

I Simpósio Gaúcho de Engenharia Aeroespacial e Mecânica 9 e 10 de novembro de 2022, Santa Maria, RS, Brasil

CARACTERIZAÇÃO DA ZONA TERMICAMENTE AFETADA PRODUZIDA PELO CORTE A PLASMA NO AÇO ABNT NBR 6655 GRAU LN 280

Maurício Belchor Barcelos, mbelchor@hotmail.com 1,2

Felipe Tusset, felipe.tusset@unijui.edu.br ³

Diego Tolotti de Almeida, diegot@bruning.com.br²

Cristiano José Scheuer, cristiano.scheuer@ufsm.br¹

¹ Grupo de Tecnologia e Mecânica dos Materiais. Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.

² Bruning Tecnometal Ltd., Panambi, RS, Brasil.

³ Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Panambi, RS, Brasil

Resumo. As operações de usinagem térmica introduzem modificações na região adjacente ao corte, as quais exercem efeito sobre a microestrutura e distribuição de tensões no material usinado, que por sua vez determinam as propriedades mecânicas e desempenho das arestas de corte. Além disso, os processos de corte térmico alteram a rugosidade e textura da superficie afetando o seu acabamento. Nesse sentido, neste trabalho é realizada a caracterização da zona afetada pelo corte térmico produzida em placas de aço ABNT NBR 6655 GRAU LN 280 com 25 e 30 mm de espessura, submetidas à operação de corte a plasma. Para tanto, a seção transversal das amostras foi caracterizada metalograficamente utilizando microscopia óptica, e por medidas de microdureza e de tensão residual. Adicionalmente, as superfícies resultantes do corte foram caracterizadas topograficamente utilizando perfilometria 3D. Os resultados mostram que a extensão da zona afetada pelo corte térmico e as modificações produzidas na microestrutura, microdureza, perfil de tensão residual e textura das arestas de corte são similares em ambas as amostras analisadas, denotando uma baixa influência da potência específica de corte, sob as condições avaliadas neste trabalho.

Palavras chave: Corte a plasma. Zona afetada pelo corte térmico. Aço ligado ao Manganês. Tensão residual.

1. INTRODUÇÃO

As operações de corte constituem uma parte essencial da rota de fabricação de componentes em aço. Estes processos permitem a transformação das placas metálicas fornecidos pelas usinas siderúrgicas, em peças com geometrias específicas para serem processadas por outras técnicas de fabricação [1]. Entre as diferentes técnicas de corte atualmente disponíveis, os processos de corte térmico desempenham um papel de destaque devido à gama de aplicações às quais estes podem ser especificados. Dentro desta categoria, existe um leque de opções de processos, os quais são selecionados, principalmente, em função das dimensões das peças à serem cortadas, perfil do corte, classe de material e custos operacionais.

Nas últimas décadas o aumento da demanda por chapas grossas devido ao acréscimo das dimensões das estruturas de engenharia, tem renovado o interesse no processo de corte a plasma [2]. Este processo é usualmente utilizado em operações de corte bidimensional (2D) de peças espessas, apresentando grande versatilidade e alta taxa de produção, além da facilidade de execução e baixo custo. No entanto, sua aplicação também exibe limitações, constituindo a principal delas as alterações produzidas na estrutura cristalina do material devido ao efeito do calor aportado, face às altas temperaturas necessárias para o corte [3-4].

O processo de corte a plasma (do inglês, Plasma Arc

Cutting – PAC) emprega energia de natureza térmica, através da ionização de um gás (plasma), para efetuar a usinagem de qualquer material eletricamente condutor [1]. Neste caso, o plasma é estabelecido pela aplicação de uma diferença de potencial elétrico entre um eletrodo não consumível de tungstênio e a peça. A temperatura do plasma pode atingir valores da ordem de 30.000 °C e velocidades de ejeção equivalente à velocidade do som [5].

Devido às suas características intrínsecas, o corte a plasma introduz modificações na superfície e subsuperfície das arestas de corte, alterando a sua topografia e microestrutura [6]. Essas mudanças resultam em variações locais na textura superficial e propriedades mecânicas da zona afetada pelo corte térmico (ZACT); devido à introdução/ modificação dos perfis de tensões residuais nas áreas próximas as arestas de corte [7-8].

Embora o processo PAC seja de aplicação comum no setor industrial, e a crescente demanda por chapas grossas tenha intensificado o seu emprego; ainda existem algumas lacunas tecnológicas à serem contempladas envolvendo a sua utilização, requerendo estudos complementares para obter-se os dados práticos necessários à sua correta execução. Neste sentido, ainda que diversos estudos tenham sido desenvolvidos no tema, as características da ZACT formada são dependentes da composição química do material trabalhado, e das condições de execução do corte. Assim, cada caso deve ser avaliado e otimizado

isoladamente. É neste cenário que o presente trabalho está inserido, pois visa caracterizar a ZACT produzida em placas do aço *ABNT NBR* 6655 GRAU LN 280 submetidas à operações de corte a plasma.

2. MATERIAIS E MÉTODOS

O material utilizado neste estudo constitui o aço baixo carbono ligado ao manganês classe ABNT NBR 6655 Grau LN 280. Este material é fornecido comercialmente na forma de placas laminadas a quente. Estas placas possuem largura e comprimento com dimensões de 2000×4000 mm, e espessuras de 25 e 30 mm. A composição química nominal deste material (fornecida pelo fabricante), e a real determinada pela técnica de (espectroscopia de emissão óptica), são informadas na Tabela 1.

Utilizando o processo de corte a plasma, a partir das placas de aço foram cortadas peças com geometria cilíndrica, conforme esquema mostrado na Figura 1. Os parâmetros adotados para executar o corte PAC, considerando cada espessura de placa, são informados na Tabela 2.

Tabela 1.	Composição	química (e	em %wt.) real o	e nominal do aço ABNT	NBR 6655 grau LN280.
	1,	1	/	,	0

Fonte	С	Mn	Р	S	Si	Ni	Cr	V	Nb	Ti
Real	0,202	1,206	0,019	0,005	0,180	0,011	0,015	0,002	0,001	0,001
Nominal	0,22 _{máx}	0,6-1,5	0,03 _{máx}	0,025 _{máx}	0,4 _{máx}	0,03 _{máx}	0,60 _{máx}	0,15 _{máx}	0,05 _{máx}	0,05 _{máx}

Figura 1. Esquema ilustrando o perfil de corte realizado.

Variável	Valores			
Espessura da placa	25 mm	30 mm		
Máquina/Modelo	Messer/Multitherm 400			
Tensão	158 V	172 V		
Corrente	260 A	400 A		
Velocidade de corte	1560 mm/min	1320 mm/min		
Gás de perfuração	Oxigênio			
Gás de corte	Ar comprimido			
Vazão	8 – 9 Bar			
Altura de corte	2,5 mm	2,2 mm		
GAP	3,5 mm	4,8 mm		
Potência específica	$2,9 \times 10^9 \text{ W/m}^2$	$5,0 \times 10^9 \text{ W/m}^2$		

Tabela 2. Condições de realização do corte a plasma.

De modo a caracterizar a ZACT produzida pelo corte térmico, as seções transversais das buchas foram secionadas e tiveram a sua microestrutura propriedades mecânicas caracterizadas. A microestrutura da ZACT foi avaliada utilizando um microscópio óptico da marca Zeiss modelo Axio Lab A1, após preparação metalografica e ataque químico utilizando reagente Nital 5%. A microestrutura da seção transversal de ambas as buchas, na região da ZACT, também foi caracterizada por medida de perfil de tensão residual, utilizando um difratômetro Shimadzu XRD-7000 (radiação Cr-K α e velocidade de varredura de 1,8 °/min), de acordo com o método 'Chi' [9]. De modo a levantar o perfil de tensão residual, a superficie das amostras foi submetida a sucessivas remoções de material por usinagem química utilizando uma solução composta por 50% de ácido nítrico e 50% de água destilada. As medições da microdureza ao longo da seção transversal foram realizadas utilizando um microdurômetro da marca Shimadzu modelo HMU-2.

3. RESULTADOS E DISCUSSÃO

Na Figura 2 são mostradas as micrografias da seção transversal da amostra de 25 mm de espessura, junto à aresta de corte do seu diâmetro externo, evidenciando o efeito do aporte térmico produzido pelo processo PAC sobre a microestrutura do material. A micrografia da região nomeada por SÑACT (substrato não afetado pelo calor) revela uma estrutura de grãos equiaxiais típica de placas laminadas a quente, constituída por microestrutura hipoeutetóide característica dos aços de baixa ligada com baixo teor de carbono. Essa microestrutural é formada pelos microconstituintes ferrita poligonal (coloração clara) e perlita (coloração escura). A microestrutura da ZACT é tipicamente constituída por uma região de grãos grosseiros (ZACT-G) próxima a linha de fusão, e uma região de grãos refinados (ZACT-F) situada entre a ZACT-G e o SÑACT. Conforme sabido, o maior tamanho de grão da ZACT-G deve-se à sua proximidade em relação a poça de fusão, e a granulação mais fina da ZACT-F se dá em virtude do resfriamento produzido pelo volume do metal de base. A região da ZACT-F é composta pelos microconstituintes ferrita poligonal, ferrita de contorno de grão e perlita, todos com granulação fina. Nesta região, durante o processo de corte térmico, a temperatura é suficiente para formar a austenita, no entanto o máximo valor alcançado não é suficiente para dissolver completamente a cementida que compõe a perlita, como ocorre na região da ZACT-G. Consequentemente, ao formar grãos ferríticos finos durante a recristalização, o crescimento de grão da austenita é suprimido e a ulterior transformação desta em uma estrutura hipoeutetóide grosseira não ocorre durante o

seu resfriamento. A região da ZACT-G também é constituída por ferrita poligonal, ferrita de contorno de grão e perlita, entretanto com granulação mais grosseira. Cabe destacar que a ZACT-G atinge valores de temperatura acima da crítica - Ac3, o que favorece o crescimento do grão austenítico. Durante o posterior resfriamento, a austenita de granulação grosseira formada irá se decompor em ferrita poligonal, ferrita de contorno de grão e perlita. Por fim, a região da zona fundida (ZF) é composta por ferrita acicular, ferrita de Widmanstätten e, em menor proporção, por ferrita poligonal. De acordo com a literatura, a presença de ferrita acicular está associada à um alto volume de inclusões não metálicas na matriz, sendo esta constituída por agulhas ou placas finas de ferrita que crescem por nucleação intergranular junto as inclusões. Destaca-se que a microestrutura da seção transversal da amostra com 30 mm de espessura apresentou as mesmas características morfológicas e os mesmos microconstituintes.

Figura 2 – Micrografia da seção transversal da amostra com 25 mm de espessura após corte a plasma.

Na Figura 3 é ilustrado o perfil de dureza medido na seção transversal de ambas as amostras após o corte a plasma, medido junto à aresta de corte do seu diâmetro externo. Nota-se claramente a distinção dos patamares de dureza segundo as diferentes regiões da borda de corte, mostradas e discutidas anteriormente na Figura 2. É possível identificar claramente o efeito do refino/ crescimento de grãos produzido pelo corte térmico, sobre os valores de dureza medidos. Igualmente, é possível verificar com clareza que a dureza em relação à distância da borda exibe valores similares em ambas as amostras. Também, é possível distinguir uma mesma profundidade de endurecimento em ambas as amostras.

Figura 3 – Perfil de microdureza da seção transversal de ambas as amostras após corte a plasma.

Na Figura 4 é ilustrado a evolução dos valores de tensão residual medidos na seção transversal de ambas amostras, junto à aresta de corte do seu diâmetro externo. Observa-se que corte a plasma gera, na superfície subjacente à aresta de corte, tensões residuais de compressão. Estas tensões residuais compressivas se estendem até uma distância de, aproximadamente, 550 µm da aresta de corte; reduzindo gradualmente até se tornarem trativas em profundidas maiores, comportamento este esperado quando se tem tensões em equilíbrio, sem ação de forças externas [10].

Figura 4 – Evolução da tensão residual ao longo da seção transversal de ambas as amostras após corte a plasma.

Na Figura 5 é mostrada a topografia da superfície resultante do corte a plasma nas regiões da borda superior(a) e inferior (b) de corte da amostra com 25 mm de espessura, junto à aresta de corte do seu diâmetro externo. A superfície superior formada pelo corte é caracterizada por pequenas diferenças de altura (exibe um número maior de picos com menores alturas), na região onde o jato de plasma penetrou no material (Figura 5a). Na região inferior da borda de corte (Figura 5c), a superfície formada é caracterizada por diferenças maiores de altura (exibe um número menor de picos com maiores alturas). Esse comportamento se deve à um aumento na viscosidade do metal fundido na borda de corte inferior, devido à sua

maior oxidação. Isso aumenta a espessura da camada de metal líquido, que, como resultado, adere à superfície que está sendo cortada, promovendo a formação de grandes irregularidades. Esse mesmo comportamento foi verificado para a amostra com espessura de 30 mm, porém exibindo um menor desvio de forma.

Figura 5 – Topografia da superfície resultante do corte a plasma nas regiões (a) da borda superior e (b) inferior de corte da amostra com 25 mm de espessura, junto à aresta de corte do seu diâmetro externo.

4. CONCLUSÕES

A partir dos resultados obtidos pode-se concluir que:

- A região da ZF é composta por ferrita acicular, ferrita de Widmanstätten e, em menor proporção, por ferrita poligonal;
- ii) As regiões da ZACT com granulação grosseira e fina são constituídas por ferrita poligonal, ferrita de contorno de grão e perlita;
- iii) O perfil de dureza evidencia um plato com valores na região da ZF superior em 276% ao valor do substrato, a ZTA-G superior em 200% e a ZTA-F superior em 233%;
- iv) Os perfis de tensão residual evidenciam a ocorrência de tensões de compressão em uma profundidade de até 550 μm a partir da aresta de corte. Para além desta profundidade, as tensões tornam-se trativas; e,
- A topografia nas regiões da borda superior e inferior de corte da bucha são distintas, sendo que a primeira apresenta uma menor rugosidade e desvio de forma em relação à segunda.

5. REFERÊNCIAS

- Andrés, D. *et. al.* Characterization of heat affected zones produced by thermal cutting processes by means of Small Punch tests. Materials Characterization, v. 119, p. 55-64, 2016.
- [2] Osawa, N. *et al.* Study of heat transfer during piercing process of oxyfuel gas cutting. Welding in the World, v. 56(3-4), p. 2-10, 2013.
- [3] Aldazabal, J.; *et al.* Mechanical and Microstructural Features of Plasma Cut Edges in a 15 mm Thick S460M Steel Plate. Metals, v. 8, p. 447, 2018.

- [4] Martín-Meizoso, A. *et al.* Resilience and ductility of Oxy-fuel HAZ cut. Frattura ed Integrità Strutturale, v. 30, p. 14-22, 2014..
- [5] Nemchinsky, V. Heat transfer in plasma arc cutting. Handbook of thermal science and engineering. Springer; 2017. 62 p.
- [6] Wood, W.E. Heat-Affected Zone Studies of Thermally cut Structural Steels (Report FHWA-RD-93-O 15); US Department of Transportation Federal Highway Administration: Washington, DC, USA, 1994.
- [7] Tomas, D.J. Characterisation of Steel Cut Edges for Improved Fatigue Property Data Estimations and Enhanced CAE Durability. Ph.D. Thesis, Swansea University UK, Swansea, UK, 2011.
- [8] Kirkpatrick, I. Variety of cutting processes spoil fabricators for choice. Welding and Metal Fabrication, v. 62, p. 11-12, 1994.
- [9] Wollmann, D.; et al. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron. Journal of Materials Engineering and Performance, Vol. 26, p. 2859–2868, 2017.
- [10] GRABARSKI, M.I. Efeito de tensões residuais compressivas na fadiga de contato por rolamento de um ferro fundido nodular com matriz de dureza elevada. Dissertação. Mestrado em Engenharia Mecânica e de Materiais, Universidade Tecnológica Federal do Paraná, Curitiba, PR, 2019.

