

I Simpósio Gaúcho de Engenharia Aeroespacial e Mecânica 9 e 10 de novembro de 2022, Santa Maria, RS, Brasil

DEFINIÇÃO DAS ESPECIFICAÇÕES DE PROJETO DE UMA PLATAFORMA DE SIMULAÇÃO DE MOVIMENTO DE AERONAVES E VEÍCULOS TERRESTRES

Augusto Alpe Coppetti, augusto.alpe@acad.ufsm.br ¹
Bruno de Moura Carvalho, bruno.carvalho@acad.ufsm.br ¹
Gabriela Bonugli, gabriela.bonugli@acad.ufsm.br
Jonathan Lunardi Oliveira, jonathan.lunardi@acad.ufsm.br ¹
Lucas Bassaco Nogueira, lucas.bassaco@acad.ufsm.br ¹
Luiz Sonaglio, luiz.sonaglio@acad.ufsm.br ¹
César Gabriel dos Santos, cesar.g.santos@ufsm.br ¹

¹ Universidade Federal de Santa Maria, Centro de Tecnologia, Departamento de Engenharia Mecânica, Prédio 10, Bairro Camobi. CEP 97105-900 - Santa Maria, RS.

Resumo. A simulação da realidade de forma virtual é um tema que vem ganhando espaço nos debates da comunidade interessada e a simulação de movimento traz consigo uma maior imersão ao usuário da tecnologia. Nesse contexto, na disciplina de Sistemas Hidráulicos e Pneumáticos do curso de Engenharia Mecânica da Universidade Federal de Santa Maria, Campus Sede, foi proposto o desafio de realizar a definição das especificações de projeto de uma plataforma de simulação de movimento aplicada a software de treinamento para pilotos de aeronaves e veículos terrestres para unir a teoria com a prática da engenharia. Para obter as especificações de projeto, foi realizada uma análise dos produtos disponíveis no mercado e a partir desses dados a equipe de projeto identificou os requisitos de cliente, os quais foram hierarquizados com a aplicação do Diagrama de Mudge e após traduzidos em requisitos de projeto, sendo então submetidos à ferramenta Quality Function Deployment (QFD). Por fim, foi elaborada uma matriz de especificações de projeto contando os requisitos, valor meta, forma de avaliação e os aspectos indesejados. Como resultados, foram definidos dez requisitos de projetos, sendo os três de maior grau de importância a frequência de atualização de dados, a amplitude de movimento e o valor do produto. Conclui-se que os requisitos de projeto obtidos foram protagonistas em auxiliar a estimativa dos valores de desenvolvimento da plataforma, fazendo com que o produto final tenha uma maior afinidade com o cliente gerando uma satisfação e contentamento com o produto.

Palavras chave: Simulador de cockpit. Realidade virtual. Sistemas pneumáticos.

1. INTRODUÇÃO

A tecnologia de realidade virtual já é consolidada no treinamento para futuros pilotos com o objetivo de capacitar o profissional até mesmo em condições adversas sem risco à integridade física. A tecnologia de simulação ultrapassou os muros das escolas de pilotagem e chegou aos jogos digitais de simulação com realidade virtual.

Estima-se que o segmento de jogos de realidade virtual e realidade aumentada tenha uma movimentação de US\$ 35 bilhões em 2025, onde US\$ 18,9 bilhões serão de consumidores comuns e US\$ 16,1 bilhões com aplicações na área da saúde, engenharia e educação buscando o aprendizado ativo pelos alunos (INSIDER, 2016).

Nesse viés, com o aumento da demanda de jogos virtuais, o interesse em ter cada vez mais tecnologia disponível em sua própria casa é muito atraente e tendo isso em vista, este trabalho tem o objetivo de definir

especificações de projeto de uma plataforma de simulação de movimento para ser utilizada com jogos de realidade aumentada, também podendo ajudar a promover os cursos de Engenharia Mecânica e Engenharia Aeroespacial ao apresentar projetos realizados no decorrer do curso de graduação.

Problema de engenharia: Para um projeto de uma plataforma de simulação como estabelecer as especificações de projeto que atendam as necessidades dos clientes relativo a simulação de movimento aéreo e terrestre?

2. MATERIAIS E MÉTODOS

Primeiramente foi executada uma pesquisa de mercado para identificar os produtos comercializados, visando o levantamento de suas especificações de produto e assim, estabelecendo os requisitos de cliente. Com essas informações definidas, foram hierarquizados por meio da aplicação do o Diagrama de Mudge, que consiste em uma

análise comparativa entre os requisitos de cliente, sendo atribuído um grau de importância relativo entre si (5 pontos para muito mais importante, 3 pontos para mais importante, 1 pouco mais importante). Após os requisitos de cliente hierarquizados, estes foram traduzidos para requisitos de projeto e então valorados por meio da aplicação da Matriz QFD Por fim, foi elaborada uma matriz de especificações de projeto contando os requisitos, valor meta, forma de avaliação e os aspectos indesejados.

3. RESULTADOS E DISCUSSÕES

A partir de uma busca minuciosa através da internet e redes sociais, para buscar modelos existentes com estrutura semelhante e funcionalidade da plataforma de simulação de movimento existentes no mercado, foram encontrados alguns modelos a serem comercializados atualmente. Destacam-se os produtos das empresas americanas *DOF Reality*; onde DOF (Degrees of Freedom = graus de liberdade); Sim Experience e no cenário nacional a Kers Simulator.

A primeira fabricante oferta, dentre outros produtos, o Professional P2, conforme ilustrado na Figura 1 a seguir:

Figura 1 - Plataforma de movimento Professional P2.

O modelo de simulador de movimento apresenta somente duas direções de movimento (dois graus de liberdade), fazendo somente os movimento lateral (*Roll*) e movimento frontal-traseiro (*Pitch*). O conjunto funciona com motores elétricos, com somente a estrutura e componentes funcionais, excluindo a inclusão de equipamentos como monitores, pedais, banco, volante entre outros, tem como valor atual \$2339,00 (equivalente a R\$ 12.373,31 para uma cotação de 1 dólar = R\$ 5,29). Ressalta-se neste caso, que não estão inclusos os custos e tributos de importação.

No Brasil, identificou-se a empresa paranaense Kers Simulator que oferta um modelo de plataforma de simulação de movimento de menor custo da Kers catalogado por Base Motion Kers - Padrão, conforme a Figura 2.

Figura 2 - Base Motion Kers - Padrão.

Esse modelo é oferecido somente com a plataforma de movimentação, sem nenhum tipo de suporte a bancos, cockpit, monitores e outros acessórios ao custo de R\$ 11.500,00. Essa é uma proposta para partir do zero e se assemelha muito com o desafio da equipe de projeto desse desenvolvimento.

Adentrando um pouco mais no estado da arte, destaca-se ainda a fabricante *Sim Experience* com o modelo *Stage 5 Full Motion Racing Simulator*, conforme mostra a Figura 3.

Figura 3 - Stage 5 Full Motion Racing Simulator

O modelo ilustrado acima, além dos sistemas apresentados no modelo 4DOF *Extreme* 4x4 / *Panoramic racing simulator*, possui melhorias, como monitores maiores, sistema de som de maior qualidade e potência, opcionais como almofadas no banco que inflam conforme a força G, motores nos cintos de segurança que tensionam dando a sensação de força "G", entre outros diferenciais como acabamento e integração com *softwares* de personalização de computador. Seu preço sem os opcionais é de \$24.999,00 (R\$132.244,71 para uma cotação de 1 dólar = R\$ 5,29) e com os opcionais, o valor muda para \$28.999 (R\$ 153.404,71 para uma cotação de 1 dólar = R\$ 5,29). Ambos valores com envio incluso e com montagem por conta do comprador.

Com estas informações foram obtidos os requisitos do cliente que são: 1- Número de variáveis aquisitadas, 2- Frequência de atualização de dados (s), 3 - Número de acessórios compatíveis, 4 - Graus de inclinação da plataforma (<10°), 5 - Quantidade de acessórios similares aos reais, 6 - Número de partes móveis, 7 - Quantidade de acessórios ergonômicos, 8 - Valor do produto (R\$), 9 - Quantidade de procedimentos para funcionamento, 10 - Número de calibrações periódicas.

Para compreender o grau de relevância e ordem de prioridade desses requisitos, utilizou-se o Diagrama de Mudge (figura 6).

1	2	3	4	5	6	7	8	9	10	TOTAL	TOTAL(%)
1	2A	1C	1A	1C	1B	1B	1A	1B	1B	24	18,46
	2	2C	2B	2C	2B	2C	8A	2C	2B	30	23,08
		3	4B	3B	6B	7A	8C	9A	10B	3	2,31
			4	4B	4B	4A	4A	9A	4A	13	10,00
				5	6B	7B	8B	9C	10C	0	0,00
6 7A 8C 9C								10B	6	4,62	
7 8B 7A 8 8B 9									7A	7	5,38
									8A	21	16,15
									9B	15	11,54
Legenda									10	11	8,46
Le	tra		Va	lor		Val	or Numé	rico		130	100,00
	A	Pouco mais importante					1			-	•
	В	Medianamente mais importante					3				
- 8	C	Muito mais importante					5		1		

Figura 6 - Diagrama de Mudge

Como requisitos de projeto a equipe estabeleceu os seguintes: 1 - Aquisitar dados diretamente da simulação; 2- Ter baixa latência de resposta; 3 - Suportar acessórios; 4 - Ter amplitude de movimento adequada; 5 - Conter acessórios similares aos reais; 6 - Ter poucas partes móveis; 7 - Possuir acessórios ergonômicos; 8 - Ter baixo custo; 9 - Ser *plug and play;* 10 - Dispensar calibrações periódicas. Desse modo elaborou-se a seguinte Matriz QFD conforme Figura 7 a seguir:

R.P. / R.C.	1	2	3	4	5	6	7	8	9	10	Vc
1	Ø	Ø	0	0		0		Ø	0	Ø	8,88
2	Ø	Ø	0	Δ		Δ		Ø		Δ	12,43
3	0	0	Ø	Δ	Ø	0	Ø	Ø	0	0	13,02
4	0	Δ	Δ	Ø	Δ	Ø	Ø	Ø	0	0	20,12
5			Ø	Δ	Ø	0	Ø	Ø	Δ	Δ	10,65
6	0	Δ	0	Ø	0	Ø	Ø	Ø	0	0	19,53
7			0	Δ	Δ	Δ	Ø	0		Δ	2,95
8	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	0	4,73
9	0		0	0	Δ	0		Ø	Ø	Ø	7,69
10	Ø	Δ	0	0	Δ	0	Δ	0	Ø	Ø	0,00
Total	311,28	208,91	316,56	310,66	231,35	358,00	345,54	494,10	257,40	281,08	3114,88
Hierarquia	4	3	9	2	10	7	5	1	8	6	
					Leger	nda					
		Va	lor	Valor numérico							
	F	ouco Re	lacionad	1							
	Med	diamente	Relacion	3							
	1	Muito Re	lacionad	5							

Figura 7 - Matriz QFD

A partir da análise do Diagrama Mudge e da Matriz QFD é possível observar que o requisito mais relevante é a frequência de atualização de dados, sendo que este parâmetro permite uma experiência mais fidedigna. Outros dois parâmetros importantes são: a amplitude de movimento, segundo a voz do cliente, e o valor do

produto, representando o parâmetro que com maior relação com todos os outros requisitos.

4. CONCLUSÃO

Com a metodologia realizada, foi possível obter requisitos coerentes que servirão de guia para o projeto do produto a partir da pesquisa realizada. Os requisitos de projeto foram protagonistas em auxiliar a estimativa dos valores ao desenvolvimento da plataforma, fazendo com que o produto final tenha uma maior afinidade com seu potencial público gerando uma satisfação e contentamento com o produto, de forma que ele atenda a todos ou maior parte dos requisitos solicitados. Sendo assim, a concepção preliminar contribuiu para o desenvolvimento do produto no estado da arte, gerando um projeto com alto potencial de nicho em relação aos produtos disponíveis no mercado.

É notório também que o estabelecimento das especificações de projeto possibilita o direcionamento dos esforços de engenharia mais eficaz em pontos críticos do projeto, diminuindo assim o tempo total gasto e consequentemente os custos como o projeto. Esforços de engenharia bem alocados normalmente resultam em produtos mais eficientes e menores índices de falhas.

5. REFERÊNCIAS

BACK, N. et al. Projeto Integrado de Produto: planejamento, concepção e modelagem, 1ª ed. Barueri, Editora Manole, 2008.

Guia PMBOK. Guia de conhecimento em gerenciamento de projetos. Sexta edição. Newtown Square, PA: Project Management Institute, 2017.

INSIDER, Business. Disponível em: https://www.businessinsider.com/goldman-sachs-vr-a nd-ar-market-size-and-segmentation-2016-4?utm_sour ce=feedly&utm_medium=webfeeds> Acesso em: 12 de Setembro de 2022.

PAHL, G.; BEITZ, W. Engineering Design a systematic approach. Londres: The Design Council, 1988.

