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Abstract— In this paper, a method for separation of vibration 

signals coexisting in the same frequency bin and coming from 

different mechanicals pieces is presented. A blind source 

separation method for vibration signals in gearboxes based on a 

clustering technique is applied. The proposed method uses the 

fact that spatial separation of vibration sources produces a 

difference in the hermitian angle between vectors composed by 

samples of the discrete Fourier transform of the signals 

measured and a reference vector. For simulations and a real case 

considering a wind turbine gearbox, time segments with signals 

providing from different mechanical pieces are identified. 

Keywords— frequency coexisting signals; gearbox; hermitian 

angle; vibration; wind turbine. 

I. INTRODUCTION 

Gearboxes are vital pieces in transmission mechanisms on 

rotating machines. Especially, in wind turbines they are 

essential to adjust the rotational speed of blades to the 

generator itself. Eolic generators can supply a large amount of 

power and critical failures may produce huge economic losses. 

Gearboxes are the largest contributor to turbine downtime and 

the costliest to repair [1]. That is the reason why faults 

detection in gearboxes has been studied for a long time, 

contributing to the development of applying condition 

monitoring and fault diagnosis (CMFD) technologies. 

A large literature reports several technologies and 

applications for fault diagnostic in gearboxes. Since they are 

complex systems, multiple failures on the same or different 

elements can take place at the same time, namely hybrid faults 

[2]. Recently, an enormous effort has been focused on 

diagnose hybrid faults by using vibration signals, and the main 

strategy is try to decouple each fault signal, but still a 

particularly challenging situation, when fault signals providing 

from different components are narrowband and located in very 

similar frequency bands [3]. 

In this sense, a few methods could be applied in that 

particular situation using techniques such as empirical mode 

decomposition [4], time-frequency domain [5], morphological 

component analysis [6] order tracking, independent 

components analysis (ICA), and blind source separation (BSS) 

[7]. Meanwhile, aiming to reduce the influence of the position 

of only one sensor in the fault detection, a growing trend 

exists in the use of multiple sensors. That led to the need of a 

multivariable framework to analyze vibration signals. In this 

context, current options are mainly limit to variations of 

multivariate empirical mode decomposition (MEMD) [8] and 

BSS [2]. Mostly, methods based on BSS are preferred due the 

theoretical support. The aim of BSS is to distinguish among 

different signals from a combination of them without knowing 

the parameters of the combination model. Those algorithms 

usually are developed considering instantaneous combination 

or convolutive combination. However, in mechanical systems, 

mixtures of vibration signals most often are of the convolutive 

type [9]. A family of algorithms based on independent 

component analysis (ICA) are the most frequently used in 

BSS, and particularly in the separation of narrow band and 

located in the same frequency band signals [2]. However, ICA 

requires statistical independence between the source signals. 

In gearboxes vibration analysis, the vibration sources excited 

by the machine components can be statistically dependent.  

In this work, we deal with the problem of decoupling 

vibration fault signals coexisting in the same frequency bin in 

gearboxes without the assumption of independence of the 

sources but only are sparse in the time-frequency domain and 

considering convolutive mixtures. Unlike [2] it is achieve 

decoupling of high correlated signals, but considering that are 

mixed in instantaneous mode. 
This paper is organized as follow: Section II describes the 

signals propagation model considered. Section III explains the 
source identification in the frequency domain. Section IV 
applies the method in a simulated system. Section V performs 
in a real environment. Finally, conclusions are summarized in 
Section VI.† 
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II. SIGNALS COMBINATION MODEL IN TIME DOMAIN AND 

TIME-FREQUENCY DOMAIN 

In this Section, the convolutive mixture signals model in 

the time domain and the equivalent model in the time-

frequency domain considered in this work are presented. 

The mathematical expression to model the convolutive 

combination of fault vibration signals can be expressed as 
1

1 0

( ) ( ) ( ) ( ) ( ) for 1,..,
Q L

p pq q pq q

q l

x n h n s n h l s n l p P


 

      (1) 

where p  is the sensor index, q  is the fault source index, P  is 

the number of sensors, Q  is the number of sources, ( )pqh n  is 

the impulse response of the combinational filters modeling the 

propagation path from source q  to sensor ,p  L  is the 

combinational filter length (assuming FIR filters), ( )is n  

represents i-th source signal, and ( )ix n  the i-th sensor signal. 

Figure 1 presents a drawing of the signals propagation model 

considered in this paper. 
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Figure 1. Signal propagation model from the fault sources to the 

sensors. 

An extensively applied approach to deal with convolutive 

mixtures signals implies to represent them in the frequency 

domain [10]–[18]. Practical implementations require the use 

of short-time Fourier transform (STFT), which derives in a 

time-frequency domain combination model as [19] 
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where 
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1( , ) [ ( , ),... ( , )]T

Qk t S k t S k tS  is a column vector with the 

samples of the DFT of a segment of the source signals for the 

Q  sources in the frequency bin ,k  

1, ,( ) [ ( ),... ( )]T

q q P qk H k H kΗ  is a column vector with the 

samples of the DFT in the frequency bin k  of the impulse 

response of the combinational filters from source q  to the P  

sensors. Finally, matrix 1( ) [ ( ) ... ( )]T

Qk k kΗ Η Η  groups the 

Q  vectors ( )q kΗ . 

Note that t  is used as block index and it is assumed that the 

impulse response of the combinational filters remains constant 
for all .t  

III. FAULT SOURCE SEPARATION IN THE TIME-FEQUENCY 

DOMAIN 

In this Section, the procedure to separate faults signals 

coexisting in the same frequency bin is presented. A 

fundamental assumption is that (2) is a disjoint representation 

of the source signals, which means that the signals are sparse 

in the TF domain. This condition was also assumed in [20] 

and can be supported in the amplitude modulation effect in 

vibration signals [21]. So, for a particular block, 
it , and 

frequency bin, 
jk , ( , )j ik tX  is related with only one source 

( )qs n  as 

 ( , ) ( ) ( , ).j i q j q j ik t k S k tX Η  (4) 

Considering that ( )q jkΗ  is a complex column vector, 

when it is multiplied by a complex scalar ( , ),q j iS k t  as in (4), 

their values and angles change [22]. However, it could be 

verified that the hermitian angle between ( )q jkΗ  and a 

reference vector r  would be equal to the hermitian angle 

between ( , )j ik tX  and the same reference vector r  during the 

time when only the source ( )qs n  is present and probably it 

would change when another source predominates [23]. So, the 

hermitian angle can be used to classify signal segments 

considering the source. Due the noise, the hermitian angles 

related with a determined source are not constant, so it is 

necessary to use a clustering method to group together angles 

that can be considered that are related with the same source. 

The use of hermitian angles to separate signals was 

initially proposed in [23] considering speech signals. In [20], a 

similar procedure is applied to gearboxes fault signals, 

combined with the variational mode decomposition, but 

focused into separate the stationary and no stationary 

components of wide band signals, similarly to [9] where STFT 

is applied with this end. In this work, we limit the analysis to 

only one target bin, where, on account of a previous 

knowledge of the system, more than one stationary fault signal 

could coexist. 

In the following, the algorithm proposed to separate the 

signals is summarized: 
(i) To define a reference vector with non-zero 

components. An example for the case of two sensors is 

[1 1,1 1] .Tj j  r  

(ii) To compute the hermitian angle between ( , )k tX  and 

,r  for the target bin k  and all ,t  as [24]: 
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This step is similar to the proposed in [23]. 
(iii) To use k-means clustering algorithm to group 

( , )H k t  in Q  groups in the frequency bin .k  

(iv) To define binary masks to indicate if the segment 
belongs or not to each group. 

IV. APPLICATION TO GEARBOX VIBRATIONS SIGNALS: 

SIMULATION RESULTS 

In the following, it is shown how the proposed method can 

be used to individualize signals within the same frequency 

band and coming from different pieces in a gearbox. 
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Figure 2. Simulated gearbox. 

A. Considered problem 

It is considered the gearbox represented in Figure 2, that 

consist of a 9-tooth pinion, 9,pN   meshing with a 32-tooth 

gear, 32.gN   The pinion is coupled to an input shaft 

connected to a prime mover. The gear is connected to an 

output shaft. The shafts are supported by roller bearings on the 

gearbox housing. Two accelerometers, 
1A  and 

2A  are placed 

on the bearing and gearbox housings, respectively. The pinion 

rotates at a rate 22.5 Hzpf   or 1,350 rpm. The rotation 

speed of the gear and the output shaft is  

 6.33 Hz.
p

g p

g

N
f f

N
    (6) 

The tooth-mesh frequency, the rate at which gear and 
pinion teeth periodically engage, is: 

 202.5 Hz.M P P G Gf f N f N      (7) 

For better resolution in spectral analysis, the sample frequency 

to the accelerometers signals is selected as a multiple of   
Mf , 

so 20,250 Hzsf   is considered. 

B. Considered faults 

In this example, three types of faults in the gearbox are 

considered, according shown in Fig.3:  

 Local fault on a gear tooth: assume that the gear is 
suffering from a local fault such as a spall. This results 
in a high-frequency impact occurring once per rotation 
[25]. In this example, it is arbitrarily assumed that the 

impact causes a 2 KHz vibration signal and occurs over 

a duration of about 8% of 1/ .Mf  The impact repeats 

once per rotation of the gear. 

 Eccentricity or pinion misalignment: it is a distributed 
fault, causing higher-level sidebands that are narrowly 
grouped around integer multiples of the mesh frequency 
[26]. In this example, three sidebands are considered. 

 Rolling element bearing fault: Assume that the bearing 
supporting the pinion shaft is affected by a localized 
fault in the inner race. Faults in bearings have 
characteristic frequency, for the case considered here, it 
is [27] 
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where   is the number of rolling bearings,   is the 

diameter of rolling elements,   is the contact angle, 

and   is the pitch diameter of the bearing. Table 1 

presents the values of these parameters. 

From (7) and (8) can be conclude that 
BPIf  and 

Mf  are 

coincident, so in this band we focus our analysis and, as we 

have to separate two vibration signals, are selected two 

clusters for the k-means algorithm. 

Table 1. Bearing parameters 

Parameters        

Values 61 0.0118 0.23 16.5443 
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Figure 3. Considered faults: (a) Fault on a gear tooth. (b) Pinion 

misalignment. (c) Rolling element bearing fault. 

C. Simulation Results 

In this example, are considered two signal sources: one 

containing the bearing fault signal, 1( ),s n  and the other 

containing the gear teeth fault and pinion misalignment, 

2 ( ).s n  Both signals, 
1( )s n  and 

2 ( ),s n  propagate considering 

four different paths: 11( ),h n  12 ( ),h n  
21( ),h n  and 

22 ( ),h n  

according is shown in Fig. 1, resulting in the signals measured 

through the accelerometers, ( ).ix n  The signal sources and the 

combined signals are shown in Figure 4. The impulse 



responses considered for each propagation path are shown in 

Figure 5. 

Applying the procedure detailed in Section III, with blocks 

of 200 samples ( 200N  ) and focusing on the frequency bin 

associated to 202.5 Hz, the values of hermitian angle for each 

block during 20 seconds (approximately 2000 blocks) are 

obtained. Then, the k-means algorithm is applied to separate 

the hermitian angles in two groups. The obtained results are 

shown in Figure 6 and Fig. 7. From these results, it is possible 

to consider that in time segments associated with one 

hermitian angle group, one of the fault vibration signal source 

is the most relevant. For the segments associated to the other 

hermitian angle group, another source will be more relevant.  

 
Figure 4. Fault source signals and sensing signals. (a) Bearing 

fault. (b) Gear faults. (c) Signal at sensor A1. (d) Signal at sensor A2. 

 

 
Figure 5. Impulse responses for propagation paths. 

Using this reasoning, the accelerometers signals can be 

separated in two groups according is illustrated in Figure 8 

(note the coherence with Fig. 7)  

Finally, the temporal characteristics of the fault signals can 

be used to verify the separation correctness in this particular 

example, comparing the signals of Figure 4 and Figure 8. Can 

be effectively observed that when the gear signals decrease 

and the bearing signal become the most relevant it is 

recognized one group. For other hand, when the gear vibration 

signals increase, it is identified the other group. So, it is 

possible to isolate bearing fault signals. Note that the proposed 

method can individualize fault signals without considering the 

signal amplitude and in a blind way. 

 
Figure 6. Hermitian angles for the 202.5 Hz frequency bin. 

 
Figure 7. Zoom of hermitian angles at the time period showed 

below. 

 
Figure 8. Accelerometer A1’s signal. Signal where prevails 

bearing fault (blue dashed line). Signal where prevails gear vibration 

(red solid line). 

 

V. APPLICATION TO GEARBOX VIBRATIONS SIGNALS: 

REAL CASE 

In this section the results obtained applying the proposed 
method for a real situation are presented. A data set provided 
by the National Renewable Energy Laboratory for a wind 
turbine drive train is considered. Data correspond to an upwind 
turbine, with a rated power of 750kW. The turbine generator 
operates at 1800 rpm and 1200 rpm nominal. It is composed of 
one low speed (LS) planetary stage and two parallel stages, as 



shown in the expanded view in Fig. 9. The analysis is 
concentrated in the inner race fault signal for bearing D (called 

ISS-A in Fig. 9), 72.9HzBIf   and the second harmonic of 

the planet gear mesh between the ring and the planet, 

2 73.71HzM ndf  . The proximity of frequencies become very 

difficult to draw a conclusion about the state of bearing D with 
a spectral analysis [27], such it is shown in Fig. 10. In this 
figure data from two conditions, healthy and damaged, 
considering three accelerometers (Table 2), are compared. An 
increment in the peak related with 73Hz  can be observed, 

however, it is not sufficient to conclude that this effect is due 
exclusively to a fault in the bearing D [27]. 

 
Figure 9. Considered Gearbox. 

Table 2. Accelerometers descriptions 

Sensor Label Description 

AN4 Ring gear radial 12 o’clock 

AN6 ISS radial 

AN7 HSS radial 

 

 
Figure 10. Spectral analysis. (thick blue line) Healthy case. (slim 

red line) Damaged case. 

Appling the proposed method to the same data, considering 
blocks of 1100 samples ( 1100N  ) and the frequency bin 

associated to 73 Hz, the values of hermitian angle for each 
block are obtained for the healthy and damaged conditions. 
The resulting hermitian angles are presented in Fig. 11. 

Figure 11. Heamitian angles for 73Hz frequency bin. (a) Healthy 

case. (b) Damaged case. 

 

As seen in Fig. 11(a), in the healthy case, the angles are 

uniform and concentrated, without polarizations, which can 

suggest that only one source exist. On the other hand, the 

damaged case associated with Fig. 11(b) presents a 

polarization in the hermitian angles according the time 

proceeds, so, can be inferred that two fault sources are 

involved. Then, k-means is applied to group the angles of the 

damaged case in two clusters, related to each source, as it is 

shown in Figure 12 and Fig. 13. Finally, the clusters 

separation is used to relate signal segments to the inner race 

fault signal or the second harmonic of the planet gear mesh 

between the ring and the planet as is illustrated in Fig. 14. 

 

 
Figure 12. Clustering hermitian angles for the damaged case at 

the time period showed below. (x) Cluster 1. (o) Cluster 2. 



 
Figure 13. Zoom of hermitian angles for the damaged case.       

(x) Cluster 1. (o) Cluster 2. 

 
Figure 14. Signal separation according to the fault source 

prevalence. 
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