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ABSTRACT 

Photovoltaic solar energy has proven to be an important source in the energy transition 
process. However, the non-linear nature of the models used to estimate parameters makes 
the work difficult in an attempt to improve the efficiency of the systems. This work proposes 
the parameter estimation of the RTC France photovoltaic cell using the Single-diode model 
and the Swarm Mean-Variance Mapping Optimization algorithm. The results obtained show 
that the proposed algorithm is good enough for this purpose, as it achieved the same error 
levels as other algorithms reported in the literature and the estimated parameters achieved a 
good fit in the I -V and P -V curves.  

Keywords: Swarm MVMO. Parameter estimation of PV systems. Single-diode model (SDM). 

 

1. INTRODUCTION 

Photovoltaic (PV) solar energy is one of the most important renewable sources in the 

world’s energetic transition process because it is an infinite supply and combines easiness of 

installation, low maintenance cost, and environmental friendliness during its operation 

(DEMIRTAS and KOC, 2022, HUYNH et al., 2022). The non-convex, nonlinear, and multi-

parameter nature of PV models hampers the work. The PV parameters estimation, which is 

one of the oldest research fields that remain active, is essential since the data-sheet 

information is insufficient and only reflects the standard test conditions (STC). Correct 

parameters can improve efficiency in a new project, or show the real system conditions 

(NGUYEN, NGUYEN, and TRAN, 2022; AGHAEI et al., 2022; BATZELIS et al., 2022). 

Metaheuristic methods are the most efficient for PV systems parameters estimation (ABDEL-

BASSET et al., 2022). The determination of optimal unknown parameters is based on the 

global optimization population algorithm. The main advantages of these methods have no 

restriction on the objective function, continuity, and simple implementation (LUO and YU, 

2022; XIONG et al., 2021). 

This work proposes the parameter estimation of the Single-diode model (SDM) 

employing a metaheuristic method namely the Swarm Mean-Variance Mapping Optimization 
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(Swarm MVMO). Measured data from the RTC France PV cell were used in this study and the 

results obtained were compared with others from different algorithms in the literature. 

 

2. SINGLE-DIODE MODEL 

The most common PV model used in literature is the single-diode model (SDM) due 

to their accuracy and simplicity (HUYNH et al., 2022). Figure 1 shows the SDM electric circuit. 

 

Figure 1. SDM electric circuit (NGUYEN, NGUYEN, and TRAN, 2022). 

 
 

According to Duman et al. (2022), applying Kirchhoff’s current law to the circuit, the 

output current (I ) is calculated by solving the implicit Eq. 1. 

 

 𝐼௣௛ − 𝐼஽ଵ − 𝐼௦௛ − 𝐼 = 0 (1) 

 

where Iph is the cell photo-generated current, ID1 is the diode current provided by Eq. 2, and 

Ish is the shunt resistor current, 

 

 
𝐼஽ଵ = 𝐼଴ଵ × ൜𝑒𝑥𝑝 ൤

𝑞 ×  (𝑉 + 𝑅௦  ×  𝐼)

𝑎 ×  𝑘 ×  𝑇
൨ − 1ൠ 

(2) 

 

where I01 is the diode reverse saturation current, q is the electron charge (1.60217646×10-19 

C), V is the cell output voltage, a is the diode ideality factor, k is the Boltzmann constant 

(1.3806503×10-23 J/K), and T  is the cell temperature. Finally, Ish is given by Eq. 3. The model 

has 5 unknown parameters to be estimated (pn = 5): Iph, I01, Rs, Rsh, and a. 

 

 
𝐼௦௛ =

𝑉 + 𝑅௦ × 𝐼

𝑅௦௛
 (3) 
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3. PARAMETER ESTIMATION METHOD 

The MVMO algorithm is a stochastic optimization methodology that uses concepts of 

selection, mutation, and crossover, resulting from evolutionary algorithms that are applied to 

a population and that promotes the strategic transformation of the best individuals through a 

mapping function. The heart of MVMO is based on its mean and variance. To extensively 

explore the solution space, swarm concepts were incorporated with a group of mp  particles, 

each having a defined memory through their archive and mapping function to collect a robust 

set of individual solutions. Finally, a multi-parent crossover strategy enhances search diversity, 

maintaining a trade-off between exploration and exploitation (ERLICH, VENAYAGAMOORTHY, 

and WORAWAT, 2010) (RUEDA and ERLICH, 2013). Figure 2 shows the Swarm MVMO 

flowchart, where i  is the function evaluation counter, c is the particle counter, mp is the 

number of particles, and imax is the maximum number of fitness function evaluations. One of 

the characteristics of this method is that the parameters to be estimated must be configured 

at the beginning of the algorithm within maximum and minimum bounds, thus defining a 

search limit for each parameter. 

 

Figure 2. Swarm MVMO flowchart – Adapted from Rueda and Erlich (2013). 

 

 

According to Eq. 1 to 3 the model can be presented as a function in Eq. 4 and 5. The 

fitness function was calculated based on root mean square error (RMSE), described in Eq. 6 

where M is the sample number. 
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 𝑓(𝑥, 𝑦, 𝑢, 𝑟, 𝑝) = 𝐼௣௛ − 𝐼଴ଵ ቊ𝑒𝑥𝑝 ቈ
𝑞 × (𝑉 + 𝑅௦ × 𝐼)

𝑎 × 𝑘 × 𝑇
቉ − 1ቋ −

𝑉 + 𝑅௦ × 𝐼

𝑅௦௛
− 𝐼 (4) 

 

 

𝑓(𝑥, 𝑦, 𝑢, 𝑟, 𝑝) =

⎩
⎪
⎨

⎪
⎧

𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑥 = [𝑉]
𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑦 = [𝐼]      

𝐼𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑢 = [𝑇]                                 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑟 = [𝑘, 𝑞]                      
  𝑃𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑝 = [𝐼௣௛, 𝐼଴ଵ, 𝑎, 𝑅௦, 𝑅௦௛]

 (5) 

 

 
𝑅𝑀𝑆𝐸 = ඩ

1

𝑀
෍ 𝑓(𝑥, 𝑦, 𝑢, 𝑟, 𝑝)ଶ

ெ

௝ୀଵ

 
 (6) 

 
4. RESULTS AND DISCUSSION 

To evaluate the Swarm MVMO method for PV parameter estimation, the PV dataset 

of the RTC France silicon PV cell (irradiance = 1000 W/m2 and T = 33º C) was employed as 

obtained in Easwarakhanthan et al., (1986), which is widely studied in the literature, as it can 

be seen in Demirtas and Koc (2022). The settings of the Swarm MVMO algorithm shown in 

Tab. 1 were based on the recommendations of Rueda and Erlich (2013) for the algorithm 

setup and Yaghoubi et al. (2022) for the parameters search limits. In this study, all simulations 

ran independently 30 times in Matlab R2022b using an 11th Gen Intel® Core™ i5-11400 @ 

2.60 GHz 2.59 GHz, 24 GB RAM with Windows(R) 11, 64 bits. 

 

Table 1. Swarm MVMO settings. 

Description Values 

Number of parameters to be estimated (pn) 5 
Number of individuals per particle (Xn) 5 
Maximum number of fitness functions (imax) 5000 
Number of particles (m) 75 
Simulations number (runs) 30 

Search limits 
(lower and 

upper bounds) 

Iph (A) 0 – 1 
I01 (µA) 0 – 1 
a ( - ) 1 – 2 
Rs (Ω) 0 – 0.5 
Rsh (Ω) 0 – 100 
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After 30 runs, the lower RMSE value was 0.9860219E−03 which estimated the best 

PV parameters shown in Tab. 2 with other references from the literature. The highest RMSE 

value was 1.846593E−03, the average value was 1.108900E−03 and the standard deviation 

(SD) was 1.879115E−04 as can be seen in Fig. 3. The average time for one run was 97 

seconds. 

Figure 3. RMSE values per run. 

 

 

The estimated parameters obtained by Swarm MVMO are very close to the other 

algorithms from the literature and indicate the efficiency of this methodology for PV parameter 

estimation of SDM, reaching the same level in the RMSE values. However, due to the nature 

of the proposed algorithm, there is a large variation in RMSE values (see Fig. 3), since the 

algorithm generates for each new simulation an initial random population established within 

the limits of each parameter. Figures 4 and 5 shows the I-V and P-V curves of the best-

estimated parameters where it is possible to notice the good fit between the measured and 

estimated values. Table 3 shows the real measurement of current (Imea), voltage (Vmea), and 

power (Pmea) outputs in the cell, the cell estimated output current (Iest) and power (Pest), and 

finally the current and power absolute errors (|Iae| and |Pae|) which reached low values. 
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Table 2. Estimated parameters by Swarm MVMO and literature reference values from other 

algorithms. 

Method Iph (A) I01 (μA) Rs (Ω) Rsh (Ω) a RMSE (10-3) 

Swarm MVMO 0.7608 0.3230 0.0364 53.7192 1.4812 0.986 
MSSA 0.7683 0.3262 0.0367 54.2557 1.4958 0.986 
RN-ChOA  0.7608 0.3228 0.0363 53.7176 1.4811 0.976 
CJAYA4 0.7608 0.3380 0.0359 52.7279 1.4857 0.986 
INFO 0.7608 0.3230 0.0364 53.7185 1.4812 0.986 

Note: Modified Salp Swarm Algorithm (MSSA) from Yaghoubi et al. (2022). Robust 
Niching Chimp Optimization Algorithm (RN-ChOA) from Bo et al. (2022). Chaotic JAYA 
(CJAYA4) from Premkumar (2021). Weighted mean of vectors optimization algorithm 
(INFO) from Demirtas and Koc (2022). 

 

Table 3. Comparison between measured and estimated data for RTC France PV cell. 

Item Vmea (V)  Imea (A) Iest  (A)  |Iae| (A) Pmea (W) Pest  (W) |Pae| (W) 

1 -0.2057  0.7640  0.7641  0.0001  -0.1572  -0.1572  0.0000 
2 -0.1291  0.7620  0.7627  0.0007  -0.0984  -0.0985  0.0001 
3 -0.0588  0.7605  0.7614  0.0009  -0.0447  -0.0448  0.0001 
4 0.0057  0.7605  0.7602  0.0003  0.0043  0.0043  0.0000 
5 0.0646  0.7600  0.7591  0.0009  0.0491  0.0490  0.0001 
6 0.1185  0.7590  0.7580  0.0010  0.0899  0.0898  0.0001 
7 0.1678  0.7570  0.7571  0.0001  0.1270  0.1270  0.0000 
8 0.2132  0.7570  0.7561  0.0009  0.1614  0.1612  0.0002 
9 0.2545  0.7555  0.7551  0.0004  0.1923  0.1922  0.0001 
10 0.2924  0.7540  0.7537  0.0003  0.2205  0.2204  0.0001 
11 0.3269  0.7505  0.7514  0.0009  0.2453  0.2456  0.0003 
12 0.3585  0.7465  0.7473  0.0008  0.2676  0.2679  0.0003 
13 0.3873  0.7385  0.7401  0.0016  0.2860  0.2866  0.0006 
14 0.4137  0.7280  0.7274  0.0006  0.3012  0.3009  0.0002 
15 0.4373  0.7065  0.7070  0.0005  0.3090  0.3092  0.0002 
16 0.4590  0.6755  0.6753  0.0002  0.3101  0.3100  0.0001 
17 0.4784  0.6320  0.6309  0.0011  0.3023  0.3018  0.0005 
18 0.4960  0.5730  0.5721  0.0009  0.2842  0.2838  0.0005 
19 0.5119  0.4990  0.4995  0.0005  0.2554  0.2557  0.0003 
20 0.5265  0.4130  0.4135  0.0005  0.2174  0.2177  0.0003 
21 0.5398  0.3165  0.3172  0.0007  0.1708  0.1712  0.0004 
22 0.5521  0.2120  0.2121  0.0001  0.1170  0.1171  0.0001 
23 0.5633  0.1035  0.1027  0.0008  0.0583  0.0579  0.0004 
24 0.5736  -0.0100  -0.0092  0.0008  -0.0057  -0.0053  0.0004 
25 0.5833  -0.1230  -0.1244  0.0014  -0.0717  -0.0726  0.0008 
26 0.5900  -0.2100  -0.2092  0.0008  -0.1239  -0.1234  0.0005 

Sum of absolute error 0.0178   0.0067 
RMSE 0.0008   0.0003 
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Figure 4. The measured and estimated data: I -V  curve. 

 

 
 

Figure 5. The measured and estimated data: P -V  curve. 
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5. CONCLUSIONS 

A Swarm MVMO method was proposed to estimate the parameters of the SDM of a 

PV cell. Numerical results show the ability and accuracy of Swarm MVMO in estimating SDM 

PV parameters correctly. In addition, the parameters obtained in the estimation process were 

also close to the values referenced in the literature. During the 30 simulations (runs), there 

was a large variation in RMSE values due to the characteristics of this algorithm, which 

generates, with each new simulation, a random population established within the maximum 

and minimum limits of each parameter. 
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