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Abstract

This paper presents a comprehensive review of evolutionary algorithms that learn an ensemble

of predictive models for supervised machine learning (classification and regression). We propose

a detailed four-level taxonomy of studies in this area. The first level of the taxonomy categorizes

studies based on which stage of the ensemble learning process is addressed by the evolutionary

algorithm: the generation of base models, model selection, or the integration of outputs. The next

three levels of the taxonomy further categorize studies based on methods used to address each

stage. In addition, we categorize studies according to the main types of objectives optimized by

the evolutionary algorithm, the type of base learner used and the type of evolutionary algorithm

used. We also discuss controversial topics, like the pros and cons of the selection stage of ensemble

learning, and the need for using a diversity measure for the ensemble’s members in the fitness

function. Finally, as conclusions, we summarize our findings about patterns in the frequency of

use of different methods, and suggest several new research directions for evolutionary ensemble

learning.

1 Introduction

Supervised ensemble learning – sometimes referred to as a mixture of experts, classifier ensembles,

or multiple classifier system [170, 137] is a paradigm within the machine learning area concerned

with integrating multiple base supervised learners in order to produce better predictive models

than simply learning a single strong model. An ensemble typically performs its predictions by

using a voting mechanism (e.g. majority voting) that computes the mean or the mode of the

predictions output by the ensemble’s members (base learners). Ensemble learning methods have

won several academic and industrial machine learning competitions [168], and such methods have

been extensively deployed in real-world AI applications [184, 149].

Ensembles have several advantages over a single learner: (i) it is usually computationally

cheaper to integrate a set of simple, weak models than to induce a single robust, complex

model [114]; (ii) ensembles composed by classifiers that are, in turn, only slightly better

than random guessing, can still present predictive performance comparable to a strong single

classifier [74, 90, 126]; (iii) different base learners can be specialized in different regions of the

input space, making their consensus more flexible and effective when dealing with complex

problems [74]. Indeed, there is both theoretical and empirical evidence demonstrating that a

good ensemble can be obtained by combining individual models that make distinct errors (e.g.,

errors on different parts of the input space) [98, 82, 147, 115, 84].

Ensemble learning comprises three distinct stages, whose names vary in the literature:

generation, selection, and integration [20, 123, 25], which is the most common naming system,
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and the one that will be used in this paper; pre-gate, ensemble-member, and post-gate [51]; or

generation, pruning, and fusion [151]. The three-step generation of ensembles can be reduced

to a hypothesis-search problem in combinatorial spaces, and so it is often approached by a

variety of heuristic approaches, such as boosting [74], bagging [18], and Evolutionary Algorithms

(EAs) [123, 120].

EAs have several advantages for ensemble learning, such as: performing a global search, which

is less likely to get trapped into local optima than greedy search methods [207]; being easily

adapted for multi-objective optimization [48]; and dealing with multiple solutions in parallel,

due to their population-based nature, e.g. [85, 117]. Hence, many EAs for supervised ensemble

learning have been proposed in the literature in the past few years.

Several application domains have benefited from EA-based ensemble learning algorithms,

including e.g. wind speed prediction [213, 205], cancer detection [182, 112, 111, 108, 109, 107],

noise by-pass detection in vehicles [163], stock market prediction [30, 132, 133], and microarray

data classification [127, 124, 154, 153, 125, 97, 98, 29, 100, 169, 4, 162], to name just a few.

This paper presents a survey of EAs for supervised ensemble learning. Our main contribution

is to properly identify, categorize, and evaluate the available research studies in this area.

This survey is aimed towards researchers on evolutionary algorithms and/or ensemble learning

algorithms.

As related work, several surveys have been published on ensemble studies from different

perspectives. Regarding specifically EAs for supervised ensemble learning, Yao and Islam [210]

present a review of EAs for designing ensembles, but they focus only on artificial neural networks

as the base learners to be combined. Sagi and Rokach [168], as well as Dietterich [54] present

a general review of ensemble learning studies, based on traditional non-evolutionary methods.

Rokach [165], Kotsiantis [106], and Tabassum and Ahmed [184] review ensembles designed only

for classification tasks. Similarly, Mendes-Moreira et al. [136] and Vega-Pons et al. [195] review

ensemble methods for regression and clustering tasks only, respectively. There are also papers on

specific domain applications of ensembles, e.g. Athar et al. [8], which reviews ensemble methods

for sentiment analysis; Gomes et al. [80] and Krawczyk et al. [113] also review ensemble learning

for data stream classification and regression.

Despite the relevant contributions of the previously cited literature, this work is to the best

of our knowledge the first review to focus on general-application EAs for supervised ensemble

learning in a comprehensive fashion. In particular, we highlight the following contributions: i) we

provide a general overview of EAs for supervised ensemble learning, not exclusively focusing

on any specific EA or any given type of supervised model, but presenting an in-depth analysis

of the different algorithms proposed for each stage of ensemble learning, with their respective

advantages and pitfalls; and ii) we provide a detailed taxonomy to properly categorize supervised

evolutionary ensembles, helping the reader to filter the literature and understand the possibilities

when designing EAs for this task. Note that reviewing EAs for ensemble learning in unsupervised

settings (e.g., the clustering task) is out of the scope of this paper.

The rest of this paper is organized as follows. Section 2 briefly reviews the most well-known

types of ensemble learning methods. Section 3 presents our novel taxonomy to categorize EAs

designed for supervised ensemble learning. Sections 4, 5, and 6 review the EAs employed for the

three stages of ensemble learning: generation, selection, and integration. In the next sections,

we focus on broader aspects of EAs for ensemble learning that are not specific to any single

stage, as follows. Section 7 details types of fitness functions often used by EAs for ensemble

learning. Section 8 summarizes the types of EAs used for ensemble learning. Section 9 points to

the most common base learners within the EAs reviewed in this survey. Section 10 describes the

complexity of evolutionary algorithms when applied to ensemble learning. Finally, in Section 11

we summarize our findings by identifying patterns in the frequency of use of different methods

across the surveyed EAs, and identify future trends and interesting research directions in this

area.
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2 Ensemble Learning

There are three main motivations to combine multiple learners [54]: representational, statistical,

and computational. The representational motivation is that combining multiple base learners may

provide better predictive performance than a single strong learner. For example, the generalization

ability of a neural network can be improved by using it as base learner within an ensemble [27].

In theory, no base learner will have the best predictive performance for all problems, as stated

by the No Free Lunch theorem [204]; and in practice, selecting the best learner for any given

dataset is a very difficult problem [65],[105], which can be addressed by integrating several good

learners into an ensemble.

The statistical motivation is to avoid poor-performance by averaging the outputs of many base

learners. While averaging the output of multiple base learners may not produce the overall best

output, it is also unlikely that it will produce the worst possible output [86]. This is particularly

the case for data with few data points, so overfitting is more likely.

Finally, the computational motivation is that some algorithms require several runs with distinct

initializations in order to avoid falling into bad local minima. Gradient descent, for example, often

requires several runs and further evaluation on a validation set in order to avoid being trapped into

local minima. Thus, it seems reasonable to integrate these already-trained intermediate models

into an ensemble, stabilizing and improving the system’s overall performance [43, 192].

Ensemble learning became popular during the 1990’s [43], with some of the most important

work arising around that time: stacking in 1992 [203]; boosting in 1995 and 1996 [74, 75, 173];

bagging in 1996 [18]; and random forests in the early 2000’s [19]. We call these methods traditional

to differentiate them from EA-based ensembles, though they are also referred to as preprocessing-

based ensemble methods in the EA literature [112]. We briefly review them next.

2.1 Boosting

Boosting refers to the technique of continuously enhancing the predictive performance of a

weak learner [112]. We present here the popular AdaBoost algorithm, proposed by Freund and

Schapire [74]. Given a set of predictive attributes X and a set of class labels Y, y ∈ Y = {−1, +1},

in its first iteration AdaBoost assigns equal importance (weights) to each instance in the training

set, D1(i) = 1/N , i = 1, . . . , N , with N as the number of instances. For a given number of

iterations G, AdaBoost trains a weak classifier based on the distribution Dg, and then computes

its error ϵg = Pi∼Dg [hg(xi) ̸= yi]. Instances that are harder to classify will have their weights

increased, so it becomes more rewarding to the model to classify them correctly.

Candidate algorithms for boosting must support assignment of weights for instances. If this is

not possible, a set of instances can be sampled from Dg and supplied to the gth learner. Although

boosting usually improves the predictive performance of a weak classifier, its performance suffers

when faced with noisy instances, since failing to correctly classify those instances will iteratively

improve their importance and hence lead the learner to overfitting [120].

2.2 Bagging

Bootstrap aggregating, or simply bagging, aims at reducing training instability when a learner

is faced with a given data distribution [18]. It consists of generating B subsets of size N from the

original training distribution D(i) = 1/N , i = 1, . . . , N with replacement, causing some instances

to be present in more than one subset. As a result, some base learners have a tendency to favor

such instances, having more opportunities to correctly predict their values. The predictions of all

trained B learners are combined by computing their mean (regression task) or mode (classification

task).

By sampling different subsets of instances for different classifiers, bagging implicitly injects

diversity within the ensemble [120], whereas boosting explicitly does this by weighting the data

distribution to focus the base learners’ attention into more difficult instances [120, 81].
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2.3 Stacking

Compared to bagging and boosting, stacked generalization or simply stacking [203] is a more

flexible strategy for ensemble learning. The user can choose one or more types of base learners

to be used in the ensemble (e.g. using only decision trees, or mixing them with artificial neural

networks [175]). Then, each base learner will output a prediction, and all learners’ predictions

will be combined by a meta-learner (which can also be chosen) to produce a single output.

Popular traditional meta-learners for stacking include linear regression (for regression) and logistic

regression (for classification). In Section 6.1 we review evolutionary algorithms used for learning

logistic regression, and linear regression algorithms’ weights. Stacking often improves the overall

predictive performance of ensembles, making it a popular method [137, 175].

2.4 Random Forests

Random forests, proposed by Breiman [19], is a type of ensemble learning method where both

the base learner and data sampling are pre-determined: decision trees and random sampling of

both instances and attributes. The training process for the original random forests algorithm [19]

is described as follows. First, the algorithm randomly samples with replacement B subsets of

training instances, one for building each of B decision trees that will compose the ensemble. For

each inner node within a decision tree, the algorithm first randomly samples without replacement

a subset of m attributes, and then it selects, among those attributes, the one that minimizes the

local class impurity for that node. In this context, purity is the ratio of instances from difference

classes that follow the same tree branch; hence, maximum purity in a node means that all instances

reaching said node belong to the same class. This procedure is applied to each inner node in the

current decision tree within the ensemble, and it is repeated until the tree achieves maximum

class purity for all leaf nodes.

Random forests sometimes perform better than boosting methods, while being resilient to

outliers and noise, faster to train than bagging and boosting methods (depending on the respective

base learner), and being easily parallelized. However, it can require very many decision trees to

provide an acceptable predictive performance, depending on the dataset at hand. Table 1 presents

a brief overview of the main characteristics of the above traditional methods.

Table 1 Traditional ensemble learning methods compared. Adapted from [131].

Algorithm Sampling Base learner Integration strategy

Bagging [18] instance
Unstable learner trained over
re-sampled instance subsets

Majority voting

Boosting [74] instance
Weak learner re-weighted at every
iteration

Weighted majority
voting

Stacking [203] None Any Meta-model
Random
forests [19]

instance;
attribute

Decision trees Majority voting

3 Ensemble Learning with Evolutionary Algorithms

In general, Evolutionary Algorithms (EAs) are robust optimization methods that perform a global

search in the space of candidate solutions. EAs are simple to implement, requiring little domain

knowledge, and can produce several good solutions to the same problem due to their population-

based nature [78]. In particular, EAs seem to be naturally suited for ensemble learning, given their

capability of producing a set of solutions that can be readily integrated into an ensemble [120, 57].

EAs also support multi-objective optimization (based e.g. on Pareto dominance), allowing the

generation of solutions that cover distinct aspects of the input space [120], and removing the

need to manually optimize some hyper-parameters (e.g. the base learner’s hyper-parameters, the

number of ensemble members, etc.). However, EAs will likely increase the computational cost of

ensemble learning, due to its robust global-search behavior that usually considers many tens or
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hundreds of possible solutions at each iteration (generation). Nonetheless, parallelization is an

option to mitigate such problem [123].

Since ensemble learning is composed of at least three main optimization steps (generation,

selection, and integration), each one with many tasks, there is plenty of room to employ EAs [67].

In the literature on EA-based ensembles for supervised learning, the most common approach is

to optimize a single step, though some studies go as far as optimizing two of them (e.g. [143, 29]).

Figure 1 summarizes how many studies were dedicated to each of the three stages.

69 2313

32

18 9
0

Generation

Selection

Integration

Figure 1: Work summarized by the ensemble learning stage that EAs are employed. While

generation is more popular than selection and integration combined, none of the surveyed studies

employed EAs in all stages.

In this work, we provide a taxonomy to categorize the EA-based approaches for supervised

ensemble learning (Figure 2). All surveyed studies are focused on supervised problems, i.e., no

unsupervised approach is reviewed.

We divide the surveyed studies according to the well-established main stages of supervised

ensemble learning: generation, selection, and integration. We use these three stages at the top

level of our proposed taxonomy because in principle major decisions about the design of the EA

(e.g. which individual representation to use, which fitness function to use) are entirely dependent

on the type of ensemble learning stage addressed by the EA. The approaches most often used in

each stage are presented at the second level of the taxonomy. For example, attribute selection,

model tuning, and instance selection are the three most common approaches for the generation

stage. Further divisions in the taxonomy are presented at the next levels, whenever it is the case.

Note that taxonomies vary depending on the aspect being analyzed – e.g. Gu [81] is concerned

with the generation stage, and hence proposes a taxonomy exclusively for that step. To the best

of our knowledge, our taxonomy is one of the broadest with regard to EAs for ensemble learning,

with the closest reference being the one proposed by Cruz et al. [39]. While the description of

generation and selection stages in [39] is identical to ours, we are more specific regarding the

strategies for the integration stage. In addition, while the authors propose a two-level taxonomy,

we present a more detailed and thorough four-level taxonomy.

3.1 Methodology to collect and analyze papers in this survey

The main objective of this work is to identify and evaluate existing approaches that apply

evolutionary algorithms for learning ensembles of predictive models for supervised machine

learning. The objective is expressed from the research questions presented in Table 2. These

questions aim to analyze the relevant work, both in the context of evolutionary algorithms used,

and the characteristics of ensembles that are optimized. The sections where these questions are

addressed are also shown in the table.
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generation selection integration

supervised evolutionary 
ensemble learning

attribute 
selection

instance 
selection

static 
selection

dynamic 
selectionmodel tuning linearnon-linear

expression tree artificial 
neural networkfuzzy system

first degree 
polynomialpre-model post-model ECOC matrix meta-model IOWA

Figure 2: The proposed taxonomy for EAs employed in ensemble learning.

Table 2 Research questions of this survey.

ID Research Question Description Addressed in

RQ1

What are the existing work
that apply evolutionary
algorithms for learning
ensembles for supervised
machine learning tasks?

General question that aims to
identify existing work that apply
evolutionary algorithms in the
context of ensemble learning.

Throughout
this survey

RQ2

What are the evolutionary
algorithms used to learn the
ensembles?

Aims to identify which
evolutionary algorithms are
applied for ensemble learning.

Section 8

RQ3

What stages of ensemble
learning are addressed by
the evolutionary algorithm?

Aims to categorize the
approaches according to the
ensemble optimization step
(generation, selection or
integration).

Sections 4, 5,
and 6

RQ4

Which objective functions
are optimized by the
evolutionary algorithm?

Since fitness function is an
essential component of EAs, and
given the complexity of the
ensembles where several
objectives can be optimized,
this question aims to analyze
how these functions are
employed in ensemble learning.

Section 7

RQ5
What are the base learners
used?

Finally, this survey aims to
analyze the relevant works from
the point of view of the base
learners that are used to
compose the ensembles.

Section 9

3.1.1 Search Strategy

Based on the main objective, we select keywords that are likely to be present in most of the work

that proposes evolutionary algorithms for ensemble learning; from these keywords we compose a

search string. Synonyms of each term were incorporated using the Boolean operator OR, whereas

the Boolean operator AND was used to link the terms. The generic search string derived is

‘ensemble’ AND

((‘classification’ OR ‘classifier’ OR ‘classifiers’) OR

(‘regression’ OR ‘regressor’ OR ‘regressors’)) AND

(‘evolutionary’ OR ‘evolution’)
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In addition to the search string, we define the search engines. Thus, reviewed papers of this

survey were searched in the following repositories: Scopus1, Science Direct2, IEEE Xplore3, and

ACM Digital Library4. Figure 3 shows the search strings as used in each search engine.

TITLE-ABS-KEY("ensemble") AND (
    (
        TITLE-ABS-KEY("classification") OR
            TITLE-ABS-KEY("classifier") OR
            TITLE-ABS-KEY("classifiers")
    ) OR (
        TITLE-ABS-KEY("regression") OR
        TITLE-ABS-KEY("regressor") OR
        TITLE-ABS-KEY("regressors")
    )
) AND (
    TITLE-ABS-KEY("evolutionary") OR 
    TITLE-ABS-KEY("evolution")
)

(a) Scopus

"ensemble" AND (
    (
        "classification" OR
        "classifier" OR
        "classifiers"
    ) OR (
        "regression" OR
        "regressor" OR
        "regressors"
    )
) AND (
    "evolutionary" OR
    "evolution"
)

(b) ACM

"Abstract":ensemble AND (
    (
        "Abstract":classification OR
        "Abstract":classifier OR
        "Abstract":classifiers
    ) OR (
        "Abstract":regression OR
        "Abstract":regressor OR
        "Abstract":regressors
    )
) AND (
    "Abstract":evolutionary OR
    "Abstract":evolution
)

(c) IEEE Xplore

title-abstr-key("ensemble") AND (
    (
        title-abstr-key("classification") OR
        title-abstr-key("classifier") OR
        title-abstr-key("classifiers")
    ) OR (
        title-abstr-key("regression") OR
        title-abstr-key("regressor") OR
        title-abstr-key("regressors")
    )
) AND (
        title-abstr-key("evolutionary") OR
        title-abstr-key("evolution")
)

(d) ScienceDirect

Figure 3: Search strings as used in search engines.

3.1.2 Study Selection Criteria
We adopted the following criteria for including studies in this survey: (i) papers that present a

new evolutionary strategy for ensemble learning in supervised machine learning; (ii) papers that

present a minimum detail of the proposed solution, including: type of EA used, fitness function

used, ensemble stage optimized, base learners used; and (iii) papers that present an experimental

evaluation of the proposed solution. We also use exclusion criteria, which are: (i) unavailability:

paper not available in any online repository, or papers available only under payment; (ii) wrong

topic: on further review, papers that did not cover the surveyed topic; and (iii) papers that are

not written in English.

3.1.3 Study Selection Procedures
In the selection process, the search string was applied to the title, abstract, and keywords of

searched papers. Scopus was the first repository searched, since it has the largest database. Eight

hundred and two (802) papers matched the keywords. All papers had their abstracts reviewed,

and from their analysis the ones deemed relevant (366) were carried on to the next stage of the

reviewing process, as shown in column Relevant of Table 3.

We proceed the search with ACM Digital Library, IEEE Xplore, and Science Direct, again

reviewing abstracts and selecting papers based on their relevance to this survey. Since Scopus

is the largest database, some papers present in the remaining repositories were also present in

Scopus. For this reason, column Already in Scopus of Table 3 counts the number of papers

1Available at https://www.scopus.com/home.uri
2Available at http://www.sciencedirect.com
3Available at http://ieeexplore.ieee.org/Xplore/home.jsp
4Available at http://dl.acm.org
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found in other repositories that already had their abstracts reviewed when we collected papers

from Scopus. Among the remaining databases, we found 108 unique papers, not present in Scopus;

from these, 38 were deemed relevant for further review.

Table 3 Papers that matched the search strings shown in Figure 3. In this stage all papers had their
abstracts reviewed. From this initial analysis, not all papers were deemed relevant to the scope of this
survey. Already in Scopus column denote papers that were already present at the Scopus database.

Repository Relevant Irrelevant Already in Scopus Total

Scopus 366 436 —– 802
ACM Digital Library 16 11 34 61
IEEE Xplore 13 8 127 148
Science Direct 9 51 90 150

Total 404 506 251 1161

Across all searched databases, 404 papers were deemed relevant for the survey, taking into

consideration the description of their abstracts. From these, 50 were unavailable, either because

(i) the document was not found in their host websites, or it was behind a paywall; or (ii) on further

review of the paper, the topic addressed was not exactly the one we were interested (43 papers),

as discussed in the beginning of Section 3.1.2. This reduced the number of relevant papers to 311.

From the remaining 311 papers, 164 were fully reviewed and included in the survey, with the

remaining 147 not included nor reviewed. While we could have reviewed the latter group, we

did not because we applied a truncation factor: that is, the rate at which we were detecting

new concepts in papers was not justified by the amount of papers needed to reach these novel

ideas. The papers that were not reviewed did not have any characteristic that made them less

attractive than the ones reviewed, and we do not discriminate based on vehicle of publication, type

of publication (conference or journal paper), date, number of citations, etc. An overall summary

of the papers is presented in Figure 4.

unavailable truncated wrong original duplicated

reviewed

Figure 4: From the 404 papers selected for review, 164 were added to the survey. Among these,

20 were duplicated (e.g. expanded work), and 144 original work.

Papers were reviewed in chronological order: the ones closest to the date of the reviewing

process were added first, and the ones that had been already been published, reviewed last. From

the papers that made to the survey, 20 were duplicated and fell into one of the following categories:

(i) the algorithms were published in conferences and had expanded versions in journals; (ii) they

had different application domains, but the algorithm was the same; or (iii) slightly different

implementations (for example, changing the number of layers and/or activations in a neural

network).

3.1.4 Data Extraction Strategy
After selecting the 164 works to compose the survey, the extraction and analysis of the data

was made through peer review, where at least two researchers evaluated each work. The data

were structured in a spreadsheet according to its meta-data (catalog information) and the

characteristics of the work, according to the research questions that we aimed to answer.
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We make available two supplementary material to this paper. The first is a repository of source

code, hosted at https://github.com/henryzord/eael, with metadata used to generate figures

and tables in this paper. The other is a master table, made available as a website, and hosted at

https://henryzord.github.io/eael, listing individual information on surveyed work.

4 The Generation Stage of Ensemble Learning

In this stage the algorithm generates a pool of trained models. Those models may come from: (i)

different paradigms (e.g., Näıve Bayes, Support Vector Machines, and Neural Networks [157]);

or (ii) be from the same paradigm, but still present some differences, such as artificial neural

networks with different topologies and/or activation functions [213]).

The main objective in this stage is to generate a pool of both accurate and diverse base

learners. Base learners must be diverse in order to provide source material for the selection and

integration steps to work with. A diverse pool of base learners has more chances to commit errors

in different data instances, thus correctly predicting more instances [150].

An example of an ensemble algorithm that focuses on the generation phase is random

forests [19, 188], considering that it selects distinct subsets of both attributes and instances

for building different decision trees, resulting in an ensemble of trees that is more robust than a

single decision tree.

We have identified three ways of generating pools of learners that are both diverse and accurate:

(i) providing distinct training sets for each base learner (instance selection); (ii) providing the

same training set for all learners but with distinct sets of attributes (attribute selection); and

(iii) optimizing the model by modifying the hyper-parameters and/or the structure of the base

learners.

4.1 Instance Selection

Instance selection, also known as prototype selection or data randomization [196, 3] consists

of providing different (not necessarily disjoint) subsets of training instances for different base

learners [6, 167]. This approach is well-suited for homogeneous sets of base learners which are

sensitive to changes in the instance distribution (e.g., decision trees [86]).

Instance selection can also be used to reduce training time by finding a subset of representative

instances for each class [6, 167]. This is also beneficial for problems with high class imbalance,

given that re-sampling instances with replacement makes it possible to simulate a uniform

distribution among classes. Indeed that is one of the capabilities of the traditional bagging

algorithm [18]. Thus, “bagged” EAs are likely to have the same benefits as “bagged”: improved

noise tolerance and reduced overfitting risk [196]. A method for selecting instances is needed since

random sampling can lead to information loss and poor model generalization [95]. By using an

EA, both the tasks of undersampling the majority class and oversampling the minority class are

possible in parallel.

This section mainly focuses on instance selection techniques, since instance generation is more

scarce. While the former performs a selection of instances from the original data, the latter can

create new artificial instances, thus easing the adjustment of decision boundaries of models, at

the expense of being more prone to overfitting [196]. Only one work uses a hybrid selection-and-

generation strategy, namely [196]. In this work, seeking to address the class imbalance problem,

a Steady State Memetic Algorithm (SSMA) is used for selecting instances from the training

set, composing several individuals (i.e. subsets of instances). Once the SSMA optimization

ends, a portion of its (fittest) individuals will be then fed to a Scale Factor Local Search in

Differential Evolution (SFLSDE), that will improve the quality of instance subsets by generating

new instances. Both evolutionary algorithms use a measure of predictive performance as the

fitness function. Finally, the (fittest) individuals from SFLSDE are used by 1-NN classifiers,

integrated by means of weighted voting (not evolutionary induced).
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Although instance selection is present in work tackling the class imbalance problem (e.g. [196,

23, 77]), it can lead to overfitting, or having subsets where one class has many more instances than

other classes, if an inadequate objective function (such as accuracy) is used. An approach to avoid

overfitting is to assign different misclassification costs to different classes. Typical cost-sensitive

learning techniques do not directly modify the data distribution, but rather take misclassification

costs into account during model construction [23].

Instance selection can be divided into wrapper and filter methods. In our literature review,

wrapper methods were more common than filter methods. Only the work of Almeida and

Galvão [6] uses a filter approach, where a GA is used to optimize the number of groups in a k-

means algorithm. Due to the tendency of k-means in finding hyperspherical clusters, the objective

is to find evenly-distributed groups of instances. One classifier is trained for each group, and the

quality of classifiers is assessed by the weighted combination of training accuracy, validation

accuracy, and distribution of classes within groups. In the prediction phase, unknown instances

will be assigned to their most similar cluster, based on the Euclidean distance between the

unknown-class test instance and the cluster’s instances.

For wrapper methods, usually the set of selected instances is encoded as either a binary or real-

valued chromosome of N positions (the number of instances). In the binary case, each bit encodes

whether an instance is present or absent in the solution encoded by the current individual. In a

real-valued case, each gene encodes the probability that the respective instance will be present

in that solution. To address class imbalance, in [77] only majority class instances are encoded in

a binary string – minority class instances are always selected.

It is also possible to perform instance selection together with other methods. In [167], the multi-

objective problem consists in optimizing both a Support Vector Machine’s hyper-parameters

and the instance set to be used for training each model. This combined strategy is better for

SVMs than simply selecting training subsets, since SVMs are robust to small changes in data

distribution [13]. Coupling two tasks at once also fits well with weight optimization: in [112],

evolutionary under-sampling and boosting are used in a C4.5 decision-tree classifier to iteratively

optimize its performance in grading breast cancer malignancy.

Olvera-López provides an extensive survey of both evolutionary and non-evolutionary instance-

selection methods proposed until 2010 [145].

4.2 Attribute selection

Attribute selection, also called feature selection or variable subset selection [176], offers distinct

subsets of attributes to different base learners in order to induce diversity among base models. By

removing irrelevant and redundant attributes from the data, attribute selection can improve the

performance of base learners [179]. Reducing the number of attributes also reduces the complexity

of learned base models, and may improve the efficiency of the ensemble system.

Attribute selection also performs dimensionality reduction, and is an efficient approach to build

ensembles of base learners [126]. There is no need to provide disjoint sets of attributes to different

learners. The base learners must be sensitive to modifications in the data distribution. Support

Vector Machines, for example, were reported to be little affected by attribute selection [193].

Wrapper methods are by far the most common type of EAs for attribute selection. It has been

noted that there is a direct link between high-quality attribute subsets and a high-quality pool

of base learners [135]. Filter approaches break this link, evaluating the quality of an attribute set

in a way independent from the overall base learner pool [135].

A wrapper method provides a reduced subset of attributes to a learning algorithm, and then

the predictive accuracy of the model trained with those attributes is used as a measure of the

quality of the selected attributes. The random subspace method, for example, is a traditional

approach for wrapping algorithms that randomly selects different attribute subsets for different

base learners. Although this method is usually much faster than EAs, its performance is sensitive

to the number of attributes and ensemble size [126]. By contrast, EAs can improve stability and
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provide more accurate ensembles [126]. Other examples of traditional methods include sequential

forward selection, sequential backward selection, beam search, etc. [135].

However, filter methods are still usually preferred for some application domains, such as

microarray data, where the number of attributes far surpasses the number of instances, rendering

a wrapper approach inefficient. In [98], base learners are coupled with filters that perform attribute

selection. Although the authors do not use training time as an objective in the EA, the reported

execution time of a single run of the GA is between 15 seconds to 3 minutes, much faster than an

exhaustive search, that could take as long as one hour (for sets of 24 attributes), or one year (for

sets of 42 attributes), in a dataset of 4026 attributes. Their proposed algorithm is also capable of

outperforming other EA-based ensembles for two microarray datasets. In another study, genetic

algorithms (GAs) with error rate as fitness function were shown to be capable of outperforming

greedy wrapper methods in terms of ensemble accuracy [135].

Two concepts relevant for attribute selection are sparsity and algorithmic stability. An

attribute selection algorithm is called sparse if it finds the sparsest or nearly-sparsest set of

attributes subject to performance constraints (e.g. small generalization error) [193]. An algorithm

is called stable if it produces similar outputs when fed with similar inputs – i.e., it selects similar

attribute sets for two similar datasets [208]. As noted in [193, 208], stability and sparsity constitute

a trade-off. An algorithm that is sparse may be incapable of selecting similar sets of attributes

across runs [193].

EAs for attribute selection vary on the number of objectives to be optimized, integration with

other stages, and distribution of base learners. In [156, 157] a multi-objective Particle Swarm

Optimization algorithm provided different attribute subsets to heterogeneous base learners, in

order to predict whether power transforms will fail in the near future. In [181, 179, 180], two

Pareto-based multi-objective differential evolution algorithms performs attribute selection, and

then linear voting weight optimization, in a pipeline fashion (the generation stage is performed

before the integration stage).

The encoding used in [101] considers each individual as an ensemble of classifiers. Classifiers

are trained differently based on their input features. Each classifier competes with its neighbors

within the same ensemble; and at a higher level, ensembles compete among themselves based on

their predictive accuracy.

4.3 Model optimization

Models may have their hyper-parameters and/or structure modified while creating a pool or

ensemble of base learners. We divide this category of our taxonomy into two groups: pre-model

and post-model optimization.

Pre-model optimization involves fine-tuning the hyper-parameters of the base learners that will

generate the base models. We call these approaches pre-model because the optimization happens

prior to model generation. Examples are: tuning a neural network’s learning rate; a SVM’s type

of kernel function [167]; L2 regularization [205]; and random forests’ number of trees [169].

Pre-model approaches may support heterogeneous sets of base learners. E.g., in [169] the

authors select both the types of base learner and their respective hyper-parameters, together

with a set of attributes that will be assigned to a given learner. They used the NSGA-II [49]

algorithm, and the one-point crossover keeps base models and hyper-parameters together, only

allowing to swap the selected attributes for each model.

Post-model approaches try to improve an existing model. Examples are layout and inner node

selection for decision trees [134, 9, 199], and topology, weight, and activation function optimization

in neural networks [67, 143, 143]. Weights are also optimized in [114], where an ensemble of

heterogeneous parametric models are optimized by differential evolution.

Post-model encoding depends on the type of base learner being used, and so are more common

on homogeneous sets of base learners. In [99], the weights of artificial neural networks are modified

by a GA. The authors adopt a matrix of size W ×W , where W is the number of neurons in the
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entire network. The upper diagonal encodes whether two given neurons are connected, and the

lower diagonal encodes the weights associated with those connections.

Some studies perform both pre- and post-model optimization. In [143], first the topology of a

neural network is evolved by using NSGA-II. The best found topology then has its parameters

(e.g., weights and activation functions) adjusted by a multi-objective Differential Evolution

method. In the end, the final population is submitted to a voting scheme optimized by another

EA.

Attribute selection is often coupled with model optimization. In [187], both post-model

optimization of Radial Basis Function Neural Networks and attribute selection were used, by

performing both approaches in two subpopulations of the Cooperative Coevolutionary EA.

In [162], solutions for both tasks were placed within the same chromosome: in a 132-wide

chromosome array, 88 bits are designated for attribute selection, 10 bits represent parameter

nu and threshold (integer and decimal part), 14 bits correspond to the gamma value and 20 bits

are used for the parameter C of a nu-SVR learner.

Table 4 summarizes the work on EAs for the generation step of supervised ensemble learning,

based on the taxonomy proposed in this section.

Table 4 Categorization of studies that employ EAs in the generation stage of supervised ensemble
learning.

Method Related work

Instance selection [112, 108, 6, 81, 95, 43, 77, 196, 2]

Attribute selection
[111, 157, 156, 181, 169, 140, 29, 81, 123, 180, 200, 179, 176, 178,
177, 101, 125, 135, 33, 211, 193, 187, 162, 52, 50, 116, 5, 10, 185,
28, 44, 42, 13, 40]

Pre-model optimization
[205, 167, 169, 6, 143, 96, 123, 200, 35, 36, 150, 37, 93, 94, 166,
193, 162, 53, 182, 44, 42, 129, 122, 13]

Post-model
optimization

[114, 67, 199, 134, 9, 143, 30, 120, 41, 119, 121, 99, 71, 69, 70,
68, 57, 47, 183, 25, 61, 63, 62, 64, 132, 133, 164, 79, 190, 130, 43,
87, 24, 23, 171, 187, 102, 174, 16, 17, 194, 52, 50, 92, 163, 66,
182, 58, 44, 42, 197]

5 The Selection Stage of Ensemble Learning

From the pool of generated base models, model selection (or model pruning [151]) is performed

in order to define the final set of base models for the ensemble. Selection may be regarded as a

multi-objective problem, where two objectives – predictive performance, and diversity – must be

optimized. When the size of an ensemble is large, selecting base models based on these metrics

can be computationally expensive if all ensemble options are considered, thus making the use

of meta-heuristics (such as evolutionary algorithms) attractive [151]. However, simpler options

(such as simply selecting the Φ most accurate learners) can also be used. Selection is often viewed

as an optional stage and frequently not performed by traditional methods (e.g., boosting [74],

bagging [18]) or EA-based ones (e.g., [24, 211]).

Whether or not to perform selection is an issue for debate, with some authors proposing to

bypass this stage (i.e., using the entire pool of models as ensemble) [189]. Lacy et al. [120] argue

that model selection is irrelevant for ensemble learning, and that it is sufficient to select the Φ best

models from the pool. According to [120, 75, 21], from a predictive performance standpoint, this

approach would be more effective than building an ensemble while considering diversity metrics.

Other authors claim that there is little correlation between ensemble diversity and accuracy

[148, 19, 151, 21]. On the other hand, some authors argue the opposite: e.g., for regression, Wang

and Alhamdoosh [198] argue that the Φ best neural networks may not produce an ensemble with

better Mean Squared Error (MSE). This is also stated by Liu et al. [127], adding that simply

selecting the most accurate models may result in loss of predictive performance given that most

of those models may be strongly correlated, leaving the opinion of the minority of the committee

underrepresented.
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Although Lacy et al. [120] and Liu et al. [127] have different opinions on the utility of model

selection, both agree that diversity measures are not a good proxy for ensemble quality, with

Liu et al. [127] suggesting that accuracy on a validation5 set is sufficient. The rationale for using

diversity measures is that by sacrificing individual accuracy for group diversity, one can achieve

better group accuracy [151, 25]. Diversity in this case should not be measured at the genotype

level (e.g., individuals encoding different attributes for the same base model), but rather measured

based on the predictive performance of the algorithms decoded from the individuals. Diversity

metrics can be of two types: pairwise or group-wise [86]. A pairwise diversity metric often outputs

a matrix of values denoting how diverse one base model is from another. Then, algorithms may

select models that are, e.g., more diverse to the other already-selected models. By contrast, group-

wise metrics validate how diverse a group of base models is, thus requiring a previous strategy

for composing groups. A review of diversity measures is presented by Hernández et al. [86].

The motivations for using EAs for model selection are as follows. First, finding the optimal

model subset within a large set is unfeasible with exhaustive search (the search space size is ≈ 2B ,

where B is the number of base models). By contrast, EAs perform a robust, global-search for

the near-optimal set of base models [151]. There is evidence that smaller ensembles can indeed

outperform larger ones [188]. However, in practice, the optimal ensemble size varies across types

of ensembles (e.g. bagging vs boosting), types of base learners (with different biases), and datasets

(with different degrees of complexity). Hence, given the complexity of the problem of selecting

the optimal model size, and the typically large size of the search space, it is justifiable to use a

robust search method like EAs to try to solve this problem.

Model selection can be further divided into two categories: static and dynamic selection [43,

90, 89, 39]. In static selection, regions of competence are defined at training time and are

never changed [90, 89, 39]. In dynamic selection the regions are defined during classification

time, through the use of a competence estimator [90, 89, 192]. Figure 5 puts both strategies in

perspective.
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Figure 5: Difference between static and dynamic selection strategies. While in static selection

the competence estimator assigns regions to base learners during the training phase, in dynamic

selection this is done during the prediction phase. Dynamic selection can also have a selector (e.g.

oracle) that assigns a single base learner to regions of competence.

Some studies in the literature (e.g. [20, 39]) experimentally assess whether dynamic selection

methods are better than static selection ones. In [39], the authors compare static and dynamic

5In supervised learning it is common to divide a dataset into three disjoint sets: training, validation and test.
The validation set is used to evaluate the quality of models while training, and helps to prevent overfitting to the
training data. The test set is used for the final model evaluation after training.
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selection methods on 30 different datasets, under the same protocol. The authors also compare

these strategies with well-established ensemble algorithms, such as random forests, and AdaBoost.

Only one of the 18 dynamic selection methods presented a worse predictive accuracy than simply

using the best-performing classifier in the ensemble, and 66% of them outperformed a genetic

algorithm performing static selection with majority voting as integration strategy. Furthermore,

44% and 61% of them presented a better average ranking than Random Forests and AdaBoost,

respectively.

These results are also supported by [20]. Dynamic selection methods were statistically better

than three other strategies: using the single best classifier in an ensemble, using all the generated

classifiers, and using static selection methods. For the latter, dynamic selection algorithms won

in 68% of the cases.

Note that some studies say they perform dynamic selection (e.g. [6] via k-means), but in fact

they perform static selection, since the assignment of classifiers is done during training time and

does not change after that.

5.1 Static selection

Static selection is well-suited for batch-based learning, where the data distribution is not expected

to change with time. Static selection assigns regions of competence during training time, thus

allowing some freedom regarding which methods can be used. Overproduce-and-select is a

traditional strategy for ensemble learning [93, 38], where an algorithm first generates a large pool

of base models using a generation method (see Section 4). Then, the base models are selected from

this pool and their votes are combined via an integration scheme (see Section 6). The rationale

is that some models may perform poorly or have strongly-correlated predictions, making some of

these safe for exclusion from the final ensemble [189]. EAs for this strategy aim at selecting the

set of models that optimize a given criterion(a), often used as the fitness function.

A second strategy for static selection, known as clustering-and-selection, uses a clustering

algorithm to assign models to distinct regions of competence in the training phase. In the testing

phase, a new instance is submitted to the base model that covers the region closer to that instance.

Studies using this strategy include [160, 159, 59]. In [90], a GA was used for selecting the number

of partitions in which the input space is divided. It then assigns an ensemble of classifiers to each

partition, optimizing the voting weight of each base learner.

Overproduce-and-select and clustering-and-select differ regarding the region of competence

where they will be employed. In the former, all selected base models will cast their predictions

over the same region, whereas in the second they will be assigned to distinct ones.

In [198] a hill-climbing strategy was used for increasing the size of the ensemble. By starting

with only two classifiers (Neural Networks), the number of ensemble members is increased by

adding classifiers that reduce the overall ensemble’s error rate. In [56], the authors investigate

the impact of combining error rate (effectiveness), ensemble size (efficiency), and 12 diversity

measures on the quality of static selection by using pairs of objectives. The authors also study

conflicts between objectives, such as error rate/diversity measures and ensemble size/diversity

measures. They argue that, among diversity measures, difficulty, inter-rate agreement, correlation

coefficient, and double-fault are the best for combining with error rate, ultimately producing the

best ensembles.

Studies that use the overproduce-and-select strategy often encode individuals as binary strings,

where 0 denotes the absence of that model in the final ensemble and 1 the presence [29].

However, in [158] the individual size was doubled by using two values for each model: one for the

aforementioned task, and another to determine the strength of that model’s output in the final

ensemble’s prediction.

In [98], attribute and model selection were performed at the same time. The authors use a

binary matrix chromosome where each row represents a different base learner and each column

a filter-based attribute selection approach. In this sense, if a bit is active somewhere within the



A Survey of EAs for Supervised Ensemble Learning 15

individual’s genotype, it means that the base learner of the corresponding row will be trained

with the attributes selected by the filter approach of the corresponding column.

5.2 Dynamic selection

In dynamic selection, a single model or a subset of most competent learners is assigned to predict

an unknown-class instance [39] (hereafter, unknown instance for short). This strategy is better

suited for e.g. data stream learning, since the competence estimator naturally assigns base models

to instances during the prediction phase. Dynamic selection was reported to perform better than

boosting and static selection strategies [39]. However, work on dynamic selection is much less

frequent than work on static selection. Dynamic selection is also more computationally expensive,

since estimators are required to define regions of competence for all predictions, which can be

unfeasible in some cases [44, 20].

One approach for dynamic selection is to use random oracles [38, 188]. A random oracle

is a mini-ensemble with only two base learners that are randomly assigned to competence

regions [188]. At prediction time, the oracle decides which base learner to use for providing

predictions for unknown instances.

Another strategy is to train a meta-learner. In [123], generation strategies of feature

selection and pre-model optimization were combined with an overproduce-and-select strategy

for generating a diverse pool of base learners. Next, a meta-learner was trained for selecting the

best subset of models for predicting the class of unseen instances.

Table 5 shows the distribution of the surveyed EAs into the static and dynamic selection

categories. The interested reader is referred to the work of Cruz et al. [39] for a review on

dynamic selection strategies.

Table 5 Categorization of EAs for the selection stage of supervised ensemble learning.

Method Related work

Static selection
[6, 137, 181, 169, 11, 158, 139, 140, 29, 151, 152, 100, 90, 89, 104, 55,
56, 98, 97, 154, 153, 34, 166, 86, 27, 25, 131, 38, 116, 198, 186, 182,
32, 58, 46, 160, 159, 59, 175, 122, 7, 13, 12]

Dynamic selection [123, 38, 188]

6 The Integration Stage of Ensemble Learning

The last step of ensemble learning concerns the integration of votes (for classification) or

value approximation (for regression) in order to maximize predictive performance. Ensemble

integration, also called learner fusion [189] or post-gate stage [51], is the final chance to fine-

tune the ensemble members in order to correct minor faults, such as giving more importance to a

minority of learners that are however making correct predictions. Integration is an active research

area in ensemble learning [189]. Similarly to the selection stage, this is another stage where using

a validation set can be useful, since reusing the training set that was employed to generate base

models can lead to overfitting.

As with other ensemble stages, there are two approaches for the integration of base learners:

using traditional, non-EA methods, or using evolutionary algorithms. For classification, the most

popular method is weighted majority voting, which allows to weight the contribution of each

individual classifier to the prediction according to its competence via voting weights [189]:

hB(X(i)) = argmax
j

(
B∑

b=1

wb,j × [hb(X) = cj ]

)
(1)

where B is the number of classifiers, wb,j the weight associated with the bth classifier for the jth

class, and [hb(X) = cj ] outputs 1 or 0 depending on the result of the Boolean test. This strategy

has been shown to perform better than majority voting and averaging [120]. A simplification
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of that function sets all weights to 1, which turns this method into a simple majority voting,

another popular approach [214]. For instance, bagging uses a simple majority voting scheme,

whereas boosting uses weighted majority voting [215].

For regression, the most popular is the simple mean rule, which averages the predictions

of base regressors, hB(X(i)) = 1
B

∑B
b=1 hb(X

(i)), where B is the number of regressors and

hb(X
(i)) is the prediction for the bth regressor. Simple aggregation strategies are better suited

for problems where all predictions have comparable performance, however those methods are

very vulnerable to outliers and unevenly-performing models [131]. Other traditional methods for

integrating regressors are average, weighted average, maximum, minimum, sum, and product

rules [103, 135, 119].

However, there are plenty of studies that employ EAs for integrating base learners. These

studies can be divided into two categories: optimizing the voting weights of a weighted

majority voting rule; or optimizing/selecting the meta-models that will combine the outputs

of base learners. Both categories may be interpreted as using meta-models for this task, as

in stacking [192, 135]. Ensembles that use stacking are referred to as two-tier (or two-level)

ensembles [192]. Those ensembles are well-suited, e.g., for incremental learning [192]. Actually,

when updating an existing ensemble model to consider new data, we may need to train only a

few novel base models covering the new data and then re-train the meta-model with the both

the novel and the previous base models. This is more efficient than re-training all existing base

models in a single-level ensemble [192]. Two-tier ensembles were reported to perform better than

simple weighting strategies in larger datasets [138]. As disadvantages, two-tier ensembles are more

susceptible to overfitting when compared to traditional integration methods, and also increase the

training time of the entire ensemble [131]. In practice, whether stacking or traditional aggregation

methods are better is heavily influenced by the input data [138]. The following sections will review

the available methods that use EAs for the integration of base learners.

6.1 Linear models

Evolutionary algorithms in this category are concerned in learning a set of voting weights that

will be used in a weighted majority voting integration strategy. A wide variety of methods

were proposed for this task, such as using genetic algorithms [143, 112], particle swarm

optimization [170], flower pollination [213], differential evolution [215, 216, 176], etc. Those

methods can be applied to both homogeneous [215, 216, 26] and heterogeneous [100, 142, 214]

base learner sets. For classification, methods may also differ in the number of voting weights,

either by using one voting weight per classifier (e.g. [214, 139]) or one voting weight per classifier

per class (e.g. [65, 180, 41]).

For a thorough experimental analysis of both linear and non-linear voting schemes, the reader

is referred to the work of Lacy et al. [119], which presents the most comprehensive experimental

comparison of EA-based combining methods to date. Notwithstanding, in the next sections we

present a broader review of EAs proposed for this task, as well as methods that were not presented

in [119].

6.2 Non-linear models

Instead of optimizing weights, one can use non-linear models for integrating predictions. As the

name implies, a non-linear integration model does not use a set of voting weights (one for each

model) to cast predictions, but instead relies on another arrangement to combine votes. As it

is shown in this section, the types of non-linear integration models used in literature may range

from neural networks, to expression trees. Nonetheless, these non-linear integration models may

better exploit classifiers’ diversity and accuracy properties [60].
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6.2.1 Expression trees

One of the most popular EA-based non-linear methods are expression trees [72, 120, 119, 4, 127,

124, 191, 60]. Expression trees have models in their leaves and combination operators in their

inner nodes.

For the problem of microarray data classification, in [127, 124] some decision trees (initially

trained with bagging) are fed to a Genetic Programming algorithm, which then induces a

population of expression trees (each allowed to have at most 3 levels) for combining the base

classifiers’ votes. After the evolutionary process is completed, expression trees with accuracy

higher than the average are selected by a forward-search algorithm to compose the final meta-

committee, which will predict the class of unknown instances.

6.2.2 Genetic Fuzzy Systems

Genetic fuzzy systems are popular in ensemble learning, where fuzzy systems optimized by EAs

are used to predict the class of unknown instances. A study reports that fuzzy combiners can

outperform crisp combiners in several scenarios [189]. There are several steps in the induction of

fuzzy systems where EAs may be used: from tuning fuzzy membership functions to inducing rule

bases [38, 192]. For instance, in [38, 189], a GA was used with a sparse matrix for codifying features

and linguistic terms; and in [192] a GP algorithm was used to evolve combination structures of

a fuzzy system.

6.2.3 Neural Networks

In an empirical work comparing several integration methods [119], a multilayer percetron was

used as a combination strategy. The output from base classifiers was used as input for the neural

network, with an EA used for optimizing the weights of connections between neurons.

6.2.4 Evolutionary Algorithms for selecting meta-combiners

In [175], besides using the Artificial Bee Colony (ABC) algorithm for selecting base classifiers,

the authors also use another ABC for selecting the meta-learner that will combine the votes of

ensemble members.

6.3 Other methods

6.3.1 Induced Ordered Weighted Averaging (IOWA)

Ordered Weighted Averaging (OWA) [209] is a family of operators designed to combine several

criteria in a multi-criteria problem. Let A1, A2, A3, . . . , Az be z criteria to be fulfilled in a multi-

criteria decision function, and let Aj be how much a given solution fulfills the j-th criterion,

Aj ∈ [0, 1], ∀j = 1, . . . , z. The problem is then how to measure and compare solutions. This is

solved by employing the OWA operators. OWA will combine two sets of values, a set of weights

W1, W2, . . . , Wz, Wj ∈ (0, 1), ∀j = 1, . . . , z,
∑z

j=1 Wj = 1, and the set of ordered criteria B =

decreasing sort(A), by using a dot product, F (A) =
∑z

j=1 WjBj , with F (A) as the fulfillment

score of the solution. OWA is deemed ordered because weights are associated with the position

in the combination function, rather than a specific criterion. For performing the combination, the

criteria A are ordered based on their fulfillment rate (that is, the criterion that was most satisfied

is combined with the first weight; the second most fulfilled criterion is combined with the second

weight; and so on).

A method called Induced Ordered Weighted Averaging, or IOWA, is concerned with inducing

the set of weights W , based on observational data (e.g. a dataset). In [15] a Multi-Objective EA

based on Decomposition (MOEA-D) is used for inducing these weights, and IOWA is used to

combine predictions from a set of Gaussian Process Regressors (GPR).
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6.3.2 Error Correcting Output Codes (ECOC)
Error Correcting Output Codes (ECOC) [14] is a meta-method which combines many binary

classifiers in order to solve multi-class problems [10]. It is an alternative to other multi-class

strategies for binary classifiers [22] – such as one-vs-one, which learns a classifier for each pair of

classes; and one-vs-all, which learns one classifier per class, discriminating instances from that

class (positives) from all other instances (negatives). ECOC provides meta-classes to its classifiers

(i.e. positive and negative classes are in fact combinations of instances from one or more classes).

An example of ECOC is shown in Figure 6.
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Figure 6: (a) Feature space and decision boundaries of base classifiers. (b) Coding matrix, where

black and white cells correspond to positive and negative classes, respectively, denoting the two

partitions to be learned by each base classifier. (c) Decoding step, where the classifiers’ predictions

{b1, b2, . . . , b5} for a given sample s are compared to the codewords {y1, . . . , yN} and s is labeled

as the class codeword at minimum distance. Adapted from [14].

ECOC comprises two steps: encoding and decoding. The aim of encoding is to design a

discrete decomposition matrix (codematrix) for the given problem [10]. A study reports that

larger matrices (with regard to number of classifiers) improve predictive performance [10]. In the

decoding phase, each classifier casts a vote to a meta-class for an unknown instance. The predicted

class is computed by comparing the distance of the outputed codeword for that instance with the

codeword from each real class via a similarity metric.

Though in classification we wish to reach top predictive accuracy, other measures should also

be considered for evaluating the ECOC matrix, such as row separation and column diversity [22].

By using an indicator-based selection EA (IBEA), in [22] the ensemble accuracy, individual

classifier accuracy, and hamming distance were used as objectives for optimizing the layout of

ECOC matrices, by manipulating the distribution of classes among base classifiers. In [10], on

the other hand, an attribute selection strategy was used to generate classifiers to be integrated by

an ECOC scheme; hence, this work is labeled as a generation technique instead of an integration

one.

To summarize, Table 6 shows the categorization of studies using EAs in the integration stage

of ensemble learning, based on the type of integration method.

Sections 4, 5, and the current section 6 have discussed EAs for each of the three stages of

ensemble learning. In the next two sections, we focus on broader aspects of EAs for ensemble

learning that are not specific to any single stage.

7 Objective (or fitness) functions

The fitness function is an essential component of an EA, since it defines the objective(s) to be

optimized and guides the search accordingly. Due to the complexity of ensemble learning, there

are several types of objectives that can be optimized. In this section we first review separately
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Table 6 Categorization of studies using EAs in the integration stage of ensemble learning.

Method Related work

First Degree Polynomial

[212, 83, 215, 216, 112, 111, 108, 109, 107, 110, 26, 139, 213,
146, 158, 170, 11, 143, 41, 119, 100, 180, 179, 90, 88, 89, 141,
142, 172, 206, 176, 178, 177, 98, 125, 61, 64, 63, 62, 76, 214,
128, 65, 91, 77, 21]

Expression trees [72, 120, 119, 4, 127, 124, 191, 60]
Genetic Fuzzy System [38, 189, 192]

Error Correcting Output
Codes

[22]

Artificial Neural Network [119]
IOWA [15]

Meta-learner selection [175]

each of four broad types of objective (fitness) functions: effectiveness, efficiency, diversity, and

complexity. Next, we review multi-objective optimization approaches.

7.1 Effectiveness, Diversity, Complexity and Efficiency

An objective function measures effectiveness when it evaluates the ensemble’s predictive accuracy.

This is essential to ensemble learning and is addressed by all surveyed studies. The most popular

objectives within this category are accuracy (or its dual, error rate) for classification tasks and

mean squared error for regression tasks. The well-known accuracy measure is given by:

accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives, and

false negatives, respectively. The error rate is simply: 1 − accuracy. Note that accuracy and error

rate have the drawback of not being suitable for highly imbalanced class distributions [121], since

they are relatively easy to optimize by predicting nearly always the majority class.

The mean squared error is given by:

MSE(X(i)) =
1

N

N∑
i=1

(hB(X(i)) − Y (i))2 (3)

which computes the difference between the predicted value hB(X(i)) and the real value Y (i), for

all N instances. Other effectiveness measures include exponential squared loss [91], geometric

mean [196, 24, 162, 23], imbalance ratio [196], and confidence [182, 100, 98], to name just a few.

In general, such measures have the advantage of coping better with imbalanced class distributions

than the aforementioned accuracy measure (or its dual error rate).

A diversity metric evaluates how diverse an ensemble’s members (base learners) are. A diversity

measure is often used as an objective in the selection stage of ensemble learning (Section 5); and

it can also used in the generation stage (Section 4). We refer the reader to [25] for a review on

diversity measures for generating models; and next we discuss the controversial issue of using

diversity as an objective in general, regardless of the ensemble learning stage.

Several researchers defend diversity as a valid objective (e.g. [68, 31, 183, 29]), stating that it

contributes to ensemble accuracy [31]. De Stefano et al. [183] state that, as the number of base

learners increase, so does the probability that a minority of correct base learners will be overrun

by a majority of wrong base learners, and thus the need for using diversity measures to reverse

that effect. Also, in EAs, genetic material from well-performing solutions tend to be propagated

to their offspring, often compromising diversity [57].

However, other researchers do not see the utility of diversity measures (e.g. [120, 127, 104]),

stating that the correlation between ensemble accuracy and diversity is not as strong as

expected [188]. Some authors also note that classic ensemble learning methods (e.g. bagging,

boosting, and random subspace) introduce diversity in an ensemble without directly measuring
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it [56]. We can conclude, from this debate, that the relationship between ensemble effectiveness

and diversity is not fully understood yet [56, 188].

Diversity can be measured based on the ensemble’s characteristics encoded in an individual’s

genotype, or based on the predictions made by each base learner. In the latter case, a set

of base learners is said to be diverse when their errors are not correlated [170]. Examples of

diversity measures in this category include Yule’s Q statistic [187], average residual correlation

coefficient [191], and negative correlation [17, 16]. The most popular measure seems to be the

Kohavi-Wolpert variance [160, 159, 32], given by:

KW =
1

NB2

N∑
j=1

L(X(j))(B − L(X(j))) (4)

where B is the number of classifiers, N is the number of instances in the (training or validation)

evaluation set, and L(X(j)) is the number of classifiers within the ensemble that correctly predict

the class of instance X(j).

Diversity measures can be divided into pairwise and group measures. The latter evaluate

diversity among all classifiers in the ensemble, whereas pairwise metrics evaluate diversity between

two classifiers, and require an averaging technique for obtaining a group measure from all

classifier-pairwise measures [86]. This is performed by the disagreement measure. The pairwise

disagreement measure [25] is defined as:

Diff(Bi, Bj) =
L01 + L10

L00 + L01L10 + L11
(5)

where Bi and Bj are respectively the i-th and j-th classifiers within the ensemble, L10 is the

number of instances correctly classified by Bi and wrongly classified by Bj , and so on for the

remaining indices L01, L00, L11. Pairwise disagreement varies from 0 to 1, with 0 indicating

no disagreement (i.e. equal predictions) and 1 maximum disagreement. The plain disagreement

measure [125] simply averages the overall disagreement among the members of the ensemble:

PSM =

B∑
i=1

B∑
j=i+1

N∑
k=1

Diff(Bi, Bj)

((B − 1) ×B ×N)
(6)

where B is the number of classifiers, N the number of instances in the training or validation

set. For an extensive list of diversity measures for ensemble learning, the reader is referred to

[118, 86, 104].

Complexity metrics evaluate how complex the classifiers in the ensemble, or the ensemble as

a whole, are. The most popular complexity metrics are the number of activated classifiers (for

classifier selection) [189, 188, 38, 98, 56, 154, 87, 97] and the number of attributes used by the

models induced by the base learners [123, 180, 200, 185, 28, 211, 162, 5, 27]. Other complexity

metrics include the number of nodes in flexible neural trees [143]; the number of hidden neurons

in a neural network [123, 37]; the structured minimization principle [79]; the number of support

vectors in a Support Vector Machine model [162]; and the length of fuzzy rules [87]. Most of

these are measures of the size of an ensemble or its base members, so they are simple to compute;

but the trade-off is that they may not capture a more sophisticated aspect of complexity (like

complex interactions between the ensemble’s base members).

Efficiency is a desired objective when an ensemble must be fast, during training and/or testing

(prediction) phase. Training efficiency is obviously important in very large datasets. In addition,

both training and testing efficiency are especially important in data stream scenarios, where a

continuous flow of incoming data is presented to the system and predictions must be made in a

real-time basis. As a fitness function, training and test time also have the advantage of being very

easy to compute; but they can introduce a trade-off between computational time and effectiveness,

which could reduce the EA’s effectiveness.
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Complexity and efficiency metrics are related since, broadly speaking, reducing the complexity

of the base learners or the ensemble as a whole leads to more efficient ensemble learning systems

– e.g., reducing the number of base learners (a complexity metric) leads to faster ensembles, for

a fixed type of base learner. Note, however, that the number of base learners is not directly a

measure of efficiency, since efficiency depends on both the number and the type of base learners.

For example, an ensemble with a given number N of decision tree algorithms would probably be

trained faster than an ensemble with N/2 neural networks, since the latter type of base learner

is much slower than the former. In addition, it is possible to improve efficiency without directly

reducing the complexity of the models in the ensemble – e.g., by reducing the number of instances

fed to the ensemble learning system.

In our survey, only two studies optimize efficiency, one measuring prediction time reduc-

tion [140], and the other measuring training set size reduction (for instance selection) [167], as a

proxy for training time. None of the surveyed EAs employed training time per se as a metric.

7.2 Single vs. Multi-Objective Optimization

Ensemble learning methods performing single-objective optimization are obviously constrained to

optimize effectiveness. However, ensemble learning may be naturally viewed as a multi-objective

task, involving also other types of objectives. Figure 7 shows the distribution of other objectives

that were optimized along effectiveness in studies that employed multiple objectives.

In this work we follow the taxonomy of multi-objective optimization approaches proposed

in [73], where approaches are categorized into three types: (i) weighted fitness functions, where

each objective is assigned a user-defined (typically, very ad-hoc) weight indicating that objective’s

importance; (ii) the lexicographic approach, where the user only ranks the objectives in terms

of their priorities (no ad-hoc numerical weights), and then the EA selects individuals for

reproduction by trying to optimize the objectives in their decreasing order of priority; and

(iii) the Pareto dominance approach, where the EA evolves a set of non-dominated solutions

in the Pareto sense – i.e., a solution is non-dominated if it is not worse than any other according

to each objective and it is better than others according to at least one objective.

In the surveyed papers, the least popular approach was the lexicographic one ([123]), followed

by weighted fitness functions ([212, 151, 86, 152, 100, 200, 98, 97, 154, 34, 122, 13]), then the single-

objective approach (see the single-objective entry in Table 7) and finally the Pareto dominance

approach as the most popular one (all the papers that were not cited in this paragraph and are

within the multi-objective entry in Table 7).

Table 7 Studies categorized by number and type of objectives employed.

Number of
objectives

Nature Related work

Single-
objective

Effectiveness

[26, 114, 213, 83, 6, 72, 96, 29, 41, 119, 100, 95, 4, 127, 124,
109, 107, 110, 90, 89, 141, 142, 172, 206, 55, 35, 36, 150, 93,
94, 176, 177, 101, 153, 99, 71, 69, 70, 68, 125, 57, 47, 183,
61, 63, 62, 64, 132, 133, 164, 131, 33, 190, 76, 214, 130, 24,
23, 193, 102, 174, 175, 65, 91, 53, 192, 38, 92, 163, 10, 59,
186, 66, 182, 58, 197, 129, 13, 21, 30, 128, 194, 46, 205]

Effectiveness

[199, 215, 216, 139, 181, 169, 67, 212, 167, 134, 9, 143, 157,
156, 158, 137, 170, 146, 11, 112, 111, 108, 140, 81, 120, 123,
151, 152, 100, 180, 200, 88, 104, 56, 37, 121, 178, 98, 154, 34,
166, 86, 27, 125, 25, 135, 22, 79, 189, 43, 87, 211, 171, 187,
15, 191, 162, 60, 160, 159, 16, 38, 52, 50, 116, 5, 198, 77, 188,
196, 32, 185, 28, 44, 42, 122, 7, 13, 2, 12, 40, 179, 17, 97]

Multi-
objective

Efficiency [167, 140]

Diversity
[157, 156, 111, 108, 112, 143, 81, 120, 151, 152, 104, 56,
34, 86, 125, 25, 187, 191, 160, 159, 16, 38, 198, 77, 188, 32,
13, 17, 97]

Complexity
[169, 212, 143, 123, 180, 200, 37, 166, 27, 79, 87, 211, 162,
5, 185, 28, 122, 12, 139, 158, 100, 56, 98, 154, 189, 38, 188,
171, 7]
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effectiveness (84)

225 254

efficiency

diversity complexity

Figure 7: Distribution of objectives across EAs using multiple objectives. Effectiveness (predictive

performance) is optimized in all 84 studies. From these, 56 work optimize another objective, be it

diversity, complexity, or efficiency. Only four studies [188, 56, 143, 38] optimize three objectives

(effectiveness, diversity and complexity), and no study optimizes all four at the same time.

8 Types of Evolutionary Algorithms

A variety of EAs have been employed in ensemble learning. While some of these EAs are less fre-

quent in literature (e.g. Flower Pollination Algorithm [213], Levy-Flight Firefly Algorithm [212]),

others are more common. Among them, Genetic Algorithms (GAs) is the most popular, followed

by Genetic Programming, and Differential Evolution.

Within GAs, apart from its vanilla version, Non-dominated Sorting Genetic Algorithm II

(NSGA-II) is the most popular implementation. This choice seems due to NSGA-II’s ability to

deal with multiple objectives, suiting well the multi-objective nature of ensemble learning. Table 8

shows the distribution of the surveyed studies according to the type of EA used.

9 Types of Base Learners

In the surveyed studies, the most commonly used type of base learner is artificial neural networks,

used in 75 studies; followed by tree-based algorithms (e.g. decision trees, arithmetic trees), used

in 48 studies; and support vector machines, used in 46 studies. The number of studies using each

type of base learner algorithm is shown in Table 9.

Some ensemble techniques are more appropriate for some type(s) of selected base learner(s).

Support Vector Machines, for instance, are stable classifiers, making the techniques of selecting

either instances or attributes for each base learner inefficient as a diversity inductor [13].

The majority of the studies use homogeneous ensembles, as opposed to heterogeneous ones

(113 vs 47). Four work use both types of ensembles, which brings the count to 117 and 51,

respectively. Figure 8 shows the base learners that were used in at least 5 studies, as well as the

study’s ensemble type: either homogeneous, or heterogeneous.

Homogeneous ensembles are composed by the same base learner paradigm. However, this is not

to say that all base learners are exactly the same. When using neural networks, those models can

have distinct activation functions or topologies. According to Rahman and Verma [161], there are

five strategies for inducing diverse models in homogeneous ensembles: (i) post-model optimization

(see Section 4.3); (ii) manipulation of the error function; (iii) distinct attribute subsets across

base learners (see Section 4.2); (iv) manipulation of output targets, in which some instances in

the training set have their class labels switched, for inducing diversity; and (v) distinct instance

subsets across base learners (see Section 4.1). Strategies (ii) and (iv) are not covered in this

survey, though, due to the lack of relevant papers.
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Table 8 Studies organized by the type of EA employed, and the ensemble learning stage optimized.

Evolutionary Family Generation Selection Integration

Flower Pollination [213]
Clonal Selection [13] [13]

Evolutionary Algorithm [163]
Inclined Planes

Optimization
[158] [158]

Multi-Objective EA [12, 11] [11]
Moth-Flame
Optimization

[212]

Levy-flight firefly
Algorithm

[212]

Virus-Evolutionary
Genetic Algorithm

[76]

Many-Objectives
Evolutionary Algorithm

[7]

Evolutionary Strategy [197, 205]
Artificial Bee Colony [24, 23] [152, 175, 151] [91, 175]

Estimation of
Distribution Algorithm

[63, 29, 62, 25, 61, 64] [29, 25] [63, 21, 62, 61, 64]

Particle Swarm
Optimization

[30, 157, 35, 29, 102, 156,
36, 94, 150, 37, 93, 13]

[55, 29, 158, 13] [170, 158, 4]

Differential Evolution
[196, 177, 43, 44, 176,
52, 193, 53, 181, 42,
114, 180, 178, 179, 123]

[46, 181, 123]
[177, 215, 216, 146, 214,
83, 176, 180, 178, 179,
26]

Genetic Programming

[16, 119, 69, 17, 30, 164,
58, 79, 199, 130, 183,
132, 71, 133, 70, 68,
190, 194, 120, 47]

[58]
[119, 124, 191, 192, 127,
60, 4, 120, 72]

Genetic Algorithms

[6, 28, 99, 119, 66, 10,
116, 58, 135, 134, 187,
169, 9, 211, 95, 5, 185,
143, 122, 112, 111, 92,
129, 171, 162, 81, 57,
108, 52, 174, 190, 101,
167, 200, 166, 96, 77,
121, 140, 33, 67, 40,
196, 125, 87, 41, 2, 13]

[97, 86, 6, 55, 139, 116,
58, 59, 46, 169, 153, 32,
100, 131, 122, 160, 12,
90, 98, 198, 89, 186, 56,
166, 27, 188, 140, 104,
38, 159, 34, 11, 154,
137, 13]

[109, 107, 119, 189, 22,
139, 100, 143, 112, 111,
90, 88, 172, 98, 15, 89,
108, 65, 128, 77, 206,
110, 141, 142, 38, 125,
41, 11]

Table 9 Studies organized according to the base learners they employ. We only show in this table base
learners that are present in at least 5 papers. For the complete list of base learners, please refer to our
website at https://henryzord.github.io/eael.

Base Learner Related work

Gaussian Process
Regression

[200, 142, 141, 15, 129]

Linear Regression [89, 142, 90, 141, 121]
Fuzzy rule-based Classifier [189, 38, 135, 87, 66, 188]

Conditional Random
Fields

[177, 176, 65, 180, 179, 178, 181]

Logistic Regression [146, 60, 72, 83, 169, 86, 175]
Random Forest [169, 137, 4, 166, 60, 200, 193, 86]

Rule-based [11, 181, 133, 132, 171, 41, 50, 52, 135, 164, 12]
Näıve Bayes [137, 4, 116, 83, 72, 214, 146, 60, 211, 157, 156, 175, 88, 95, 86, 40]

K-Nearest Neighbor
[175, 72, 60, 158, 157, 156, 114, 140, 200, 4, 88, 90, 55, 56, 104, 154, 153, 196, 100,
83, 86, 170, 214, 125, 97, 98, 137, 7, 40]

Support Vector Machines
[81, 169, 156, 167, 107, 152, 93, 4, 166, 170, 205, 176, 97, 7, 100, 177, 86, 13, 191,
181, 94, 141, 154, 160, 159, 60, 142, 162, 153, 192, 129, 40, 193, 90, 98, 89, 212, 83,
200, 146, 65, 22, 157, 26, 34, 125]

Trees
[95, 169, 9, 214, 16, 190, 21, 172, 10, 166, 137, 7, 194, 71, 108, 111, 86, 72, 185, 69,
47, 28, 130, 183, 112, 68, 134, 40, 199, 110, 120, 175, 127, 70, 83, 79, 197, 200, 121,
17, 58, 119, 140, 5, 77, 109, 124, 125]

Artificial Neural Network

[64, 156, 53, 25, 215, 174, 32, 10, 166, 187, 170, 6, 96, 101, 198, 67, 37, 97, 7, 92, 100,
122, 46, 206, 86, 158, 30, 143, 29, 23, 36, 191, 185, 28, 102, 130, 141, 154, 42, 33, 153,
142, 60, 27, 192, 62, 139, 129, 40, 120, 90, 61, 98, 43, 99, 89, 212, 63, 83, 216, 200,
128, 123, 213, 59, 65, 44, 186, 24, 182, 157, 57, 35, 150, 163]

Heterogeneous ensembles comprise base learners from distinct paradigms. As such, there is

no pressure for inducing diversity in the ensemble, since learners from distinct paradigms tend

to make diverse predictions. In our survey, among the studies using diversity measures, 19 have

a homogeneous set of base learners, while 9 use a heterogeneous set. These numbers include a

single paper that proposes both homogeneous and heterogeneous ensembles. The larger number



24 h.e.l. cagnini et al.

 1

 3

 5

 3

 1

 8

 4

 7

16

34

44

 4

 3

 1

 4

 7

 7

 3

12

22

31

17

35

Gaussian Process Regression

Linear Regression

Fuzzy rule-based Classifier

Conditional Random Fields

Logistic Regression

Random Forests

Rule-based

Naïve Bayes

K-Nearest Neighbors

Support Vector Machines

Decision/Arithmetic Trees

Artificial Neural Networks

homogeneous heterogeneous

Figure 8: Types of base learners used in surveyed work, as well as their distribution.

of papers with homogeneous sets is probably because it is simpler to work with homogeneous

ensembles than with heterogeneous ones. While Figure 8 depicts an overview of the number of

studies per type of base learners, Table 10 identifies which studies are using which types of base

learners, and also their configuration (homogeneous or heterogeneous). Note that a few studies

(4) use both types of ensemble.

Table 10 Studies organized according to the base learners’ homogeneity/heterogeneity.

Homogeneity Related work

Homogeneous

[134, 143, 91, 167, 6, 199, 215, 205, 112, 66, 216, 67, 196, 139, 26, 182, 96, 140, 81, 41, 119, 152,
180, 95, 127, 111, 133, 131, 164, 22, 33, 79, 32, 190, 90, 47, 76, 64, 110, 88, 107, 189, 58, 43, 44,
124, 108, 24, 211, 132, 171, 128, 193, 179, 178, 187, 102, 174, 162, 15, 172, 109, 160, 42, 46, 159,
52, 50, 62, 77, 188, 63, 61, 37, 38, 198, 5, 23, 53, 116, 92, 194, 17, 121, 36, 150, 35, 183, 94, 16,
93, 9, 71, 206, 29, 55, 99, 56, 69, 30, 70, 27, 57, 104, 68, 87, 101, 197, 122, 13, 2, 12, 21]

Heterogeneous
[157, 213, 83, 158, 137, 170, 156, 146, 11, 72, 212, 169, 181, 114, 123, 151, 86, 100, 200, 4, 135,
142, 214, 130, 141, 166, 191, 175, 60, 65, 59, 10, 177, 186, 163, 192, 176, 25, 98, 125, 97, 154, 153,
34, 129, 7, 40]

Both [120, 89, 185, 28]

10 Algorithm Complexity by Stages of Ensemble Learning

As it is expected with a survey that broadly reviews the literature, it is difficult to derive a single

algorithm complexity for Ensemble Learning with Evolutionary Algorithms, or even multiple

accurate estimations. For this reason, in this section we will discuss what aspects have the most

impact on algorithm complexity, as well as deriving a general complexity for relevant ensemble

stages (i.e. generation and selection).

The most time-consuming step in an evolutionary algorithm is evaluating candidate solutions.

How candidate solutions are built differs among EAs, but it is safe to assume that these solutions

are, in the context of ensemble learning, already-built, ready-to-deploy ensembles. Consider for

example a “generic” evolutionary algorithm for the generation stage. Let us assume that this

EA does not have a pool of base classifiers – that is, for each candidate solution, it builds base

classifiers that will only be used by that solution. If this EA runs for G generations and has

a population of S individuals, then the time complexity of this algorithm is O(G× (BSΨΩ)),

where B is the number of base classifiers in each ensemble (individual), Ψ is the complexity of

the most time-consuming base classifier employed in the ensemble (in case it is heterogeneous),

or the complexity of the only base classifier used (in case the ensemble is homogeneous), and Ω is
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the complexity of aggregating predictions among base classifiers. Ω can be as fast as O(B), when

using majority voting, to an arbitrarily complex algorithm, such as employing Genetic Algorithms

to evolve Expression Trees (presented in Section 6.2.1). When more than one aggregation policy

is available, the reader should assume the worst case scenario – that is, that all solutions will

take as much time to train as it takes to use the most time-consuming base classifiers, coupled

with the most time-consuming aggregation policy.

Note that having a pre-built pool of classifiers to choose from reduces the time complexity.

In the case of a “generic” EA for the selection stage, when the EA performs static selection,

the time complexity is O((P × Ψ) + G× (SΩ)), where P is the pool size, and P ≥B (in this

case, each individual will have a different B). Once base classifiers are built, their matrices of

probabilities can be stored in memory and aggregated by any desired aggregation policy with Ω

complexity. Since static selection consists only in flipping bits in a binary vector, its complexity is

negligible. On the other hand, the complexity of dynamic selection (presented in Section 5.2) lies

on the complexity of training a selector to be later used during the prediction phase. In this case,

the complexity of a generic EA performing dynamic selection is approximately O((P × Ψ) + G×
(SΞΩ)), where Ξ is the complexity of learning that selector.

11 Conclusions and New Research Directions

Ensemble learning is an extensive research field due to the improvement it presents in

comparison to single learners and the easiness to integrate within some challenging types

of machine learning problems (e.g. data stream learning and datasets with imbalanced class

distributions [134, 112, 72]). For some problems, inducing a single, stronger-than-all base learner

can be a difficult task [6]; whilst ensembles of models can perform better with regard to both

effectiveness and efficiency [114, 81, 18, 140, 151].

Ensemble learning can be further enhanced by using EAs in one or more of its learning stages:

generation, selection, and integration. In this survey, we reviewed a large number of studies using

many types of EAs for ensemble learning, and proposed a taxonomy to classify such studies with

regard to different aspects of ensemble learning. We also reviewed the debate on controversial

topics, like the selection of ensemble members (rather than using all members) and the usefulness

of optimizing a diversity measure for the members of the ensemble.

In order to facilitate the review of specific studies discussed in our survey, we make available the

metadata used to compile our figures and tables. By using such metadata, one can see at a glance

all the main aspects of a given study (e.g. which base learners, objectives, learning stages, etc, a

study is using). The repository is available at https://github.com/henryzord/eael. We also

provide a master table, in the form of a website, listing all surveyed work, and their classification

according to our taxonomy: https://henryzord.github.io/eael.

11.1 Summary of Findings

First, we discuss the main findings of this survey regarding each stage of the ensemble learning

process. The generation stage, i.e. where the ensemble members are generated, was found to be

the most popular step to employ EAs, having more studies dedicated to it than the selection and

integration stages combined. Wrapper methods were found to be much more common than filter

ones for the instance selection and attribute selection approaches. This seems natural, considering

that, unlike filters, wrappers select attributes or instances customized for the supervised learning

algorithm to be used later (to induce a model), which tends to improve predictive performance.

However, wrappers are normally much slower than filters. Hence, in applications with large

datasets or where efficiency is a critical factor, the filter approach deserves more attention. In

addition, in the model tuning approach for generation, post-model optimization (used to improve

an existing model) was found to be more popular than pre-model optimization (used before

learning the model).
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The next stage, selection – where ensemble members are selected to be used in the testing phase

– is an optional stage, which is missing in many ensemble learning systems. In this stage, static

selection, where the regions of competence of ensemble members are identified at training time,

was found to be much more popular than dynamic selection, where those regions are identified

at testing (prediction) time. This seems partly due to the greater simplicity and computational

efficiency of the former, since dynamic selection in general requires a more time-consuming process

of identifying regions of competence of ensemble members for each testing instance.

In the integration stage, where the predictions of the base learners are integrated into a final

prediction for each instance, by far the most popular approach among the surveyed studies was

the use of a first degree polynomial – a simple linear approach. Among the non-linear integration

techniques, the most common was the use of expression trees, using a genetic programming

algorithm. It seems that more research is needed on non-linear techniques for integration, in

order to determine whether or not their higher computational complexity could be justified by a

significant increase in predictive performance.

Regarding the number of objectives in the fitness function, multi-objective EAs were found to

be much more common than single-objective ones. This seems natural, given the multi-objective

nature of the ensemble learning problem. In terms of specific types of objectives, effectiveness

(predictive performance) is used by all surveyed EAs, since it is essential. Diversity and complexity

share a second place, despite diversity being a controversial objective, as discussed earlier. Finally,

efficiency, the capacity to generate ensembles that are computationally fast, is optimized in only

two studies. Efficiency is important in huge datasets (since the training process must eventually

finish, and a compromise between time spent in training stage and effectiveness must be made),

and in data stream scenarios, where data is treated not as a fixed batch of instances, but instead as

a continuous flow. Efficiency and effectiveness are competing objectives, since efficiency prioritizes

models that are faster to train (and thus more likely to be simpler, less accurate models). However,

if efficiency is a priority, one could use techniques such as parallelization of one of evolutionary

algorithms’ steps [85] to alleviate this competition.

Regarding the main types of EAs used in the surveyed studies, the most popular one was by far

Genetic Algorithms (often NSGA-II, a multi-objective GA), followed by Genetic Programming

and Differential Evolution.

Regarding the main type of base learner, the most popular one was Artificial Neural Networks

(ANNs), followed by decision trees and Support Vector Machines (SVMs). The popularity

of ANNs as base learners seems partly due to a long history of interaction in the EA and

ANN research areas, and partly due to the nature of ANNs, whose performance can often be

improved when using ensembles. However, learning ensembles of ANNs or SVMs tends to be very

computationally expensive. This problem is mitigated when learning an ensemble of decision trees

(much faster base learners).

11.2 New Research Directions

One direction for future research is the automated selection of the best combination of ensemble

algorithms and their hyper-parameter settings for a given input dataset. This is a complex

optimization problem because, as discussed earlier, there are many types of ensembles (e.g.

bagging, boosting, stacking, etc), and for each type of ensemble, many types of base (classification

or regression) algorithms can be chosen. In addition, both the ensemble type and its base

algorithm type(s) typically have many hyper-parameters, whose settings also have a large

influence on the ensemble’s predictive performance. All these choices of algorithms and hyper-

parameter settings interact in a complex manner, and ideally all these choices should be made

in a synergistic way, optimizing all these choices as a whole for the specific dataset provided

as input by the user. Emerging research has addressed this complex optimization problem by

doing a search in the space of different types of learning algorithms and their hyper-parameter

settings, in order to automatically select the best combination of algorithm and hyper-parameter
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settings for an input dataset [105],[201]. To the best of our knowledge, although there are several

EA-based systems that address this problem by considering a search space with many types of

supervised learning algorithms (e.g. [45],[144]), there are only two studies using an EA to address

this problem by considering a search space focused on ensembles [105],[207]. This seems an area

with good potential for research growth.

Also, it is yet to be seen a framework that provides a synergistic integration of two or more

ensemble learning stages (generation, selection and integration). Even when a study addresses

two or more stages, this is not done synergistically; base learners are first generated and later

selected, or first selected and later integrated. We are not aware of any EA addressing all three

stages.

Finally, ensemble learning with EAs would benefit from a unified, generic-purpose software

tool, similarly to what WEKA [202] and scikit-learn [155] do for machine learning in general

and Tensorflow [1] for deep learning. This would greatly facilitate the task of comparing different

strategies, e.g., distinct approaches for generating or selecting base learners while keeping the same

fitness function. We believe the development of such a framework to be a major step forward to

the evolutionary ensemble learning community.

11.3 Further Readings

While this work is, up to our knowledge, the first to present a broad review of evolutionary

algorithms for ensemble learning, the following literature can give a better understanding on

topics related to ensemble learning, not necessarily involving evolutionary algorithms.

A closely-related work to ours is the one of Yao and Islam [210], which present a review of

evolutionary algorithms for ensemble learning, although focusing only in work that uses artificial

neural networks as base classifiers.

For a general comprehension on ensemble learning, not necessarily involving evolutionary

algorithms, Sagi and Rokach [168] presents recent, state-of-the-art methods for ensemble learning.

This is an update of another review on ensemble learning of the same author, presented in the

work of Rokach [165]. While the former reviews generation and integration methods, as well as

presenting the main challenges when building methods for ensemble learning, the later reviews

integration and selection methods, and a discussion on ensemble diversity.

In the work of Oza and Tumer [149] the authors review ensemble methods for solving real-

world problems, such as remote sensing, person recognition, and medicine applications. Athar et

al. [8] review classifier ensembles for sentiment analysis. Data stream analysis with ensembles is

reviewed both in the work of Gomes et al. [80] and Krawczyk et al. [113].

A broad review on classification ensembles and its applications is presented in [184], while a

survey on regression ensembles is presented in [136].

Regarding the generation stage, Olvera-Lopez et al. [145] presents a review on instance selection

methods, which can be used in this stage of ensemble learning; while Debie et al. [51] review

ensemble methods that focus on feature selection.

For the selection stage, Britto et al. [20] presents a review on dynamic selection of classifiers,

as well as a statistical comparison of results of the reviewed methods. An update of the reviewed

methods, as well as the proposed taxonomy by the authors, is presented by Cruz et al. [39].
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[163] M. D. Redel-Maćıas et al. Ensembles of Evolutionary Product Unit or RBF Neural Networks

for the Identification of Sound for Pass-by Noise Test in Vehicles. Neurocomputing, 109:

56–65, June 2013.

[164] P. J. Roebber. Adaptive Evolutionary Programming. Monthly Weather Review, 143(5):

1497–1505, May 2015.

[165] L. Rokach. Ensemble-based Classifiers. Artificial Intelligence Review, 33(1):1–39, November

2010.
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[167] A. Rosales-Pérez et al. An Evolutionary Multi-Objective Model and Instance Selection

for Support Vector Machines with Pareto-based Ensembles. IEEE Transactions on

Evolutionary Computation, 21(6):863–877, March 2017.

[168] O. Sagi and L. Rokach. Ensemble Learning: A Survey. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 8(4), January 2018.

[169] S. Saha, S. Mitra, and R. K. Yadav. A Multiobjective based Automatic Framework for

Classifying Cancer-microRNA Biomarkers. Gene Reports, 4:91–103, September 2016.

[170] R. Saleh, H. Farsi, and S. H. Zahiri. Ensemble Classification of PolSAR Data using

Multi-objective Heuristic Combination Rule. In Conference on Swarm Intelligence and

Evolutionary Computation, pages 88–92. IEEE, 2016.



A Survey of EAs for Supervised Ensemble Learning 39

[171] S. K. K. Santu, M. M. Rahman, M. M. Islam, and K. Murase. Towards better Generalization

in Pittsburgh Learning Classifier Systems. In Congress on Evolutionary Computation, pages

1666–1673. IEEE, 2014.

[172] G. Schaefer. Evolutionary Optimisation of Classifiers and Classifier Ensembles for Cost-

sensitive Pattern Recognition. In International Symposium on Applied Computational

Intelligence and Informatics, pages 343–346. IEEE, 2013.

[173] R. E. Schapire. A Brief Introduction to Boosting. In International Joint Conference on

Artificial Intelligence, pages 1401–1406. European Association for Artificial Intelligence,

1999.

[174] C. D. Schuman, J. D. Birdwell, and M. E. Dean. Spatiotemporal Classification using

Neuroscience-inspired Dynamic Architectures. Procedia Computer Science, 41:89–97,

November 2014.

[175] P. Shunmugapriya and S. Kanmani. Optimization of Stacking Ensemble Configurations

through Artificial Bee Colony Algorithm. Swarm and Evolutionary Computation, 12:24–

32, October 2013.

[176] U. K. Sikdar, A. Ekbal, and S. Saha. Differential Evolution based Feature Selection

and Classifier Ensemble for Named Entity Recognition. In International Conference on

Computational Linguistics, pages 2475–2490. International Committee on Computational

Linguistics, 2012.

[177] U. K. Sikdar, A. Ekbal, and S. Saha. Differential Evolution based Mention Detection for

Anaphora Resolution. In India Conference, pages 1–6. IEEE, 2013.

[178] U. K. Sikdar, A. Ekbal, and S. Saha. Differential Evolution based Multiobjective

Optimization for Biomedical Entity Extraction. In International Conference on Advances

in Computing, Communications and Informatics, pages 1039–1044. IEEE, 2014.

[179] U. K. Sikdar, A. Ekbal, and S. Saha. Entity Extraction in Biochemical Text using

Multiobjective Optimization. Computación y Sistemas, 18(3):591–602, February 2014.

[180] U. K. Sikdar, A. Ekbal, and S. Saha. MODE: Multiobjective Differential Evolution for

Feature Selection and Classifier Ensemble. Soft Computing, 19(12):3529–3549, January

2015.

[181] U. K. Sikdar, A. Ekbal, and S. Saha. A Generalized Framework for Anaphora Resolution

in Indian Languages. Knowledge-Based Systems, 109:147–159, October 2016.

[182] I. Singh, K. Sanwal, and S. Praveen. Breast Cancer Detection using two-fold Genetic

Evolution of Neural Network Ensembles. In International Conference on Data Science and

Engineering, pages 1–6. IEEE, 2016.

[183] C. D. Stefano, F. Fontanella, G. Folino, and A. Freca. A Bayesian approach for Combining

Ensembles of GP Classifiers. In International Workshop on Multiple Classifier Systems,

pages 26–35. Springer, 2011.

[184] N. Tabassum and T. Ahmed. A Theoretical Study on Classifier Ensemble Methods

and its Applications. In International Conference on Computing for Sustainable Global

Development, pages 374–378. IEEE, 2016.

[185] C. J. Tan, C. P. Lim, and Y.-N. Cheah. A Multi-objective Evolutionary Algorithm-based

Ensemble Optimizer for Feature Selection and Classification with Neural Network Models.

Neurocomputing, 125:217–228, February 2014.



40 h.e.l. cagnini et al.

[186] H. L. Tang et al. The Reading of Components of Diabetic Retinopathy: An Evolutionary

approach for Filtering normal Digital Fundus Imaging in Screening and Population based

Studies. PloS One, 8(7):e66730, July 2013.

[187] J. Tian and N. Feng. Adaptive Generalized Ensemble Construction with Feature Selection

and its Application in Recommendation. International Journal of Computational Intelli-

gence Systems, 7(sup2):35–43, July 2014.
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