figura 35 – Resultado evento 296 – Visão geral da solução

Fonte: Próprio Autor

Processando o evento 296, onde sobre o traçado do alimentador é destacado o trecho em vermelho que representa o trecho protegido e o trecho em verde que representam os trechos livres. A Figura 36 apresenta uma visão mais detalhada da rede de operação com os destaques da condição dos trechos.

Capacitores (1) Transformadores (162) ✓ Trechos de Redes (840) Barras (838) São Leopoldo Chaves Socorro (6) ✓ Subestações (1) R. São José CHURRASCARIA UNIMED Vale **PASSOQUINHA** do Sinos/RS Eduardo de Almeida Rua Lindolfo Collor opoldo Viêira 116

Figura 36 – Resultado Evento 296 – Visão aproximada da rede de operação com destaque para os trechos livres e protegidos

O resultado apresentado em tela e validado com as informações sugere que há defeito após os seguintes equipamentos:

- SLE 1532 (1);
- SLE 937 (6).

Esta indicação se dá na forma em que há atuação da proteção e bloqueio do religador SLE - 1532 e que o religador SLE - 937 encontra-se sem comunicação, não podendo garantir que não há defeito após ele.

Os conjuntos sugeridos de manobra foram avaliados comparando-se a definição prévia do TLP, com a configuração instantânea da rede baseada no sistema de Operação, a fim de validar a existência do caminho elétrico sugerido pela lógica. O caso avaliado é apresentado na Tabela 5.12, com referência de seu evento de origem.

Tabela 5.12 – Manobra sugerida em relação ao Evento 296

ID_Evento	Substn	Operação	Matrícula	Tipo	Alimentador
296	SLE - 1532	Desligar	SLE - 3101	RELI	SLE - 03 COI
296	SLE - 1532	Ligar	SLE - 2290	RELI	SLE - 02 João Correa
296	SLE - 1532	Desligar	SLE - 3144	RELI	SLE - 03 COI
296	SLE - 1532	Ligar	SLE - 2205	RELI	SLE - 01 Centro

As manobras indicadas correspondem a segregação do trecho sob defeito, desligar os religadores SLE - 3101 e SLE - 3144 para posteriormente ligar os religadores de suas respectivas interligações, SLE - 2290 e SLE - 2205. Desta forma o sistema funcionou de forma satisfatória para o caso apresentado, onde após avaliação em campo havia defeito após o religador SLE - 937 e devido ao mesmo ter sido deixado em modo chave e sem comunicação no momento do curto-circuito ocasionou no desarme do religador a montante dele, o SLE - 1532.

Seguindo com avaliação dos resultados, o evento 316 apresenta na Tabela 5.13 as informações dos equipamentos telecomandados que possuem relação direta com a solução dele.

INFORMAÇÕES AGRUPADAS Substn.Devtyp _Evento ISGF 151N ISP URU - 19.REL URU1.AL1 URU - 1534.REL URU - 516.REL

Tabela 5.13 – Resultado Processamento Lógicas de Agrupamento Evento 316

Fonte: Próprio Autor

URU - 208.REL

Dadas as informações de condição dos equipamentos telecomandados relacionados ao evento e utilizando as informações da estrutura de rede na condição atual resultou na obtenção dos trechos livres e trechos protegidos (TLP). Ou seja, foram identificadas as condições dos trechos a jusante de cada equipamento telecomandado quanto a estarem livre para energização, sem defeito, ou trecho que foi protegido pelo equipamento protetor devido a ocorrência de defeito em algum ponto.

Dado o evento 316 identificado pela sinalização de bloqueio do equipamento URU - 19 com a sinalização de proteção monofásica. A resposta, de forma visual, pode ser verificada na Figura 37, onde o trecho após o equipamento que bloqueou (1) se encontra como trecho livre e o trecho após o equipamento (3) é apresentado como trecho protegido.

Figura 37 – Resultado evento 316 – Visão geral da solução

O resultado apresentado em tela e validado com as informações sugere que há defeito após o seguinte equipamento:

• URU - 1534 (3).

Esta indicação se dá na forma em que há atuação da proteção e bloqueio do religador URU - 19 devido ao mesmo está com a função 79 excluída enquanto há sinalização de atuação de proteção no religador URU - 1534. Devido à ausência da coordenação de religamentos, é identificada esta divergência e o sistema sinalizou de forma assertiva o local real do defeito.

Os conjuntos sugeridos de manobra foram avaliados comparando-se a definição prévia do TLP, com a configuração instantânea da rede baseada no sistema de Operação, a fim de validar a existência do caminho elétrico sugerido pela lógica. O caso avaliado é apresentado na Tabela 5.14, com referência de seu evento de origem.

Tabela 5.14 – Manobras sugeridas para o evento 316

ID_Evento	Substn	Operação	Matrícula	Tipo	Alimentador
316	URU - 19	Desligar	URU - 1534	RELI	URU1 - 01 Centro
316	URU - 19	Ligar	URU - 19	RELI	URU1 - 01 Centro

As manobras indicadas correspondem a segregação do trecho sob defeito, desligar o religador URU - 1534 para posteriormente religar o religador que foi a bloqueio, URU - 19. Desta forma o sistema funcionou de forma satisfatória para o caso apresentado, onde após avaliação em campo havia equipe de linha viva trabalhando a jusante do religado URU - 19, o que ocasionou a exclusão da função de religamento automático e concomitantemente houve defeito a jusante do religador URU - 1534.

Seguindo com avaliação dos resultados, a Tabela 5.15 apresenta as informações dos equipamentos telecomandados que possuem relação direta com a solução do evento 317, identificados na coluna ID_Evento.

Tabela 5.15 – Resultado Processamento Lógicas de Agrupamento Evento 317

Item	ID.	Sui P				INFOR	RMAÇ	ÕES A	GRUP	ADAS			
3	Eν	bstr	EST	CC	M	DI	ΤŦ	PR	SI	151	179	ST	BL
	ent	D_{i}	-	Ž	Ď	ISP	CA	PROT	SGF	Z		AT	QQ
	0	ечђу		\leq	0		ŕ						
1	317	URU - 2344.REL	0	1	0	1	0	4	0	1	1	1	1
2	317	URU1.AL3	1	1	0	1	0	0	0	1	1	0	0
3	317	URU - 14.REL	1	1	0	1	1	0	1	1	1	0	0
4	317	URU - 22.CHA	0	1	1	1	0	0	0	1	1	0	0
5	317	URU - 3300.REL	0	1	1	1	1	0	1	1	1	0	0

Fonte: Próprio Autor

Dadas as informações de condição dos equipamentos telecomandados relacionados ao evento e utilizando as informações da estrutura de rede na condição atual resultou na obtenção dos trechos livres e trechos protegidos (TLP). Ou seja, foram identificadas as condições dos trechos a jusante de cada equipamento telecomandado quanto a estarem livre para energização, sem defeito, ou trecho que foi protegido pelo equipamento protetor devido a ocorrência de defeito em algum ponto.

Dado o evento 316 identificado pela sinalização de bloqueio do equipamento URU - 19 com a sinalização de proteção trifásica. A resposta, de forma visual, pode ser verificada na

Figura 38, onde o trecho após o equipamento que bloqueou (1) se encontra como trecho protegido e o trecho após o equipamento (3) é apresentado como trecho livre.



Figura 38 – Resultado evento 317 – Visão geral da solução

Fonte: Próprio Autor

O resultado apresentado em tela e validado com as informações sugere que há defeito após o seguinte equipamento:

• URU - 2344 (1).

Esta indicação se dá na forma em que há atuação da proteção e bloqueio do religador URU - 2344 devido a um defeito trifásico sinalizado pelo mesmo sem sinalização de defeito em qualquer outro equipamento da rede de distribuição.

Os conjuntos sugeridos de manobra foram avaliados comparando-se a definição prévia do TLP, com a configuração instantânea da rede baseada no sistema de Operação, a fim de validar a existência do caminho elétrico sugerido pela lógica. O caso avaliado é apresentado na

Tabela 5.16, com referência de seu evento de origem.

Tabela 5.16 – Manobras sugeridas para o evento 317

ID_Evento	Substn	Operação	Matrícula	Tipo	Alimentador
317	URU - 2344	Desligar	URU - 14	RELI	URU1 – AL03
317	URU - 2344	Ligar	URU - 3300	RELI	URU1 – AL05

As manobras indicadas correspondem a segregação do trecho sob defeito, desligar o religador URU - 14 para posteriormente ligar o religador da interligação, URU - 3300. Desta forma o sistema funcionou de forma satisfatória para o caso apresentado, onde após avaliação em campo ocorreu queda de poste após o religador URU - 2344 o que ocasionou o defeito.

6. CONCLUSÃO

O sistema de proteção em redes de distribuição sempre é um ponto crítico para operação do sistema, pois a atuação da mesma causa o desligamento de clientes e consequentemente elevação nos indicadores regulatórios indicando defeito na rede necessitando a intervenção humana para correção. O correto isolamento da região do defeito através de equipamentos telecomandados permite reduzir a área de inspeção e permite que se busquem alternativas para energização dos trechos livres através de interligações, sejam elas telecomandadas ou não.

Utilizar as informações provenientes dos equipamentos que monitoram e protegem a rede de distribuição é algo imperativo para uma tomada de decisão célere e assertiva. Associar as informações de cada equipamento, considerando sua condição no momento da ocorrência do evento, aplicando as lógicas de agrupamento dos alarmes e informações dos equipamentos associado a condição operativa da rede de operação apresentaram resultados satisfatórios. A indicação de manobras de transferência dos trechos livres com o intuito de reduzir a quantidade de clientes atingidos e a sinalização em tela de forma destacada da condição dos trechos atingidos pelo desarme propiciam redução nos tempos de: identificação da ocorrência, execução das manobras de transferência de alimentação; e inspeção do trecho sob defeito.

A aplicação do conceito de janela de amostragem para determinação dos tempos de aguardo para validação das informações e posterior apresentação da solução primeiramente pode significar tempo perdido para execução de manobras e/ou demais ações. A partir de evidências e análises dos alarmes em situações apresentadas ao longo dos testes este tempo se mostrou essencial para uma solução assertiva. O tempo proporcionou avaliar a condição do máximo possível de equipamentos envolvidos na solução, reduziu tempo de processamento devido à ausência de reprocessamento a cada nova informação, e credibilidade na apresentação do resultado para o usuário devido ao mesmo não se modificar ao longo do tempo. Quanto o valor indicado de 68s no sistema onde os testes foram realizados, considerando o tempo limite de manobras para não contagem de indicador de descontinuidade que é de 180s, proporciona uma margem de atuação do operador para realização das manobras, principalmente por elas já serem indicadas em tela.

A automatização deste processo pode apresentar maiores ganhos no processo, podendo o mesmo ser limitado a somente isolamento do trecho protegido, onde o risco é reduzido por não envolver outras redes. Num processo posterior a inclusão das manobras de energização dos

trechos podem ser realizadas com testes específicos e em ambientes mais controlados, com a necessidade de autorização por parte do operador a fim de validar a proposição.

O trabalho atingiu seu objetivo que é de apresentar uma solução de identificação dos trechos que apresentam defeito e dos trechos que estão livre para energização através do tratamento dos alarmes e eventos.

6.1 TRABALHOS FUTUROS

A continuidade deste trabalho pode ser ampla, uma vez que a rede de distribuição apresenta a cada dia mais detalhes nas informações de sua condição operativa, como a inclusão de equipamentos como: sinalizadores de falha, medidores fasoriais (PMU), clientes do grupo B tele medidos, supervisão remota de transformadores da rede de baixa tensão. Desta forma as lógicas de agrupamento precisam de constante reavaliação, frente aos novos conceitos e métodos que se inserem nas redes. Com base nas atuais necessidades do sistema sugerem-se as seguintes abordagens:

- Inclusão de novos dispositivos de indicação e sinalização no método de agrupamento;
- Associação com métodos de sinalização de local de defeito;
- Automatização das manobras com redução nos tempos de recomposição;

6.2 TRABALHOS PUBLICADOS

Durante a elaboração desta dissertação foram produzidos os seguintes trabalhos científicos que se correlacionavam com o tema base:

Trabalhos publicados em congressos:

 OLIVEIRA, P. H. E.; BERNARDON, D. P; LIMA, R. H. Identificação de Região de Defeito em Redes de Distribuição Através do Tratamento de Eventos Scada. In: 12th Seminar on Power Electronics and Control, Natal, 2019.

REFERÊNCIAS

1379-2000 - IEEE Recommended Practice for Data Communications Between Remote Terminal Units and Intelligent Electronic Devices in a Substation | IEEE Standard | IEEE Xplore. Disponível em: https://ieeexplore.ieee.org/document/912952>. Acesso em: 1 fev. 2022.

A DNP3 Protocol Primer. [s.d.].

ABAIDE, A. R. **Desenvolvimento de Métodos e Algoritmos para Avaliação e Otimização da Confiabilidade em Redes de Distribuição**. Santa Maria - RS, Brasil:
Universidade Federal de Santa Maria, 2005.

ABBOUD, R.; DOLEZILEK, D. **Tecnologia no Domínio do Tempo-Benefícios para a Proteção, Controle e Monitoramento dos Sistemas de Potência**. [s.l: s.n.].

ANL. **ADMS for grid moderizationanl**. [s.l: s.n.].

BARSCH, J. et al. Fault Current Contributions from Wind Plants Transmission. [s.l: s.n.].

BERNARDON, D. P. et al. AHP Decision-Making Algorithm to Allocate Remotely Controlled Switches in Distribution Networks. **IEEE Transactions on Power Delivery**, v. 26, n. 3, p. 1884–1892, jul. 2011.

BERNARDON, D. P. et al. Real-time reconfiguration of distribution network with distributed generation. **Electric Power Systems Research**, v. 107, p. 59–67, 2014.

BOASKI, M. A. F. **Metodologia para coordenação e seletividade da proteção em sistemas de distribuição incluindo avaliação de confiabilidade**. Disponível em: https://repositorio.ufsm.br/handle/1/14553>. Acesso em: 3 ago. 2020.

BROWN, R. E. Impact of Smart Grid on Distribution System design. **IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES**, 2008.

COMASSETTO, L. et al. Automatic coordination of protection devices in distribution system. **Electric Power Systems Research**, v. 78, n. 4, p. 1210–1216, 2008.

DIAS, R. G. N. Detecção de faltas em redes elétricas. O Setor Elétrico, Ed. 134, 2017.

Features of DNP3. Disponível em: https://www.dnp.org/About/Features-of-DNP3. Acesso em: 5 mar. 2023.

GRIGORIK, ILYA. High-performance browser networking. 2013.

GUILIN, L. et al. Research on positioning the fault locations automatically in a multi branch transmission line network. **2018 International Conference on Power System Technology, POWERCON 2018 - Proceedings**, n. 201804090000006, p. 3099–3104, 2019.

IEEE. **242-2001 IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems**. Nova Iorque, Estados Unidos: IEEE, 2001. v. 3

JANSSEN, P.; SEZI, T.; MAUN, J. C. Optimal fault location in distribution systems using distributed disturbance recordings. **IEEE PES Innovative Smart Grid Technologies Conference Europe**, p. 1–7, 2011.

M. SPERANDIO et al. Fault Location in Distribution Networks by Combining Studies of the Network and Remote Monitoring of Protection Devices. **46th International Universities' Power Engineering Conference (UPEC)**, 2011.

MAKHIJA, J.; SUBRAMANYAN, L. R. Comparison of protocols used in remote monitoring: DNP 3.0, IEC 870-5-101 & Modbus. [s.d.].

MAMEDE FILHO, J.; MAMEDE, R. D. **Proteção de Sistemas Elétricos de Potência**. 1. ed. Rio de Janeiro, Brasil: LTC, 2011.

NEZAMI, H.; DEHGHANI, F. A new fault location technique on radial distribution systems using artificial neural network. n. June, p. 0375–0375, 2014.

NYQUIST, H. Certain topics in telegraph transmission theory. **Proceedings of the IEEE**, v. 90, n. 2, p. 280–305, 2002.

Overview of DNP3 Protocol. Disponível em: https://www.dnp.org/About/Overview-of-DNP3-Protocol>. Acesso em: 5 mar. 2023.

RAMOS, M. J. S. **Metodologia para Análise da Coordenação e Seletividade de Dispositivos de Proteção Durante Reconfigurações de Redes de Distribuição**. Santa Maria, Brasil: Universidade Federal de Santa Maria - UFSM, 2014.

RAMOS, M. J. S. et al. Self-Healing in Power Distribution Systems. Em: **Smart Operation for Power Distribution Systems**. [s.l.] Springer International Publishing, 2018. p. 37–70.

RANGARI, C.; YADAV, A. A hybrid wavelet singular entropy and fuzzy system-based fault detection and classification on distribution line with distributed generation. **RTEICT 2017**- 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, v. 2018- Janua, p. 1473–1477, 2018.

SARVI, M.; TORABI, S. Fault location and classification in distribution systems using clark transformation and neural network. **Electrical Power Distribution Networks (EPDC), 2011 16th Conference on**, v. 1, n. 2, p. 1–8, 2011.

SLEVA, A. M. Protective Relay Principles. [s.l.] CRC Press, 2018.

SUPANNON, A.; JIRAPONG, P. Recloser-fuse coordination tool for distributed generation installed capacity enhancement. Proceedings of the 2015 IEEE Innovative Smart Grid Technologies - Asia, ISGT ASIA 2015. Anais...Bangkok, Tailândia: IEEE, 2016.

ZIMMERMAN, K.; COSTELLO, D. **Impedance-based fault location experience**. 58th Annual Conference for Protective Relay Engineers, 2005. **Anais**...IEEE, 2005.

ANEXO 1 - LISTA DE PONTOS DIGITAIS E ANALÓGICOS DO SISTEMA

Mas utilizando equipamentos distintos, há pontos diferentes que podem apresentar as mesmas funções ou características. Nas tabelas que seguem são apresentados os pontos para os religadores e alimentadores com uma breve descrição, classificação e, por serem sinais digitais, o que significa cada valor.

Tabela A.0.1 - Pontos Analógicos de Religadores

DONTO	DESCRIÇÃO
PONTO	DESCRIÇÃO
A51F	Valor de ajuste da proteção 51F
A51N	Valor de ajuste da proteção 51N
ANO	Ano arquivo ajuste
ANTN	Valor antena
ASGF	Valor de ajuste da proteção SGF
DIA	Dia arquivo ajuste
IA	Corrente instantânea fase A
IACC	Corrente de curto fase A
IB	Corrente instantânea fase B
IBCC	Corrente de curto fase B
IC	Corrente instantânea fase C
ICCC	Corrente de curto fase C
IN	Corrente instantânea neutro
MES	Mês arquivo ajuste
MODN	Valor modem
NOME	Nome
OPER	Quantidade de Operações
V	Tensão instantânea
VAB	Tensão instantânea fases AB
VBAT	Tensão da bateria
VBC	Tensão instantânea fases BC
VCA	Tensão instantânea fases CA
V_C	Tensão do lado carga
V_F	Tensão do lado fonte
	E . Ell 1 1 A . 11 '. CCADA (DCE CI)

Fonte: Elaborado pelo Autor, dados sistema SCADA (RGE Sul)

Tabela A.0.2 - Pontos Digitais de Religadores

PONTO	DESCRIÇÃO	CLASSIFICAÇÃO	Nível 0	Nível 1	COMENTÁRIO
43LR	43LR			Local	Se local não há comando
51N	51N				Estado de inclusão/exclusão da proteção
79	79 - Religamento				Estado de inclusão/exclusão da proteção
79_1	79 Partida	³ ~	Normal		Inicialização de contagem de tempo 79
AJST	Grupo de Ajuste	ESTADO	Comando	Comando	Troca de ajuste
AUTO	Automatismo				Troca de ajuste automático
BAOH	Bateria Resistência Alta	MANUTENÇÃO	Normal	Atuado	Alarme de bateria
BATA	Alarme Bateria	MANUTENÇÃO	Normal	Atuado	Alarme de bateria
BATB	Teste de Bateria Bloqueado	MANUTENÇÃO	Normal	Atuado	Indicação de teste de bateria
BATD	Defeito Bateria	MANUTENÇÃO	Normal	Atuado	Alarme de bateria
BATF	Teste de Bateria Com Falha	MANUTENÇÃO	Normal	Atuado	Alarme de bateria
BATL	Nível Bateria Baixo	MANUTENÇÃO	Normal	Atuado	Alarme de bateria
BATR	Teste de Bateria Executado		Normal	Atuado	Alarme de bateria
BATS	Teste de Bateria Com Sucesso	MANUTENÇÃO	Normal	Atuado	Alarme de bateria
BAVL	Bateria Tensão Baixa		Normal	Atuado	Alarme de bateria
BLQR	Bloqueio - 79 LO		Normal	Atuado	Bloqueio após religamentos
CAFL	Falta VCA	ESTADO	Normal	Falta	Falta CA no religador
CARE	Reset Capacitor	COMANDO	Normal	Atuado	Comando de reset
CATF	Teste de Capacitor Com Falha	MANUTENÇÃO	Normal	Atuado	Teste de capacitor
CATS	Teste de Capacitor Com Sucesso	MANUTENÇÃO	Normal	Atuado	Teste de capacitor
CHAV	Modo Chave	ESTADO	Normal	Atuado	Modo de utilização no modo chave
DR	Defeito Relé	,	Normal		Defeito no religador
DREL	Defeito Religador		Normal		Defeito no religador
DRIF	Defeito Placa de Interface Rif				Defeito no religador
EST1	Estado Equipamento		Desligado		Estado do equipamento Ligado/Desligado
EST2	Estado Equipamento		Desligado	Ligado	Estado do equipamento Ligado/Desligado
F_JU	Defeito Fase Jusante	3	Normal	Atuado	Proteção de Fase atuada a jusante
FA	Fase A		Normal	Atuado	Atuada fase A
FALH	Falha Geral	3	Normal	Atuado	Defeito no religador
FB	Fase B	3	Normal	Atuado	Atuada fase B
FC	Fase C			Atuado	Atuada fase C
HLT	Hot Line Tag	,			Indicação falha
MANU	Grupos de Ajuste	ESTADO	Comando	Comando	Troca de ajuste

PONTO	DESCRIÇÃO	CLASSIFICAÇÃO	Nível 0	Nível 1	COMENTÁRIO
MLRE	Mal Funcionamento	MANUTENÇÃO	Normal	Defeito	Defeito no religador
MOD	Modo de Operacao	ESTADO	Religador	Chave	Modo de operação do religador
N	Neutro	PROTEÇÃO	Normal	Atuado	Atuação Neutro
N_JU	Defeito Neutro Jusante	PROTEÇÃO	Normal	Atuado	Proteção de Neutro atuada a jusante
P46	Pick Up 46 - Sequência Negativa	PROTEÇÃO	Normal	Atuado	Pick-up Sequencia negativa/desbalanço
P51F	Pick Up 51F		Normal	Atuado	Pick-up 51 Fase
P51N	Pick Up 51N	PROTEÇÃO	Normal	Atuado	Pick-up 51 Neutro
PFA	Pick Up Fase A	PROTEÇÃO	Normal	Atuado	Pick-up Fase A
PFB	Pick Up Fase B	PROTEÇÃO	Normal	Atuado	Pick-up Fase B
PFC	Pick Up Fase C	PROTEÇÃO	Normal	Atuado	Pick-up Fase C
PORT	Porta	MANUTENÇÃO	Aberto	Fechado	Porta aberta
RBND	Reset Bandeirolas	COMANDO	Normal	Atuado	Comando de reset
SGF	SGF	ESTADO	Incluído	Excluído	Proteção incluída
SGFT	SGF Trip	PROTEÇÃO	Normal	Atuado	Atuação SGF
SH	Self Healing	ESTADO	Ligado	Desligado	Indicação SH habilitado
SHBL	Bloqueio Self Healing	ESTADO	Ligado	Desligado	SH bloqueado
SHST	Self Healing Partida	ESTADO	Ligado	Desligado	Partida do SH

Fonte: Elaborado pelo Autor, dados sistema SCADASCADA (RGE Sul)

Tabela A.0.3 - Pontos Digitais de Alimentadores

PONT O	DESCRIÇÃO CURTA	CLASSIFICAÇ ÃO	NÍVEL 0	NÍVEL 1	DESCRIÇÃO LONGA
27	27 - FUNCAO	COMANDO	INCLUIDO	EXCLUIDO	Comando para incluir/excluir a proteção de subtensão
27_T	27 - SUBTENSAO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção de subtensão
27E1	27 - SUBTENSAO ESTÁGIO 1	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção de subtensão, estágio 1
27L	27 LINHA	PROTEÇÃO	INCLUIDO	EXCLUIDO	Sinalização de atuação da proteção de subtensão de linha
43LR	43LR	ESTADO	REMOTO	LOCAL	Sinalização do estado da chave local/remoto
43TC	43TC	COMANDO	INCLUIDO	EXCLUIDO	Comando para incluir/excluir comando remoto
50F	50 FASE	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de fase
50F1	50 FASE ESTÁGIO 1	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de fase, estágio 1
50F2	50 FASE ESTÁGIO 2	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de fase, estágio 2
50F3	50FASE ESTÁGIO 3	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de fase, estágio 3
50FN	50 FASE NEUTRO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de fase e neutro
50N	50 NEUTRO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de neutro
50N1	50 NEUTRO ESTÁGIO 1	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de neutro, estágio 1
50N2	50 NEUTRO ESTÁGIO 2	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de neutro, estágio 2
50N3	50 NEUTRO ESTÁGIO 3	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea de sobrecorrente de neutro, estágio 3
51F	51 FASE	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção temporizada de sobrecorrente de fase
51F1	51 FASE ESTÁGIO 1	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção temporizada de sobrecorrente de fase, estágio 1
51F2	51 FASE ESTÁGIO 2	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção temporizada de sobrecorrente de fase, estágio 2
51FN	51 FASE NEUTRO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção temporizada de sobrecorrente de fase e neutro
51N	51N	COMANDO	INCLUIDO	EXCLUIDO	Comando para incluir/excluir a proteção de sobrecorrente de neutro temporizada
51N1	51 NEUTRO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção temporizada de sobrecorrente de neutro, estágio 1
51N2	51 NEUTRO ESTÁGIO 2	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção temporizada de sobrecorrente de neutro, estágio 2

PONT O	DESCRIÇÃO CURTA	CLASSIFICAÇ ÃO	NÍVEL 0	NÍVEL 1	DESCRIÇÃO LONGA
59	59 - SOBRETENSAO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção de sobretensão
5FA	50 51 FASE A	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea e/ou temporizada de sobrecorrente de fase, fase A
5FB	50 51 FASE B	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea e/ou temporizada de sobrecorrente de fase, fase B
5FC	50 51 FASE C	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea e/ou temporizada de sobrecorrente de fase, fase C
5FN	50 51 FASE NEUTRO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea e/ou temporizada de sobrecorrente de fase e neutro
5N	50 51 NEUTRO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção instantânea e/ou temporizada de sobrecorrente de neutro
62BF	62BF	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção contra falha de disjuntor
79	79 - RELIGAMENTO	COMANDO	INCLUIDO	EXCLUIDO	Comando para incluir/excluir a proteção de religamento automático
79_1	79 PARTIDA	ESTADO	NORMAL	ATUADO	Sinalização da inicialização de contagem de tempo 79
79FL	79 FALHA	ESTADO	NORMAL	ATUADO	Indicação de falha no ciclo de religamento
79LO	79 BLOQUEADO	ESTADO	NORMAL	ATUADO	Sinalização de bloqueio após ciclos religamentos sem sucesso
790K	79 COM SUCESSO	ESTADO	NORMAL	ATUADO	Sinalização de ciclos religamentos concluído com sucesso
79RE	79 PRONTO	ESTADO	NORMAL	ATUADO	Sinalização de função de religamento automático pronta para iniciar ciclo
81	81 FUNCAO	COMANDO	INCLUIDO	EXCLUIDO	Comando para incluir/excluir a proteção de sub/sobre frequência
81_T	81	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção de sub ou sobre frequência
81SO	81 SOBREFREQUENCIA	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção de sobre frequência
81SU	81 SUBFREQUENCIA	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção de sub frequência
ABBN	ABERTURA P/ BOBINA DE NEUTRO	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção pela bobina de neutro
AJGP	GRUPOS DE AJUSTE	ESTADO	GRUPO 1	GRUPO 2	Sinalização do grupo de ajuste ativo
AJST	GRUPO DE AJUSTE	ESTADO	COMANDO	COMANDO	Comando para troca de ajuste de proteção
BATA	ALARME BATERIA	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de alarme de bateria
BBA1	BOBINA ABERTURA 1	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de falha na bobina de abertura 1
BBA2	BOBINA ABERTURA 2	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de falha na bobina de abertura 2

PONT O	DESCRIÇÃO CURTA	CLASSIFICAÇ ÃO	NÍVEL 0	NÍVEL 1	DESCRIÇÃO LONGA
BBAB	BOBINA ABERTURA	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de falha na bobina de abertura
BBFC	BOBINA FECHAMENTO	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de falha na bobina de fechamento
BFC	BLOQUEIO COMANDO FECH	ESTADO	NORMAL	ATUADO	Sinalização de bloqueio de fechamento
BLV	BLOQUEIO P/ TENSAO DE RETORNO	ESTADO	NORMAL	ATUADO	Sinalização de bloqueio de fechamento por tensão de retorno
CAB	CIRCUITO ABERTURA	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de falha no circuito de abertura
CAB1	CIRCUITO ABERTURA 1	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de falha no circuito de abertura 1
CAB2	CIRCUITO ABERTURA 2	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de falha no circuito de abertura 2
CACO	FALTA VCA COMANDO	MANUTENÇÃO	NORMAL	FALTA	Sinalização de ausência de alimentação CA no comando
CAFL	FALTA VCA	MANUTENÇÃO	NORMAL	FALTA	Sinalização de ausência de alimentação CA
CCAL	VCC ALARME	MANUTENÇÃO	NORMAL	FALTA	Alarme de ausência CC
CCCO	FALTA VCC COMANDO	MANUTENÇÃO	NORMAL	FALTA	Sinalização de ausência de alimentação CC no comando
CCFL	FALTA VCC	MANUTENÇÃO	NORMAL	FALTA	Sinalização de ausência de alimentação CC
CCMO	FALTA VCC MOTOR	MANUTENÇÃO	NORMAL	FALTA	Sinalização de ausência de alimentação CC no motor
CFC	CIRCUITO FECHAMENTO	MANUTENÇÃO	NORMAL	FALHA	Sinalização de falha no circuito de fechamento
CTPC	CONTATORA TENSAO AL	ESTADO	DESATRACA DO	ATRACADO	Sinalização do estado da contactora presença de tensão AL
DJF1	DISJUNTOR NF	ESTADO	DESLIGADO	LIGADO	Estado do equipamento Ligado/Desligado
DR	DEFEITO RELÉ	MANUTENÇÃO	NORMAL	DEFEITO	Sinalização de defeito no relé de proteção
DREL	DEFEITO RELIGADOR	MANUTENÇÃO	NORMAL	DEFEITO	Sinalização de defeito no religador
EST	ESTADO EQUIPAMENTO	ESTADO	DESLIGADO	LIGADO	Estado do equipamento Ligado/Desligado
FA	FASE A	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção na fase A
FB	FASE B	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção na fase B
FC	FASE C	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção na fase C
FCBN	FECHAMENTO PELA BOB NEUTRO	MANUTENÇÃO	NORMAL	ATUADO	Sinalização fechamento pela bobina de neutro

PONT O	DESCRIÇÃO CURTA	CLASSIFICAÇ ÃO	NÍVEL 0	NÍVEL 1	DESCRIÇÃO LONGA
FCOM	FALHA COMUNICACAO	MANUTENÇÃO	NORMAL	FALHA	Sinalização da condição de comunicação
FCSF	FECHAMENTO SOB FALTA	PROTEÇÃO	NORMAL	ATUADO	Sinalização de fechamento sob falta
G1	GRUPO DE AJUSTE 1	ESTADO	DESATIVADO	ATIVADO	Sinalização de ajuste de proteção Grupo 1
G2	GRUPO DE AJUSTE 2	ESTADO	DESATIVADO	ATIVADO	Sinalização de ajuste de proteção Grupo 2
HLT	HOT LINE TAG	MANUTENÇÃO	INCLUIDO	EXCLUIDO	Sinalização da condição da função Hot Line TAG
MD	MINI DISJUNTOR	MANUTENÇÃO	LIGADO	DESLIGADO	Sinalização do estado do mini disjuntor interno
MDCA	MINI DJUNTOR VCA DESLIGADO	MANUTENÇÃO	NORMAL	ATUADO	Sinalização do estado do mini disjuntor entrada VCA
MDCM	MINI DISJUNTOR COMANDO	MANUTENÇÃO	LIGADO	DESLIGADO	Sinalização do estado do mini disjuntor comando
MDPM	MINI DJ PAINEL MEDICAO	MANUTENÇÃO	LIGADO	DESLIGADO	Sinalização do estado do mini disjuntor painel de medição
MDTP	MINI DJ TP	MANUTENÇÃO	LIGADO	DESLIGADO	Sinalização do estado do mini disjuntor TP
MOLA	MOLA	MANUTENÇÃO	CARREGADA	DESCARREGADA	Sinalização do estado da mola
OI	OPERACAO INDEVIDA SEC.	ESTADO	NORMAL	ATUADO	Sinalização de operação indevida (seccionadora sob carga)
P51F	PICK UP 51F	PROTEÇÃO	NORMAL	ATUADO	Sinalização de pick-up proteção sobrecorrente de fase temporizada
P51N	PICK UP 51N	PROTEÇÃO	NORMAL	ATUADO	Sinalização de pick-up proteção sobrecorrente de neutro temporizada
RGBL	RELIGADOR BLOQUEADO	ESTADO	NORMAL	ATUADO	Sinalização de bloqueio após ciclos religamentos sem sucesso
SF6	BAIXA PRESSAO SF6	MANUTENÇÃO	NORMAL	ATUADO	Sinalização/bloqueio pressão baixa SF6
SF6A	BAIXA PRESSAO SF6 ALARME	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de alarme pressão baixa SF6
SF6B	BAIXA PRESSAO SF6 BLOQUEIO	MANUTENÇÃO	NORMAL	ATUADO	Sinalização de bloqueio pressão baixa SF6
SF6I	SF6 BLOQUEIO	MANUTENÇÃO	NORMAL	INIBIDO	Sinalização de bloqueio pressão SF6
SGF	SGF	COMANDO	INCLUIDO	EXCLUIDO	Comando para incluir/excluir a proteção SGF
SGFT	SGF TRIP	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção SGF
SIMD	DEFEITO SIMULTANEO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação lógica de defeito simultâneo
SOTF	SOTFT ATUADO	PROTEÇÃO	NORMAL	ATUADO	Sinalização de fechamento sob falta

PONT O	DESCRIÇÃO CURTA	CLASSIFICAÇ ÃO	NÍVEL 0	NÍVEL 1	DESCRIÇÃO LONGA
TDS	FUNCAO TRIP DEF. SIMULTANEO	PROTEÇÃO	INCLUIDO	EXCLUIDO	Sinalização de atuação lógica de defeito simultâneo
TR87	TRIP PELA FUNÇÃO 87	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação da proteção diferencial
ZHI	FALTA ALTA IMPEDANCIA	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação de proteção para faltas de alta impedância
ZLO	FALTA BAIXA IMPEDANCIA	PROTEÇÃO	NORMAL	ATUADO	Sinalização de atuação de proteção para faltas de baixa impedância

Fonte: Elaborado pelo Autor, dados sistema SCADASCADA (RGE Sul)

Tabela A.0.4 - Pontos Analógicos de Alimentadores

ANALOG	DESCRIÇÃO
FREQ	Frequência
IA	Corrente instantânea fase A
IB	Corrente instantânea fase B
IC	Corrente instantânea fase C
IN	Corrente instantânea neutro
OPER	Operações
P	Potência ativa instantânea (kw)
Q	Potência reativa instantânea (kVAr)
VA	Tensão instantânea fase A
VAB	Tensão instantânea fases AB
VABL	VAB linha
VB	Tensão instantânea fase B
VBAT	Tensão da bateria
VBC	Tensão instantânea fases BC
VC	Tensão instantânea fase C

Fonte: Elaborado pelo Autor, dados sistema SCADA (RGE Sul)