Modelagem e Controle de Conversor com Filtro LCL Para Carga e Descarga de Baterias de Íons de Lítio

Vinícius Descovi Rodrigues Núcleo de Pesq. e Desenvolvimento em Engenharia Elétrica - NUPEDEE Universidade Federal de Santa Maria Santa Maria, Brasil vinicius-descovi-rodrigues@ufsm.br Arthur Oliveira Damasceno Instituto Hercílio Randon - IHR Caxias do Sul, Brasil arthur.damasceno@ihr.tec.br Jonas Roberto Tibola Grupo de Pesq. e Desenvolvimento em Sist. Elétricos e Computacionais - GSEC Universidade Federal de Santa Maria Santa Maria, Brasil jrtibola@ctism.ufsm.br

Abstract—Este trabalho apresenta o desenvolvimento de um dispositivo para testes experimentais envolvendo carga e descarga de baterias de Íons de Lítio. O sistema utiliza dois conversores Half Bridge, um para a etapa de carga e descarga da bateria e outro para dissipar a potência da etapa de descarga. O conversor de carga e descarga é conectado às baterias por meio de um filtro LCL com resistor de amortecimento. A estratégia de carga é baseada na técnica de tensão e corrente constante, implementada por uma malha externa de tensão e uma malha interna de corrente. O projeto do Filtro LCL e das malhas de controle são apresentados em detalhes. Resultados experimentais são apresentados para validar as estratégias de projeto propostas.

Index Terms—Filtro LCL, Conversor *Half Bridge*, Baterias Liion, Controlador PI.

I. INTRODUÇÃO

As baterias são dispositivos comumente utilizados no dia-adia, a maioria dos dispositivos eletrônicos que possuem certa autonomia, tais como *smartfones*, *tablets*, *notebooks* entre outros, possuem baterias a base de lítio. Com o foco no aumento do uso de energias renováveis e a transição para veículos elétricos, em diversos países estão sendo implementadas políticas públicas direcionadas à redução do consumo de combustíveis fósseis. Neste contexto, as baterias recarregáveis a base de lítio possuem demanda crescente para estas aplicações, estimativas do Banco Mundial apontam para um crescimento de 965% na demanda de lítio até 2050 [1].

As baterias de íons de Lítio (Li-ion), possuem características que proporcionam vantagens para a utilização em equipamentos eletrônicos. É possível obter maiores potências com menores quantidades de células se comparadas com baterias de chumbo ácido e Níquel Cádmio (NiCd). As características de alta densidade de energia, longos ciclos de uso, e baixa taxa de auto-descarregamento tornam a bateria de Li-ion uma excelente candidata para o uso em veículos elétricos [2], [3].

Para uma adequado funcionamento das baterias de Liion faz-se necessário um gerenciamento de carga e descarga adequado. Isto é devido a uma forte co-relação entre métodos de carga com a manutenção da vida útil, segurança de operação e preservação do estado de saúde da bateria (SOH) [4], [5]. Neste contexto, o papel da eletrônica de potência para a elaboração de conversores eficientes se mostra crucial [6]. Este trabalho propõe o desenvolvimento de um dispositivo de testes, em que seja possível realizar tanto a carga quanto a descarga de baterias de Li-ion. Para tanto, será utilizado um barramento de 24 V fornecido por uma fonte CA/CC seguido de um diodo em série para proteção. Este barramento irá alimentar dois conversores *Half Bridge*. Por questões de modularidade ambos os conversores são iguais. Sendo um conversor utilizado para controlar a corrente de carga e descarga da bateria e outro para dissipar a energia da descarga da bateria em um resistor. O primeiro conversor está conectado às baterias através de um filtro LCL para garantir uma ondulação mínima de corrente na bateria.

O sistema utiliza um DSC (do inglês, Controlador Digital de Sinais) modelo TMS320F28379D da *Texas Instruments* para controlar os conversores, além de monitorar as tensões e correntes de cada uma das 4 baterias individualmente, as quais foram ligadas em série. Para realizar o controle das malhas de tensão e corrente, para carga e descarga da bateria, serão utilizados controladores Proporcional Integral (PI).

II. CONVERSOR PROPOSTO

O circuito do conversor proposto é composto por dois conversores *Half Bridge*, um para controlar a corrente de carga/descarga da bateria e outro para controlar a energia que será dissipada do ciclo da descarga da bateria. O conversor é alimentado por uma fonte CA/CC de 24 V e 240 W, seguido de um diodo para proteção e o capacitor do barramento CC (C_B) . Este barramento CC alimenta ambos os conversores *Half Bridge*. No processo de carga das baterias a referência de corrente da bateria é positiva e o fluxo de potência segue da Fonte CA de entrada para as baterias. Nesta etapa, apenas o primeiro conversor *Half Bridge* processa energia.

Já no processo de descarga a referência de corrente da bateria é negativa, e o primeiro conversor *Half Bridge* entrega potência das baterias para ao barramento CC, fazendo com que a tensão em C_B aumente e coloque o diodo de entrada em bloqueio. Em seguida o segundo conversor *Half Bridge* entra em funcionamento regulando a tensão do barramento em um valor superior à tensão da fonte e entregando o excedente de potência para o resistor de potência (R_L). A Figura 1 apresenta o conversor proposto. A fonte CA/CC é omitida nesta figura por questões de simplicidade.

Fig. 1. Conversor proposto

A. Modelagem do Filtro LCL

O Filtro LCL é comumente aplicado em inversores conectados à rede elétrica para a atenuação de componentes harmônicas de corrente. Este filtro de terceira ordem, se comparado com filtros de primeira ordem como o filtro L, apresenta melhor atenuação de corrente para sinais de alta frequência e menores volumes [7], [8].

No entanto um filtro LCL puro possui um pico de ganho na frequência de ressonância, o que dificulta o controle em malha fechada. Existem duas soluções comumente utilizadas neste caso: i) amortecimento da ressonância de forma ativa, através de controladores específicos, e ii) amortecimento de forma passiva, através da inserção de componentes dissipativos ao filtro.

Nesta aplicação em específico utilizou-se um filtro LCL com técnica de amortecimento passivo com resistor R_d em série com o capacitor do filtro C_f . Esta é uma alternativa de baixo custo, tendo em vista que é somente adicionado um componente passivo extra ao filtro. Desde que projetado adequadamente esta opção pode fornecer baixas perdas.

Para realizar o controle da corrente da bateria optou-se por controlar a corrente do indutor L_2 , ou seja, na bateria. A função de transferência que relaciona corrente do indutor i_{L2} com a tensão de controle u é dada em (1), desconsiderando a contribuição da resistência da bateria.

$$G_i(s) = \frac{i_{L2}(s)}{u(s)} = \frac{R_d C_f s + 1}{s[L_1 L_2 C_f s^2 + (L_1 + L_2) R_d C_f s + L_1 + L_2]}$$
(1)

O valor da Indutância L_1 é projetado considerando seu *ripple* de corrente máximo na frequência de chaveamento f_{sw} . Valores típicos utilizados neste contexto são da ordem de $\Delta_{IL1\%} = 20\%$ a 40%, o qual ocorrem quando a tensão do barramento do inversor (V_{cc}) menos a tensão da bateria quando ela está no seu valor mínimo (V_{bat_MIN}), é máxima. Neste ponto de operação a razão cíclica está em seu valor mínimo D_{MIN} . Assim o valor da indutância L_1 pode ser dado em (2).

$$L_1 = \frac{(V_{cc} - V_{bat_MIN})D_{MIN}}{f_{sw}\Delta_{IL1\%}I_{bat_MAX}}$$
(2)

Onde: *I*_{bat_MAX} é máxima corrente na bateria.

O *ripple* de corrente produzido no indutor L_1 será aplicado ao capacitor mais resistor de amortecimento e indutor de saída, os quais em conjunto definem a atenuação da corrente da bateria. A função de transferência que relaciona a corrente de saída (i_{L2}) com a corrente de entrada (i_{L1}) é dada em (3).

$$G_a(s) = \frac{i_{L2}(s)}{i_{L1}(s)} = \frac{R_d C_f s + 1}{L_2 C_f s^2 + R_d C_f s + 1}$$
(3)

Na frequência de chaveamento o *ripple* de corrente no indutor L_2 corresponde ao *ripple* máximo de corrente admissível na bateria. Desta forma o ganho da função de transferência dada em (3) na frequência de transferência corresponde a:

$$|G_a(2\pi f_{sw}j)| = \frac{\Delta_{IL2\%}}{\Delta_{IL1\%}} = k_a^*$$
(4)

Já a função de transferência (1) utilizada para controle de corrente possui um pico de ganho na frequência de ressonância que deve ser atenuado através da correta escolha do resistor de amortecimento R_d . Este resistor pode ser determinado através dos parâmetros do filtro e do fator de amortecimento (ζ), conforme (5).

$$R_{d} = 2\zeta \sqrt{\frac{L_{1}L_{2}}{C_{f}(L_{1}+L_{2})}}$$
(5)

Outro fator que deve ser levado em conta na escolha do resistor de amortecimento é a potência dissipada neste resistor. Para realizar uma estimativa desta potência, obteve-se a função de transferência que relaciona a corrente no resistor R_d e a corrente no indutor i_{L1} , dado em (6).

$$G_r(s) = \frac{i_{Rd}(s)}{i_{L1}(s)} = \frac{s^2 L_2 C_f}{s^2 L_2 C_f + s R_d C_f + 1}$$
(6)

Em regime permanente praticamente todo o *ripple* de corrente do indutor de entrada será desviada para o capacitor, ou seja, a corrente no capacitor possuirá uma forma de onda triangular com média zero e frequência fundamental igual a frequência de chaveamento. A amplitude desta corrente corresponde a metade do *ripple* de corrente do indutor que será atenuado pelo ganho da função de transferência G_r . Já o valor eficaz (RMS) desta corrente pode ser obtido dividindo-se o valor de pico por $\sqrt{3}$, conforme mostrado em (7).

$$I_{Rd_RMS} = |G_r(2\pi f_{sw}j)| \cdot \frac{\Delta_{IL1}}{2} \cdot \frac{1}{\sqrt{3}}$$
(7)

E por fim a potência no resistor é definida em (8).

$$P_{Rd} = R_d \cdot I_{Rd\ RMS}^2 \tag{8}$$

Já o projeto do indutor L_2 , segundo [9], pode ser expresso pelo quociente da inductância L_1 e um fator k > 0 a ser determinado, $L_2 = L_1/k$.

B. Projeto do Filtro LCL com R_d série

O projeto dos componentes do filtro LCL são realizados utilizando os parâmetros do banco de baterias de Lítio utilizados, conforme Tabela I. Primeiramente definiu-se um *ripple* de corrente máximo no indutor L_1 de $\Delta_{IL1\%}=25\%$, e através de (2), obteve-se a indutância $L_1 = 60\mu H$. Em seguida é definido o *ripple* de corrente máximo no indutor L_2 (baterias), aqui utilizou-se $\Delta_{IL2\%}=2\%$. Desta forma a atenuação de corrente do filtro dada em (4) será de $k_a^* = 0, 08$. Outro fator importante é a definição do fator de amortecimento do filtro desejado, que deve ser definido em um valor maior do que $\zeta^* > 0,5$ para realizar uma adequada atenuação do pico de ressonância do filtro. Aqui defini-se $\zeta^* = 0, 6$.

De posse dos parâmetros acima deve-se resolver (4) e (5) simultaneamente para encontrar C_f e R_d a partir dos valores de L_1 , L_2 , $k_a^* \in \zeta^*$ previamente definidos. Como este sistema de equações é não linear e complexo utilizou-se a função fsolve() do *Matlab*. Esta função resolve um sistema de equações na forma F(x) = 0, como mostrada em (9).

$$F(x) = \begin{cases} \zeta^* - \zeta = 0\\ k_a^* - |G_a(2\pi f_{sw}j)| = 0 \end{cases}$$
(9)

Onde $x = [C_f, R_d]$ são as incógnitas a serem calculadas. Para analisar a influência do indutor L_2 nas perdas do filtro realizou-se uma varredura de valores de k = 1 até k = 8mantendo-se constante o fator de amortecimento e a atenuação, como mostrado na Figura 2.

Pode-se perceber que ao diminuir-se o valor da indutância L_2 a potência dissipada no resistor R_d diminui, porém também diminui-se a frequência de ressonância do filtro $f_{res} = \sqrt{(L_1 + L_2)/(C_f L_1 L_2)}/(2\pi)$.

Com a diminuição da frequência de ressonância do filtro diminui-se a resposta dinâmica do filtro. Sendo assim escolheu-se um fator k = 3, portanto $L_2 = 20\mu H$. Este fator k escolhido apresenta uma boa relação do compromisso entre

Fig. 2. De cima para baixo: Resistor de amortecimento R_d , Potência dissipada em R_d , Capacitor do filtro C_f e Frequência de ressonância do filtro f_{res} em função do fator k para um $L_1 = 60uH$ e mantendo-se constante o fator de amortecimento ($\zeta^* = 0, 6$) e a atenuação ($k_a^* = 0, 08$).

perdas e amortecimento e frequência de ressonância do filtro. O resistor de amortecimento para este ponto é $R_d = 0.5 \Omega$, e capacitor de filtro obtido foi de $C_f = 86\mu F$.

III. PROJETO DAS MALHAS DE CONTROLE

O sistema de controle de carga das baterias será baseado na técnica tensão/corrente constante (CC/CV). Onde na fase inicial de carga a corrente será mantida constante geralmente de 5% a 50% da corrente nominal até que a tensão da bateria atinja a tensão máxima. Em seguida a tensão é mantida constante até a corrente de carga atingir a corrente mínima de carga. Para implementar esta estratégia é necessário implementar um sistema de controle multi malhas, sendo a malha interna de corrente e a malha externa de tensão.

A. Controle de corrente das baterias

Na malha interna de controle de corrente é utilizado um controlador Proporcional Integral de corrente (PI_I) , como descrito em (10).

$$PI_I(z) = \frac{u_{PI}(z)}{e_i(z)} = k_{pi} \cdot \frac{z - \overline{\omega}_i}{z - 1}$$
(10)

Onde, e_i corresponde ao erro entre a corrente de referência I_{bat}^* e corrente da bateria medida I_{bat} . Já u_{PI} corresponde a tensão de controle gerada pelo controlador PI que é dividida pela tensão do barramento CC para definir a razão cíclica do conversor d. A Figura 3 mostra o esquema de controle.

Para realizar o projeto do controlador PI é realizada a discretização da planta usando a transformada Z e considerando que a tensão média do conversor é mantida constante entre os eventos de amostragem, isto é modelado como um ZOH (do inglês, segurador de ordem zero). Também é inserido um atraso de uma amostra referente a implementação digital, conforme mostrado em (11).

$$G_{id}(z) = Z \left\{ \frac{1 - e^{-sT_s}}{s} G_i(s) \right\} \frac{1}{z}$$
(11)

O projeto do controlador PI é realizado através da estratégia no domínio discreto proposta em [10]. Nesta estratégia é fornecido a frequência de cruzamento do sistema em malha aberta desejada ω_{ci}^* , e a margem de fase desejada PM^* , e a estratégia fornece o valor do ganho proporcional k_{pi} e a frequência discreta do zero do controlador ϖ_i .

A Equação (12), apresenta o método para determinar a frequência do zero do controlador Proporcional Integral (PI).

$$\varpi_{i} = \frac{\sin(T_{s}\omega_{ci}^{*}) + 2\left[\sin\left(\frac{T_{s}\omega_{ci}^{*}}{2}\right)\right]^{2}\tan(\phi_{i}^{*})}{\sin(T_{s}\omega_{ci}^{*}) - 2\left[\sin\left(\frac{T_{s}\omega_{ci}^{*}}{2}\right)\right]^{2}\tan(\phi_{i}^{*})}$$
(12)

Onde, T_s é o período de amostragem da lei de controle, e ϕ_i^* corresponde ao atraso de fase desejado inserido pelo controlador determinado pela diferença entre a margem de fase desejada (PM^*) e a margem de fase medida na frequência de cruzamento desejada, conforme (13).

$$\phi_i^* = PM^* - \left(\pi + \angle G_{id}(e^{j\omega_{ci}^*T_s})\right) \tag{13}$$

Fig. 3. Malha de controle de tensão e corrente da bateria.

Já para o cálculo do ganho proporcional, é definido uma função de transferência auxiliar, $C_i(z) = (z - \varpi_i)/(z - 1)$. E em seguida o ganho proporcional é obtido levando em consideração que o ganho da função de transferência em malha aberta deve possuir ganho unitário na frequência de cruzamento, conforme (14).

$$k_{pi} = \frac{1}{|G(e^{j\omega_{ci}^*T_s})||C_i(e^{j\omega_{ci}^*T_s})|}$$
(14)

Para os parâmetros do filtro obtidos anteriormente, e uma frequência de cruzamento do ganho de 500Hz, margem fase de 60° e para uma frequência de chaveamento e amostragem de 50 kHz, obteve-se $k_{pi} = 0,236$ e $\varpi_i = 0,978$.

B. Modelo elétrico da bateria

Para implementar o controle de tensão da bateria primeiro é necessário obter-se um modelo matemático da bateria que representa a tensão nos seu terminais. Aqui por questões de simplicidade [11] optou-se por um modelo composto apenas por uma resistência interna (R_{bat}) e a sua tensão de circuito aberto (V_{OC}) , a qual depende do estado de carga bateria entre outros fatores.

Desta forma a função de transferência que relaciona a tensão e a corrente na bateria para esse modelo zerando-se a fonte de tensão interna é dado em (15).

$$G_{V_{bat}}(s) = \frac{V_{bat}(s)}{I_{bat}(s)} = R_{bat}$$
(15)

Como a corrente da bateria está controlada pela malha interna de corrente, então a tensão da bateria pode ser obtida manipulando (15), (10) e (1), como mostrado em (16).

$$T_{i}(z) = \frac{V_{bat}(z)}{I_{bat}^{*}(z)} = \frac{G_{V_{bat}}(z)PI_{I}(z)G_{id}(z)}{1 + PI_{I}(z)G_{id}(z)}$$
(16)

Esta função de transferência é utilizada para realizar o projeto da malha de tensão da bateria, como mostrada a seguir.

C. Malha de controle de tensão das baterias

A malha de controle de tensão da bateria é implementada através de um controlador proporcional de tensão (PI_v) , como mostrado em (17).

$$PI_V(z) = \frac{I_{bat}^*(z)}{e_v(z)} = k_{pv} \cdot \frac{z - \varpi_v}{z - 1}$$
(17)

Onde, e_v corresponde ao erro entre a tensão de referência V_{bat}^* e tensão da bateria medida V_{bat} . Já I_{bat}^* corresponde a corrente da bateria de referência que é fornecida para a malha interna de controle de corrente. A Figura 3 mostra o esquema de controle completo.

O projeto desta malha de controle é realizada utilizando o mesmo procedimento utilizado na malha interna de corrente. Porém aqui utilizou-se uma frequência de cruzamento 20x abaixo da frequência de cruzamento da malha interna para evitar interações entre malhas, ou seja 25 Hz. A margem fase utilizada foi de 90° para garantir um baixo overshoot. Além disso, considerando que a resistência total das 4 baterias em série é, segundo o fabricante, de $R_{bat} = 0, 1\Omega$. Para os parâmetros definidos acima, obteve-se $k_{pv} = 0, 198$ e $\varpi_i = 0, 843$.

IV. DESCARGA DA BATERIA

A descarga das baterias é realizada com a referência de corrente (I_{bat}^*) negativa, e a malha de controle de tensão da bateria é desabilitada. Neste momento entra em funcionamento o conversor *Half-Bridge* conectado ao resistor de descarga R_L , o qual mantém a tensão do barramento CC em 1,5 V acima da sua tensão nominal de 24 V. Para realizar o controle da tensão do barramento CC primeiramente considera-se o somatório das potências no barramento CC, onde a potência de entrada é a potência da bateria (P_{bat}), e a potência de saída é a potência no resistor (P_{RL}) e a potência no capacitor é a derivada da sua energia, conforme (18).

$$\frac{d}{dt}\left(\frac{1}{2}C_B V_{cc}^2(t)\right) = P_{bat}(t) - P_{RL}(t) \tag{18}$$

Realizando a derivada acima em relação a variável V_{cc}^2 , considerando a potência da bateria como um distúrbio, é possível encontrar a função de transferência para o controle da tensão do barramento CC em função da potência em R_L , conforme 19.

$$G_{vcc}(s) = \frac{V_{cc}^2(s)}{P_{RL}(s)} = -\frac{2}{sC_B}$$
(19)

A função de transferência acima é discretizada utilizando a aproximação por ZOH, o qual representa adequadamente o comportamento médio da tensão produzida pela tensão PWM do conversor. O projeto dos ganhos deste controlador foi

Fig. 4. Controle de tensão do barramento CC durante a descarga das baterias.

realizado utilizando a mesma técnica de projeto do controlador da corrente da bateria mostrada anteriormente. Escolheu-se uma frequência de cruzamento do ganho da malha de controle alocada uma década abaixo da frequência de cruzamento da malha de corrente, em 25Hz, para evitar interação entre malhas, e uma margem de fase de 60°. A estrutura do controlador é dada em (20).

$$PI_{Vcc}(z) = \frac{P_{RL}^{*}(z)}{e_{Vcc}(z)} = k_{p_vcc} \cdot \frac{z - \varpi_{vcc}}{z - 1}$$
(20)

Para os critérios descritos acima obteve-se $k_{p_vcc} = 0, 18$ e $\varpi_{vcc} = 0, 9965$. O Controlador acima fornece a potência que deve ser dissipada (P_{RL}^*) para manter a tensão do barramento dentro dos limites aceitáveis durante a descarga da bateria. Esta potência deve ser convertida na razão cíclica do conversor que aciona a resistência de descarga (d_r^*) . Isto é realizado considerando que o conversor aplica uma tensão média controlada sobre o resistor de descarga, e dividindo esta valor pela tensão do barramento CC, conforme (21).

$$d_r^* = \frac{\sqrt{P_{RL}^* \cdot R_L}}{V_{cc}} \tag{21}$$

O Valor do resistor R_L deve ser escolhido de forma que no pior caso onde o conversor aplica tensão máxima na resistência seja possível dissipar a potência máxima do banco de baterias, aqui usou-se $R_L = 2\Omega$. A Figura 4 apresenta a estratégia completa do controle da tensão do barramento CC durante a descarga das baterias.

V. RESULTADOS EXPERIMENTAIS

A bancada experimental é composta por uma fonte CA/CC de 24V/240W conectada ao barramento CC através de um diodo de proteção. O controle dos conversores é implementado no DSC da Texas Instruments modelo TMS320F28379D, conforme apresentada Figura 5. São utilizados 4 baterias de íos de Lítio modelo INR18650-26E do fabricante *Hengdian Group DMEGC*. Os principais parâmetros das baterias e dos conversores estão descritos na Tabela I.

Para validar as estratégias propostas foram realizados dois ensaios experimentais. No primeiro experimento, desabilitouse a malha de controle de tensão da bateria e foram realizados uma sequência de degraus de corrente de referência da bateria. Primeiramente iniciou-se com uma referência positiva de corrente (carga da bateria) de 50% da corrente nominal e em seguida trocou-se para uma referência negativa (descarga).

 TABLE I

 Parâmetros da Bateria e do Conversor

Descrição	Variável	Valor
Tensão máxima da Bateria	V_{bat_MAX}	16,8V
Tensão mínima da Bateria	V_{bat_MIN}	10V
Corrente de descarga máxima	$I_{bat_MAX_Descarga}$	7,8A
Corrente de carga máxima	$I_{bat_MAX_Carga}$	1,3A
Resistência interna das baterias	R_{bat}	$100m\Omega$
Tensão do Barramento CC	V_{cc}	24V
Capacitor do Barramento CC	C_{b}	$4 \times 330 \mu F$
Indutor do Lado do Conversor	L_1	$60\mu H$
Indutor do Lado da bateria	L_2	$20\mu H$
Capacitor do Filtro	C_{f}	$4 \times 22 \mu F$
Resistor de amortecimento	$\vec{R_d}$	$1\Omega // 1\Omega$
Resistor de Dissipação	R_L	2Ω
Frequência de Chaveamento	f_{sw}	50kHz

Fig. 5. Bancada Experimental: 1- Fonte CA/CC; 2- DSC TMS320F28379D e placa de condicionameno de sinais; 3- Barramento CC; 4- Conversores *Half Bridge*; 5- Filtro LCL; 6- Baterias de Li-ion; 7- Resistores de potência; 8- Sensores de tensão isolados para as células de baterias; 9- Sensor da tensão isolado do barramento CC.

A Figura 6 apresenta o resultado obtido a partir de um osciloscópio e na Figura 7 é apresentado o mesmo experimento porém mostrando os dados da memória interna do DSC. Pode ser visto que a corrente da bateria segue a referência de forma adequada tanto no momento da carga quanto na descarga. Para t < 0, 3s (carga) o diodo de proteção entra em condução, e a tensão do barramento CC é aproximadamente a tensão da fonte de entrada. Para $t \ge 0, 3s$ (descarga) a corrente é negativa e entra em funcionamento o conversor que dissipa a energia excedente regulando a tensão barramento CC em 25,5V e colocando o diodo em bloqueio.

Já o segundo ensaio é apresentado para validar o controle de tensão da bateria. Neste ensaio um degrau de tensão de referência da tensão da bateria é aplicado de $V_{bat}^* = 15, 4V$,

Fig. 6. Resultado experimental, de cima para baixo: Corrente na bateria, tensão do barramento CC, tensão do banco de baterias para uma sequencia de degraus de 100ms na corrente de referência da bateria (I_{bat}^*) , iniciando em $0A \rightarrow 1,3A \rightarrow 0A \rightarrow -2A \rightarrow -4A \rightarrow -6A \rightarrow -4A \rightarrow -2A \rightarrow 0A$.

Fig. 7. a) Corrente na bateria I_{bat} e de referencia I_{bat}^* ; b) Tensão do barramento CC V_{cc} , e de referencia V_{cc}^* (valido apenas durante a descarga $t \ge 0, 3s$ onde a referência de corrente é negativa); c) Razão cíclica do conversor conectado as baterias d, e razão cíclica do conversor conectado a resistência de descarga d_r .

ou 3,85 V por célula, para $V_{bat}^* = 16V$ ou 4V por célula. A corrente de referência de saída do PI de tensão é mantida constante pelo saturador até que a tensão da bateria atinja a tensão de referência. Na sequência, após aproximadamente 450s a corrente da bateria inicia a diminuição até a atingir a corrente mínima de carga.

VI. CONCLUSÃO

Foi apresentado o desenvolvimento de um dispositivo para testes experimentais em baterias de Íons de Lítio. Foi realizada a modelagem e obteve-se um roteiro de projeto para o filtro LCL, com a configuração que utiliza o resistor de amortecimento R_d em série com o capacitor do filtro C_f . Com base na análise da planta para valores distintos dos componentes, foi possível escolher um ponto de operação que atenda ao compromisso entre perdas e amortecimento. O projeto dos controladores PI para as malhas de controle de tensão e corrente da bateria, foi realizado no domínio discreto. Os resultados experimentais obtidos comprovam o funcionamento do sistema de controle.

Fig. 8. Resultado experimental obtido da memória interna do DSC: a) Degrau na tensão da bateria de referência de $V_{bat}^* = 3,85V$ para $V_{bat}^* = 4,0V$ por célula da bateria; b) Corrente de carga da bateria, etapa de corrente constante até aproximadamente 450 s; c) Variação da razão cíclica durante o processo de carga das células da bateria.

REFERENCES

- E. Vale, "O IMPACTO DAS NOVAS TECNOLOGIAS NA DEMANDA DO líTIO," *Radar: tecnologia, produção e comércio exterior*, no. 65, pp. 11–15, Apr. 2021. [Online]. Available: https://doi.org/10.38116/radar65art2
- [2] A. Chen and P. K. Sen, "Advancement in battery technology: A stateof-the-art review," 2016 IEEE Industry Applications Society Annual Meeting, pp. 1–10, 2016.
- [3] X. Han, M. Ouyang, L. Lu, and J. Li, "A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation," *Journal of Power Sources*, vol. 268, pp. 658–669, Dec. 2014.
- [4] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, "State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations," *IEEE Access*, vol. 6, pp. 19362–19378, 2018.
- [5] K. Takahashi, T. Tsujikawa, K. Hirose, and K. Hayashi, "Estimating the life of stationary lithium-ion batteries in use through charge and discharge testing," in 2014 IEEE 36th International Telecommunications Energy Conference (INTELEC), 2014, pp. 1–4.
- [6] S. S. Williamson, A. K. Rathore, and F. Musavi, "Industrial electronics for electric transportation: Current state-of-the-art and future challenges," *IEEE Transactions on Industrial Electronics*, vol. 62, no. 5, pp. 3021–3032, 2015.
- [7] J.-Y. Lee, Y.-P. Cho, H.-S. Kim, and J.-H. Jung, "Design methodology of passive damped lcl filter using current controller for grid-connected three-phase voltage-source inverters," *Journal of Power Electronics*, vol. 18, pp. 1178–1189, 07 2018.
- [8] R. PeÑa-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, and F. W. Fuchs, "Analysis of the passive damping losses in lcl-filter-based grid converters," *IEEE Transactions on Power Electronics*, vol. 28, no. 6, pp. 2642–2646, 2013.
- [9] M. Liserre, F. Blaabjerg, and S. Hansen, "Design and control of an lclfilter-based three-phase active rectifier," *IEEE Transactions on Industry Applications*, vol. 41, no. 5, pp. 1281–1291, 2005.
- [10] J. R. Tibola, R. L. Sari, T. D. M. Lanzanova, M. E. S. Martins, and H. Pinheiro, "Modeling and control of a low-cost driver for an eddy current dynamometer," *Journal of Control, Automation and Electrical Systems*, vol. 27, no. 4, pp. 368–378, Apr. 2016. [Online]. Available: https://doi.org/10.1007/s40313-016-0244-4
- [11] M. Chen and G. Rincon-Mora, "Accurate electrical battery model capable of predicting runtime and i-v performance," *IEEE Transactions* on Energy Conversion, vol. 21, no. 2, pp. 504–511, 2006.