UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

M	arlos	Eduar	do 7 0	rzella	Fontana
	41113	TAILLAL	1111 / /11		T'UHIAHA

Determinação simultânea de agrotóxicos e micotoxinas em fitoterápicos: Validação e aplicação de métodos multirresíduo empregando LC-MS/MS

Marlos Eduardo Zorzella Fontana

Determinação simultânea de agrotóxicos e micotoxinas em fitoterápicos: Validação e aplicação de métodos multirresíduo empregando LC-MS/MS

Tese apresentada ao Curso de pós-graduação em Química, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do título de **Doutor em Ciências com ênfase em Química Analítica**.

Orientadora: Profa. Dra. Ionara Regina Pizzutti

Zorzella Fontana, Marlos Eduardo
Determinação simultânea de agrotóxicos e micotoxinas em
fitoterápicos: Validação e aplicação de métodos
multirresíduo empregando LC-MS/MS / Marlos Eduardo
Zorzella Fontana. = 2023.
115 p.; 30 cm

Orientadora: Ionara Regina Pizzutti Coorientadora: Carmen Dickow Cardoso Tese (doutorado) - Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Química, RS, 2023

1. Agrotóxicos 2. Micotoxinas 3. Fitoterápicos 4. Cromatografia 5. Espectrometria de Massas I. Pizzutti, Ionara Regina II. Dickow Cardoso, Carmen III. Título.

Sistema de geração automática de ficha catalográfica da UFSM. Dados fornecidos pelo autor(a). Sob supervisão da Direção da Divisão de Processos Técnicos da Biblioteca Central. Bibliotecária responsável Paula Schoenfeldt Patta CRB 10/1728.

Declaro, MARLOS EDUARDO ZORZELLA FONTANA, para os devidos fins e sob as penas da lei, que a pesquisa constante neste trabalho de conclusão de curso (Tese) foi por mim elaborada e que as informações necessárias objeto de consulta em literatura e outras fontes estão devidamente referenciadas. Declaro, ainda, que este trabalho ou parte dele não foi apresentado anteriormente para obtenção de qualquer outro grau acadêmico, estando ciente de que a inveracidade da presente declaração poderá resultar na anulação da titulação pela Universidade, entre outras consequências legais.

Marlos Eduardo Zorzella Fontana

Determinação simultânea de agrotóxicos e micotoxinas em fitoterápicos: Validação e aplicação de métodos multirresíduo empregando LC-MS/MS

Tese apresentada ao Curso de pós-graduação em Química, da Universidade Federal de Santa Maria (UFSM, RS), como requisito para obtenção do título de **Doutor em Ciências com ênfase em Química Analítica**.

Iona	ra Regina Pizzutti, Dr ^a (UFSM)
	(Presidente/Orientadora)
Jona	atan Vinicius Dias, Dr ^a (WFSR)
 Marce	lo Barcellos da Rosa, Drª (UFSM)

RESUMO

TÍTULO: Determinação simultânea de agrotóxicos e micotoxinas em fitoterápicos: Validação e aplicação de métodos multirresíduo empregando LC-MS/MS

Autor: Marlos Eduardo Zorzella Fontana Orientadora: Ionara Regina Pizzutti

O uso de fitoterápicos tem aumentado expressivamente, porém a possível presença de resíduos de agrotóxicos bem como de micotoxinas têm gerado constante discussão e preocupação por parte dos órgãos reguladores. O desenvolvimento de métodos analíticos para determinação de agrotóxicos e micotoxinas em plantas medicinais é um grande desafio, devido às substâncias naturalmente presentes nestas matrizes. Neste estudo, foi otimizado o método QuEChERS seguida de análise por cromatografia liquida acoplada a espectrometria de massas sequencial para determinação simultânea de agrotóxicos e micotoxinas em Melissa officinalis e Malva Sylvestris. O método final foi validado de acordo com o SANTE/11312/2021 e consiste em uma variação do método QuEChERS. Foram pesados 12 e 14 g de slurry. Em seguida, foram adicionados 10 mL de acetonitrila 1% ácido fórmico (v/v) contendo do padrão interno do procedimento. Os tubos foram agitados em agitador mecânico por 1 min. Em seguida, adicionaram-se 4 g de sulfato de magnésio e 1 g de cloreto de sódio e as amostras foram agitadas novamente por 1 min. Os extratos foram centrifugados e 1 mL do sobrenadante foi transferido quantitativamente para um kit de *clean-up* dispersivo contendo uma mistura de 25 mg de PSA, 7,5 mg de GCB e 150 mg de MgSO₄. Os tubos foram homogeneizados em vórtex por 1 min e novamente centrifugados onde 0,5 mL de extrato foi transferido para um vial e diluído com 0,5 mL de acetonitrila/água (1:1, v/v) contendo padrão interno do instrumento. O limite de quantificação variou na faixa de 2 a 500 µg kg⁻¹. Embora alguns analitos ainda apresentassem uma supressão de sinal analítico devido a um efeito de matriz considerável, uma faixa linear adequada para padrões de calibração pareados por matriz foi alcançada com desempenho de método adequado devido à resolução do espectrômetro de massas empregado. Ao todo, os métodos multirresíduos foram validades para determinação de 146 agrotóxicos e 11 micotoxinas para Melissa officinalis e 144 agrotóxicos e 9 micotoxinas para Malva sylvestris. Amostras comerciais foram analisadas e nenhum resíduo das substâncias estudadas foi maior do que o limite de detecção mostrando a qualidade dos produtos comercializados no estado do Rio Grande do Sul.

Palavras-chave: Fitoterápicos, micotoxinas, agrotóxicos, cromatografia líquida, espectrometria de massas.

ABSTRACT

TITLE: Simultaneous determination of pesticides and mycotoxins in herbal medicines: validation and application of a multiresidue method using LC-MS/MS.

Author: Marlos Eduardo Zorzella Fontana Advisor: Ionara Regina Pizzutti

The use of herbal medicines has increased significantly, but the presence of pesticide residues as well as the presence of mycotoxins have generated constant discussion and concern on the part of regulatory agencies. The development of analytical methods for the determination of pesticides and mycotoxins in medicinal plants is a great challenge, due to the substances naturally present in plants. In this study, QuEChERS was optimized followed by analysis by liquid chromatography coupled with sequential mass spectrometry for simultaneous determination of pesticides and mycotoxins in Melissa officinalis and Malva Sylvestris. The final method was validated according to SANTE/11312/2021 and consists of a variation of the QuEChERS method. In a 50 mL Falcon tube, 12 and 14 g of slurry were weighed. Then, 10 mL of acetonitrile 1% formic acid (v/v) containing the procedure's internal standard were added. The tubes were shaken on a mechanical shaker for 1 min. Then, 4 g of magnesium sulfate and 1 g of sodium chloride were added, and the samples were shaken again for 1 minute. The extracts were centrifuged, and 1 mL of the supernatant was quantitatively transferred to a dispersive clean-up kit containing a mixture of 25 mg PSA, 7.5 mg GCB and 150 mg MgSO₄. The tubes were homogenized in vortex for 1 min and centrifuged again and 0.5 mL of extract was transferred to a vial and diluted with 0.5 mL of acetonitrile/water (1:1, v/v) containing the instrument's internal standard. The quantification limit ranged from 2 to 500 µg kg⁻¹. Although some analytes still exhibited analytical signal suppression due to considerable matrix effect, an adequate linear range for matrix-paired calibration standards was achieved with adequate method performance due to the resolution of the mass spectrometer used. In all, 146 pesticides and 11 mycotoxins were validated for Melissa officinalis and 144 and 9 for Malva sylvestris. Commercial samples were analyzed and no residue above the detection limit was found, showing the quality of products marketed in the state of Rio Grande do Sul.

keywords: Medicinal herbs, mycotoxins, pesticides, liquid chromatography, mass spectrometry.

LISTA DE FIGURAS

Figura 1 - Relação entre planta medicinal, droga vegetal, medicamento fitoterápico, infusão e
tintura para Melissa officinalis L. e Malva sylvestris L
Figura 2 - Simulação mostrando o perfil térmico da tecnologia Agilent Jet Stream26
Figura 3 - Fluxograma dos ensaios preliminares realizados para estudo dos procedimentos
simultâneos de extração de agrotóxicos e micotoxinas a partir de drogas vegetais de Melissa
officinallis e Malva sylvestris41
Figura 4 - Procedimento final de extração simultânea de agrotóxicos e micotoxinas em
Melissa officinalis e Malva sylvestris
Figura 5 - Drogas vegetais Melissa officinalis L. e Malva sylvestris L. (a) antes do
processamento, (b) após trituração mecânica (1) e (c) após padronização granulométrica (2).
49
Figura 6 - Cromatograma total de íons obtido para análise de acetonitrila e água, por LC-TQ-MS/MS51
Figura 7 - Cromatograma de íons totais de (a) Melissa officinalis L. (b) Malva sylvestris L. e
(c) solução analítica a 100 μg L ⁻¹ 52
Figura 8 – Número de agrotóxicos com recuperação entre 70 e 120% nos níveis 1 e 2
extraídos pelos 5 ensaios preliminares para Melissa officinalis e Malva sylvestris53
Figura 9 - Número de micotoxinas com recuperações na faixa de 70 - 120% e RSD < 21% nos
ensaios 1, 2, 3, 4 e 5 em Melissa officinalis e para Malva sylvestris55
Figura 10- Cromatograma de íon seletivo de aflatoxina B1 (313,1 \rightarrow 128,2; 313,1 \rightarrow 241,2)
em (a) extrato "branco" de matriz, (b) solução analítica em acetonitrila a 2 μg kg ⁻¹ e (c)
extrato "branco" de Melissa officinalis fortificada a 2 µg kg ⁻¹ 59
Figura 11 - Cromatograma de íon seletivo de Prometrina (242,1→158,1; 242,1→68,1) em (a)
extrato "branco" de matriz, (b) solução padrão em acetonitrila a 20 µg kg ⁻¹ e (c) extrato
"branco" de Melissa officinalis fortificado a 20 μg kg ⁻¹ 60
Figura 12 - Cromatograma de íon seletivo de aflatoxina B1 (313,1 \rightarrow 128,2; 313,1 \rightarrow 241,2)
em (a) extrato "branco" de matriz, (b) solução padrão em acetonitrila a 2 μg kg ⁻¹ e (c) extrato
"branco" de Malva sylvestris fortificado a 2 μg kg ⁻¹ 61
Figura 13 - Cromatograma de íon seletivo de Prometrina (242,1→158,1; 242,1→68,1) em (a)
extrato "branco" de matriz, (b) solução padrão em acetonitrila a 20 µg kg ⁻¹ e (c) extrato
"branco" de Malva sylvestris fortificado a 20 μg kg ⁻¹
Figura 14- Comparação do efeito matriz para alguns dos agrotóxicos e micotoxinas estudados,
em extrato de Melissa officinalis e Malva sylvestris

LISTA DE TABELAS

Quadro 1 - Parâmetros de validação e principais critérios de aceitação dos guias orientativos	
de validação	28
Tabela 2- Tempo de retenção (min), energias (V) de fragmentor e colisão, íons precursores e	;
íons produtos dos agrotóxicos e micotoxinas analisados por LC-MS/MS	35
Tabela 3 - Coeficiente de determinação (r²) e faixa linear para as curvas analíticas	
confeccionadas através de soluções analíticas preparadas em extrato "branco" de Melissa	
officinalis e de Malva sylvestris	65
Tabela 4 - Limites de detecção, de quantificação e limite máximo permitido de resíduos, de acordo com a 6 ^a edição da farmacopeia Brasileira (μg kg ⁻¹) nos fitoterápicos Melissa	
officinalis e Malva sylvestris	72
Tabela 5 - Recuperações percentuais médias, precisão (RSDr%) e precisão intermediária	
(RSDR%) obtidas para matriz de Melissa officinalis, quando fortificada em cada	
concentração e determinada por dois analistas em dias diferentes	78
Tabela 6- Recuperações médias, precisão (RSDr) e precisão intermediária (RSDR) obtidas	
para amostras de Malva sylvestris. quando fortificada em cada concentração e determinada	
por dois analistas em dias diferentes.	85

LISTA DE ABREVIATURAS

AF B1 Aflatoxina B1 AF B2 Aflatoxina B2 AF G1 Aflatoxina G1 AF G2 Aflatoxina G2 AFs Aflatoxinas ANVISA Agência Nacional de Vigilância Sanitária **APCI** Ionização química a pressão atmosférica, do inglês Atmospheric-pressure chemical ionization C18 Cadeia de carbono octadecil, do inglês Octadecyl carbon chain CIT Citrinina Diacetoxiscirpenol DAS Monitoramento dinâmico de reações múltiplas, do inglês Dynamic multiple dMRM reaction monitoring DON Deoxinivalenol **DPR** Desvio padrão relativo Detector por captura de elétrons, do inglês Electron capture detector **ECD** Efeito Matriz EM **ESI** Ionização por electrospray, do inglês *Electrospray ionization* **FID** Detector de ionização em chama, do inglês Flame ionization detector FM B1 Fumonisina B1 FM B2 Fumonisina B2 **FPD** Detector fotométrico de chama, do inglês Flame photometric detector **GCB** Carbono grafitizado, do inglês Graphitized Carbon Black **HPLC** Cromatografia liquida de alta pressão, do inglês High pressure liquid chromatography Toxina HT-2 HT-2 **LMR** Limite máximo de resíduo Limite máximo tolerado **LMT** N.D. Não detectado N.Q. Não quantificado **NPD** Detector de nitrogênio e fósforo, do inglês Nitrogen phosphorus detector Organização mundial de saúde **OMS** OTA Ocratoxina A PII Padrão interno do instrumento PIP Padrão interno do procedimento Amina primária secundária, do inglês Primary secondary amine **PSA RDC** Resolução da diretoria colegiada SUS Sistema único de saúde

Toxina T2

Zearalenona

T2 ZEA

SUMÁRIO

1	INTRODUÇAO	12
2	OBJETIVOS	13
3	REFERENCIAL TEÓRICO	14
	3.1 FITOTERAPICOS	14
	3.3.1 LEGISLAÇÃO	16
	3.3.2 Melissa officinalis L	
	3.3.3 Malva sylvestris L	
	3.2 AGROTÓXICOS	
	3.2.1 Fungicidas	
	3.2 MICOTOXINAS	
	3.4 ANÁLISE SIMULTÂNEA DE AGROTÓXICOS E MICOTOXINAS	23
	3.5 CROMATOGRAFIA LIQUIDA ACOPLADA A ESPECTROMETRIA DE MASS	SAS 24
3.	.6 VALIDAÇÃO	27
4	MATERIAIS E MÉTODOS	31
	4.1 EQUIPAMENTOS	
	4.2 MATERIAIS	
	4.3 SOLVENTES E REAGENTES	
	4.4 MATERIAS DE REFERÊNCIA	
	4.5 PREPARO DAS SOLUÇÕES ANALÍTICAS	
	4.5.1 Preparo das soluções estoque	
	4.5.2 Preparo das soluções misturas	
	4.5.3 Solução de Fortificação	
	4.5.4 Preparo das soluções de trabalho	
	4.6 OTIMIZAÇÃO DAS CONDIÇÕES INSTRUMENTAIS	
	4.6.1 Preparo da fase móvel	
	4.7 AQUISIÇÃO E PREPARO DAS AMOSTRAS	
	4.7.1 Preparo e otimização do <i>Slurry</i>	
	4.8 ANÁLISE DO SOLVENTE EXTRATOR	40
	4.9 OTIMIZAÇÃO DO PROCEDIMENTO DE EXTRAÇÃO	40
	4.9.1 Ensaio 1	
	4.9.2 Ensaio 2	
	4.9.3 Ensaio 3	
	4.9.5 Ensaio 5	_
	4.10 PROCEDIMENTO FINAL DE EXTRAÇÃO	43
	4.11 VALIDAÇÃO DO MÉTODO FINAL DE EXTRAÇÃO	44
	4.11.1 Linearidade	
	4.11.1 Efeito matriz e seletividade	
	4.11.2 Limite de quantificação (LOQ)	46

	4.11.3	Exatidão	46
	4.11.4.1	Repetitividade	46
	4.11.4.2	Precisão intermediária	
5	RESUL	TADOS E DISCUSSÕES	48
	5.1 ESTAB	ELECIMENTO DAS CONDIÇÕES INSTRUMENTAIS	48
	5.2 PR	OCESSAMENTO DA AMOSTRA	48
	5.3 PR	EPARO DO SLURRY	49
	5.4 DE	SENVOLVIMENTO DO MÉTODO DE EXTRAÇÃO	50
	5.4.1 A	Análise do solvente de extração	50
		Análise do branco em matriz	
		Otimização do procedimento de extração e purificação	
	5.4.3.1	Agrotóxicos	52
6.	VALIDAO	ÇÃO DOS MÉTODOS PARA DETERMINAÇÃO SIMULTÂNEA DE	
		ICOS E MICOTOXINAS	58
	6.1 EFEIT	O MATRIZ	58
	6.2 CURVA	ANALÍTICA E LINEARIDADE	64
	5.5 LIN	MITES DE DETECÇÃO E DE QUANTIFICAÇÃO	<i>71</i>
	5.6 EN	SAIOS DE FORTIFICAÇÃO PARA AVALIAÇÃO DE EXATIDÃO E PRECISA	Ã <i>O 76</i>
6	APLICA	AÇÃO EM AMOSTRAS COMERCIAIS	93
7	CONCI	USÕES	94
R	EFERÊNCIAS	S	96

1 INTRODUÇÃO

O Brasil é um dos países com a maior biodiversidade do mundo, possuindo espécies vegetais que têm sido amplamente utilizadas para fins medicinais, pois fornecem material para pesquisas na busca de novos medicamentos contra diversas doenças (Della Pasqua et al., 2019). Nos últimos anos, o consumo de recursos naturais ganhou notório aumento juntamente com as políticas nacionais de medicina tradicional e complementar, pois estas têm sido parte essencial das antigas práticas de saúde e tornaram-se um recurso valioso no tratamento de doenças e patologias.

Devido às suas propriedades terapêuticas, a *Melissa officinalis*, conhecida popularmente como erva-cidreira, é uma planta comestível e medicinal pertencente à família Lamiaceae. Nativa do centro-sul da Europa, tem sido tradicionalmente usada como sedativo, analgésico e hipnótico (Motahareh et al., 2022), com efeitos antioxidantes benéficos no cérebro, como tratamento para distúrbios de memória e anti-Alzheimer (Abdel -Naime et al., 2019; Meneses et al., 2021).

Malva sylvestris, conhecida como malva, é um importante fitoterápico e tem sido considerada uma boa escolha para a descoberta de fármacos (Irfan et al., 2021). Nativa da Europa, atualmente distribuída mundialmente, apresenta propriedades anti-inflamatórias principalmente devido à presença de alguns flavonoides e mucilagem. M. sylvestris tem sido usada para tratar muitas doenças, como gengivite, dor de dente, dores abdominais, distúrbios gastrointestinais e diarreia. As flores são recomendadas para acne, tratamento de eczema e doenças inflamatórias (Seddighfar et al., 2020).

A crescente demanda por fitoterápicos exige um aumento na produção e, para isso, é necessário proteger as plantas de pragas, aumentar a produtividade e a vida útil, reduzir as perdas pós-colheita e armazenamento. Portanto, como outras plantas, as ervas medicinais também podem ser contaminadas com agrotóxicos durante as práticas agrícolas e com micotoxinas durante o processamento e armazenamento (Luo et al., 2021; Shaban et al., 2016).

Desde 2018 a legislação brasileira (ANVISA, 2018) recomenda a determinação de agrotóxicos, conforme RDC nº 105/2016 (ANVISA, 2016), e micotoxinas em produtos fitoterápicos, em todos os pedidos de registro e petições pós-registro.

Apesar disso, poucos métodos analíticos foram desenvolvidos para a determinação de agrotóxicos e micotoxinas em plantas medicinais, tanto pela complexidade das matrizes quanto pela diversidade de espécies. Devido ao baixo teor de água, e ao alto teor de pigmentos naturais, óleos essenciais e um elevado número de possíveis interferentes nas análises, como açúcares e

compostos fenólicos, as plantas medicinais realmente têm sua composição mais complexa em comparação com outras matrizes, como frutas e vegetais (Rutkowska et al., 2019). Ademais, diferentes espécies e partes de plantas podem afetar a resposta do analito de interesse, tornando a análise cromatográfica ainda mais desafiadora.

Até o momento, não existem matrizes representativas para diferentes partes nem famílias de plantas medicinais, indicando que é necessário validar separadamente, não sendo possível classificá-las em uma mesma categoria.

Assim, o objetivo deste estudo foi otimizar o método QuEChERS (Anastassiades, 2003), avaliar dois fitoterápicos, *Malva sylvestris* (flores) e *Melissa officinalis* (folhas), onde diferentes partes destas tão complexas matrizes foram utilizadas para a determinação simultânea de agrotóxicos e micotoxinas.

2 OBJETIVOS

Este estudo teve como objetivo geral otimizar e validar métodos analíticos multirresíduo e multiclasse abrangente para determinação simultânea de resíduos de agrotóxicos e micotoxinas nos fitoterápicos de *Melissa officinalis L. e Malva sylvestris L*.

Entre os objetivos específicos estão:

- Otimizar um método analítico multirresíduo e multiclasse para extração de agrotóxicos e de micotoxinas em dois fitoterápicos sendo em um deles nas flores secas e no outro folhas secas;
- Otimização da etapa de *clean up* para minimizar o efeito matriz e maximizar a confiabilidade dos resultados de identificação e de quantificação dos analitos de interesse:
- Aplicar os métodos validados para a avaliação da qualidade fitossanitária das amostras de fitoterápicos de *Melissa officinalis L. e de Malva sylvestris L.* comercializadas no Rio Grande do Sul.

3 REFERENCIAL TEÓRICO

3.1 FITOTERAPICOS

Desde as antigas civilizações, as plantas são utilizadas para alimentação e para cura de enfermidades. O conhecimento que essas civilizações possuíam era empírico, porém com o passar dos anos e o surgimento da escrita esse conhecimento começou a ser documentado e guardado. Um exemplo de referência escrita sobre as plantas e o seu uso medicinal é a obra chinesa *Pen Ts'ao* ("A grande fitoterapia") obra essa datada em 2800 a.C. escrita por Shen-Nong conhecido como fundador da medicina chinesa (BRANDELLI; MONTEIRO, 2017; MINISTÉRIO DA SAÚDE-MS, 2019a).

Antes mesmo da chegada das navegações portuguesas, as tribos nativas que se encontravam em território que hoje se chama Brasil já utilizavam plantas, ervas e afins para o tratamento de patologias e até mesmo para sobrevivência. Além disso, algumas ervas eram utilizadas para envenenar a ponta de flechas auxiliando na caça, pesca e defesa de seus territórios (GOMES, 2013).

O Brasil possui uma das floras mais biodiversas do planeta, associado a uma multiplicidade étnico-cultural grandiosa o que cria um precioso conhecimento tradicional quanto ao uso de plantas medicinais. De acordo com RDC n° 26/2014, pode ser definida como planta medicinal espécie vegetal, cultivada ou não, utilizada com propósitos terapêuticos. São considerados medicamentos fitoterápicos os obtidos com emprego exclusivo de matérias-primas ativas vegetais cuja segurança e eficácia sejam baseadas em evidências clínicas e que sejam caracterizados pela constância de sua qualidade.

Nem sempre é possível consumir a planta fresca, na sua maioria, é necessário um processo de secagem, que quando bem conduzido, é um processo de conservação bastante eficaz. A redução da umidade ou desidratação inibe a atividade enzimática, retardando o processo de deterioração e consequentemente preservando características como cor e aroma que indicam boa qualidade do material. O processo de secagem pode ocorrer por vias naturais (a nível doméstico) ou artificiais (com fins de comercialização). A planta medicinal, ou suas partes que contenham as substâncias responsáveis pela ação terapêutica, após processos de coleta/colheita, estabilização e secagem, quer na sua forma íntegra, rasurada, triturada ou pulverizada é definida como droga vegetal (ANVISA, 2014; MENDOZA CASTELÁN, 2017).

A figura 1 mostra um esquema da relação entre plantas medicinais, droga vegetal e fitoterápico.

Planta Medicinal

Droga Vegetal ou Produto tradicional fitoterápico

Tintura

Infusão (chá)

Figura 1 - Relação entre planta medicinal, droga vegetal, medicamento fitoterápico, infusão e tintura para *Melissa officinalis L.* e *Malva sylvestris L.*

Fonte: Autor.

A Política Nacional de Planta Medicinal e Fitoterápico foi aprovada pelo governo federal através do Decreto nº 5.813, de 22 de junho de 2006 (BRASIL, 206) a qual se constitui essencial das políticas públicas de saúde, meio ambiente, desenvolvimento econômico e social sendo um dos elementos fundamentais para melhoria da qualidade de vida da população brasileira. Em 2008, a Organização Mundial de Saúde (OMS) evidenciou que práticas além das terapias medicamentosas alopáticas havia ganhado espaço como forma complementar de tratamento. Dentre as terapias complementares citadas encontra-se a acupuntura, fitoterapia e técnicas manuais (OMS, 2007). Considerando a atenção básica e os serviços de média e alta complexidade, existem atualmente 9.350 estabelecimentos de saúde no país ofertando 56% dos atendimentos individuais e coletivos em Práticas Integrativas e Complementares (pic) nos municípios brasileiros, compondo 8.239 (19%) estabelecimentos na Atenção Básica que ofertam PIC, distribuídos em 3.173 municípios. 2 milhões de atendimentos das PIC nas Unidades Básicas de saúde (UBS). Mais de 1 milhão de atendimentos na Medicina Tradicional Chinesa, incluindo acupuntura, 85 mil fitoterapias, 13 mil de homeopatias e 926 mil de outras

práticas integrativas que não possuíam código próprio para registro, que com a publicação da portaria n°145/2017 passam a ter. Com isso, as PIC estão presentes em quase 54% dos municípios brasileiros, distribuídos pelos 27 estados e Distrito Federal e todas as capitais brasileiras (MINISTÉRIO DA SAÚDE, 2017).

3.3.1 LEGISLAÇÃO

Diversas drogas vegetais são coletadas diretamente da natureza, entretanto, o cultivo comercial tem ganho crescente impulso frente a conscientização e demanda dessas plantas para uso terapêutico. Resíduos de agrotóxicos em produtos fitoterápicos podem se acumular devido às práticas agrícolas como pulverização, tratamento do solo, cultivo em solo contaminado, uso de fontes de água contaminadas e administração de fumegantes durante o armazenamento (TRIPATHY et al., 2015). O uso de agrotóxicos em fitoterápicos e a presença de seus resíduos em fitoterápicos é assunto de discussão constante e preocupação por parte das agências reguladoras, sendo a análise de resíduo de agrotóxicos solicitada nas principais normas internacionais para registro de fitoterápicos. A OMS orienta que esta seja incluída nos regulamentos dos países membros (OMS, 2007).

De modo a proteger a saúde do consumidor de fitoterápicos no Brasil, a Resolução da Diretoria Colegiada (RDC) de 26/2014, norma que disciplina o registro e a notificação de fitoterápicos, incluiu, nos seus Artigos 13 e 15, a necessidade de se apresentar os resultados da análise de resíduos de agrotóxicos nesses medicamentos. No entanto, o prazo para a sua apresentação foi prorrogado por diversas vezes, por meio das RDCs nº 77/2016, 93/2016, 105/2016, 196/2017 e 235/2018. Essas prorrogações contrariam as orientações da OMS, que coloca a contaminação de fitoterápicos com estes resíduos como um grave problema de saúde pública (OMS, 2007).

Somando-se a essas resoluções, a 6ª edição da Farmacopeia Brasileira estabelece que, a menos que indicado em monografia específica, o fitoterápico em análise deve encontrar-se de acordo com os limites indicados na farmacopeia na tabela 1 do item 5.4.3 para agrotóxicos e 5.4.4 para aflatoxinas (MINISTÉRIO DA SAÚDE, 2019a; ANVISA, 2019).

3.3.2 Melissa officinalis L.

Da família Limiacea, *Melissa officinalis L*. também conhecida popularmente como ervacidreira, melissa, citronela-pequena, anafa, anafe, chá-de-frança, citronela-menor, capim-

cheiroso e capim cidreira é nativa do centro-sul da Europa, região mediterrânea e Ásia central com reputação etnomédica bem documentada, especialmente como sedativo, antipirético, antiespasmódico, anti-hipertensivo, anti-Alzheimer e antisséptico. Também foi relatada a sua utilização no tratamento da asma, bronquite, tosse e várias dores, além de múltiplos distúrbios gastrointestinais, hepáticos e do sistema nervoso (MORADKHANI et al., 2010; SHAKERI; SAHEBKAR; JAVADI, 2016).

Quando realizada a análise química de partes não subterrâneas de *Melissa officinalis L*. foram encontrados taninos derivados de ácidos rosmarínicos, caféico, triterpenoides e flavonoides. Entretanto, as substâncias que aparecem majoritariamente são citronelal e citral, o que caracterizam com um odor muito próximo ao do limão. Esse odor pode ainda ficar mais intensificado quando a planta é seca (COLUSSI et al. 2011; LORENZI, MATOS, 2008; REIS et al., 2009; SIMÕES et al., 1998).

O óleo essencial de *Melissa officinalis L*. tem grande importância comercial devido às suas aplicações na indústria farmacêutica e de alimentos. É usado como aditivo em alimentos, chás de ervas, cosméticos e em ornamentos. O custo de produção e o preço do óleo são demasiadamente caros, devido ao baixo rendimento da extração do óleo essencial. Dentre as funções do óleo essencial a principal é atribuída a atividade antibacteriana e antifúngica da planta (DAWSON; FRANICH; MEDER, 1988; MORADKHANI et al., 2010; SARI; CEYLAN, 2002)

3.3.3 Malva sylvestris L.

Malva sylvestris L. pertence a família das Malvaceae e é popularmente conhecida como malva, malva-comum, malva-das-boticas, malva-maior, malva-selvagem, malva-silvestre. A droga vegetal desta planta consiste em flores secas, inteira ou fragmentadas de *Malva sylvestris L.* ou de suas variedades cultivadas.

Segundo Gasparetto (2012) em análise fitoquímica preliminar de *Malva sylvestris L.* mostrou a presença de polissacarídeos, cumarinas, flavonóides, malvina, malvidina 3-(6" - malonilglucosídeo)-5-glucosídeo, malvona A (2-metil-3-metoxi-5,6-dihidroxi-1,4-naftoquinona) malvalina, escopoletina, polifenóis, niacina, ácido fólico, vitamina A, vitamina C, vitamina E taninos. Os principais constituintes dos flavonóides gossipetina 3-sulfato-8-O-β-D-glucosídeo, hipolaetina 3'-sulfato e três 8-hidroxiflavonóides entre outras moléculas (GASPARETTO et al., 2012).

Tradicionalmente, *Malva sylvestris L.* é usada no tratamento de distúrbios específicos do sistema digestivo, respiratório, muscular e esquelético, bem como distúrbios e lesões

cutâneas. Além das propriedades anti-inflamatórias mais amplamente reconhecidas, alguns outros efeitos farmacológicos e clínicos são frequentemente mencionados. A *Malva sylvestris L.* é ainda considerada diurética, laxativa, espasmolítica, lenitiva e colerética. É também utilizada como broncondilatador, expectorante, antitússico, antidiarreico e altamente recomendado para acne e cuidados com a pele, e como anti-séptico, emoliente e demulcente (BARROS; CARVALHO; FERREIRA, 2010).

3.2 AGROTÓXICOS

O crescimento da população mundial, estimada para o ano de 2050 em 9,7 bilhões de habitantes, aumentará a demanda por alimentos e matérias-primas. Isso tem impulsionado o desenvolvimento de tecnologias inovadoras no segmento do agronegócio, como biotecnologia, nanotecnologia, manejo adequado dos recursos naturais, entre outros, de forma a se utilizar esses recursos de forma econômica, tornando as variedades mais produtivas e resistentes às pragas e doenças. Embora este avanço seja notório, ainda não tem sido suficiente para erradicar as pragas e combater doenças do componente produtivo agropecuário, e a cada dia aumenta-se o uso de agroquímicos, entre ele os agrotóxicos. (ONU, 2019)

O uso de agrotóxicos vem crescendo cada vez mais e de acordo com os dados mais atuais da Organização das Nações Unidas para Alimentação e Agricultura (FAO, 2020) no ano de 2018 o Brasil fez o uso legal de 377.176 toneladas de agrotóxicos. Naquele ano Brasil atingiu a marca de terceiro lugar em maior uso de agrotóxico logo atrás de China e Estados Unidos da América. O consumo desses produtos difere nas várias regiões do país, nas quais se misturam atividades agrícolas intensivas e tradicionais, e nestas últimas não incorporaram o uso intensivo de produtos químicos. Os agrotóxicos têm sido mais usados nas regiões Sudeste (cerca de 38%), Sul (31%) e Centro-Oeste (23%). Na região Norte o consumo de agrotóxicos é, comparativamente, muito pequeno (pouco mais de 1%), enquanto na região Nordeste (aproximadamente 6%) uma grande quantidade concentra-se, principalmente, nas áreas de agricultura irrigada (Spadotto & Gomes, 2021).

A ocorrência de agrotóxicos em fitoterápicos tem sido relatada em diversas pesquisas de diversos países. Em estudo realizado na Polônia (Kowalska, 2020), foram identificados resíduos de dezesseis agrotóxicos em 72,1% das amostras. A erva mais contaminada foi o tomilho e os agrotóxicos mais detectados foram azoxistrobina, seguido de linuron, carbendazim, metalaxil, metalaxil M e dimetoato. Em concordância com o trabalho anterior, Reinholds *et al.* (2017) observaram que o tomilho foi a erva mais contaminada. Em geral, foram

detectados 24 resíduos de agrotóxicos em 59% das amostras analisadas e os mais frequentes foram: cimoxanil, dimetoato, tebuconazol, tetraconazol e clorpirifós. Em um estudo de monitoramento realizado em 20 ervas compradas na Índia, todas as amostras analisadas estavam contaminadas com os isômeros DDT e HCH. As concentrações encontradas estavam acima dos níveis permitidos (Kumar et al., 2018). Em outro estudo foram avaliadas ervas e especiarias italianas e tunisianas. Em relação às ervas italianas, as amostras de louro foram consideradas as mais contaminadas com a presença de 15 resíduos em 140. Entre as amostras da Tunísia, apenas o alecrim contém um nível de resíduos e contaminantes acima dos limites máximos de resíduos da UE (Di Bella et al., 2019).

De acordo com a Lei nº 7.802, de 11 e julho de 1989 (BRASIL, 1989) agrotóxico é definido como produto e agente de processos físicos, químicos ou biológicos, cuja finalidade é alterar a composição da flora ou da fauna, a fim de preservá-las da ação danosa de seres vivos considerados nocivos, podendo ser utilizado na produção, no armazenamento e beneficiamento de produtos agrícolas, e também de ambientes urbanos, hídricos e industriais.

O *Codex Alimentarius* define como agrotóxico qualquer substância destinada a prevenir, destruir, atrair, repelir ou controlar qualquer praga, incluindo espécies indesejadas de plantas ou animais durante a produção, armazenamento, transporte, distribuição e processamento de alimentos, commodities agrícolas ou rações animais ou que podem ser administrados a animais para o controle de ectoparasitas (FAO, 2020).

O uso de agrotóxicos tem grandes vantagens no auxílio do cuidado e manejo de plantações, todavia, resíduos desses agrotóxicos ou quaisquer derivados, como produtos de degradação, metabólitos, produtos de reação e impurezas consideradas de importância toxicológica podem ficar presentes nas plantações (FAO, 2020).

Desta forma, além do grande impacto ambiental causado pelos agrotóxicos, a saúde humana também pode ser fortemente afetada pelo surgimento de doenças como o câncer (ALAVANJA et al., 2004; ALAVANJA; BONNER, 2012; FREEMAN et al., 2005; HUANG et al., 2019; MAHAJAN et al., 2007), problemas respiratórios como asma, bronquite, pneumonite hipersensível, insuficiência respiratória neuromuscular(RANI et al., 2020), bem como o sistema nervoso também pode sofrer alteração devido aos agrotóxicos levando a doenças como Parkinson e Alzheimer. (HATCHER; PENNELL; MILLER, 2008; LI et al., 2014).

Com isso, órgãos regulamentadores estabelecem limites máximos de resíduos (LMR) para cada agrotóxico em seus cultivares onde o uso seja permitido. Em nível nacional, a Agência Nacional de Vigilância Sanitária (ANVISA) é responsável por estabelecer esses

limites que podem ser encontrados em monografias específicas de cada agrotóxico com uso liberado no país. No Brasil só é permitido o uso de agrotóxicos em plantas medicinais quando o agrotóxico está registrado para aquela cultura específica. Atualmente, só se tem agrotóxicos de uso autorizado no Brasil para plantas medicinais quando essas são também utilizadas como alimentos, como por exemplo, o abacaxi, alho, gengibre, hortelã, etc. Assim, nos casos em que hoje o cultivo é feito utilizando-se agrotóxicos, é necessário que seja verificado se esses se encontram regularizados para aquela cultura. Se não, o agrotóxico precisa ser regulamentado, seja por meio do registro do agrotóxico para a cultura, ou por meio da inclusão da cultura dentre as tidas como de suporte fitossanitário insuficiente, conforme determina a INC no 01/2014.

Os agrotóxicos possuem uma vasta classe química como organofosforado, organoclorados, piretroides, carbamatos, por exemplo, com diferentes mecanismos de ação. Além disso, eles podem ser classificados em três abordagens recomendados por Drum (1980): (i) a estrutura química do pesticida, (ii) o modo de ação e (iii) a ação do agrotóxico e dos organismos que matam. Quando se fala em diferentes classes podemos citar os herbicidas, acaricidas, inseticidas, fungicidas, entre outros (Drum, 1980).

Dentre todas as classes de agrotóxicos, os fungicidas apresentam um importante papel devido ao organismo alvo que atuam. Os fungos são de grande impacto na cadeia produtiva devido a produção de metabólitos secundários tóxicos que podem estar presentes deade o cultivo até a estocagem dos alimentos. Com isso, uma atenção especial a essa classe se faz necessária.

3.1.1 Fungicidas

Como as doenças fúngicas são uma grande ameaça à produção agrícola, a aplicação de fungicidas para controlar infestações por fungos é muitas vezes considerada indispensável para garantir o abastecimento global de alimentos. Portanto, podem ser definidos como compostos químicos utilizados no controle de doenças de plantas ocasionadas por fungos, bactérias ou algas. Em alguns casos o princípio ativo não elimina os fungos, mas impedem o seu crescimento provisoriamente — denominados fungistáticos. Alguns princípios ativos impedem a produção de esporos, mas permitem o crescimento das hifas — denominados antiesporulantes (JULIATTI, 2004).

O uso dos fungicidas tem início nas civilizações antigas, ainda que empiricamente. Diversas substâncias foram usadas para esse propósito, tais como: enxofre, torta de oliva, betume, cloreto de sódio, cloreto de mercúrio entre outros, até que em 1934 Tisdale e Williams relataream a fungitoxidade dos ditiocarbamatos marcando a era dos fungicidas orgânicos

(SAGATA, REZENDE e JULIATTI, 2011). Desde então uma variedade de diferentes grupos químicos foram descobertos e empregados nas plantações diariamente. Segundo dados do Ministério da agritulra pecuária e abastecimento, o Brasil possuí 618 formulações registradas como fungicidas disponíveis para aplicação nas mais diversas culturas (MAPA, 2021).

Os fungicidas podem ser aplicados nas sementes ou diretamente nas plantações. Muitos dos fungicidas tratados com sementes possuem ação sistêmica, ou seja, podem ser absorvidos pelos tecidos vegetais, onde fornecem proteção contra pragas e patógenos semelhantes aos seus equivalentes inseticidas. Com relação à aplicação direta em plantações, o uso comum de fungicidas em plantas, como árvores e ramos de videira, podem aumentar drasticamente as distâncias de deriva aumentando o risco de transporte de fungicidas (ZUBROD, 2019).

O uso de fungicidas pós-colheita é importante para controlar diversos ataques fungico, que podem ocorrer durante o armazenamento. No entanto, os fungicidas são apenas uma ferramenta necessária para gerenciar efetivamente a deterioração pós-colheita. Vários outros fatores de manejo, como colheita e manejo corretos, também são necessários. Embora seja fácil usar rotineiramente o mesmo programa de fungicida pós-colheita ao longo da safra, o uso contínuo do mesmo fungicida, principalmente com práticas e saneamento inadequados da embalagem, pode levar ao desenvolvimento de resistência a fungicidas. É importante usar fungicidas com diferentes modos de ação (MOA) para prevenir a resistência a fungicidas. A resistência aos fungicidas pós-colheita ocorre quando os fungos apodrecedores crescem na presença do fungicida, tornando o fungicida ineficaz.

Um efeito deletério, todavía, foi descrito por Ellner (2005) mostrando que a aplicação de fungicidas contendo estrobilurina em tempo abaixo do ideal da fase de crescimento pode ter efeitos potencializadores na biossíntese de micotoxinas. Esse efeito está limitado não apenas à classe de substâncias das estrobilurinas, mas também pode ser observado para outros grupos químicos desses fungicidas. É admissível que o efeito inibidor do crescimento, juntamente com uma indução da síntese de metabólitos secundários, seja um efeito à uma resposta de estresse induzido quimicamente. Se não for letal, a indução da biossíntese de micotoxinas e o desenvolvimento de cepas resistentes podem ser consequência de uma adaptação ao estresse químico (SCHMIDT-HEYDT, STOLL, GEISEN, 2013). Com isso, a utilização e de fungicidas pode levar a outro problema para a saúde pública - a contaminação por micotoxinas.

3.2 MICOTOXINAS

Micotoxinas é um termo composto pelas palavras gregas *Mikes*, traduzida ao português como fungo, e *Toxicum*, que significa veneno. São metabólitos secundários de ocorrência naturais produzidas por algumas espécies dos fungos *Aspergillus*, *Fusarium*, *Penicillium*, *Claviceps e Alternaria*. Cerca de 100.000 espécies de fungos foram identificadas e mais de 500 micotoxinas reportadas como potencialmente toxigênica (HAQUE et al., 2020; MURRAY; ROSENTHAL; PFALLE, 2014).

A contaminação por micotoxinas geralmente ocorre no campo em alimentos e/ou rações após a infecção de fungos toxigênicos no período de pré-colheita, seguido então de condições ambientais favoráveis para fungos deteriorantes durante o processamento, armazenamento e distribuição dos produtos colhidos no período pós-colheita. A micotoxina pode entrar na cadeia alimentar humana diretamente pelo consumo de plantas e produtos alimentícios contaminados, ou indiretamente por meio de resíduos em produtos de origem animal como no leite, carne, ovos e seus derivados devido a contaminação previa do animal através da ração (HAQUE et al., 2020).

A colonização e o crescimento fúngico depende de algumas condições especificas para que ocorra, dentre elas pode-se destacar a temperatura e a umidade relativa do ar. Como os fitoterápicos são cultivadas principalmente nas regiões tropicais e subtropicais, com alta umidade atmosférica e temperaturas variando entre 25 e 30 °C, elas são frequentemente infectadas por espécies fúngicas, com possibilidade de produzir micotoxinas como metabólitos secundários tóxicos (TRUCKSESS; SCOTT, 2008). A co-ocorrência de micotoxinas em produtos fitoterápicos ou suplementos dietéticos pode causar problemas de saúde, especialmente quando usados para o tratamento de infecções virais e fúngicas. Seu manuseio inadequado (colheita, má armazenagem e transporte) agrava ainda mais o risco de contaminação. Na Índia, Sharma et al. (2013) observaram diferentes espécies de *Aspergillus* e Penicillium no caule de giloy, enquanto dois outros estudos de Khati, (2014) e Swami e Naagrathan, (2017) relataram a ocorrência de várias espécies de *Aspergillus*, *Fusarium* e *Penicillium* em ashwagandha, satavari e safed musli. Devido à toxicidade dessas micotoxinas, muitos países estabeleceram seus limites máximos tolerável (LMT) para plantas medicinais destinadas ao consumo humano.

As micotoxinas de maior preocupação do ponto de vista da segurança dos alimentos incluem as produzidas pelos fungos *Aspergillus* e *Penicillium*: aflatoxinas (AFs) (B1, B2, G1, G2 e M1 e M2), ocratoxina A (OTA), patulina e toxinas produzidas por fungos *Fusarium*,

incluindo fumonisinas (FM) (B1, B2 e B3), tricotecenos (principalmente nivalenol (NIV) e desoxinivalenol (DON)), toxina T-2 e HT-2, zearalenona (ZEN) e zearalenol (ZOL) (TRIPATHY et al., 2015).

3.4 ANÁLISE SIMULTÂNEA DE AGROTÓXICOS E MICOTOXINAS

Dentre os procedimentos de extração para determinação de resíduos de agrotóxicos existem três métodos que apresentam vasta aplicabilidade em diversas matrizes a fim de extrair analitos com diferentes polaridades simultaneamente. O método *QuEChERS* (acrônimo para *Quick, Easy, Cheap, Effective, Rugged and Safe,* traduzido como "rápido, fácil, barato, eficaz, robusto e seguro") baseia-se em uma extração com acetonitrila podendo ser acidificada ou não seguido de um particionamento dos analitos e uma etapa de purificação do extrato (ANASTASSIADES et al., 2003). O *SweEt* (acrônimo para *Sweedish Ethyl Acetate,* tratuzido como acetato de etila sueco) consiste na extração dos analitos utilizando acetato de etila contendo 1% de ácido acético (ANDERSEN; POULSEN, 2013). E o terceiro método denominado Mini-Luke holandês, uma otimização do método de Luke, incide na extração dos agrotóxicos com uma mistura de acetona, diclorometano e éter de petróleo 1:1:1 v/v/v seguidos de evaporação e troca de solvente (HIEMSTRA; DE KOK, 2007).

Apesar do desenvolvimento de preparo de amostra na análise de agrotóxicos tendam a uma redução nas etapas, observa-se o oposto com relação à análise de micotoxinas. Na determinação de micotoxinas, os procedimentos de preparo de amostras são mais fragmentados. Dentre as razões que justificam isso, encontram-se os limites máximos toleráveis (LMT) para micotoxinas que são mais baixos que os LMR para agrotóxicos. Tendo isso em vista, os métodos analíticos necessitam níveis de exatidão, precisão e robustez em concentrações ainda mais baixas. Isso então tende a levar a determinação de micotoxinas de maneira individual ou em pequenos grupos tornando-as mais trabalhosas e demoradas (KRESSE et al., 2019).

Com esse desafio de desenvolver um método capaz de analisar simultaneamente ambas as classes – agrotóxicos e micotoxinas, algumas modificações nos métodos multirresiduais surgiram e com isso a possibilidade da análise simultânea. Esses métodos multiclasse vêm ganhando preferência quando se deseja analisar uma grande gama de compostos reduzindo tempo de análise e custos financeiros por exemplo. Além disso, vem sendo empregado não somente em alimentos de origem vegetal, mas também de origem animal. Xu et al. (2019) utilizaram uma variação do método QuEChERS para determinação de agrotóxicos, micotoxinas e drogas veterinárias analisadas em ovos. Reichert et al. (2018) apresentou uma variação do

método *QuEChERS* para determinação simultânea de 117 agrotóxicos e 30 micotoxinas em café. Cladière et al. (2018) apresentou outra variação do método *QuEChERS* para determinação de 32 compostos, entre eles agrotóxicos, micotoxinas, toxinas induzidas por processamento e contaminantes de embalagens em chás. Dias et al. (2019) determinou simultaneamente 162 agrotóxicos e 10 micotoxinas através da injeção direta de amostras de vinho. Kresse et al. (2019) validou um método analítico utilizando cromatografia bidimensional para determinação simultânea de 350 pesticidas e 16 micotoxinas em cereais.

Entretanto, poucos métodos analíticos com determinação simultânea de agrotóxicos e micotoxinas foram reportados para análise de fitoterápicos. Russo et. Al (2021) desenvolveu um método simultâneo para análiseem fitoterápicos e temperos, Llano et al. (2023) desenvolveu método para análise simultânea em *Curcuma longa* e aldeirão et al. (2021) realizou análises simultâneas em infusões. A complexidade dessas matrizes juntamente a grande variedade de substâncias presentes em cada droga vegetal dificultam ainda mais a validação de um método capaz de determinar inequivocadamente substâncias com uma grande diferença de polaridade como os métodos multirresíduos e multiclasses exigem.

3.5 CROMATOGRAFIA LIQUIDA ACOPLADA A ESPECTROMETRIA DE MASSAS

A cromatografia pode ser considerada como uma técnica de separação dos componentes de uma mistura para permitir a identificação e/ou quantificação de alguns ou de todos eles. A identificação é inicialmente realizada com base na característica de retenção cromatográfica. Todavia, isso não é suficiente para permitir a identificação inequívoca, pois existe a possibilidade de mais de um analito ter retenções idênticas. Com isso, mais informações são necessárias surgindo então o acoplamento a outra técnica analítica como a espectrometria de massa (MS, do inglês *mass spectrometry*).

O espectrômetro de massas sequencial triplo quadrupolo (TQ-MS/MS) é provavelmente o instrumento de MS/MS mais amplamente usado que consiste, teoricamente, em três conjuntos de hastes quadrupolo em série. O segundo conjunto de hastes não é usado como um dispositivo de separação de massa, mas como uma célula de colisão, onde a fragmentação de íons transmitida pelo primeiro conjunto de hastes quadrupolo é realizada e como um dispositivo para selecionar quaisquer íons de produto no terceiro quadrupolo. Ambos os conjuntos de hastes podem ser controlados para permitir a transmissão de íons de uma única razão m/z ou uma faixa de valores m/z para fornecer a informação analítica desejada (ARDREY, 2009).

O acoplamento entre a cromatografia líquida (LC, do inglês *liquid chromatography*) e a espectrometria de massas teve um progresso limitado por muitos anos devido à incompatibilidade direta desses dois sistemas. O sistema de espectrometria de massas encontrase sob auto vácuo e necessita que os analitos estejam na forma iônica e gasosa. Frente a isso, diversas interfaces foram desenvolvidas para que o acoplamento dessas duas técnicas analíticas, porém eram bastante complexas e não confiáveis. Nos anos 1980, Fenn e colaboradores desenvolveram uma interface por *eletrospray* e rapidamente foram fabricados instrumentos com essa interface resolvendo, enfim, os problemas de acoplamento entre as duas técnicas. (MANN, MENG and FENN, 1989)

Com isso, os principais métodos de ionização utilizados em LC acoplada à espectrometria de massa são ionização por eletronebulização (ESI, do inglês *Electrospray Ionization*) e a ionização química à pressão atmosférica (APCI, do inglês *Atmospheric Pressure Chemical Ionization*), ambas as técnicas operam em pressão atmosférica.

A ESI abrange os seguintes quatro estágios: (i) a formação de gotículas do eluato da separação cromatográfica, (ii) aparecimento de cargas nessas gotas, (iii) dessolvatação das gotas e (iv) a formação de íons a partir do analito. (HOFFMANN; STROOBANT, 2001)

A ESI consiste pela passagem de uma vazão de líquido através de um capilar de metal mantido em alta tensão (normalmente 3 a 4 kV para a produção de íons positivos; ligeiramente menor e de polaridade oposta para a produção de íons negativos). Essa alta tensão dispersa a vazão de líquido, formando uma névoa de gotículas altamente carregadas que sofrem dessolvatação durante sua passagem pela fonte do espectrômetro de massa. À medida que o tamanho da gota reduz um ponto é alcançado, dentro de 100 μs, em que as forças repulsivas entre as cargas na superfície das gotas são suficientes para superar as forças coesivas da tensão superficial. Uma 'explosão coulômbica' então ocorre, produzindo uma série de gotículas menores com um raio de aproximadamente 10% daquele da gotícula-mãe (SCHALLEY, 2003).

A tecnologia de foco gradiente térmico *Agilent Jet Stream* (AJS) foi desenvolvida para aumentar significativamente a sensibilidade em ESI-MS, melhorando a dessolvatação e o foco espacial de íons. O *sheat gas* de nitrogênio superaquecido confina o spray do nebulizador para secar mais efetivamente os íons e concentrá-los em uma zona de confinamento térmico. A dessolvatação reduz o ruído. O confinamento total do spray pelo gás nitrogênio superaquecido elimina a recirculação da amostra e reduz a cauda do pico. A figura 2 mostra uma imagem térmica dessa fonte de ionização.

Figura 2 - Simulação mostrando o perfil térmico da tecnologia Agilent Jet Stream.

Fonte: Agilent, 2022

Quando os analistas necessitam trabalhar com amostras que apresentam alto grau de complexidade, o que requer métodos analíticos cada vez mais seletivos e robustos, mesmo que a cromatografia líquida acoplada a espectrometria de massas seja considerada o padrão ouro para muitas aplicações, o poder de resolução, a detectabilidade e a seletividade dessa abordagem ainda podem possuir limitações. Com a finalidade de aperfeiçoar essas limitações, o MS triplo quadrupolo oferece benefícios como maior seletividade e sensibilidade, (LOQ) mais baixos, relação sinal/ruído (S/R) aprimorado, faixa linear mais ampla e precisão aprimorada. Além disso, pode ser usado para monitorar um maior número de analitos em um curto espaço de tempo (MAURER, 2007).

Os primeiros métodos analíticos relatados para determinação de agrotóxicos em análises de especiarias e ervas usando Cromatografia Gasosa (GC, od inglês *Gas chromatography*) empregaram uma variedade de detectores, como Detector por Captura de Elétrons, do inglês *Electron Capture Detector* (ECD), Detector de Nitrogênio-Fósforo, do inglês *Nitrogen-Phosphorus Detector* (NPD), Detector de Ionização de Chama, do inglês *Flame Ionization Detector* (FID) e Detector Fotométrico de Chama, do inglês *Flame Photometric Detector* (FPD). No entanto, esses métodos de detecção demonstraram identificação/quantificação limitada e imprecisa quando se fala em análises de múltiplos analitos simultaneamente devido às interferências que co-eluem no mesmo tempo de retenção que os agrotóxicos estudados. Essas deficiências foram aperfeiçoadas com o uso de detectores de espectrometria de massa devido à maior detectabilidade e principalmente seletividade que eles fornecem. (VÁZQUEZ et al., 2019).

3.6 VALIDAÇÃO

A validação é um elemento-chave no estabelecimento de métodos de referência e na avaliação da competência de um laboratório em gerar registros analíticos confiáveis. Validação de método analítico, pensando nos processos máximos relevantes para verificar os melhores parâmetros, utilizam vários indicadores de desempenho incluindo seletividade, especificidade, exatidão, precisão, linearidade, limite de detecção (LOD), limite de quantificação (LOQ) e robustez. Parâmetros esses que são severamente discutidos em guias e normas de validação afim de evitar sua utilização incorreta.

Na competência de órgãos nacionais os dois principais documentos que regulamentarizam a validação de método analítico são DOQ-CGCRE-008 Orientação sobre validação de métodos analíticos do Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO, 2020) e a RDC nº 166/2017 do Ministério da Saúde/Agência Nacional de Vigilância Sanitária (ANVISA). Dentre os documentos orientativos internacionas, o que possui maior relevância na análise de resíduos de agrotóxicos é o *Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed* (SANTE/11312/2021) utilizado pelos laboratórios de referência em análise de resíduos de agrotóxicos da União Europeia.

No quadro 1 um breve resumo do que os quatro guias estabelecem sobre os parâmetros de validação e seus critérios de aceitação.

Quadro 1 - Parâmetros de validação e principais critérios de aceitação dos guias orientativos de validação.

Parâmetro de Validação	DOQ-CGCRE-008 (Rev09)	RDC nº 166/2017	amostras controle fortificada.		
Seletividade	Analisar amostras contendo vários possíveis interferentes na presença do analito de interesse. Efeito de interferentes - a presença de interferente acentua ou inibe a detecção ou quantificação do analito de interesse.	No caso de métodos cromatográficos, deve ser comprovada a pureza cromatográfica do sinal do analito.			
Linearidade	 Deve ser verificada em no mínimo 5 níveis de concentração. Verificar a existência de valores aberrantes que possam interferir na regressão. Verificar a homocedasticidade da distribuição dos dados. Aplicar a regressão linear adequada e calcular o coeficiente de correlação (r). Com base na estimativa dos resíduos, construir um gráfico e avaliar a tendência. A distribuição aleatória em torno da linha reta confirma a linearidade. Tendências sistemáticas indicam a não linearidade. 	 Deve ser verificada em no mínimo 5 níveis de concentração diferentes. Representação gráfica das respostas em função da concentraçãodo analito. Gráfico de dispersão dos resíduos, acompanhado de sua avaliação estatística. Avaliação da associação linear entre as variáveis por meio dos coeficientes de correlação (r) e de determinação (r²). Avaliação da significância do coeficiente angular. A homocedasticidade dos dados deve ser investigadapara a utilização do modelo adequado. Nos testes estatísticos, deve ser utilizado um nível designificância de 5% (cinco por cento). O coeficiente de correlação deve estar acima de 0,990. 	 Deve ser verificada em no mínimo 5 níveis de concentração diferentes. Desvio da concentração calculada em relação à concentração real ≤ ± 20%. 		

Exatidão	Deve-se avaliar, quando cabível n=6 e critérios de aceitação: Recuperação 60-115%	Deve ser utilizado no mínimo 3 (três) concentrações: baixa, média e alta, com 3 (três) réplicas em cada nível.	É necessário um mínimo de 5 réplicas (para verificar a recuperação e a precisão) no LOQ alvo do método, e pelo menos um outro nível superior, por exemplo, 2-10x o LOQ alvo. • As recuperações médias devem estar dentro da faixa de 70-120%, com uma repetibilidade associada RSDr ≤ 20%.
Precisão	Normalmente determinada para circunstâncias específicas de medição e as três maneiras mais comuns de expressá-la são por meio da repetibilidade, precisão intermediária e da reprodutibilidade, sendo usualmente Deve-se avaliar, quando cabível n=6 e critérios de aceitação: Precisão ≤ 21%.	Deve ser expressa por meio da repetibilidade, da precisão intermediária ou da reprodutibilidade. Número de replicatas idem exatidão.	Em termos de repetibilidade foi definido juntamente a exatidão. A reprodutibilidade dentro do laboratório (RSD _{wR}), que pode ser determinada a partir de dados de controles de qualidade em andamento em análises de rotina, deve ser ≤20%, excluindo qualquer contribuição devido à heterogeneidade da amostra
LOD	Avaliação ou percepção visual; Relação sinal ruído de 2 ou 3:1; LOD= \frac{3,3 \times s}{b}; s = desvio padrão da resposta do branco. b = inclinação (coeficiente angular) da curva analítica	A razão sinal-ruído deve ser maior ou igual a 2:1; Ou $LOD = \frac{3,3 \times \sigma}{IC}$ IC é a inclinação da curva de calibração. σ é o desvio padrão.	Em métodos quantitativos prefere-se o uso de LOQ à LOD.
LOQ	Avaliação ou percepção visual; Relação sinal ruído de 10:1 ou ainda 5:1 ou 6:1;	A razão sinal-ruído deve ser maior ou igual a 10:1; Ou	O nível de fortificação mais baixo atendendo aos critérios de identificação e

	$LOD = \frac{10 x s}{b};$	$LOQ = \frac{10x \sigma}{IC}$	desempenho do método para exatidão e precisão.
	s = desvio padrão da resposta do		Esse valor deve ser ≤LMR.
	branco.		
	b = inclinação (coeficiente angular)		
	da curva analítica		
	Uma vez estabelecido o LOQ por uma		
	das abordagens citadas ou outra		
	abordagem contida em documentos		
	nacionais ou internacionais		
	reconhecidos, esse deve ser		
	confirmado experimentalmente por		
	meio da análise de amostras		
	independentes no mesmo nível de		
	concentração/propriedade do LOQ.		
	A robustez é um parâmetro opcional	Capacidade em resistir a pequenas e	Recuperação média e RSD _{wR} , derivados
Robust	dentro dos estudos de validação,	deliberadas variações das condições	da checagem intermediaria da
Kobusi	muitas vezes estando mais associado	analíticas.	validação/verificação do método.
	a estudos de otimização.		$RSD_{wR} \leq 20\%$,

4 MATERIAIS E MÉTODOS

4.1 EQUIPAMENTOS

Para esse estudo foi utilizado um sistema cromatográfico equipado com:

- Cromatógrafo a líquido calibrado, sistema 1260 Infinity prime II (Agilent, EUA) amostrador automático, bomba quaternária, forno para coluna e sistema de degaseificação. Coluna cromatográfica InfinityLab Poroshell 120 EC1-C18 2,1 x 100 mm, 2,7 μm, com pré-coluna UHPLC GUARD 3PK InfinityLab Poroshell HPH-C18 2,1 x 5 mm, 2,7 μm
- Detector MS triplo quadrupolo calibrado Ultivo (Agilent, EUA) utilizando ionização por eletrospray e tecnologia *Jet Stream Ion Source* (AJS), operado no modo positivo
- Sistema de aquisição de dados MassHunter Workstation Data Acquisition e MassHunter Workstation Quantitative Analysis versão 1.2 e 10.0 respectivamente (Agilent, EUA)
- Sistema de otimização de condição de espectrometria de massas *Optimizer* versão 1.1
 (Agilent, EUA)
- Gerador de Nitrogênio 99,999% (Peak Scientific, EUA)

Foram utilizados ainda:

- Sistema de ultra purificação de água (Millipore, EUA)
- Balança analítica de precisão com quatro casas decimais, calibrada (Sartorius, Alemanha)
- Balança analítica de precisão com duas casas decimais, calibrada (Mettler, Suíça)
- Mesa agitadora (GFL, Alemanha)
- Agitador Vortex (Scientific Industries, Estados Unidos da América)
- Centrífuga (Thermo Scientific, Alemanha)
- Pipetador automático, calibrado (Brand, Alemanha)
- Pipetador automático, calibrado (Eppendorf, Alemanha)
- Agitador de peneiras (Bertel, Brasil)
- Banho de ultrassom (Branson Ultrasonic Corporation, EUA)
- Triturador mecânico (Arno, Brasil)
- Refrigeradores
- Congeladores para armazenamento de materiais de referência das soluções analíticas

4.2 MATERIAIS

Os materiais utilizados neste trabalho foram:

- Tubos tipo falcon de polipropileno, com tampas rosqueáveis, de 15 e 50 mL (Nalgene, EUA)
- Frascos de vidro âmbar de 1000 mL
- Balões volumétricos calibrados de 5, 10 e 50 mL
- Frascos de vidro de 22 mL, para armazenamento de soluções analíticas (National Scientific, EUA)
- Frascos de vidro âmbar de 2 mL para amostrador automático (Agilent, EUA)
- Vidrarias comuns de laboratório

4.3 SOLVENTES E REAGENTES

Os reagentes e solventes utilizados nesse trabalho foram:

- Ácido fórmico P.A. (J. T. Baker, Holanda)
- Tolueno (J. T. Baker, Holanda)
- Acetonitrila grau HPLC (Macron, EUA)
- MgSO₄ anidro (Êxodo Científica, Brasil)
- Cloreto de sódio (Êxodo Científica, Brasil)
- Kit de *Clean up* dispersivo contendoPSA, GCB e MgSO₄ (Agilent, EUA)

4.4 MATERIAS DE REFERÊNCIA

Os materiais de referência de agrotóxicos foram adquiridos da empresa *Dr. Ehrenstorfer Reference Materials* e apresentaram pureza maior do que 97%. Para as micotoxinas os materiais de referência foram adquiridos da empresa Sigma-Aldrich e Fermentek com pureza superior a 98%. Os materiais de referência foram armazenados em congelador com temperatura controlada a -18 °C.

4.5 PREPARO DAS SOLUÇÕES ANALÍTICAS

4.5.1 Preparo das soluções estoque

Para o preparo das soluções estoques de agrotóxicos foram pesados em balança analítica de precisão, aproximadamente 10 mg de cada material de referência em um frasco âmbar (tampa contendo batoque de politetrafluoretileno). Em seguida, foi adicionado um volume apropriado do solvente adequado para obter cada solução na concentração de 1000 mg L⁻¹, de acordo com pureza indicada no certificado de análise do material de referência de cada agrotóxico. Para a escolha do solvente, foi consultado o livro *The pesticide manual* para verificação da solubilidade de cada agrotóxico. (TOMLIN, 2004).

Para o preparo das soluções estoques de micotoxinas seguiu-se os mesmos procedimentos empregados para o preparo das soluções estoques dos agrotóxicos, diferindo apenas na concentração de algumas soluções estoque, sendo 1000 mg L⁻¹ para Zearalenona (ZEA) e Fumonisina B2 (FM B2) e 500 mg L⁻¹ para as demais micotoxinas.

Em seguida, os frascos contendo as soluções foram homogeneizados em vórtex por 2 minutos, seguido de banho de ultrassom até dissolução de qualquer material sólido visível (aproximadamente 5 minutos). As soluções foram armazenadas em congelador com temperatura controlada de -18 °C.

4.5.2 Preparo das soluções misturas

Em um balão volumétrico calibrado de 100 mL foram adicionados inicialmente 50 mL de metanol e, após atingir temperatura ambiente, foi pipetado 100 μL de cada solução estoque dos 169 agrotóxicos resultando em uma solução mistura a 1 mg L⁻¹. Por fim, agitou-se em vórtex por cerca de 2 minutos e armazenou-se em freezer com temperatura controlada a -18 °C.

As soluções misturas das micotoxinas foram separadas em dois grupos: Grupo 1 contendo Ocratoxina (OTA) e Aflatoxinas (AFs - B1, B2, G1 e G2) e Grupo 2 contendo Citrinina (CIT), Deoxinivalenol (DON), Diacetoxiscirpenol (DAS), Zearalenona (ZEA), Toxina HT-2, Toxina T-2 e FMs B1 e B2. Em um balão volumétrico de 50 mL inicialmente adicionou-se 25 mL de acetonitrila e os respectivos volumes de solução estoque de cada micotoxina. Para as micotoxinas do grupo 1 a concentração final foi de 0,5 mg L⁻¹ e de 25 mg L⁻¹ para aquelas do grupo 2. Essas soluções misturas foram utilizadas para o preparo das soluções de trabalho empregadas para a construção das curvas analíticas.

4.5.3 Solução de Fortificação

Para realização dos ensaios de exatidão (fortificação/recuperação da matriz "branco") foi utilizada a própria solução mistura dos agrotóxicos, ao passo que para a fortificação com as micotoxinas, foi realizada uma diluição da solução mistura de micotoxinas obtendo-se a concentração de 100 e 5000 ng mL⁻¹ para micotoxinas do grupo 1 e 2 respectivamente.

4.5.4 Preparo das soluções de trabalho

A partir das soluções preparadas no item 4.5.2, foram preparadas soluções dos agrotóxicos nas concentrações de 1,0; 2,0; 4,0; 10,0 e 20,0 ng mL⁻¹, concentrações de 0,2; 0,6; 2,0; 5,0; e 10,0 ng mL⁻¹ para as micotoxinas do grupo 1 e de 10,0; 30,0; 100,0; 250,0 e 500,0 ng mL⁻¹ para as micotoxinas do grupo 2. O solvente utilizado foi acetonitrila.

Para o preparo da curva analítica em solvente orgânico diluiu-se em vial, na proporção de 1:1 v/v, cada concentração das soluções em acetonitrila. Para o preparo da curva analítica em matriz, diluiu-se com extrato "branco" de matriz na proporção de 1:1 v/v. Os critérios de aceitação para as curvas analíticas foram áreas mensuráveis de pelo menos cinco concentrações e *back-calculated concentration* de cada concentração da curva analítica entre ± 20% (SANTE, 2021).

4.6 OTIMIZAÇÃO DAS CONDIÇÕES INSTRUMENTAIS

Para otimização dos parâmetros do espectrômetro de massas, soluções individuais dos agrotóxicos e das micotoxinas do grupo 2, ambas na concentração de 200 ng mL⁻¹, e 4 ng mL⁻¹ para micotoxinas do grupo 1 (em solução de ácido fórmico 0,1% em acetonitrila/solução aquosa 0,1% ácido fórmico 1:1, v/v) foram injetadas através do programa *Optimizer* e avaliados criticamente após otimização. A tabela 2 apresenta as informações otimizadas das substâncias sob estudo.

Uma vez que as condições do espectrômetro de massas foram estabelecidas, preparouse a partir da solução mistura, uma solução a 100 ng mL⁻¹ para agrotóxicos e micotoxinas do grupo 2, e para as micotoxinas do grupo 1 na concentração de 2 ng mL⁻¹, para otimização das condições cromatográficas. Otimizou-se a vazão e o gradiente da fase móvel visando separar os analitos, mas mantendo as melhores condições de formato e resolução de pico.

Uma vez que as condições foram estabelecidas, realizaram-se sete injeções sequenciais destas soluções para determinação do tempo de retenção de cada analito.

Tabela 2- Tempo de retenção (min), energias (V) de *fragmentor* e colisão, íons precursores e íons produtos dos agrotóxicos e micotoxinas analisados por LC-MS/MS.

Transições							
A 11.	T_R	Íon	Fragm.	Quantificação Confirmação			
Analito	(min)	Precursor	(V)	Íon	Energia de	Íon	Energia de
				Produto	Colisão (V)	Produto	Colisão (V)
Agrotóxicos	i i					•	
Acefato	1,64	184	70	49,1	20	143	5
Acetamiprido	2,04	223,1	126	90	45	125,8	21
Acetoclor	8,05	270,1	120	148,1	17	224,2	9
Aldicarbe	1,25	191,1	65	60,8	9	190,5	1
Aldicarbe sulfona	1,86	240,1	65	58,1	37	63,1	37
Aldicarbe-sulfoxido	1,63	207,1	111	65	16	89	12
Aletrina	9,28	303,2	92	135	9	302,7	1
Atrazina	6,6	216,1	125	145,9	20	174,1	16
Azametifós	5,85	325	120	112	40	183	10
Azinfós-metilico	7,32	318	86	125	24	260,9	4
Azoxistrobina	7,49	404,1	110	329,1	32	372,1	8
Benfuracarbe	9,1	411,2	95	162,1	40	252,1	8
Bifenazato	7,73	301,2	81	170,1	24	198,1	4
Bitertanol	7,92	338,2	70	99,1	10	269,3	4
Boscalide	7,76	316,1	126	165	29	247,1	17
Bromuconazole	7,55	376	116	122,8	81	158,8	41
Bupirimato	7,14	317,2	125	166,1	33	210,2	20
Buprofezim	8,54	306,2	105	116,1	10	201,1	5
Cadusafós	8,61	271,1	81	130,7	21	158,9	12
Carbaril	6,44	202,1	65	127,1	28	145,1	4
Carbendazim	1,65	192,1	56	132,1	32	160,1	16
Carbofurano	6,24	222,1	80	123,1	30	165,1	20
Carbossulfam	11,4	381,2	126	118	20	160,1	12
Carpropramida	8,31	334,1	92	76,9	77	102,9	49
Ciazofamida	8,13	325	90	108	8	261	4
Ciproconazol	7,32	292,1	100	89	60	125	20
Ciprodinil	7,2	226,1	140	91,1	36	133,1	24
Clofentezim	8,56	303	110	102	40	138	12
Clomazone	7,12	240,1	91	89	60	124,9	24
Clorantraniliprole	7,02	482	100	176,8	50	283,8	10
Clorfenvinfós	8,16	358,9	105	99,2	28	155	8
Clorpirifós	9,36	349,9	100	97	20	198	20
Clorpirifós-metílico	8,66	321,9	110	125	20	289,9	14
Clorprofam	7,75	214,1	56	125,9	25	172	1
Clotianidina	2,45	250	76	131,8	21	169,1	9
Demeton-S-Metil	1,98	263	95	109	24	169	12
Sulfona	,						
Diazinom	8,58	305,1	105	97	40	169,1	32
Diclofuanide	7,6	333	126	123	32	224	16
Dietofencarbe	7,39	268,2	70	124	30	226,1	0
Difenconazole	8,41	406,1	120	188	40	251	20
Difenilamina	7,94	170,1	116	66	49	93,1	29
Diflubenzurom	7,74	311	80	141	32	158	8
Dimetoato	3,58	230	70	125	16	198,8	0
Dimetomorfe (E)	7,17	388,1	145	273,1	32	301	24
(L)	,,,,,	200,1	2.10	, -		551	

Diniconazole	8,13	326,1	110	70	25	159	28
Diurom	6,65	233	120	70	20	160,1	29
DMST			66	77	52	100,1	13
	6,63	215,1					
Epoxiconazol	7,6	330,1	126	100,9	40	120,9	21
Espinosim A	6,94	732,5	155	98,1	60	142,1	28
Espinosim D	7,22	746,5	175	141,8	29	142,4	29
Espirodiclofem	10,2	411,1	110	71,2	15	313	5
Espiromesifem	10,1	371,2	120	255,1	24	273,1	12
Espiroxamina	6,2	298,3	125	100,1	32	144,1	16
Etiona	9,33	385	95	142,8	24	199	12
Etiprole	7,19	397	96	255	44	351	20
Etirimol	1,66	210,2	145	98	32	140,1	20
Etofemprox	10,9	394,2	100	177	5	359	5
Etoprofós	7,77	243,1	90	97	30	130,9	15
Etoxazole	9,62	360,2	91	113	60	141	32
Famoxadona	8,28	392,1	85	238	12	330,9	4
Fempiroximate	9,71	422,2	135	107	64	366,2	12
Fempropimorfe	6,16	304,3	81	132	40	147	28
Fenamidona	7,53	312	100	92,2	28	236,2	8
Fenamifós	7,48	304,1	120	217,1	20	234	12
Fenarimol	7,65	331	130	139	36	268	20
Fenazaquim	10,4	307,2	105	147,1	16	161,1	10
Fenbuconazole	7,77	337,1	145	70	33	125,1	40
Fenhexamida	7,64	302,1	130	55,1	40	97,1	20
Fenobucarbe	7,31	208,1	65	95	12	152,1	0
Fenotrina	10,7	351,2	91	154,9	37	183,1	21
Fenoxycarb	7,9	302,1	90	116	17	256,1	8
Fensulfotiom	6,83	309	106	157	28	173	24
Fentoato	8,36	321	75	91	20	247,1	4
Fluazifope-Butil	9,09	384,1	101	282	20	328	16
Fludioxonil	7,31	247	95	126	32	169	32
Flufenoxurom	9,08	489	100	140,9	56	158	20
Fluquinconazol	7,7	376	126	272,2	40	348,9	21
Flusilazol	7,76	316,1	120	165	24	247,1	12
Flutolanil	7,76	324,1	92	92,9	37	144,9	65
Flutriafol	6,37	302,1	126	108.9	40	122,9	33
Fosalona	8,59	368	70	110,9	44	182	8
		318	70		40		8
Fosmete	7,44		120	133	21	160	5
Fostiazato	6,49	284,1		103,9 95	27	227,9	
Furalization	7,35	302,1	110			242,1	10
Furatiocarbe	9,14	383,2	110	167	24	195	16
Halofenozide	7,4	331,1	76	105	23	275,1	0
Haloxifope-2-etoxietil	8,84	434,1	111	90,8	45	316,1	17
Hexaconazole	7,97	314,1	95	124,8	40	159	30
Hexitiazoxe	9,47	353,1	115	168,1	24	227,9	8
Imazalil	5,33	297,1	115	159	20	201	15
Imazapic	2,9	276,1	126	162,9	29	231,1	21
Imazetapir	3,8	290	100	159	17	245	25
Imidacloprido	3,5	256	80	175	12	208,9	12
Indoxacarbe	8,56	528,1	126	203	45	293	13
Iprovalicarbe	7,44	321,2	120	115,9	17	203,1	5
Isoxaflutole	7.1	360,1	90	220	44	251	12
	7,4				10	2022	0
Kresoxim Metilico	8,21	314,1	85	222,1		282,2	
Linurom	8,21 7,39	314,1 249	120	160,1	20	182	17
	8,21 7,39 8,86	314,1 249 511	120 126	160,1 140,8	20 40	182 157,9	17 21
Linurom	8,21 7,39 8,86 7,85	314,1 249 511 331	120 126 80	160,1 140,8 99	20 40 10	182 157,9 126,9	17 21 5
Linurom Lufenurom	8,21 7,39 8,86	314,1 249 511	120 126	160,1 140,8	20 40	182 157,9	17 21

Metalaxil	6,7	280,2	120	192,1	17	220,1	10
Metamidofós	1,62	142	85	94	10	125	10
		320,1					
Metconazol Metidationa	8,01		130	70,1	24	125	48
	7,35	302,9	55	85,1	15	145	0
Metiocarbe	7,31	226,1	70	121	11	169	6
Metiocarbe Sulfona	4,83	275,1	92	77	85	121,8	29
Metiocarbe Sulfóxido	2,13	242,1	86	122	33	185,1	9
Metomil	2,05	163,1	50	88	0	106	4
Metoxifenoside	7,75	369,2	85	149	10	313,1	0
Miclobutanil	7,52	289,1	110	70,1	16	125,1	32
Monocrotofós	1,7	224,1	65	127	10	193	0
Nitempiram	1,66	271,1	95	90	48	126,1	12
Ofurace	6,61	282,1	101	148	20	160	6
Ometoato	1,63	214	80	109	24	125	16
Oxadixil	5,62	279,1	70	132,3	32	219,2	5
Oxamil	1,82	237,1	60	72	12	220,1	0
Paclobutrazol	7,16	294,1	115	70,1	16	125,2	36
Paration-etilico	8,28	292	120	94,3	40	235,8	13
Pencicurom	8,59	329,1	120	89,1	60	125,1	24
Penconazol	8,07	284,1	101	70,1	15	158,9	37
Pendimentalina	9,42	282,1	85	194,1	16	212,1	4
Picoxistrobina	8,22	368,1	70	145	20	205,2	4
Piperonil Butóxido	9,16	356	86	119	35	177	5
Piraclostrobina	8,46	388,1	95	163,1	20	193,8	8
Pirazofós	8,46	374,1	121	194,1	37	222,2	21
Piridabem	10,2	365,1	80	147,2	20	309,1	4
Pirimetanil	6,31	200,1	120	82	25	106,9	20
Pirimicarbe	2,16	239,1	100	72,1	20	182,1	12
Pirimifós-etilico	9,31	334,1	131	182	21	198,1	21
Pirimifós-metilico	8,59	306,2	130	108,1	30	164,1	20
Piriproxifem	9,23	322,2	110	96	12	185	20
Propoxur	6,2	210,1	61	153,1	1	168	1
Procloraz	7,43	376	70	265,9	12	308	4
Profam	6,99	180,1	60	120	12	138,1	4
Profenofós	8,91	373	126	302,9	17	344,8	9
Prometrim	6,32	242,1	121	68,1	53	158,1	25
Propamocarbe	1,64	189,2	90	102	12	144	8
Propanil	7,17	218	91	127	24	162	14
Propargite	9,58	368,1	80	175,2	8	231,2	0
Propiconazole	8,18	342,1	115	123	60	159	32
Propizamida	7,68	256	81	172,9	21	190	15
Protiofós	10,4	345	92	309,1	5	327,2	1
Quinalfós	8,3	299	90	243,1	12	271,1	8
Quinoxifem	9,32	308	175	182,3	13	200,1	17
Simazine	5,76	202,1	126	104	30	132	17
Tau-Fluvalinato	10,3	503,1	91	181,1	29	207,9	5
Tebuconazole	7,78	308,1	100	115,2	52	124,9	47
Tebufempirade	9,06	334,2	145	145	37	147,1	24
Tebufenozide Tebufenozide	8,09	353,2	95	133	16	297,1	0
Tetraclorvinfós	7,95	364,9	120	204	49	239	17
Tetraconazole	7,59	372	130	70	20	159	36
Tetrametrina	9,13	332,2	100	135	15	164,1	15
Tiabendazol	1,64	202	130	65	52	175	24
	5,19	253	100	90	40	175	16
Tiacloprido		253	85	181,1	20		
Tiametoxam	1,98		85 85			211,1	8
Tiodicarbe Tiofanata matilias	6,04	355,1	96	88,1	8	108,1	21
Tiofanato metilico	5,92	343,1		92,9	61	151,1	
Tolcofós metilico	8,65	300,9	115	125	15	269	10

	0 - 1	2112			T		
Tolifluanide	8,54	346,9	70	137	25	238,1	0
Triadimefom	7,64	294,1	90	197,2	8	225,1	20
Triadimenol	7,16	296,1	70	99,1	8	227,2	4
Triazofós	7,88	314,1	101	118,9	37	162	17
Triclorom	2,24	256,9	80	109	12	221	4
Trifloxistrobina	8,7	409,1	110	186	12	206,1	8
Triflumizol	8,08	346,1	85	43,1	20	278	4
Triticonazol	7,32	318,1	126	69,9	17	124,9	40
Zoxamida	8,43	336	120	159	44	187	16
Micotoxinas							
Aflatoxina B1	5,84	313,1	96	128,2	89	241,2	41
Aflatoxina B2	5,55	315,1	136	77,2	117	287	29
Aflatoxina G1	5,83	329,1	96	115	89	213,8	41
Aflatoxina G2	5,03	331,1	96	201	41	245,1	33
Citrinina	6,89	251,1	96	90,9	61	115	69
Deoxinivalenol	5,29	297,1	96	114,9	85	281,3	13
Diacetoxiscirpenol	5,59	367,2	126	307,2	5	349,2	1
Fumonisina B1	5,5	722,4	185	334,2	45	721,6	17
Fumonisina B2	7,3	706,4	180	318,5	45	336,2	37
Ocratoxina A	7,26	404,1	101	220,9	41	238,5	29
Toxina HT2	5,7	425,2	101	77,1	109	128,5	81
Toxina T2	6,6	467,2	151	245,4	1	305,2	1
Zearalenona	7,33	319,2	91	127,8	65	301,2	5

4.6.1 Preparo da fase móvel

Na cromatografia líquida (LC), as características de retenção dos componentes da amostra em uma determinada coluna são extremamente dependentes da composição química da fase móvel. As características químicas exatas da fase móvel exigidas ao realizar análises nas várias técnicas de separação dependem da amostra e fase estacionária utilizada.

Neste estudo, utilizou-se fases móveis de composição descritas a seguir. No canal A, foi utilizada uma solução aquosa de ácido fórmico 0,1%. Para o preparo dessa solução, em um balão volumétrico de 1000 mL adicionou-se até cerca da metade do volume com água ultrapura e com o auxílio de um pipetador automático transferiu-se 1 mL de ácido fórmico p.a. Completou-se o volume com água ultrapura, agitou-se e transferiu-se para frasco âmbar com capacidade de 1000 mL. Para não sobrecarregar o degaseificador (*degasser*) do LC, essa solução foi levada para sonicador por 5 minutos antes de sua utilização. Para o canal B, utilizou-se uma solução orgânica de ácido fórmico 0,1% em acentonitrila. Em ambos os canais se utilizou ácido fórmico para que o pH permanecesse constante no decorrer da corrida cromatográfica.

Em ambos os casos os frascos foram limpos previamente com água ultrapura seguido do solvente da fase móvel, para garantir a limpeza dos frascos.

4.7 AQUISIÇÃO E PREPARO DAS AMOSTRAS

As amostras de drogas vegetais utilizadas para os estudos de desenvolvimento e otimização do procedimento de extração foram adquiridas em uma farmácia de manipulação localizada no bairro de Camobi da cidade deSanta Maria -RS, em embalagens de 25 g. Foram adquiridos 6 pacotes de folhas e ramos secos de *Melissa officinallis* proveniente de Campo Largo/Paraná e 4 pacotes de flores de *Malva sylvestris* proveniente de Tijucas do Sul/Paraná. Ambas as amostras estavam dentro do prazo de validade (fevereiro de 2022).

Em um triturador mecânico adicionou-se, uma a uma, o conteúdo das embalagens contendo as drogas vegetais e triturou-se por 5 minutos. Uma vez que todas as amostras haviam sido processadas individualmente, foi constituído uma única amostra com 150 gramas de *Melissa officinallis* misturando todas as porções trituradas. O mesmo processo foi executado para as amostras de *Malva sylvestris*.

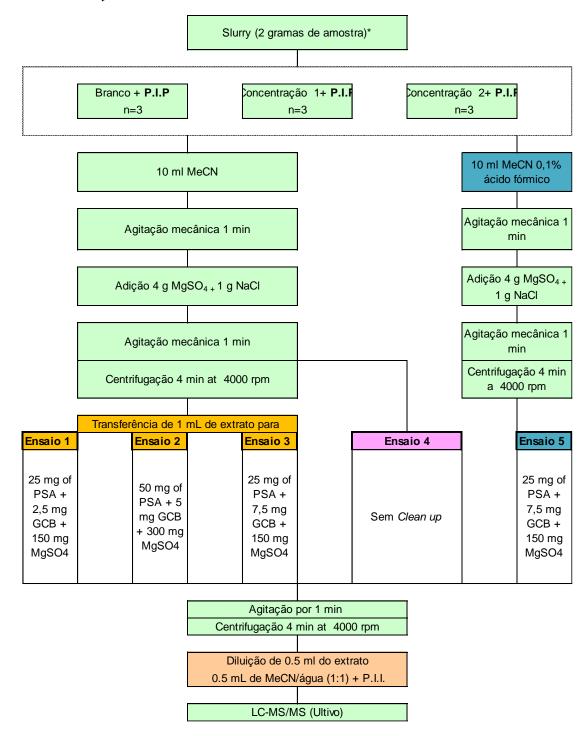
Após o processamento inicial de ambas as amostras, foi padronizado o tamanho de partícula para 1 mm quanto a granulometria. Para isso, em um agitador de peneiras foram adicionadas separadamente as amostras de *Melissa officinallis* e *Malva sylvestris* e agitadas por 5 minutos. Ao final desse processo, as amostras foram transferidas para embalagens de alumínio, identificadas e armazenadas em temperatura ambiente.

4.7.1 Preparo e otimização do Slurry

As drogas vegetais utilizadas são provenientes da secagem de plantas com propriedades medicinais e por consequência possuem um baixo teor de água. Rejczak e Tuzimski (2015) afirmaram a importância da adição de água às drogas vegetais secas para o processo de extração de agrotóxicos de matrizes com menos de 80% de água em sua composição. O objetivo do preparo desta pasta (*slurry*) entre matriz e água é enfraquecer as interações dos analitos com a matriz, favorecendo a extratibilidade por garantir o particionamento adequado com o solvente extrator. Portanto, decidiu-se estudar o preparo de *slurry* em diferentes proporções de droga vegetal e água, sendo elas 1:1, 1:2, 1:3, 1:4, 1:5 e 1:6 m/m.

Para isso, pesaram-se em balança analítica calibrada, porções de 2 gramas de amostra, após padronização de granulometria, em 6 tubos falcon com capacidades de 50 mL. Foram adicionadas diferentes massas de água ultrapura, sendo elas 2, 4, 6, 8, 10 e 12 gramas, seguidos de agitação em vórtex. Fez-se a avaliação da melhor proporção entre matriz e água pela facilidade de manipulação, homogeneidade visual da mistura e sem excesso aparente de água.

4.8 ANÁLISE DO SOLVENTE EXTRATOR


A análise do solvente extrator visa avaliar a ocorrência de contaminação com as substâncias de interesse na análise, como por exemplo por agrotóxicos e/ou micotoxinas deste estudo. Para análise do solvente transferiu-se 0,5 mL de acetonitrila para um vial, por ser o solvente de extração, e diluiu-se com 0,5 mL da solução acetonitrila:água (1:1, v/v) e então injetou-se no LC-TQ-MS/MS.

4.9 OTIMIZAÇÃO DO PROCEDIMENTO DE EXTRAÇÃO

Foram conduzidos cinco ensaios preliminares para avaliação da exatidão e precisão do procedimento de extração empregado, ilustrados na figura 3. Os *slurries* das amostras de melissa e malva foram fortificados (n=3) em duas concentrações com agrotóxicos e micotoxinas simultaneamente para avaliação das recuperações. Para a fortificação com agrotóxicos as concentrações foram de 10 e 50 μg kg⁻¹. Para a fortificação com micotoxinas do grupo 1, as concentrações obtidas em matriz foram de 2 e 20 μg kg⁻¹ e com as micotoxinas do grupo 2, os *slurries* foram fortificados a 100 e 1000 μg kg⁻¹.

Os critérios de aceitação foram baseados no documento orientativo europeu SANTE nº 12682/2019 onde recuperações de 70 a 120% com RSD (RSD, do inglês *relative standard deviation*) \leq 20% devem ser obtidos. Além dos parâmetros de exatidão e precisão outros critérios preconizados pelos documentos foram avaliados como perfil cromatográfico (formato do pico cromatográfico de interesse), tempo de retenção, *ion ratio* e relação sinal/ruído.

Figura 3 - Fluxograma dos ensaios preliminares realizados para estudo dos procedimentos simultâneos de extração de agrotóxicos e micotoxinas a partir de drogas vegetais de *Melissa officinallis* e *Malva sylvestris*.

^{*} Volume de água adicionado para preparo do *slurry*: 8 e 12 gramas de água para melissa e malva, respectivamente.

P.I.P: padrão interno do procedimento (Propoxur, 20 ng mL⁻¹)

P.I.I.: padrão interno do instrumento (PCB 153, 100 ng mL⁻¹)

4.9.1 Ensaio 1

Em nove tubos falcon pesou-se 10 e 14 g de *slurry* para *Melissa officinallis* e *Malva sylvestris*, respectivamente. Em três tubos identificados como "branco matriz" não foram adicionados quaisquer volumes de solução mistura (item 4.5.3). Em outros três tubos identificados como "Nível 1" foram adicionados 20 μL de solução mistura de agrotóxicos e 40 μL de solução mistura de micotoxinas equivalendo a 10 μg kg⁻¹ para os agrotóxicos e 2 e 100 μg kg⁻¹ para as micotoxinas dos grupos 1 e 2, respectivamente. Nos três últimos tubos identificados como "Nível 2" adicionaram-se100 μL de solução mistura de agrotóxicos e 400 μL de solução mistura de micotoxinas, equivalendo a 50 μg kg⁻¹ para os agrotóxicos e 20 e 1000 μg kg⁻¹ para as micotoxinas dos grupos 1 e 2, respectivamente.

Após as fortificações os tubos foram agitados em vórtex por 30 segundos e então deixados em repouso por 15 minutos. À esses tubos foram adicionados 10 mL do solvente extrator acetonitrila contendo padrão interno do procedimento (P.I.P.) seguido de 1 minuto de agitação em vórtex. Adicionaram-se aos tubos 4 g de MgSO₄ e 1 g de NaCl seguidos de agitação manual para homogeneização inicial e em seguida 1 minuto em mesa agitadora. Centrifugouse por 4 minutos, 4000 rpm a 20 °C, e após transferiu-se uma alíquota de 1 mL do sobrenadante para o kit de *cleanup* dispersivo contendo 25 mg de PSA, 2,5 mg de GCB e 150 mg de MgSO₄ seguidos de 30 segundos de agitação em vórtex. Centrifugou-se novamente e 500 μL do sobrenadante foram transferidos para vials com 500 μL de uma solução de acetonitrila:água (1:1, v/v) contendo P.I.I.

4.9.2 Ensaio 2

O ensaio 2 seguiu as etapas do ensaio 1 até a etapa de *cleanup* onde transferiu-se 1 mL do sobrenadante para o kit de *cleanup* dispersivo contendo 50 mg de PSA, 5,0 mg de GCB e 300 mg de MgSO₄, seguidos de 30 segundos em vórtex. Centrifugou-se novamente e 500 μL do sobrenadante foram transferidos para vials contendo 500 μL de uma solução de acetonitrila:água (1:1, v/v).

4.9.3 Ensaio 3

O ensaio 3 seguiu as etapas do ensaio 1 até a etapa de *cleanup* onde transferiu-se 1 mL do sobrenadante para o kit de *cleanup* dispersivo contendo 25 mg de PSA, 7,5 mg de GCB e

150 mg de MgSO₄, seguidos de 30 segundos em vórtex. Centrifugou-se novamente e 500 μ L do sobrenadante foram transferidos para vials contendo 500 μ L de uma solução de acetonitrila:água (1:1, v/v).

4.9.4 Ensaio 4

Seguiu-se as mesmas etapas do ensaio 1. Entretanto, neste ensaio não foi realizado etapa de *cleanup*.

4.9.5 Ensaio 5

O último ensaio foi uma modificação do ensaio 3 no solvente de extração utilizado. No ensaio 3 o solvente de extração consistia somente de acetonitrila. No ensaio 5, por sua vez, o solvente de extração consistiu em solução de ácido fórmico 1% em acetonitrila (v:v).

4.10 PROCEDIMENTO FINAL DE EXTRAÇÃO

O procedimento final de extração está descrito na figura 4.

Slurry a corresponder 2 g de amostra 10 mL de acetonitrila 1% ácido fórmico + P.I.P. Agitação mecânica 1 min Adição de 4 g MgSO4 + 1 g NaCl Agitação mecânica 1 min Centrifugação 4 min 4000 rpm 1 mL do sobrenadante para 25 mg PSA + 7,5 mg de GCB + 150 mg de MgSO 4 Agitação mecânica 1 min Centrifugação 4 min 4000 rpm Diluição de 0,5 mL do sobrenadante com 0,5 mL de água:acetonitrila (1:1, v/v) + P.I.I. Injeção no sistema LC-MS/MS

Figura 4 - Procedimento final de extração simultânea de agrotóxicos e micotoxinas em *Melissa officinalis e Malva sylvestris*.

4.11 VALIDAÇÃO DO MÉTODO FINAL DE EXTRAÇÃO

4.11.1 Linearidade

Para a realização dos cálculos de linearidade, foram confeccionadas curvas analíticas, cujas soluções analíticas foram preparadas em extrato "branco" de matriz e em solvente orgânico, conforme item 4.5.5. Com o intuito de avaliar a linearidade foram calculados os coeficientes de correlação (r), coeficiente de determinação (r²) e o desvio entre a concentração nominal e a concentração calculada de cada solução da curva analítica, através da equação

matemática obtida pela regressão linear dos mínimos quadrados ordinários (back-calculated concentration). Como critério de aceitação para back-calculated concentration das curvas analíticas adotou-se que valores fora da faixa de -20 a 20% seriam excluídos. A equação 1 exemplifica o cálculo para back-calculated concentration além da plotagem de um gráfico desses valores versus concentração de cada solução, para verificação da homoscedasticidade.

$$RE (\%) = \left(\frac{Cdet-Cnom}{Cnom}\right) x 100$$
 Equação 1

Onde Cdet é a concentração determinada na amostra, Cnom é a concentração nominal de cada solução analítica.

4.11.2 Efeito matriz e seletividade

A seletividade do método foi avaliada pela análise de 6 porções de *slurry* "branco" de cada matriz em contraponto a uma solução em solvente para verificação da existência ou não de picos cromatográficos no mesmo tempo de retenção e com as mesmas transições utilizadas para quantificação e confirmação dos analitos de interesse. O efeito matriz, que é um parâmetro relacionado à seletividade do método analítico, foi calculado de acordo com a equação 1.

$$EM(\%) = \left[\frac{(X_1 - X_2)}{X_2}\right] x \ 100$$
 Equação 2

Onde:

 x_1 = inclinação da curva analítica obtida a partir de soluções preparadas em extrato "branco" de matriz.

x₂= inclinação da curva analítica obtida a partir de soluções preparadas em solvente orgânico

Desse modo, é possível verificar se a matriz exerce efeito de ganho ou de supressão de sinal na análise (PIZZUTTI, 2009). Em análises quantitativas, o efeito que a matriz exerce sobre os analitos de interesse pode levar à quantificações equivocadas caso sejam empregadas curvas analíticas cujas soluções foram preparadas em solvente orgânico, ou seja, sem conter as substâncias naturalmente presentes na matriz. Para eliminar/compensar esse efeito matriz a medida adotada foi efetuar a quantificação com curvas analíticas confeccionadas a partir de soluções preparadas em extrato "branco" de matriz (matrix-matched calibration), onde a composição dos extratos das amostras analisadas e das soluções analíticas utilizadas para a confecção das curvas analíticas possuam a mesma composição.

4.11.3 Limite de quantificação (LOQ)

O limite de quantificação de um método pode apresentar diferentes abordagens de acordo com o guia de validação utilizado. Neste trabalho, o limite de quantificação foi determinado do ensaio de exatidão e precisão e foi considerado como LOQ a menor concentração de fortificação que cumprisse com os critérios de exatidão e precisão recomendados pelo SANTE 2021 o que, respectivamente, consistem em valores de recuperação entre 70 e 120% e RSD ≤ 20%.

4.11.4 Exatidão

A exatidão do método foi avaliada pela fortificação com concentrações conhecidas dos agrotóxicos e avaliação dos percentuais de recuperação posteriormente obtidos. Sete porções de *slurry* "branco", isentos dos analitos de interesse foram fortificadas nas concentrações de 10, 20, 50 e 70 μg kg⁻¹ para os agrotóxicos; 2, 5, 10 e 20 μg kg⁻¹ para micotoxinas do grupo 1 e 100, 250, 500 e 1000 μg kg⁻¹ para micotoxinas do grupo 2. A exatidão foi avaliada a partir dos valores percentuais de recuperação calculados de acordo com a equação 3.

$$REC$$
 (%) = $\left(\frac{C1-C2}{C3}\right)x100$ Equação 3

Onde C1 é a concentração encontrada do analito na matriz fortificada; C2 é a concentração do analito na matriz não fortificada e C3 é a concentração nominal do analito adicionado na fortificação.

De acordo com o guia de validação SANTE 2021 a faixa aceitável de valores de recuperação é de 70 a 120%, sendo possível aceitar valores menores desde que justificados e que requisitos de precisão (RSD%) sejam assegurados.

4.11.5 Precisão

4.11.5.1 **Repetitividade**

A precisão em termos de repetitividade foi avaliada pelo desvio padrão relativo (RSD) das sete replicatas de cada concentração de fortificação, extraídas no mesmo dia, pelo mesmo

procedimento e mesmo analista. O cálculo de RSD foi realizado para cada concentração de fortificação, de acordo com a equação 4.

$$RSD$$
 (%) = $(\frac{s}{x_m})x100$ Equação 4

A repetitividade foi considerada satisfatória para aquelas concentrações de fortificação que apresentaram RSDr $\leq 20\%$.

4.11.5.2 **Precisão intermediária**

A precisão intermediária também foi avaliada pelos ensaios de fortificação/recuperação, sendo calculada pelos valores de RSD das 14 porções de *slurries* "branco" fortificadas com cada concentração de agrotóxicos e micotoxinas e extraídas em dias e por analistas diferentes. Com isso obteve-se a média das médias dos valores de recuperação e de RSD (Equações 3 e 4, respectivamente) de cada concentração de fortificação, obtidos em dias e por analistas diferentes. Como critério de aceitação foram consideradas satisfatórias aquelas concentrações que apresentaram RSD_{wR} ≤ 20%. Além disso, foi realizado o teste t *student* bicaudal com 95% de confiança, e foram considerados valores estatisticamente iguais aqueles que apresentaram valor p≥ 0,05.

5 RESULTADOS E DISCUSSÕES

5.1 ESTABELECIMENTO DAS CONDIÇÕES INSTRUMENTAIS

Para que as análises possuam resultados precisos e exatos em concentrações tão baixas quanto na faixa de 2 a 70 μg kg-1 faz-se necessário saber o perfil dos analitos no cromatógrafo à líquido e espectrômetro de massas. Ao todo, foram otimizadas as condições para 13 micotoxinas e 169 agrotóxicos onde foram analisados no modo monitoramento de reações múltiplas dinâmico (dMRM). Após a solução preparada no item 4.5.3 ser injetada 7 vezes, os analitos foram separados em "janelas de análises". Essas janelas foram divididas automaticamente pelo *software* onde os analitos com tempos de retenção próxima foram agrupados. O tempo total de análise foi de 14 minutos.

As condições cromatográficas no sistema UPLC-TQ-MS/MS após otimização foram:

- Temperatura do forno da coluna: 45 °C
- Volume de injeção: 2 μL
- Vazão da fase móvel: 0,30 mL min⁻¹
- Fase móvel A: solução aquosa de ácido fórmico 0,1%
- Fase móvel B: solução de ácido fórmico 0,1% em acetonitrila
- Gradiente da fase móvel: o gradiente foi iniciado com 20% do canal B seguido de um incremento linear até atingir 90% em 5 minutos, que se manteve até 9 min. Em sequência, modificou-se a fase móvel linearmente a 95% de canal B até 9,25 minutos e manteve-se até aos 11min. Dos 11 aos 14 min o gradiente retornou linearmente a condição inicial de análise
- Tempo total de corrida: 14 minutos
- Ionização à pressão atmosférica com ESI no modo positivo
- Temperatura do *Seahth Gas*: 350 °C
- Temperatura do gás de dessolvatação (N₂): 250 °C
- Vazão do gás de dessolvatação (N₂): 11 L min⁻¹
- Pressão do gás de nebulização (N₂): 40 psi

5.2 PROCESSAMENTO DA AMOSTRA

Para melhorar a eficiência de extração de produtos de baixa umidade (por exemplo, cereais, especiarias, ervas secas), recomenda-se que sejam obtidos tamanhos de partícula pequenos, de preferência menos de 1 mm. A moagem deve ser realizada de forma a evitar aquecimento extenso das amostras, pois o calor pode causar perdas de certos agrotóxicos. Além disso, foi confirmado que existe uma relação entre a diminuição do tamanho das partículas e o aumento da eficiência com a qual os resíduos de pesticidas incorridos são extraídos de diferentes cereais que possuem baixo teor de água (HAJEB, HERMANN e PAULSEN, 2018; SANTE, 2021).

Tendo isso em vista, depois de trituradas em um multiprocessador as amostras foram levadas a um agitador de peneiras para padronização granulométrica de 1 mm. A figura 4 apresenta as amostras após a padronização granulométrica. Besil et al. (2017) apresentarem o mesmo princípio para amostras de *Calendula officinalis* padronizando as partículas em 2 mm seguido de mistura com água (1:5, m/v).

Figura 5 - Drogas vegetais *Melissa officinalis L.* e *Malva sylvestris L.* (a) antes do processamento, (b) após trituração mecânica (1) e (c) após padronização granulométrica (2).

5.3 PREPARO DO *SLURRY*

Como descrito no item 4.7.1 proporções diferenciadas de água foram adicionadas as matrizes com o intuito de selecionar visualmente qual a melhor proporção tendo em vista a homogeneidade e o não excesso de água. Essa avaliação foi feita devido ao baixo teor de água presente em ambas as matrizes e a dificuldade de manipulação na hora da pesagem. Rejczak e

Tuzimski (2015) reforçam a importância do uso de água no processo de extração em alimentos com menos de 80% de água para que o particionamento dos analitos seja mais eficiente.

Para *Melissa officinalis* dentre as proporções testadas àquela que melhor apresentou homogeneidade visual e sem excesso aparente de água foi 1:4. Após essa quantidade era possível ver o excesso de água ao fundo do frasco. Para *Malva sylvestris L.* essa proporção foi maior 1:6. A diferença de proporções de água deve-se pela diferença das partes da planta usadas para copor a droga vegetal, enquanto *Melissa officinalis L.* utilza as folhas secas da planta *Malva sylvestris L.* utiliza as flores.

Em ambos os casos os *slurry* foram preparados com água resfriada (8 °C). Uma vez que para as plantas liberarem suas substâncias responsáveis pela ação terapêutica é necessária uma infusão a quente e com o intuito de extrair os analitos e o mínimo de compostos interferentes possíveis adotou-se essa metodologia. Sutcharitchan et al., (2020) mostraram a importância de adicionar água ao solvente de extração e como isso impacta positivamente no aumento das recuperações. Contudo ele ressalta o uso excessivo desnecessário, para os autores chineses a proporção foi 1:2, ou seja, é uma questão muito particular do tipo de planta e como a droga vegetal foi obtida. Como a proporção de água utilizada nesse trabalho foi maior não se utilizou mistura de água/acetonitrila para extração.

5.4 DESENVOLVIMENTO DO MÉTODO DE EXTRAÇÃO

5.4.1 Análise do solvente de extração

Conforme observado na figura 6, após a realização do procedimento descrito no item 4.10, não foi observada contaminação nos solventes e reagentes utilizados para a realização do procedimento de extração.

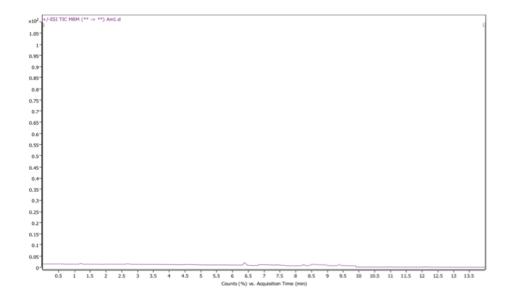


Figura 6 - Cromatograma total de íons obtido para análise de acetonitrila e água, por LC-TQ-MS/MS

5.4.2 Análise do branco em matriz

A seleção de uma amostra isenta dos analitos de interesse representativa para realização da otimização do processo de extração é fundamental para o desenvolvimento de um método multirresíduo e multiclasse e sua reprodutibilidade, visto que além de usada para ensaios de fortificação, o extrato do branco da matriz é utilizado para o preparo das soluções analíticas em matriz. A figura 7 representa o cromatograma de íons totais da matriz "branco" de *Melissa officinalis* e *Malva sylvestris* e uma solução analítica na concentração de 100 μg L⁻¹, preparados em solvente orgânico.

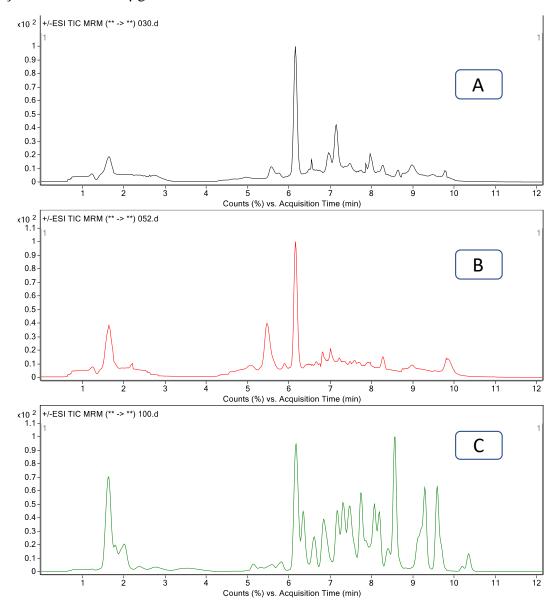


Figura 7 - Cromatograma de íons totais de (a) *Melissa officinalis L*. (b) *Malva sylvestris L*. e (c) solução analítica a $100 \mu g L^{-1}$.

5.4.3 Otimização do procedimento de extração e purificação

5.4.3.1 Agrotóxicos

Após serem conduzidos cinco ensaios preliminares com 167 agrotóxicos a exatidão e precisão foram expressas em números de agrotóxicos que atingiram precisão e exatidão dentro dos critérios de aceitação em cada ensaio. A figura 8 apresenta uma síntese dos resultados obtidos.

160 140 140 120 100 100 80 60 40 20 0 Ensaio 01 Ensaio 02 Ensaio 03 Ensaio 04 Ensaio 05 Ensaio 01 Ensaio 02 Ensaio 03 Ensaio 04 ■Nível 01 ■Nível 02 ■n.f.r. ■ Nivel 01 ■ Nivel 02 ■ n.f.r. Melissa officinalis Malva sylvestris.

Figura 8 – Número de agrotóxicos com recuperação entre 70 e 120% nos níveis 1 e 2 extraídos pelos 5 ensaios preliminares para *Melissa officinalis* e *Malva sylvestris*.

Nível 1: 10 μg kg⁻¹ para agrotóxicos, 2 μg kg⁻¹ para micotoxinas do grupo 1 e 100 μg kg⁻¹ par micotoxinas do grupo 2.

Nível 2: $50~\mu g~kg^{-1}$ para agrotóxicos, $5~\mu g~kg^{-1}$ para micotoxinas do grupo 1 e $250~\mu g~kg^{-1}$ par micotoxinas do grupo 2.

n.f.r.: not fulfill requirements.

Como se pode observar o ensaio 2 apresentou o menor número de agrotóxicos cumprindo os requisitos de aceitação. Os ensaios 4 e 5 foram os que apresentaram o maior número de agrotóxicos apresentando valores exatidão e precisão dentro dos critérios de aceitação já no primeiro nível estudado e o menor número de substâncias que não cumpriam esses requisitos.

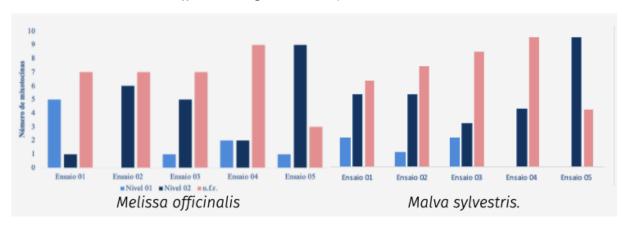
Alguns agrotóxicos, como por exemplo, o aldicarbe, não foram possíveis de serem quantificados (n.q.), pois não apresentou sinal analítico em nenhuma concentração da curva analítica e tão pouco nas porções de *slurry* "branco" fortificadas nos quatro ensaios conduzidos. Yousheng Huang e colaboradores (2019) apresentaram estudos em chá verde extraídos com acetonitrila 1% ácido acético seguidos de adição de MgSO4 e CH3COONa e finalmente como *clean up* foi utilizado 250 mg PSA, 250 mg C18, 250 mg GCB e 750 mg MgSO4. Neste estudo foi reportado linearidade na faixa de 20 a 500 ng mL⁻¹ para o agrotóxico aldicarbe. Comparando-se a menor concentração da curva analítica utilizados por eles (20 ng mL⁻¹) com as concentrações da curva analítica utilizada neste trabalho (1 a 20 ng mL⁻¹) (item 4.5.5) podese entender que a falta de detectabilidade da molécula de aldicarbe em baixas concentrações, como aquelas usadas nos cinco ensaios desse trabalho, seja o motivo que conduziu a não quantificação deste agrotóxico.

Entretanto, os mesmos autores Yousheng Huang e colaboradores (2019) apresentaram resultados lineares das curvas analíticas para pirimicarbe na faixa de 0,4 a 10 ng mL⁻¹, faixa

essa bastante similar a descrita no item 4.5.5. Entretanto, este agrotóxico não apresentou detectabilidade nos ensaios 1 e 4. Já nos ensaios 2, 3 e 5 foi possível quantificá-lo. No ensaio dois, uma etapa de diluição a mais que o ensaio 1 pode ter sido a responsável pela diluição dos coextrativos, evitando então, interferência desses ao pirimicarbe em ambas as matrizes. Os ensaios três e cinco por sua vez, foram aqueles com maior quantidade de GCB, e que visualmente apresentou a coloração mais fraca devido a adsorção dos compostos pigmentos no GCB e com isso houve redução da interferência dos co-extratos na determinação do pirimicarbe.

GCB é muito utilizado para remoção de clorofila e outras substâncias responsáveis pela pigmentação do extrato. Todavia, quando se usa GCB como *clean up*, agrotóxicos planares tendem a ter baixos valores de recuperação devido a adsorção desses ao GCB (HAN et al., 2016; KOESUKWIWAT et al., 2010). Tiabendazol, um agrotóxico planar, sofreu perdas de recuperação frente ao aumento da quantidade de GCB, pois ao comparar-se os cinco ensaios, as recuperações que melhor se enquadraram dentro dos critérios de aceitação foi no ensaio quatro onde não foi utilizado etapa de *clean up*. Entretanto, o agrotóxico difenilamina, que também apresenta estrutura planar, apresentou resultados dentro dos critérios de aceitação nos cinco ensaios conduzidos. Nguyen e colaboradores (2008) reportaram um estudo com a quantidade de GCB utilizada e a influência em pesticidas planares. Nesse estudo conduzido em arrozais foi elucidado que o uso de 10 mg mL⁻¹ de GCB era o suficiente para remover clorofila sem grandes perdas dos agrotóxicos planares. Em nenhum dos ensaios conduzidos aqui esse valor foi ultrapassado. No ensaio 3, onde usou-se a maior quantidade de GCB a proporção foi de 3,75 mg mL⁻¹ de extrato.

Em geral, agrotóxicos com propriedades polares apresentam dificuldade em suas determinações e necessitam de maior atenção quando é necessário o emprego de métodos multirresiduais. Um agrotóxico com característica polar, como acefato, apresentou resultados dentro dos critérios de aceitação para os ensaios 1, 4 e 5 para *Melissa officinallis*. Porém, no ensaio 2, a etapa de diluição apresentou grande influência em sua detectabilidade, o qual não apresentou resposta ao detector para as duas concentrações de fortificação estudadas e nem para seus pontos correspondentes na curva analítica. No ensaio 3, o aumento da quantidade de GCB impossibilitou a identificação deste agrotóxico com a menor concentração de fortificação e uma baixa precisão no estudo com a segunda concentração estudada, na matriz melissa. Quando se analisa os resultados para malva, somente o ensaio 1 apresentou recuperações para esse agrotóxico, mas que não cumpriram os critérios de aceitação preconizados no SANTE 2021. Daniel e colaboradores (2019) apresentaram resultados de recuperações de 87 e 105%,


respectivamente para as concentrações de fortificação de 10 e 50 μg kg⁻¹ em maconha, onde 1 g de matriz foi extraído através do método original QuEChERS utilizando para *clean up* uma combinação de PSA e MgSO₄. A presença de GCB poderia ser o indicador da perda desse agrotóxico. Entretanto, Guo e colaboradores (2019) atingiram recuperações de 81 e 77%, respectivamente para as concentrações de fortificação de 10 e 100 μg kg⁻¹ utilizando como etapa de *clean up* 50 mg de Polivinilpolipirrolidona (PVPP), 50 mg PSA, 10 mg GCB e 150 mg MgSO₄. Com isso, acredita-se que os componentes polares de ambas as matrizes não foram removidos de maneira eficaz nos ensaios conduzidos no presente estudo, e como consequência interferiram significativamente na determinação análise do acefato.

Outro agrotóxico com característica polar é o Imidacloprido. Quando se observa os resultados dos ensaios realizados na matriz *Melissa officinalis* somente os ensaios 4 e 5, onde não houve etapa de *clean up*, apresentaram resultados de acordo com os critérios de aceitação. Huang e colaboradores (2019) validaram uma modificação do método QuEChERS tamponado para chá verde e assim como Besil et al. (2017) apresentaram como primeiro nível fortificado com resultados satisfatórios de precisão e exatidão, a concentração de 25 µg kg⁻¹. No ensaio 4 deste trabalho, os resultados foram satisfatórios para uma menor concentração (10 µg kg⁻¹) em comparação aos trabalhos anteriores. Já para a *Malva sylvestris* quando se determinou o mesmo agrotóxico no presente estudo, somente o ensaio 2 não apresentou resultados satisfatórios em relação aos critérios de aceitação.

5.4.3.2. Micotoxinas

Posteriormente, avaliou-se os resultados apresentados pelas moléculas de micotoxinas (Figura 9).

Figura 9 - Número de micotoxinas com recuperações na faixa de 70 - 120% e RSD < 21% nos ensaios 1, 2, 3, 4 e 5 em *Melissa officinalis* e para *Malva sylvestris*.

Observando os resultados dos ensaios realizados para micotoxinas, os quatro primeiros apresentaram altos índices de descumprimento dos critérios de aceitação. Já o ensaio 5 que consistiu em uma extração com acetonitrila acidificada mostrou-se mais eficiente em cumprir esses requisitos que os demais ensaios. Isso é devido ao fato das micotoxinas serem classificadas em ácidas e neutras. Com a diminuição de pH essas moléculas tendem a se encontrar na forma neutra, protonada e sendo assim mais estáveis preferencialmente quando solubilizadas nos solventes orgânicos a água ou matriz.

Em *Melissa officinalis*, observou-se que para a primeira concentração de fortificação do primeiro ensaio conduzido, duas micotoxinas (15%) apresentaram valores de RSD% e de recuperação em acordo com os critérios de aceitação do SANTE 2021. Para a segunda concentração de fortificação, além das duas micotoxinas já mencionadas, outras cinco (38%) apresentaram resultados satisfatórios. Entretanto, a micotoxina citrinina que havia apresentado resultados aceitos pelos critérios para a primeira concentração estudada, não manteve estes resultados quando fortificada com a segunda concentração estudada (250 µg kg⁻¹). Com isso, citrinina não foi incluída para determinação pelo método multirresíduo estudado. Foram totalizadas então 6 (46%) micotoxinas com resultados adequados para prosseguirem para o processo de validação do método. O restante das micotoxinas não cumpriram os critérios de aceitação em nenhuma das concentrações estudadas.

Para o segundo ensaio, foi possível verificar que o número de micotoxinas com resultados em concordância com os critérios de aceitação para a primeira concentração de fortificação foi de quatro (31%). Dentre estas micotoxinas, somente as micotoxinas ZEA, DON e T2 mantiveram-se com resultados de recuperação dentro desses critérios quando fortificadas com a segunda concentração.

Com isso, a etapa de diluição realizada no ensaio dois não mostrou resultados superiores aos encontrados no ensaio 1.

Em seguida, o terceiro ensaio conduzido não apresentou resultados superiores ao segundo e tão pouco ao primeiro.

Na primeira concentração de fortificação somente e AF G2 cumpriu com os critérios de aceitação. Além disso, quatro micotoxinas não foram identificadas nesta concentração e duas não foram quantificadas. Quando fortificadas com a segunda concentração, as micotoxinas AF G2, toxina T2 e zearalenona apresentaram resultados em acordo com os critérios de aceitação.

O quarto ensaio realizado, onde foi excluída a etapa de *clean up*, apresentou quatro (31%) micotoxinas cumprindo com os critérios de aceitação já quando estudadas com a menor concentração.

Após a fortificação com a segunda concentração um total de seis (46%) micotoxinas apresentaram resultados dentro dos critérios de aceitação e estas foram elencadas para o processo de validação

No último ensaio conduzido, foi onde o maior número de micotoxinas apresentaram resultados dentro dos critérios de aceitação para ambas as matrizes. Assim, observou-se que o ensaio onde o solvente de extração foi acidificado o potencial de extractabilidade do solvente foi superior àqueles não acidificados.

Em geral, avaliando os resultados das micotoxinas selecionadas para a matriz *Malva sylvestris*, nenhum deles foram realmente promissores.

O primeiro ensaio conduzido através da primeira concentração de fortificação, apresentou resultados dentro dos critérios de aceitação apenas para AF B1 e CIT. Ao realizarse a fortificação com a segunda concentração somente a AF B1 se manteve dentro dos critérios de aceitação. Além disso, as micotoxinas AF B2, AF G1, OTA e ZEA não foram detectadas em nenhuma concentração de fortificação estudada. Considerando estes resultados, esse método de extração não se mostrou adequado para cumprir com os objetivos do presente estudo, uma vez que somente uma micotoxina estaria apta a validação.

Avaliando os resultados do ensaio dois, verifica-se que um número maior de micotoxinas apresentaram resultados dentro dos critérios de aceitação. Respectivamente, ao fortificar-se com a primeira e segunda concentração, uma (AF B1) e cinco micotoxinas (AF G1, AF G2, DON, DAS e T2), apresentaram resultados satisfatórios em termos de exatidão e precisão. Com isso, percebe-se que a etapa de diluição proposta por esse ensaio apresentou melhores resultados do que àqueles obtidos pelo ensaio 1 para micotoxinas nessa matriz. Entretanto, a OTA seguiu sem ser detectada em nenhuma das concentrações de fortificação estudadas.

O terceiro ensaio, no qual empregou-se a maior quantidade de sais para o *clean up*, não apresentou resultados superiores ao ensaio dois. Neste ensaio, ao se observar o comportamento das micotoxinas fortificadas com a primeira concentração verificou-se que as micotoxinas AF B1 e AF G1 cumpriram os requisitos, entretanto, AF B1 não se manteve com este desempenho ao ser fortificada com a segunda concentração. Nesta última concentração, encontraram-se de acordo com esses critérios estabelecidos as micotoxinas AF G1, AF G2, DAS, T2 e ZEA.

O quarto ensaio, a partir do qual havia a expectativa da obtenção dos melhores resultados em virtude de não serem adicionados sais para *clean up* e com isso eliminar a possibilidade de adsorção e consequente perda das micotoxinas, apresentou resultados semelhantes àqueles obtidos pelos ensaios anteriores. Respectivamente, ao fortificar-se com a primeira e com a segunda concentração estudadas, as micotoxinas FM B2, OCRA e ZEA, e DON, DAS, OTA e ZEA atenderam os critérios estabelecidos pelo SANTE 2021. Porém, a FM B2 não manteve os resultados satisfatórios, mostrando uma redução significativa no seu percentual de recuperação de 80% para 30% de recuperação.

Finalmente, o quinto e último ensaio de fortificação, foi o aquele que apresentou a maior recuperação das micotoxinas, com picos cromatográficos mais intensos, além de melhor resolução. Portanto, o método multirresiduo de extração e de purificação, para determinação simultânea de agrotóxicos e micotoxinas, realizado no ensaio 5 foi selecionado para validação e aplicação em amostras comerciais.

6. VALIDAÇÃO DOS MÉTODOS PARA DETERMINAÇÃO SIMULTÂNEA DE AGROTÓXICOS E MICOTOXINAS

Posteriormente ao final das otimizações das condições do cromatógrafo à líquido, do espectrômetro de massas e do método de extração, conduziu-se a validação. Dentre os ensaios de extração realizados o que melhor cumpriu com o objetivo desse trabalho foi o ensaio 5.

6.1 EFEITO MATRIZ

As figuras de 10 a 13 apresentam cromatogramas de íon seletivo para avaliação de seletividade, integração, resolução e simetria de pico da aflatoxina B1 e do agrotóxico prometrina, em ambas as matrizes estudadas.

Figura 10- Cromatograma de íon seletivo de aflatoxina B1 (313,1 \rightarrow 128,2; 313,1 \rightarrow 241,2) em (a) extrato "branco" de matriz, (b) solução analítica em acetonitrila a 2 μ g kg⁻¹ e (c) extrato "branco" de *Melissa officinalis* fortificada a 2 μ g kg⁻¹.

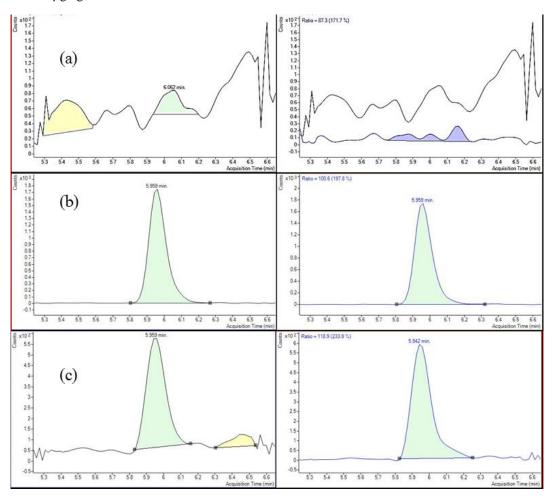


Figura 11 - Cromatograma de íon seletivo de Prometrina (242,1 \rightarrow 158,1; 242,1 \rightarrow 68,1) em (a) extrato "branco" de matriz, (b) solução padrão em acetonitrila a 20 μ g kg⁻¹ e (c) extrato "branco" de *Melissa officinalis* fortificado a 20 μ g kg⁻¹.

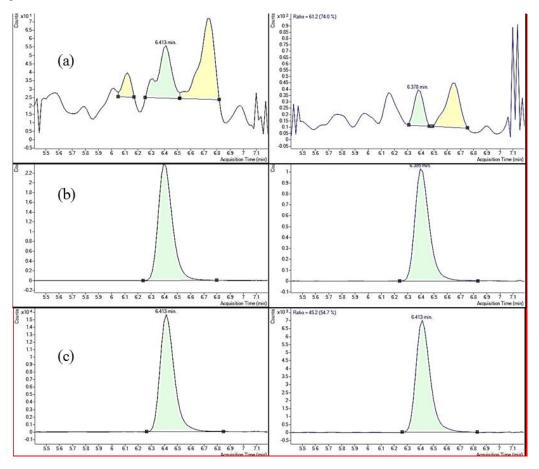
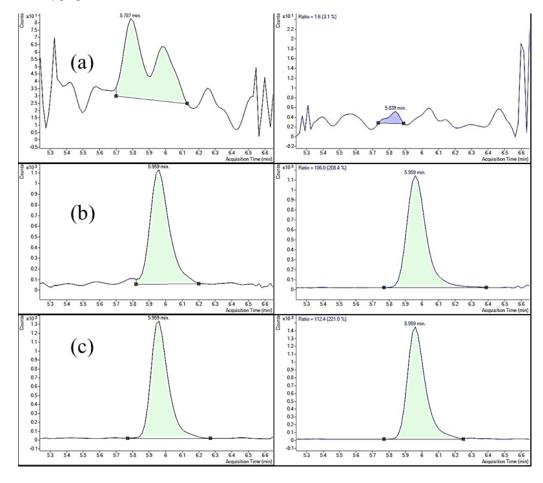
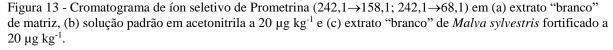
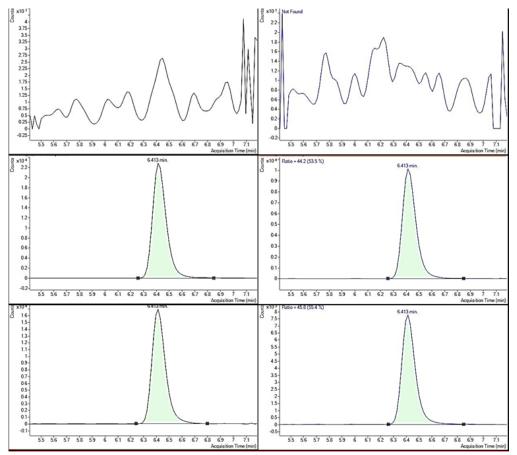
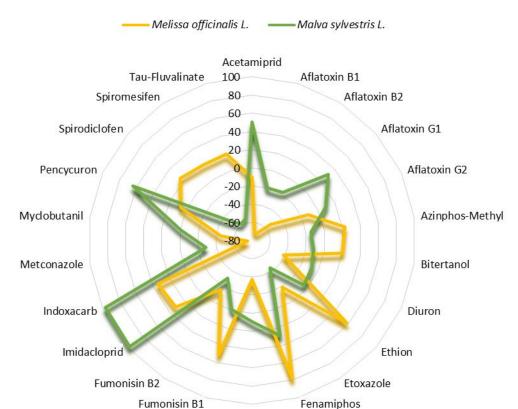





Figura 12 - Cromatograma de íon seletivo de aflatoxina B1 (313,1 \rightarrow 128,2; 313,1 \rightarrow 241,2) em (a) extrato "branco" de matriz, (b) solução padrão em acetonitrila a 2 μ g kg⁻¹ e (c) extrato "branco" de *Malva sylvestris* fortificado a 2 μ g kg⁻¹.



Como pode ser observado pelos cromatogramas extraídos verificou-se a ausência de interferentes no mesmo tempo de retenção dos analitos de interesse. Além disso, a comparação entre os picos para o analito quando em solvente orgânico e quando em presença de extrato da matriz, pode-se verificar que são sobreponíveis e mantendo a proporção entre o íon quantificador e qualificador.

O efeito que a matriz exerce sobre os analitos pode ser divido em três categorias: alto efeito matriz (>50%), efeito matriz moderado (20-50%) e baixo efeito matriz (<20%)(FERRER AMATE et al., 2010; MAESTRONI et al., 2021). A grande maioria dos agrotóxicos e micotoxinas estudadas no presente projeto, apresentaram efeito matriz moderado. Devido a isso, o efeito matriz precisa ser compensado para evitar erros de exatidão. Assim, neste trabalho, foi adotado que toda quantificação fosse utilizada através do procedimento "matrix matched calibration", ou seja, utilizando curvas analíticas construídas a partir de soluções analíticas preparadas em extrato "branco" da matriz Desta forma, as mesmas substâncias presentes nas amostras estavam nas soluções analíticas para quantificação, causando as mesmas influências.

A Tabela 3 apresenta o efeito de matriz para todos os analitos, para as matrizes *Melissa* officinalis e Malva sylvestris. Analitos com características mais polares apresentaram maior efeito de matriz negativo. Como por exemplo, o acefato apresentou efeito de matriz de -74% e -80%, metamidofós -77% e -76% e ometoato -76% e -76% para *Melissa officinalis L.* e Malva sylvestris L., respectivamente. Wu e Ding (2023) demonstraram que agrotóxicos de eluição precoce e tardia nas corridas cromatográficas, foram observados com forte supressão de sinal (efeito matriz negativo). Os efeitos de supressão dos sinais apresentados por agrotóxicos de eluição inicial podem ser esclarecidos devido à coeluição de compostos coexistentes altamente polares na coluna de fase reversa, que podem afetar a eficiência de ionização do analito de interesse. Adicionalmente, no início da corrida cromatográfica, uma proporção bastante reduzida de solvente orgânico está presente no gradiente de eluição da fase móvel. Isso pode impactar a ionização ESI, resultando em uma supressão significativa do sinal. (Li et al., 2015).

Embora agrotóxicos mais polares tenham apresentado efeito de matriz semelhantes em ambas as matrizes, outros analitos apresentaram efeito de matriz bastante distintos para cada fitoterápico. A Fig 14 apresenta alguns dos analitos estudados que demonstraram as maiores diferenças nos valores de efeito de matriz. O LogKow dos analitos varia de 0,5 a 7,02 indicando que tanto os analitos mais polares quanto os apolares podem sofrer diferentes efeitos de matriz nas duas plantas estudadas. O espirodiclofeno, por exemplo, mostrou um aumento de sinal de 24% em *Melissa officinalis*, enquanto apresentou uma supressão de sinal de 46% em *Malva sylvestris*, sustentando que uma calibração de correspondência de matriz representativa levaria a uma quantificação errônea do analito necessitando, portanto, curvas analíticas individuais para cada uma das duas matrizes.

Fenhexamid

Figura 14- Comparação do efeito matriz para alguns dos agrotóxicos e micotoxinas estudados, em extrato de *Melissa officinalis* e *Malva sylvestris*.

A figura 14 demonstra uma comparação entre os principais analitos estudados, com diferenças em termos de efeito matriz, quando estavam em extrato de cada matriz estudada. Em alguns casos, como para o Acetamiprido e para a Fumonisina B1, foi observado uma supressão de sinal quando em extrato de *Melissa officinalis* ao passo que um ganho de sinal analítico foi observado quando em extrato de *Malva sylvestris*.

6.2 CURVA ANALÍTICA E LINEARIDADE

O estudo da linearidade das curvas analíticas foi realizado pela comparação da inclinação da curva analítica confeccionada através de soluções analíticas preparadas em extrato "branco" de matriz e em acetonitrila. Para isso, as curvas analíticas foram preparadas em 8 concentrações e injetadas 7 vezes (n=7) cada concentração. Com isso, pode-se obter um total de 56 pontos para verificação de linearidade. Após conferência individual das curvas analíticas foi realizado o cálculo da concentração real de cada concentração de cada solução analítica em relação a concentração nominal de cada uma, que na língua inglesa denomina-se "back calculated concentration". Todas as concentrações recalculadas apresentaram valores

entre mais ou menos 20%, que é o critério estabelecido pelo SANTE 2021. Em casos individuais onde houve um valor fora desta faixa foi utilizado o teste de grubbs para verificação de *outliers*. Isto posto, a tabela 3 apresenta o coeficiente de determinação e a faixa linear das curvas analíticas preparadas em extrato "branco" de *Melissa officinalis* e de *Malva sylvestris*.

Tabela 3 - Coeficiente de determinação (r^2) e faixa linear para as curvas analíticas confeccionadas através de soluções analíticas preparadas em extrato "branco" de *Melissa officinalis* e de *Malva sylvestris*.

	Me	lissa officina	ılis	Malva sylvestris			
	r ² curva analítica	Faixa Linear µg kg ⁻¹	Efeito Matriz (%)	r ² curva analítica	Faixa Linear µg kg ⁻¹	Efeito Matriz (%)	
		Agrot	tóxicos				
Acefato	0,9988	5 a 1000	-74	0,9999	5 a 1000	-93	
Acetamiprido	0,9981	5 a 1000	-10	0,9999	1 a 1000	40	
Acetocloro	0,9995	10 a 1000	-5	0,9984	10 a 1000	-21	
Aldicarbe Sulfona	0,9997	1 a 500	-24	0,9998	5 a 1000	-31	
Aldicarbe Sulfóxido	0,9994	5 a 500	-77	0,9996	5 a 500	-87	
Atrazina	0,9999	5 a 1000	-17	0,9998	5 a 500	-16	
Azametifós	0,9991	5 a 500	0	0,9999	5 a 1000	17	
Azinfós metílico	0,9941	10 a 500	23	0,9985	50 a 1000	5	
Azoxistrobina	0,9981	5 a 500	55	0,9988	10 a 500	44	
Bifenazato	0,9979	10 a 500	11	0,9953	10 a 500	17	
Bitertanol	0,9998	5 a 1000	20	0,9999	5 a 1000	19	
Boscalida	0,9988	10 a 500	-8	0,9996	5 a 500	-4	
Bromuconazol I e II	0,9996	5 a 1000	12	0,9996	10 a 1000	17	
Bupirimato	0,9997	5 a 500	-26	0,9998	5 a 500	-15	
Buprofezina	0,9994	5 a 500	-32	0,9993	5 a 500	-37	
Cadusafós	0,9953	10 a 500	8	0,998	5 a 1000	-3	
Carbaril	0,9991	5 a 500	-22	0,9989	5 a 1000	-25	
Carbendazim	0,9997	5 a 500	-67	0,9999	10 a 1000	-89	
Carbofurano	0,9985	5 a 500	-11	0,9981	10 a 500	-2	
Carpropamida	0,9992	5 a 500	-13	0,9992	5 a 500	-29	

Ciazofamida	0,9972	50 a 500	-29	0,9991	10 a 500	-22
Ciproconazol	0,9977	10 a 500	7	0,998	5 a 1000	2
Ciprodinil	0,9995	5 a 500	-48	0,9996	10 a 500	-43
Clofentezina	0,9955	10 a	-25	0,9978	10 a	-41
		1000			1000	
Clomazona	0,9983	10 a 500	-14	0,9967	5 a 1000	-8
Clorantraniliprole	0,9929	5 a 500	-5	0,9942	5 a 1000	34
Clorfenvinfós	0,9998	10 a 500	13	0,9992	5 a 500	3
Clorpirifós	0,9993	5 a 500	-3	0,9992	5 a 1000	-31
Clotianidina	0,9997	10 a	-14	0,9998	5 a 1000	7
		1000				
Cresoxim Metílico	0,9971	5 a 1000	-16	0,9959	5 a 1000	-28
Demetom-S-metil	0,9998	5 a 1000	9	0,9999	5 a 1000	22
sulfona						
Demetom-S-metil	0,9991	10 a	12	0,9998	5 a 1000	
sulfóxido		1000				
Diazinona	0,9979	10 a 500	-12	0,9983	5 a 1000	-26
Dietofencarbe	0,9948	10 a 500	17	0,9975	50 a	n.q.
					1000	
Difenilamina	0,9999	5 a 1000	-15	0,9997	5 a 500	-35
Difenoconazole	0,9999	5 a 1000	-17	0,9999	10 a	-10
					1000	
Diflubenzuron	0,9968	50 a	-18	0,9969	50 a	-26
		1000			1000	
Dimetoato	0,9999	1 a 1000	-23	0,9999	1 a 1000	4
Dimetomorfe	0,9994	10 a 500	42	0,9991	50 a 500	62
Diniconazol	0,9997	5 a 500	-8	0,9998	5 a 1000	-16
Diuron	0,9982	10 a 500	-42	0,9943	5 a 1000	-20
DMST	0,9986	10 a	-7	0,9988	10 a	-2
		1000			1000	
Epoziconazol	0,9995	10 a	-4	0,9998	10 a	10
		1000			1000	
Espinosim A	0,9962	5 a a	-39	0,99421	5 a 1000	-32
		1000				
Espinosim D	0,9999	5 a 1000	-35	0,9998	5 a 1000	-40
Espirodiclofeno	0,9982	5 a 500	24	0,9995	5 a 500	31

Espiromesifeno	0,9997	5 a 500	19	0,9992	10 a	5
					1000	
Espiroxamina	0,9999	1 a 1000	-11	0,9999	1 a 1000	-1
Etiona	0,996	10 a 500	58	0,9993	10 a 500	8:
Etiprole	0,9953	10 a 500	-15	0,9976	10 a 500	-1
Etofemprox	0,9991	10 a 500	-10	0,9998	5 a 1000	-2
Etoprofós	0,9957	10 a 500	10	0,9971	5 a 500	10
Etoxazole	0,9995	10 a	-19	0,9999	5 a 1000	-5
		1000				
Fempropimorfe	0,9999	5 a 1000	-13	0,9999	5 a 1000	-1
Fenamidone	0,9996	5 a 500	3	0,9997	5 a 500	9
Fenamifós	0,9959	10 a 500	78	0,9961	5 a 1000	5!
Fenarimol	0,9997	5 a 1000	-17	0,9998	5 a 500	1
Fenazaquim	0,9998	5 a 500	30	0,9999	5 a 1000	6
Fenbuconzaole	0,9969	5 a 500	-2	0,9981	5 a 500	19
Fenhexamida	0,999	10 a 500	-37	0,9992	10 a 500	1.
Fenobucarbe	0,9984	10 a 500	-19	0,9985	10 a 500	-2
Fenotrina	0,9998	50 a	-19	0,9998	50 a	-6
		1000			1000	
Fenoxicarbe	0,9975	10 a 500	-31	0,9987	10 a	-2
					1000	
Fenpiroximate	0,9998	5 a 500	-4	0,9999	5 a 1000	-2
Fensulfotiona	0,9793	50 a	39	0,9709	50 a	5
		1000			1000	
Fentoato	0,999	5 a 500	-28	0,9989	5 a 500	-2
Fludioxonil	0,9942	5 a 1000	-17	0,9948	10 a 500	-1
Flufenoxuron	0,9986	10 a 500	-42	0,9998	50 a	-3
					1000	
Fluquiconazol	0,9997	10 a	-25	0,9988	5 a 500	-1
		1000				
Flusizalol	0,9988	5 a 500	-8	0,9996	5 a 500	-4
Flutolanil	0,9945	50 a	-2	0,9959	5 a 1000	6
		1000				
Flutriafol	0,9997	10 a	-9	0,9996	5 a 500	
		1000				
Fluzazifop-Butílico	0,9953	10 a 500	-5	0,9983	5 a 1000	-2

Fosalona	0,9904	50 a	-4	0,9885	50 a	-24
		1000			1000	
Fosmete	0,9944	50 a	-8	0,99132	5 a 1000	-20
		1000				
Fostiazato	0,9999	10 a	7	0,9999	5 a 1000	7
		1000				
Furalaxil	0,9989	10 a 500	18	0,9994	5 a 500	4
Furatiocarbe	0,9957	5 a 1000	8	0,9964	5 a 1000	-12
Halofenozide	0,9713	50 a	-23	0,9914	10 a	-12
		1000			1000	
Haloxifo-2-etoxietil	0,9999	5 a 1000	-8	0,9999	5 a 1000	-28
Hexaconazol	0,9999	5 a 1000	-16	0,9999	5 a 1000	-31
Hexytiazox	0,9999	5 a 1000	-6	0,9999	1 a 1000	-41
Imazalil	0,9973	10 a	-26	0,9997	10 a	-25
		1000			1000	
Imazapic	0,9992	5 a 500	-32	0,9995	10 a 500	12
Imazetapyr	0,9998	5 a 1000	3	0,9999	5 a 1000	14
Imidacloprida	0,9998	5 a 1000	31	0,9992	10 a	5
					1000	
Indozacarbe	0,9921	5 a 1000	34	0,9945	5 a 1000	36
Iprovalicarbe	0,9984	5 a 1000	20	0,9998	a 1000	0
Isoxaflutole	0,9968	5 a 1000	-30	0,9992	50 a	-30
					1000	
Linuron	0,9898	50 a	-40	0,9931	50 a	-43
		1000			1000	
Lufenuron	0,9993	10 a 500	-58	0,9997	5 a 500	-81
Malationa	0,9996	5 a 1000	14	0,9975	5 a 1000	18
Mecarbam	0,9984	5 a 1000	5	0,9975	5 a 1000	3
Mepanipirim	0,9994	5 a 500	-44	0,9992	10 a	-17
					1000	
Metalaxil	0,9997	5 a 1000	23	0,9998	10 a	35
					1000	
Metamidofós	0,9449	50 a	-13	0,99993	10 a	-91
		1000			1000	
Metconazol	0,9963	5 a 1000	-75	0,9999	5 a 1000	-29

Metidationa	0,9798	10 a	-5	0,9856	50 a	-20
		1000			1000	
Metiocarbe	0,9956	5a 1000	-33	0,9973	5 a 1000	-36
Metomil	0,9994	5 a 1000	-10	0,9995	5 a 500	-20
Metoxifenozide	0,9983	5 a 1000	31	0,9998	5 a 500	33
Miclobutanil	0,9989	5 a 1000	-45	0,9991	5 a 1000	-1
Monocrotofós	0,9999	1 a 1000	-23	0,9998	10 a	-64
					1000	
Nitempiram	0,998	10 a	-76	0,9995	50 a	-82
		1000			1000	
Ofurace	0,9984	10 a 500	46	0,9975	5 a 1000	58
Ometoato	0,9997	5 a 1000	-76	N.Q.	N.Q.	-90
Oxadixil	0,9957	10 a 500	5	0,9948	5 a 1000	10
Oxamil	0,9999	5 a 1000	-20	0,9999	5 a 1000	-34
Paclobutrazol	0,9994	10 a	2	0,9993	5 a 500	-6
		1000				
Pencicurom	0,9952	5 a 1000	6	0,9964	5 a 1000	-17
Penconazol	0,9997	5 a 500	-22	0,9998	10 a	-34
					1000	
Pendimetalim	0,9997	5 a 500	-4	0,9999	5 a 1000	-20
Picoxistrobina	0,9994	5 a 500	-18	0,9998	10 a	-27
					1000	
Piperonil Butóxido	0,9985	5 a 1000	-25	0,9988	5 a 1000	-39
Piraclostrobina	0,9996	5 a 1000	-27	0,9997	5 a 1000	-32
Piridabem	0,9995	5 a 1000	-9	0,9999	5 a 1000	-19
Pirimetanil	0,9996	5 a 500	-38	0,9995	5 a 1000	-35
Pirimicarbe	0,9999	5 a 1000	-21	0,9999	5 a 1000	-36
Pirimifós Etílioc	0,9987	1 a 1000	-15	0,9999	5 a 1000	-30
Pirimifós Metílico	0,9982	5 a 1000	-20	0,9988	5 a 1000	-35
Piriproxifem	0,9995	5 a 500	-24	0,9999	5 a 1000	-37
Pizazofós	0,9988	10 a 500	35	0,9979	5 a 1000	34
Proclorás	0,99864	1 a 1000	11	0,999	5 a 1000	-2
Profam	0,9976	10 a	-33	0,9949	50 a	-47
		1000			1000	
Profenofós	0,9997	5 a 500	-29	0,9995	5 a 1000	-40
Prometrina	0,9999	5 a 1000	-22	0,9999	5 a 1000	-22

Propamocarbe	0,9899	10 a 500	-36	0,9731	10 a 500	-7
Propanil	0,9993	1 a 1000	-26	0,9966	5 a 1000	-2
Propiconazol	0,9994	5 a 500	1	0,9994	5 a 500	C
Propizamida	0,9992	10 a	-19	0,9977	5 a 1000	-4
		1000				
Quinalfós	0,9997	1 a 1000	-33	0,9997	5 a 500	-1
Quinoxifem	0,9998	1 a 1000	-16	0,9999	5 a 1000	-1
Simazina	0,9998	5 a 500	-35	0,9997	10 a	-2
					1000	
Taiacloprido	0,9996	1 a 500	-8	0,9996	5 a 500	-2
Tau-Fluvalinato	0,988	50 a	19	0,9992	50 a	-5
		1000			1000	
Tebuconazol	0,9987	5 a 500	8	0,9992	5 a 500	17
Tebufempirade	0,9989	5 a 500	-15	0,9998	5 a 1000	-2
Tebufenoxide	0,9992	5 a 1000	-12	0,998	5 a 500	-1
Terbutrim	0,9999	5 a 1000	-33	0,9999	5 a 1000	
Tetraclorvinfós	0,9985	10 a	-13	0,9991	50 a	-2
		1000			1000	
Tetraconazol	0,9997	5 a 500	0	0,9997	10 a	-2
					1000	
Tetrametina	0,9924	10 a	-4	0,9967	10 a 500	-1
		1000				
Tiametoxam	0,9998	5 a 1000	-7	0,9994	5 a 500	14
Tiodicarbe	0,9998	5 a 500	-2	0,9998	10 a	55
					1000	
Tiofanato Metílico	0,9992	5 a 1000	-59	0,9974	50 a	-2
					1000	
Triadimefom	0,9996	10 a	9	0,9996	10 a	37
		1000			1000	
Triadimenol	0,9999	10 a	21	0,9981	1 a 500	59
		1000				
Triazofós	0,9998	5 a 500	20	0,9997	10 a	21
					1000	
Trifloxistrobina	0,9998	5 a 500	-8	0,9999	5 a 1000	-4
Triflumizole	0,9999	5 a 1000	-40	0,9998	10 a	-4
					1000	

Triticonazole	0,9966	1 a 1000	4	0,9983	5 a 500	6
Zoxamida	0,9989	5 a 500	-19	0,9988	5 a 500	-20
		Micot	toxinas	-1	1	
Aflatoxina B1	0,9997	5 a 500	-70	0,9997	5 a 500	-20
Aflatoxina B2	0,9976	5 a 500	-71	0,9949	10 a 500	-17
Aflatoxina G1	0,9991	5 a 500	-53	0,9967	5 a 1000	-31
Aflatoxina G2	0,9995	5 a 500	-12	0,9997	5 a 1000	9
Citrinina	0,9791	250 a	-34	0,9647	2500 a	-11
		5000			50000	
Deoxinivalenol	0,9486	250 a	-67	0,9907	250 a	-65
		5000			50000	
Diacetoxiscirpenol	0,9876	250 a	-15	0,9883	500 a	21
		5000			25000	
Fumonisina B1	0,9885	250 a	51	0,9534	2500 a	-1
		5000			50000	
Fumonisina B2	0,998	250 a	-16	0,9904	2500 a	-34
		5000			50000	
Ocratoxina A	0,9991	10 a	20	0,9993	10 a	6
		1000			1000	
Toxina HT2	0,9703	250 a	-44	N.Q.	N.Q.	n.q.
		5000				
Toxina T2	0,9911	50 a	-12	0,9938	250 a	3
		2500			50000	
Zearalenona	0,9946	25 a	-31	0,9988	250 a	-35
		2500			25000	

N.Q.= não quantificável

5.5 LIMITES DE DETECÇÃO E DE QUANTIFICAÇÃO

Na determinação do LOD e LOQ foram utilizados os resultados dos estudos de exatidão e precisão. Foram considerados como limite de quantificação a menor concentração dos analitos estudados que foram fortificados nas matrizes "branco" e que apresentaram valores de RSD% $\leq 20\%$ (representando a precisão) e valores de recuperação entre70 e120%, representando a exatidão dos métodos propostos.

Para *Melissa officinalis*, 124 agrotóxicos apresentaram LOQ de 10 μg kg⁻¹, 11 agrotóxicos apresentaram LOQ de 20 μg kg⁻¹, 9 agrotóxicos apresentaram LOQ de 50 μg kg⁻¹ e 2 apresentaram LOQ de 70 μg kg⁻¹. Para as micotoxinas, 1 micotoxina apresentou LOQ na primeira concentração estudada, 6 delas na segunda concentração e 4 micotoxinas na terceira concentração fortificada.

Para *Malva sylvestris*, 112 agrotóxicos apresentaram LOQ de 10 μg kg⁻¹, 22 agrotóxicos apresentaram LOQ de 20 μg kg⁻¹, 7 agrotóxicos apresentaram LOQ de 50 μg kg⁻¹ e 3 apresentaram LOQ de 70 μg kg⁻¹. Para as micotoxinas, 3 delas apresentaram LOQ na segunda concentração estudada, outras 3 na terceira concentração e ainda outras 3 micotoxinas na quarta concentração utilizada para fortificação no estudo de exatidão e precisão.

Os valores de LOQ e LOD dos agrotóxicos e micotoxinas nos fitoterápicos estudados estão listados na tabela 4 em comparação ao limite máximo de resíduo estabelecido pela 6ª edição da Farmacopeia Brasileira. Todos os agrotóxicos validados encontram-se dentro daqueles preconizados na legislação Brasileira vigente.

Tabela 4 - Limites de detecção, de quantificação e limite máximo permitido de resíduos, de acordo com a 6^a edição da farmacopeia Brasileira (μg kg⁻¹) nos fitoterápicos *Melissa officinalis* e *Malva sylvestris*.

	Melissa (Officinalis	Malva s	LMR		
	LOD	LOQ	LOD	LOQ	(µg kg ⁻¹)	
	$(\mu g kg^{-1})$	(µg kg ⁻¹)	(µg kg ⁻¹)	(µg kg ⁻¹)	(µg kg)	
Agrotóxicos						
Acefato	5	10	1	10	100	
Acetamiprido	5	10	1	10		
Acetocloro	5	20	5	10		
Aldicarbe Sulfona	5	10	1	10		
Aldicarbe Sulfóxido	1	10	5	10		
Atrazina	1	10	1	10		
Azametifós	1	10	1	10		
Azinfós metílico	5	10	1	50	1000	
Azoxistrobina	1	10	1	10		
Bifenazato	1	10	1	n.c.r.v.		
Bitertanol	1	10	1	10		
Boscalida	1	10	1	10		
Bupirimato	1	10	1	10		
Buprofezina	1	10	1	10		
Cadusafós	1	10	1	10		
Carbaril	1	10	1	10		

		1.0		=0	1
Carbendazim	1	10	1	70	
Carbofurano	1	10	1	10	
Carpropamida	5	10	1	20	
Ciazofamida	5	10	5	20	
Ciproconazol	5	10	5	10	
Ciprodinil	5	10	5	10	
Clofentezina	8	10	8	10	
Clomazona	1	10	1	10	
Clorantraniliprole	5	20	5	20	
Clorfenvinfós	1	10	5	10	500
Clorpirifós	5	10	5	10	200
Clotianidina	8	10	5	10	
Cresoxim Metílico	1	10	5	10	
Demetom-S-metil sulfona	5	10	1	10	
Demetom-S-metil sulfóxido	5	10	1	20	
Diazinona	1	10	1	10	500
Dietofencarbe	1	10	1	20	
Difenilamina	1	10	5	10	
Difenoconazole	1	10	1	10	
Diflubenzuron	10	n.c.r.v.	10	50	
Dimetoato	1	10	1	10	100
Dimetomorfe	1	10	1	10	
Diniconazol	5	10	1	10	
Diuron	5	10	1	10	
DMST	10	50	5	10	
Epoziconazol	1	10	1	10	
Espinosim A	1	10	1	10	
Espinosim D	5	10	5	10	
Espirodiclofeno	5	50	5	10	
Espiromesifeno	5	10	10	20	
Espiroxamina	1	10	1	10	
Etiona	1	10	1	10	2000
Etiprole	1	10	5	10	
Etofemprox	1	10	1	10	
Etoprofós	1	10	5	10	
Etoxazole	1	10	1	10	
Fempropimorfe	1	10	1	10	
Fenamidone	1	10	1	10	
Fenamifós	1	10	1	10	
Fenarimol	5	20	1	20	
Fenazaquim	1	10	1	10	
Fenbuconzaole	1	10	5	20	
Fenhexamida	1	10	1	20	
Fenobucarbe	1	10	1	10	
Fenotrina					
1 Chou ma	10	20	5	10	

Eiii	1 1	10	1	10	
Fenpiroximate	1 7	10	1	10	
Fensulfotiona	5	50	10	10	
Fentoato	5	10	1	n.c.r.v.	
Fludioxonil	5	10	1	10	
Flufenoxuron	1	10	20	70	
Fluquiconazol	5	10	1	20	
Flusizalol	1	10	1	10	
Flutolanil	1	10	1	20	
Flutriafol	8	10	1	10	
Fluzazifop-Butílico	1	10	1	10	
Fosalona	10	20	20	20	100
Fosmete	5	10	5	20	50
Fostiazato	1	10	1	10	
Furalaxil	1	10	1	20	
Furatiocarbe	1	10	1	10	
Halofenozide	10	50	10	50	
Haloxifo-2-etoxietil	1	10	1	10	
Hexaconazol	5	10	5	10	
Hexytiazox	1	10	1	10	
Imazalil	10	20	5	10	
Imazapic	5	10	5	10	
Imazetapyr	1	10	5	10	
Imidacloprida	1	10	8	10	
Indozacarbe	1	10	5	10	
Iprovalicarbe	1	10	1	10	
Isoxaflutole	5	50	10	50	
Linuron	10	50	10	20	
Lufenuron	8	10	5	10	
Malationa	1	10	5	10	1000
Mecarbam	5	10	1	10	50
Mepanipirim	1	10	10	50	
Metalaxil	1	20	1	10	
Metamidofós	5	10	5	20	50
Metconazol	5	20	5	10	
Metidationa	10	20	5	20	200
Metiocarbe	5	10	5	20	
Metomil	1	10	1	10	
Metoxifenozide	1	10	1	20	
Miclobutanil	1	10	1	10	
Monocrotofós	1	10	1	10	100
Nitempiram	5	50	1	n.c.r.v.	
Ofurace	1	10	1	10	
Ometoato	1	10	n.c.r.v.	50	
Oxadixil	5	10	1	10	
Oxamil	1	10	1	10	
Paclobutrazol	50	10	1	10	
1 41100444201	50	10		10	

Pencicurom	1	10	1	10	
Penconazol	1	10	1	10	
Pendimetalim	5	10	1	10	100
Picoxistrobina	1	10	1	10	100
Piperonil Butóxido	1	10	1	10	3000
Piraclostrobina	1	10	1	10	3000
Piridabem		10	1	10	
	1	10	1		
Pirimetanil				10	
Pirimicarbe	1	10	1	10	4000
Pirimifós Etílioc	1	10	1	10	4000
Pirimifós Metílico	1	10	1	10	
Piriproxifem	1 7	10	1	10	
Pizazofós	5	10	1	n.c.r.v.	
Proclorás	1	10	1	10	
Profam	8	10	5	10	100
Profenofós	1	10	1	10	100
Prometrina	1	10	1	10	
Propamocarbe	1	n.c.r.v.	1	70	
Propanil	10	50	5	50	
Propiconazol	1	10	1	10	
Propizamida	8	10	5	10	
Quinalfós	1	10	5	10	50
Quinoxifem	1	10	1	10	
Simazina	1	10	5	10	
Tau-Fluvalinato	50	70	10	20	
Tebuconazol	5	10	1	10	
Tebufempirade	5	10	1	10	
Tebufenoxide	1	20	1	10	
Terbutrim	1	10	1	10	
Tetraclorvinfós	10	50	10	50	
Tetraconazol	5	10	5	10	
Tetrametina	8	10	5	10	
Tiametoxam	5	70	1	10	
Tiodicarbe	5	10	1	10	
Triadimefom	8	10	1	10	
Triadimenol	8	n.c.r.v.	1	20	
Triazofós	1	10	1	10	
Trifloxistrobina	1	10	1	10	
Triflumizole	1	10	1	10	
Triticonazole	1	10	1	10	
Zoxamida	5	10	5	10	
Micotoxinas		1			
Aflatoxina B1	1	5	1	5	
Aflatoxina B2	3	5	1	20	
Aflatoxina G1	3	5	4	5	
Aflatoxina G2	3	5	1	5	

Citrinina	5	n.c.r.v.	50	n.c.r.v.	
Deoxinivalenol	50	250	250	500	
Diacetoxiscirpenol	25	250	250	500	
Fumonisina B1	250	500	250	n.c.r.v.	
Fumonisina B2	250	500	500	n.c.r.v.	
Ocratoxina A	8	10	10	20	
Toxina HT2	5	n.c.r.v.	n.c.r.v.	n.c.r.v.	
Toxina T2	25	500	5	1000	
Zearalenona	25	250	25	500	

n.c.r.v.= não cumpriu requisito de validação

5.6 ENSAIOS DE FORTIFICAÇÃO PARA AVALIAÇÃO DE EXATIDÃO E PRECISÃO

As tabelas 5 e 6 apresentam os resultados das recuperações médias obtidas pelos ensaios de fortificação realizados pelos dois analistas no mesmo dia (*intraday*) (n=7), a recuperação média *interday* (n=14), o desvio padrão relativo (RSD%) para os agrotóxicos e micotoxinas nas matrizes *Melissa officinalis* e *Malva sylvestris*, respectivamente, que representam repetitividade e precisão intermediária. Além disso, foi realizado o teste t para avaliação das médias de recuperação em cada concentração de fortificação para verificar se os valores eram estatisticamente iguais ou não considerando um nível de 95% de confiança.

Pode-se verificar que um mesmo analito nem sempre apresentou o mesmo valor de LOQ para ambas as matrizes. Como pode ser inicialmente observado pelo agrotóxico Bifenazato que apresentou resultados dentro dos critérios de aceitação para as quatro concentrações de fortificação testados em *Melissa officinalis* e não foi possível ser quantificado em *Malva sylvestris*. Tanto o efeito matriz, como a faixa linear do detector frente a esse analito, em ambas as matrizes, apresentaram resultados muito próximos. Bian et al. (2022) demonstraram que após o tratamento com GCB ou MWCNT supérfluos, o bifenazato foi mais propenso a ser transformado em bifenazato-diazeno, o que resultou em uma diminuição na concentração real de detecção de bifenazato em folhas de alho.

Outro agrotóxico que apresentou essa diferença nos valores de recuperação foi o carbendazim, onde nas duas primeiras concentrações de fortificação, além das baixas recuperações, elevados valores de desvio padrão foram observados em *Malva sylvestris*. Além disso, na terceira concentração de fortificação obteve-se valores médio entre os dois analistas dentro dos critérios de aceitação, mas o valor p ficou em 0,00 indicando diferença estatística

entre os resultados obtidos e com isso uma falta de reprodutibilidade deste analito nesta planta medicinal e nessa concentração de fortificação.

Em contrapartida, o Diflubenzurom, com um log Kow de 3.89, não foi detectado em concentrações mensuráveis em *Melissa officinalis* em nenhuma das concentrações de fortificação analisadas. Somente nas duas últimas concentrações estudadas para *Malva sylvestris* foram obtidos resultados que atenderam aos critérios de aceitação. Essa situação é muito semelhante ao observado com o agrotóxico Fensulfotion, o qual não foi quantificado nos primeiros níveis de *Melissa officinalis*. No entanto, já no primeiro nível de *Malva sylvestris*, apresentou precisão e exatidão dentro dos limites exigidos.

Já para as micotoxinas, a maior diferença se deu com as fumonisinas 1 e 2, por exemplo, onde apresentaram valores dentro dos critérios de aceitação para exatidão e precisão para *Melissa officinalis*, mas não apresentaram valores de RSD% satisfatórios para nenhuma concentração de fortificação estudada para *Malva sylvestris*.

Por fim, olhando para o teste estatístico aplicado onde a hipótese nula (H0): não há diferença entre os analistas e hipótese alternativa (HA ou H1): existe diferença entre os analistas. Ao analisar todos os dados, observou-se que nos casos em que a exatidão e precisão estavam dentro dos critérios de aceitação a hipótese nula foi aceita e foi verificado que existe reprodutibilidade entre analistas para o método proposto.

Tabela 5 - Recuperações percentuais médias, precisão (RSDr%) e precisão intermediária (RSDR%) obtidas para matriz de *Melissa officinalis*, quando fortificada em cada concentração e determinada por dois analistas em dias diferentes.

	Concentração 1 Recuperações Recuperações médias (%) ± médias (%) ±					Cor	centração 2			Cor	ncentração 3			Con	centração 4	
	média		Recuperações médias (%) ± RSDR (%)	p	média	perações as (%) ± (%) (n=7)	Recuperações médias (%) ± RSDR (%)	p	média	erações s (%) ± %) (n=7)	Recuperações médias (%) ± RSDR (%)	p	Recupe médias RSDr (%		Recuperações médias (%) ± RSDR (%)	p
	A 1	A 2	(n=14)		A 1	A 2	(n=14)		A 1	A 2	(n=14)		A 1	A 2	(n=14)	
Agrotóxicos	I.															<u> </u>
Acefato	82 (16)	76 (15)	79 (15)	0,214	82 (8)	74 (11)	78 (11)	0,156	81 (5)	80 (20)	81 (14)	0,949	91 (8)	85 (10)	88 (9)	0,109
Acetamiprido	99 (15)	85 (7)	92 (14)	0,071	87 (14)	76 (6)	81 (13)	0,075	95 (16)	83 (11)	89 (16)	0,102	83 (16)	79 (5)	81 (12)	0,496
Acetocloro	90 (27)	81 (12)	86 (22)	0,424	91 (14)	78 (12)	84 (15)	0,139	88 (14)	87 (16)	88 (15)	0,926	87 (9)	82 (15)	84 (12)	0,526
Aldicarbe Sulfona	98 (15)	91 (14)	95 (15)	0,302	98 (8)	91 (11)	95 (10)	0,064	106 (5)	113 (16)	110 (12)	0,361	103 (14)	106 (11)	105 (12)	0,547
Aldicarbe Sulfóxido	94 (19)	81 (15)	87 (18)	0,212	83 (13)	75 (16)	79 (14)	0,334	80 (14)	75 (5)	77 (11)	0,224	81 (4)	82 (8)	81 (6)	0,762
Atrazina	100 (10)	89 (12)	95 (12)	0,163	91 (8)	83 (11)	87 (10)	0,083	88 (4)	78 (12)	83 (10)	0,019	83 (9)	76 (9)	79 (10)	0,052
Azametifós	85 (15)	75 (3)	80 (13)	0,114	87 (11)	75 (7)	81 (12)	0,06	86 (12)	78 (22)	82 (17)	0,217	96 (7)	84 (15)	90 (13)	0,155
Azinfós metílico	88 (16)	81 (16)	85 (16)	0,431	92 (18)	102 (6)	97 (13)	0,196	80 (8)	74 (4)	77 (7)	0,141	96 (14)	105 (4)	101 (11)	0,087
Azoxistrobina	95 (13)	99 (6)	97 (10)	0,493	91 (9)	81 (8)	86 (10)	0,06	85 (10)	78 (18)	81 (14)	0,236	83 (18)	71 (5)	77 (16)	0,091
Bifenazato	78 (9)	86 (9)	82 (10)	0,081	84 (16)	91 (1)	88 (11)	0,283	72 (3)	69 (8)	71 (6)	0,26	86 (15)	99 (8)	93 (13)	0,072
Bitertanol	85 (13)	81 (16)	83 (14)	0,505	85 (13)	77 (15)	81 (14)	0,076	91 (7)	87 (20)	89 (14)	0,49	90 (8)	96 (20)	93 (15)	0,48
Boscalida	96 (12)	107 (12)	101 (13)	0,119	94 (7)	99 (5)	96 (6)	0,256	87 (3)	80 (11)	84 (9)	0,108	83 (8)	80 (20)	81 (14)	0,764
Bupirimato	98 (9)	91 (11)	94 (10)	0,094	89 (7)	84 (15)	86 (12)	0,303	85 (3)	80 (18)	82 (13)	0,409	80 (8)	74 (10)	77 (10)	0,117
Buprofezina	90 (11)	79 (19)	85 (16)	0,165	86 (5)	76 (19)	81 (14)	0,153	83 (2)	75 (18)	79 (13)	0,177	74 (15)	86 (16)	80 (17)	0,196
Cadusafós	96 (10)	98 (8)	97 (9)	0,735	91 (6)	101 (14)	96 (12)	0,053	87 (5)	77 (16)	82 (13)	0,141	87 (9)	83 (16)	85 (13)	0,496
Carbaril	93 (11)	78 (18)	85 (16)	0,089	89 (11)	83 (7)	86 (10)	0,197	85 (10)	77 (11)	81 (12)	0,061	78 (18)	87 (2)	83 (13)	0,159
Carbendazim	79 (9)	72 (14)	75 (12)	0,258	74 (11)	77 (19)	76 (15)	0,517	72 (15)	80 (11)	76 (14)	0,137	71 (6)	74 (6)	72 (6)	0,35

Carbofurano	111	100	106 (12)	0,082	111	99 (8)	105 (11)	0,073	118	108	113 (13)	0,08	113	103	108 (9)	0,083
	(9)	(13)			(11)				(8)	(16)			(11)	(5)		
Carpropamida	84	94	89 (18)	0,306	82	95	88 (18)	0,161	83	96	89 (14)	0,115	97	103	100 (12)	0,387
	(18)	(17)			(14)	(19)			(12)	(12)			(13)	(12)		
Ciazofamida	103 (16)	100 (14)	101 (15)	0,765	83 (13)	76 (10)	79 (12)	0,132	88 (9)	76 (19)	82 (15)	0,172	95 (8)	82 (19)	88 (15)	0,095
Ciproconazol	102	105	103 (10)	0.641	82	81	81 (10)	0,808	87 (4)	80	84 (10)	0.159	83	72 (5)	78 (12)	0.057
Ciproconazor	(10)	(10)	103 (10)	0,041	(12)	(10)	61 (10)	0,808	07 (4)	(13)	64 (10)	0,139	(13)	12 (3)	76 (12)	0,037
Ciprodinil	83	79 (4)	81 (8)	0.475	77	72	75 (10)	0,407	71 (6)	75	73 (9)	0,476	73 (4)	79 (8)	76 (8)	0.063
Ciprodiiii	(10)	19 (4)	01 (0)	0,473	(6)	(13)	75 (10)	0,407	71 (0)	(10)	13 (9)	0,470	13 (4)	19 (6)	70 (8)	0,003
Clofentezina	83	99 (7)	91 (15)	0.065	100	110	105 (13)	0.17	78	73	75 (13)	0.37	91	79	85 (15)	0.054
Ciorcinczina	(17)	<i>))</i> (1)	71 (13)	0,003	(9)	(14)	103 (13)	0,17	(14)	(10)	75 (15)	0,57	(15)	(10)	03 (13)	0,034
Clomazona	88	80 (6)	84 (12)	0,193	90	83 (7)	87 (9)	0,06	85 (5)	77	81 (12)	0.216	83	75	79 (16)	0.388
Cioniazona	(15)	80 (0)	04 (12)	0,193	(8)	65 (1)	67 (9)	0,00	65 (5)	(16)	61 (12)	0,210	(16)	(15)	79 (10)	0,366
Clorantraniliprole	56	39	48 (43)	0,247	82	86	84 (18)	0,579	96	85	90 (17)	0,24	92 (9)	77	85 (15)	0.074
Ciorantianinprofe	(41)	(37)	TO (TJ)	0,277	(18)	(19)	04 (10)	0,519	(15)	(19)	70 (17)	0,24)2())	(17)	05 (15)	0,074
Clorfenvinfós	92	108	100 (16)	0.134	94	101	97 (10)	0,156	80 (9)	79 (5)	80 (7)	0,749	85	85 (5)	85 (12)	0,931
CIOTICIIVIIIUS	(18)	(10)	100 (10)	0,134	(13)	(4)	97 (10)	0,130	30 (3)	19 (3)	00 (7)	0,749	(16)	03 (3)	03 (12)	0,931
Clorpirifós	101	92	96 (17)	0.339	97	106	102 (19)	0.335	76	72 (8)	74 (9)	0.336	84	79 (8)	82 (11)	0.272
Ciorpinios	(15)	(19)	90 (1 <i>1)</i>	0,339	(20)	(19)	102 (19)	0,333	(10)	12 (0)	14 (2)	0,330	(12)	19 (0)	02 (11)	0,272
Clotianidina	89	77 (8)	83 (16)	0.076	98	85	91 (16)	0.145	99	87	93 (14)	0.07	90	79 (9)	84 (12)	0.134
Ciotianiuna	(18)	77 (0)	03 (10)	0,070	(7)	(22)	71 (10)	0,143	(11)	(14)	73 (14)	0,07	(11)	17(7)	04 (12)	0,134
Demetom-S-metil	103	95 (3)	99 (13)	0,254	96	89	93 (11)	0,176	94 (4)	83	89 (13)	0.095	96	80 (9)	88 (19)	0,075
sulfona	(17)	93 (3)	99 (13)	0,234	(8)	(12)	93 (11)	0,170) + (+)	(18)	69 (13)	0,093	(20)	80 (3)	00 (19)	0,073
Demetom-S-metil	86 (9)	97	91 (15)	0,163	90	78 (4)	84 (16)	0,083	79	75	77 (16)	0,455	79	73	76 (12)	0,359
sulfóxido	00 ()	(17)	71 (13)	0,103	(18)	70 (4)	04 (10)	0,003	(12)	(20)	77 (10)	0,433	(12)	(11)	70 (12)	0,337
Diazinona	95	101	98 (10)	0,266	94	99	97 (8)	0,322	92 (4)	84 (6)	88 (7)	0,052	87 (8)	84 (6)	86 (7)	0,467
Diuzmona	(10)	(8)	<i>70</i> (10)	0,200	(5)	(10)	<i>)</i>	0,322)2 (4)	04 (0)	00 (7)	0,032	07 (0)	04 (0)	00 (7)	0,407
Dietofencarbe	91	79 (9)	85 (14)	0.124	89	80 (7)	85 (10)	0.127	87 (7)	88 (7)	88 (7)	0.648	81	88 (7)	84 (12)	0.175
Dictorence	(14)	17 (7)	03 (11)	0,121	(10)	00 (1)	05 (10)	0,127	07 (1)	00 (1)	00 (7)	0,010	(15)	00 (/)	01(12)	0,175
Difenilamina	86	83 (1)	84 (13)	0.59	88	78	83 (17)	0.196	90	78	84 (17)	0.112	82	76	79 (13)	0.183
211011111111111	(19)	05 (1)	0.(10)	0,00	(17)	(16)	00 (17)	0,170	(16)	(15)	0.(1/)	0,112	(11)	(14)	,, (10)	0,100
Difenoconazole	94	81	87 (16)	0.073	91	83 (3)	87 (9)	0.051	81 (6)	72	76 (12)	0.094	80	73 (1)	76 (9)	0.095
Direnoconazore	(16)	(13)	07 (10)	0,073	(10)	05 (5)	0, ())	0,051	01 (0)	(15)	70 (12)	0,071	(12)	73 (1)	70 (2)	0,075
Diflubenzuron	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Dimetoato	103	87	95 (16)	0,073	100	91 (9)	95 (11)	0,18	98 (9)	85	91 (13)	0.091	89	88 (3)	88 (12)	0,799
	(16)	(10)		.,	(11)	. (-)	,	-, -	(-)	(13)	- (- /	.,	(17)	(-)	()	,,,,,
Dimetomorfe	96	81	89 (19)	0,059	101	94	98 (11)	0,185	87	77	82 (15)	0,11	91	81	86 (17)	0,278
	(20)	(15)	()	-,	(9)	(12)	(/	- /	(15)	(12)	- (/	-,	(17)	(17)	()	,
Diniconazol	89	78 (9)	83 (16)	0,159	88	83	86 (11)	0,141	86 (8)	76	81 (11)	0,071	83	72 (8)	78 (13)	0,097
	(19)	/	\ -/	1	(10)	(13)	()		(-)	(11)	- ()	.,	(14)	(-/	\ - /	1 .,
Diuron	83	81	82 (15)	0,687	81	72	76 (13)	0,22	78	74	76 (13)	0,567	82	70	76 (14)	0,095
	(19)	(10)	\ - <i>/</i>		(13)	(12)	(- /	,	(12)	(15)	(- /		(12)	(11)	` /	,
DMST	64	90	77 (40)	0,188	88	62	75 (36)	0,072	97	83	90 (17)	0,149	107	93	100 (15)	0,099
	(57)	(21)	\ -/	1,	(34)	(27)	- ()	.,	(16)	(14)	\ ' /	1,7	(13)	(15)	\ -/	1 ,,,,,,,
Epoziconazol	113	93 (7)	103 (17)	0,058	94	82 (4)	88 (16)	0,148	86 (9)	74	80 (16)	0,116	89 (8)	81	85 (11)	0,161
		- (- /	(.,	(20)	- \ /	\ - /	1 - , -	(-)	(19)	\ - /	- ,	(-)	(13)	\ /	.,

Espinosim A	79 (16)	74 (13)	77 (14)	0,408	72 (8)	72 (4)	72 (6)	0,748	71 (6)	73 (2)	72 (5)	0,221	74 (6)	72 (14)	73 (10)	0,646
Espinosim D	70 (16)	74 (19)	72 (17)	0,502	78 (18)	84 (6)	81 (13)	0,348	70 (9)	74 (10)	72 (10)	0,394	72 (6)	74 (10)	73 (8)	0,442
Espirodiclofeno	77 (53)	66 (23)	71 (42)	0,517	72 (36)	81 (17)	77 (27)	0,395	79 (18)	78 (16)	78 (17)	0,896	84 (7)	79 (16)	81 (12)	0,27
Espiromesifeno	98 (7)	97 (19)	97 (14)	0,877	101 (17)	99 (16)	100 (16)	0,798	85 (11)	96 (19)	90 (16)	0,213	107 (17)	96 (19)	102 (18)	0,248
Espiroxamina	89 (11)	81 (10)	85 (11)	0,212	83 (4)	78 (8)	81 (7)	0,087	82 (2)	77 (11)	80 (8)	0,123	81 (2)	77 (19)	79 (13)	0,588
Etiona	84 (16)	79 (15)	81 (15)	0,502	83 (20)	95 (8)	89 (15)	0,13	77 (11)	78 (0)	77 (8)	0,831	84 (16)	78 (0)	81 (12)	0,3
Etiprole	95 (14)	97 (6)	96 (11)	0,689	90 (19)	103 (17)	97 (18)	0,238	90 (17)	93 (7)	92 (13)	0,632	91 (10)	82 (19)	86 (15)	0,113
Etofemprox	93 (8)	86 (11)	89 (10)	0,124	89 (6)	86 (5)	87 (6)	0,215	75 (8)	83 (6)	79 (9)	0,072	82 (11)	82 (6)	82 (9)	0,99
Etoprofós	101 (13)	86 (7)	94 (13)	0,06	96 (9)	84 (12)	90 (12)	0,08	89 (6)	81 (14)	85 (11)	0,106	88 (12)	80 (14)	84 (13)	0,175
Etoxazole	89 (10)	75 (16)	82 (15)	0,101	84 (4)	79 (11)	81 (8)	0,112	81 (4)	75 (15)	78 (11)	0,302	80 (11)	75 (15)	78 (13)	0,306
Fempropimorfe	84 (15)	76 (6)	80 (13)	0,112	77 (5)	74 (5)	76 (5)	0,213	77 (3)	73 (8)	75 (7)	0,093	77 (5)	75 (9)	76 (7)	0,316
Fenamidone	94 (14)	101 (19)	97 (17)	0,573	88 (7)	97 (11)	92 (10)	0,069	91 (15)	93 (7)	92 (11)	0,638	86 (12)	95 (7)	90 (11)	0,13
Fenamifós	91 (14)	94 (1)	93 (10)	0,56	88 (8)	84 (11)	86 (9)	0,381	83 (8)	81 (10)	82 (9)	0,581	82 (15)	73 (17)	78 (16)	0,113
Fenarimol	98 (47)	89 (1)	94 (34)	0,61	88 (13)	101 (16)	94 (16)	0,077	92 (13)	86 (19)	89 (16)	0,188	85 (8)	81 (4)	83 (7)	0,076
Fenazaquim	89 (11)	94 (6)	91 (9)	0,427	85 (8)	100 (16)	93 (15)	0,056	81 (9)	77 (14)	79 (12)	0,443	85 (11)	76 (14)	81 (14)	0,098
Fenbuconzaole	115 (15)	104 (5)	110 (13)	0,199	95 (15)	109 (19)	102 (18)	0,28	89 (7)	86 (10)	88 (9)	0,419	91 (20)	86 (10)	88 (16)	0,509
Fenhexamida	107 (19)	108 (15)	107 (16)	0,892	99 (11)	85 (20)	92 (16)	0,071	87 (9)	74 (15)	80 (14)	0,072	87 (10)	78 (9)	83 (11)	0,062
Fenobucarbe	86 (17)	75 (18)	81 (18)	0,07	93 (4)	86 (12)	89 (9)	0,136	92 (5)	89 (17)	90 (12)	0,696	81 (17)	73 (16)	77 (17)	0,334
Fenotrina	n.q.	n.q.	n.q.	n.q.	87 (12)	88 (6)	87 (9)	0,774	81 (18)	97 (16)	89 (18)	0,133	91 (6)	98 (16)	95 (12)	0,315
Fenoxicarbe	n.q.	n.q.	n.q.	n.q.	94 (15)	87 (18)	91 (16)	0,498	83 (18)	73 (11)	78 (16)	0,14	80 (18)	71 (11)	76 (16)	0,132
Fenpiroximate	88 (12)	92 (4)	90 (9)	0,406	87 (16)	103 (12)	95 (16)	0,079	78 (15)	74 (11)	76 (13)	0,543	83 (20)	73 (11)	78 (17)	0,287
Fensulfotiona	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	97 (15)	105 (8)	101 (12)	0,234	92 (16)	108 (8)	100 (14)	0,071
Fentoato	91 (15)	95 (15)	93 (15)	0,52	85 (9)	91 (16)	88 (13)	0,195	85 (11)	81 (11)	83 (11)	0,412	84 (15)	83 (11)	83 (13)	0,862
Fludioxonil	85 (16)	92 (17)	88 (17)	0,349	100 (18)	100 (13)	100 (15)	0,983	84 (19)	89 (13)	86 (16)	0,372	79 (18)	89 (13)	84 (16)	0,13

Flufenoxuron	105 (9)	89 (18)	97 (16)	0,072	96 (14)	87 (7)	91 (12)	0,151	95 (12)	85 (12)	90 (13)	0,058	81 (14)	72 (8)	77 (13)	0,125
Fluquiconazol	82 (13)	78 (17)	80 (15)	0,592	102 (15)	103 (6)	102 (11)	0,757	90 (14)	79 (12)	84 (14)	0,103	77 (11)	68 (12)	73 (13)	0,12
Flusizalol	96 (12)	112 (12)	104 (14)	0,107	90 (7)	85 (15)	88 (12)	0,32	87 (3)	84 (4)	86 (4)	0,258	83 (8)	72 (19)	77 (15)	0,081
Flutolanil	98 (15)	108	103 (12)	0,124	90 (7)	89 (15)	90 (11)	0,857	88 (8)	80 (13)	84 (11)	0,135	86 (14)	80 (13)	83 (13)	0,191
Flutriafol	98 (17)	107 (10)	103 (14)	0,303	87 (17)	100 (16)	94 (17)	0,226	87 (9)	88 (10)	87 (9)	0,889	82 (9)	90 (10)	86 (10)	0,088
Fluzazifop-Butílico	92 (13)	95 (8)	94 (10)	0,652	101 (11)	109 (13)	105 (12)	0,318	87 (8)	74 (14)	80 (13)	0,064	89 (15)	74 (14)	81 (17)	0,071
Fosalona	43 (113)	15 (215)	29 (146)	0	115 (12)	105 (18)	110 (15)	0,39	93 (8)	85 (14)	89 (12)	0,219	81 (20)	88 (13)	85 (17)	0,433
Fosmete	84 (17)	102 (14)	93 (18)	0,08	92 (10)	99 (13)	96 (12)	0,293	80 (19)	83 (12)	81 (15)	0,655	84 (15)	84 (12)	84 (13)	0,968
Fostiazato	92 (12)	81 (8)	87 (12)	0,067	91 (12)	81 (17)	86 (15)	0,146	87 (11)	76 (8)	81 (12)	0,014	92 (17)	77 (10)	84 (17)	0,066
Furalaxil	93 (9)	79 (19)	86 (16)	0,055	91 (5)	85 (13)	88 (10)	0,266	88 (6)	77 (13)	82 (12)	0,081	88 (11)	75 (10)	81 (13)	0,054
Furatiocarbe	93 (12)	98 (7)	96 (10)	0,437	88 (11)	85 (17)	87 (14)	0,668	84 (8)	75 (16)	80 (13)	0,1	88 (17)	75 (16)	82 (18)	0,08
Halofenozide	143 (23)	441 (60)	292 (81)	0	151 (27)	161 (81)	156 (59)	1	91 (10)	93 (18)	92 (14)	0,697	106	115 (15)	110 (13)	0,096
Haloxifo-2- etoxietil	93 (19)	102 (11)	98 (15)	0,188	83 (11)	93 (12)	88 (13)	0,051	80 (10)	79 (15)	79 (12)	0,913	79 (18)	79 (15)	79 (16)	0,939
Hexaconazol	92 (16)	77 (14)	84 (17)	0,12	84 (11)	73 (13)	78 (13)	0,069	83 (6)	77 (10)	80 (9)	0,14	78 (8)	74 (17)	76 (13)	0,565
Hexytiazox	87 (15)	95 (11)	91 (13)	0,368	81 (13)	87 (19)	84 (17)	0,516	81 (10)	73 (15)	77 (13)	0,064	76 (15)	73 (15)	75 (15)	0,451
Imazalil	n.q.	n.q.	n.q.	n.q.	84 (16)	95 (12)	90 (15)	0,086	70 (9)	69 (9)	70 (9)	0,809	80 (12)	90 (7)	85 (11)	0,127
Imazapic	88 (13)	97 (8)	93 (11)	0,141	83 (6)	97 (19)	90 (17)	0,154	81 (6)	75 (11)	78 (9)	0,197	81 (3)	75 (11)	78 (9)	0,127
Imazetapyr	83 (13)	78 (19)	81 (16)	0,318	81 (4)	78 (8)	79 (6)	0,103	77 (4)	72 (17)	75 (12)	0,288	74 (14)	79 (2)	77 (10)	0,203
Imidacloprida	95 (12)	83 (12)	89 (14)	0,099	114 (16)	119 (12)	117 (14)	0,441	100 (12)	105 (8)	102 (10)	0,518	97 (8)	107 (10)	102 (10)	0,069
Indozacarbe	106 (9)	92 (20)	99 (16)	0,078	88 (19)	98 (18)	93 (19)	0,067	81 (14)	75 (16)	78 (15)	0,291	84 (18)	76 (16)	80 (17)	0,183
Iprovalicarbe	95 (13)	101 (18)	98 (16)	0,519	92 (15)	109 (17)	100 (18)	0,06	87 (10)	95 (8)	91 (10)	0,078	92 (16)	95 (8)	94 (12)	0,666
Isoxaflutole	n.q.	n.q.	n.q.	n.q.	95 (41)	105 (143)	100 (106)	1	84 (16)	85 (21)	85 (18)	0,896	98 (16)	93 (9)	96 (13)	0,548
Kresoxim-methyl	74 (18)	72 (20)	73 (18)	0,716	90 (13)	97 (10)	94 (12)	0,121	78 (14)	77 (12)	77 (13)	0,811	82 (21)	77 (12)	79 (17)	0,577
Linuron	111 (76)	20 (216)	66 (121)	0	80 (26)	78 (40)	79 (33)	0,884	73 (19)	75 (19)	74 (18)	0,816	84 (13)	85 (18)	84 (15)	0,862

Lufenuron	94 (15)	96 (9)	95 (12)	0,73	88 (16)	94 (3)	91 (11)	0,381	82 (6)	79 (12)	81 (9)	0,369	83 (20)	79 (12)	81 (16)	0,608
Malationa	91 (15)	97 (9)	94 (13)	0,38	85 (9)	95 (8)	90 (10)	0,051	85 (11)	77 (7)	81 (10)	0,111	84 (15)	79 (7)	81 (12)	0,44
Mecarbam	79 (12)	92 (13)	85 (14)	0,098	84 (4)	88 (4)	86 (5)	0,078	81 (11)	88 (8)	85 (10)	0,289	82 (19)	89 (8)	86 (14)	0,424
Mepanipirim	86 (18)	92 (11)	89 (14)	0,189	85 (18)	100 (13)	92 (17)	0,062	77 (15)	78 (8)	78 (12)	0,622	86 (18)	80 (8)	83 (14)	0,374
Metalaxil	116 (8)	117 (18)	117 (14)	0,905	114 (16)	110 (15)	112 (15)	0,252	96 (8)	92 (14)	94 (11)	0,249	94 (11)	84 (17)	89 (15)	0,188
Metamidofós	84 (17)	73 (15)	79 (17)	0,191	83 (12)	90 (17)	86 (15)	0,294	72 (8)	79 (12)	76 (11)	0,064	81 (12)	93 (10)	87 (13)	0,102
Metconazol	320 (136)	123 (17)	222 (141)	0	97 (13)	86 (14)	91 (14)	0,078	85 (9)	77 (13)	81 (12)	0,264	80 (6)	72 (15)	76 (12)	0,186
Metidationa	n.q.	n.q.	n.q.	n.q.	88 (16)	76 (5)	82 (14)	0,057	84 (4)	84 (6)	84 (5)	0,811	75 (15)	76 (15)	76 (14)	0,853
Metiocarbe	87 (20)	85 (3)	86 (14)	0,751	88 (14)	99 (19)	93 (17)	0,152	81 (8)	88 (9)	84 (9)	0,098	80 (12)	88 (9)	84 (11)	0,113
Metomil	90 (11)	81 (7)	85 (11)	0,136	89	81 (8)	85 (10)	0,066	88 (4)	80 (12)	84 (10)	0,071	85 (13)	74 (5)	80 (13)	0,066
Metoxifenozide	99 (15)	103 (7)	101 (11)	0,601	91 (9)	109 (18)	100 (17)	0,06	89 (8)	79 (12)	84 (12)	0,14	90 (14)	78 (12)	84 (15)	0,109
Miclobutanil	85 (12)	73 (18)	79 (16)	0,159	90 (9)	77 (15)	84 (14)	0,09	87 (4)	81 (15)	84 (11)	0,263	91 (19)	81 (8)	86 (16)	0,181
Monocrotofós	96 (18)	81 (11)	88 (17)	0,129	92 (7)	81 (12)	86 (12)	0,077	88 (2)	82 (18)	85 (12)	0,35	84 (9)	74 (14)	79 (13)	0,111
Nitempiram	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	100 (19)	99 (7)	100 (14)	0,933	92 (19)	98 (9)	95 (15)	0,2
Ofurace	99 (13)	93 (17)	96 (15)	0,244	90 (12)	76 (11)	83 (14)	0,067	89 (8)	82 (17)	85 (13)	0,3	99 (9)	88 (18)	93 (15)	0,171
Ometoato	102	98 (19)	100 (14)	0,629	84 (4)	80 (20)	82 (14)	0,466	79 (8)	76 (12)	78 (10)	0,194	84 (13)	73 (8)	78 (13)	0,057
Oxadixil	93 (16)	81 (9)	87 (15)	0,109	91 (13)	80 (13)	86 (14)	0,115	87 (7)	80 (10)	83 (9)	0,055	88 (8)	84 (11)	86 (10)	0,266
Oxamil	96 (12)	82 (12)	89 (14)	0,098	94 (8)	89 (14)	92 (11)	0,328	89 (3)	83 (11)	86 (8)	0,12	93 (6)	89 (11)	91 (9)	0,389
Paclobutrazol	109 (15)	100 (19)	105 (17)	0,354	99 (12)	92 (14)	96 (13)	0,429	89 (5)	83 (13)	86 (10)	0,102	83 (5)	75 (13)	79 (11)	0,053
Pencicurom	83 (14)	87 (8)	85 (11)	0,511	89 (15)	102 (13)	95 (15)	0,075	87 (14)	94 (4)	90 (10)	0,192	88 (13)	93 (4)	91 (9)	0,352
Penconazol	94 (14)	77 (19)	86 (18)	0,071	85 (9)	79 (11)	82 (10)	0,127	85 (8)	74 (17)	80 (14)	0,08	79 (12)	70 (6)	75 (11)	0,086
Pendimetalim	83 (19)	79 (5)	81 (14)	0,588	72 (11)	71 (3)	72 (8)	0,63	82 (17)	78 (15)	80 (15)	0,544	88 (6)	79 (15)	83 (12)	0,165
Picoxistrobina	103 (11)	110 (13)	106 (12)	0,201	87 (8)	89 (7)	88 (7)	0,617	84 (10)	82 (4)	83 (7)	0,311	86 (17)	81 (4)	84 (13)	0,403
Piperonil Butóxido	94 (11)	103 (11)	98 (12)	0,129	88 (8)	96 (9)	92 (9)	0,067	84 (7)	76 (9)	80 (9)	0,063	83 (14)	76 (9)	79 (12)	0,202

Piraclostrobina	98	109	104 (12)	0,062	95	102	98 (9)	0,201	76	82 (7)	79 (9)	0,069	84 (6)	83 (7)	84 (6)	0,643
	(13)	(9)			(13)	(2)			(11)							
Piridabem	91	79	85 (18)	0,223	78	86	82 (12)	0,101	73	71 (5)	72 (11)	0,711	78	71 (5)	74 (13)	0,19
	(16)	(19)			(12)	(11)			(15)				(17)			
Pirimetanil	84 (13)	77 (10)	81 (12)	0,293	80 (6)	73 (11)	77 (9)	0,099	77 (3)	71 (13)	74 (10)	0,071	73 (11)	70 (18)	71 (14)	0,622
Pirimicarbe	94	87 (9)	90 (11)	0,067	93	82 (9)	88 (10)	0,06	89 (3)	82	86 (8)	0,09	85 (3)	82	83 (10)	0,458
Timmearde	(11)	67 (9)	90 (11)	0,007	(7)	62 (9)	88 (10)	0,00	69 (3)	(11)	80 (8)	0,09	65 (5)	(14)	65 (10)	0,436
Pirimifós Etílico	94	84	89 (12)	0,128	89	81 (9)	85 (8)	0,077	87 (1)	77	82 (12)	0,057	83 (9)	77	80 (13)	0,269
2 111111100 2111100	(12)	(10)	05 (12)	0,120	(4)	01())	05 (0)	0,077	0, (1)	(15)	02 (12)	0,027	05 ()	(16)	00 (15)	0,20
Pirimifós Metílico	95	96	96 (16)	0,926	92	80	86 (14)	0,091	87 (3)	77	82 (11)	0,051	84	73	79 (12)	0,07
	(13)	(19)			(4)	(19)				(13)			(10)	(11)		
Piriproxifem	87	96 (7)	91 (10)	0,137	82	83	82 (9)	0,862	79 (8)	78	79 (10)	0,869	82 (4)	78	80 (9)	0,371
	(12)				(8)	(11)				(13)				(13)		
Pizazofós	103	112	107 (11)	0,097	92	101	96 (11)	0,151	82	78 (5)	80 (11)	0,384	83	78 (5)	81 (14)	0,41
	(12)	(8)			(15)	(2)			(14)				(18)			
Proclorás	78	93	86 (15)	0,053	79	90	85 (13)	0,103	76 (9)	81 (4)	78 (7)	0,211	72	80 (4)	76 (11)	0,103
	(11)	(14)			(9)	(13)							(13)			
Profam	96	102	99 (11)	0,34	102	105	104 (9)	0,567	93	94 (8)	94 (13)	0,963	94	95 (8)	95 (10)	0,84
D 0 01	(11)	(11)	00 (11)	0.006	(12)	(5)	0.1 (1.0)	0.050	(17)	54 (5)	5 4.45)	0.252	(12)	50 (5)	75 (10)	0.200
Profenofós	93	83 (8)	88 (11)	0,096	83	105	94 (19)	0,058	77	71 (7)	74 (15)	0,273	77	72 (7)	75 (12)	0,299
D	(11)	00 (4)	05 (11)	0.002	(14)	(17)	0.6 (0)	0.070	(19)	00	02 (0)	0.204	(16)	70	00 (10)	0.074
Prometrina	89 (13)	80 (4)	85 (11)	0,082	89	83 (11)	86 (9)	0,079	85 (2)	80 (12)	82 (9)	0,284	82 (6)	78 (13)	80 (10)	0,274
Propamocarbe					(5)	` /			181	157	169 (13)	0,059	176	147	162 (12)	0,002
Propamocarbe	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	(2)	(16)	109 (13)	0,039	(9)	(6)	102 (12)	0,002
Propanil	n.q.	n.q.	n.q.	n.q.	104	75	89 (59)	0,368	102	97	99 (13)	0,597	85	102	93 (17)	0,059
F					(41)	(81)	us (es)	0,000	(13)	(13)	,, (,	,,,,,,	(17)	(13)	, = (=,)	,,,,,,
Propiconazol	89	76	82 (16)	0,152	84	65	74 (19)	0,025	79 (8)	70	74 (13)	0,15	83	75	79 (14)	0,136
•	(10)	(19)			(14)	(14)				(17)			(10)	(17)		
Propizamida	88	82	85 (18)	0,597	90	82	86 (14)	0,342	88	76	82 (18)	0,247	82	75	78 (15)	0,104
	(17)	(19)			(10)	(16)			(18)	(16)			(15)	(15)		
Quinalfós	86	76	81 (18)	0,241	83	75 (9)	79 (16)	0,341	81 (9)	87 (9)	84 (9)	0,223	90 (7)	87 (9)	89 (8)	0,452
	(20)	(15)			(20)											
Quinoxifem	97	108	102 (12)	0,1	87	97	92 (12)	0,146	83	70 (4)	77 (14)	0,055	73 (6)	69 (4)	71 (6)	0,198
~.	(15)	(4)			(11)	(11)		0.0=-	(15)	0.4				0.4 (0)		
Simazina	88	77	82 (16)	0,289	89	75	82 (15)	0,076	90 (7)	81	86 (12)	0,157	87 (2)	81 (8)	84 (7)	0,082
TP TPI 1' 4	(18)	(12)	100 (05)	0	(10)	(16)	100 (56)	0	7.0	(15)	100 (22)	0.01	0.5	0.5	05 (12)	0.000
Tau-Fluvalinato	64 (114)	334	199 (95)	0	112 (63)	247	180 (56)	0	76 (30)	123 (17)	100 (33)	0,01	85	85 (12)	85 (13)	0,999
Tebuconazol	97	(52) 85	91 (14)	0.068	79	(33) 89 (4)	84 (11)	0.089	85 (3)	81 (1)	83 (3)	0,017	(15) 83 (7)	76	79 (14)	0,324
1 COUCOHAZOI	(12)	(13)	71 (14)	0,008	(13)	07 (4)	04 (11)	0,089	05 (3)	01 (1)	03 (3)	0,017	03 (1)	(19)	17 (14)	0,324
Tebufempirade	94	106	100 (14)	0.133	87	92 (1)	89 (9)	0.32	83	71 (7)	77 (13)	0.074	80	71 (7)	75 (14)	0,081
Touremphade	(18)	(7)	100 (14)	0,133	(12)	72 (1)	07 (3)	0,52	(13)	/1 (/)	11 (13)	0,074	(16)	/1 (/)	13 (14)	0,001
Tebufenoxide	115	143	129 (21)	0.056	111	107	109 (4)	0,276	101	93	97 (12)	0,251	95 (9)	83	89 (12)	0.051
100 arenomiae	(29)	(3)	12) (21)	0,050	(5)	(2)	107 (1)	0,270	(5)	(16)), (12)	0,231)5 ()	(11)	0) (12)	0,031
Terbutrim	91	81	86 (13)	0,142	88	81	85 (8)	0,069	85 (2)	80	83 (8)	0,167	82 (6)	77 (9)	80 (8)	0,157
			00 (10)			U -	00 (0)	0,000					· ~ (~)	\//		0,10,

Tetraclorvinfós	94 (9)	90 (18)	92 (14)	0,473	91 (32)	57 (31)	74 (39)	0,039	86 (12)	89 (13)	88 (12)	0,472	98 (16)	89 (13)	94 (15)	0,302
Tetraconazol	97 (14)	81 (14)	89 (17)	0,067	85 (10)	73 (14)	79 (14)	0,078	93 (11)	91 (13)	92 (12)	0,61	84 (10)	81 (14)	82 (12)	0,354
Tetrametina	98 (12)	90 (20)	94 (16)	0,309	84 (13)	95 (8)	90 (12)	0,113	86 (4)	81 (13)	83 (10)	0,312	84 (15)	80 (13)	82 (14)	0,548
Tiametoxam	139 (24)	42 (35)	90 (63)	0	118 (42)	71 (24)	94 (46)	0,091	104 (28)	96 (33)	100 (30)	0,155	100	89 (17)	95 (13)	0,177
Tiodicarbe	97 (13)	81 (13)	89 (16)	0,103	89 (11)	82 (19)	85 (15)	0,381	84 (8)	74 (16)	79 (13)	0,101	86 (7)	77 (19)	81 (14)	0,176
Triadimefom	102 (17)	86 (2)	94 (16)	0,067	90 (8)	82 (16)	86 (13)	0,236	85 (12)	75 (12)	80 (13)	0,17	85 (5)	79 (20)	82 (14)	0,364
Triadimenol	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Triazofós	91 (12)	98 (20)	94 (16)	0,215	88 (8)	85 (7)	87 (7)	0,429	86 (9)	87 (9)	86 (9)	0,747	91 (6)	86 (9)	89 (8)	0,365
Trifloxistrobina	86 (11)	86 (8)	86 (9)	0,954	84 (17)	83 (16)	84 (16)	0,859	77 (11)	73 (6)	75 (9)	0,27	87 (9)	83 (9)	85 (9)	0,08
Triflumizole	91 (12)	78 (14)	84 (15)	0,074	83 (5)	73 (18)	78 (14)	0,119	83 (4)	85 (15)	84 (10)	0,606	81 (5)	77 (20)	79 (14)	0,517
Triticonazole	92 (16)	96 (11)	94 (13)	0,532	94 (9)	106	100 (10)	0,056	85 (7)	90 (4)	88 (7)	0,055	91 (13)	90 (4)	91 (9)	0,936
Zoxamida	86 (16)	93 (15)	90 (15)	0,388	84 (14)	71 (19)	77 (18)	0,174	81 (16)	77 (8)	79 (13)	0,44	87 (10)	80 (11)	84 (11)	0,237
	(10)	(10)			(1.)	(1)	Micoto	xinas	(10)	1		L	(10)	(11)		l .
Aflatoxina B1	60 (60)	114 (26)	87 (48)	0	99 (18)	95 (19)	97 (17)	0,785	88 (16)	104 (13)	96 (17)	0,112	84 (17)	97 (8)	91 (14)	0,138
Aflatoxina B2	77 (19)	31 (0)	54 (47)	0	83 (12)	95 (15)	89 (15)	0,196	87 (18)	92 (8)	90 (13)	0,406	83 (7)	89 (8)	86 (8)	0,056
Aflatoxina G1	n.q.	n.q.	n.q.	n.q.	86 (19)	83 (18)	84 (18)	0,543	85 (9)	88 (6)	87 (8)	0,418	91 (14)	99 (5)	95 (11)	0,083
Aflatoxina G2	n.q.	n.d	n.q.	n.q.	102 (19)	79 (6)	90 (20)	0,035	97 (15)	81 (11)	89 (16)	0,093	80 (12)	73 (6)	77 (11)	0,06
Citrinina	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Deoxinivalenol	n.q.	n.q.	n.q.	n.q.	89 (9)	101 (16)	95 (15)	0,092	86 (14)	97 (5)	91 (12)	0,077	84 (9)	78 (2)	81 (8)	0,054
Diacetoxiscirpenol	n.q.	n.q.	n.q.	n.q.	85 (15)	90 (1)	88 (11)	0,353	81 (11)	76 (1)	79 (8)	0,144	97 (10)	99 (9)	98 (9)	0,697
Fumonisina B1	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	77 (4)	78 (3)	78 (3)	0,083	94 (5)	93 (5)	94 (5)	0,724
Fumonisina B2	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	77 (5)	78 (3)	78 (4)	0,356	75 (3)	83 (11)	79 (10)	0,107
Ocratoxina A	n.q.	n.q.	n.q.	n.q.	39 (15)	40 (4)	39 (10)	0,772	106 (19)	109 (8)	107 (14)	0,686	81 (18)	89 (5)	85 (13)	0,22
Toxina HT2	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Toxina T2	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	82 (14)	73 (8)	78 (12)	0,101	98 (7)	88 (17)	93 (13)	0,135

Zearalenona	n.q.	n.q.	n.q.	n.q.	105	86	96 (30)	0,225	107	112	109 (14)	0,554	93	88	91 (18)	0,636
					(11)	(44)			(8)	(19)			(19)	(19)		

n.q.= não quantificável.

A 1= analista 1

A 2= analista 2.

Tabela 6- Recuperações médias, precisão (RSDr) e precisão intermediária (RSDR) obtidas para amostras de *Malva sylvestris*. quando fortificada em cada concentração e determinada por dois analistas em dias diferentes.

		Co	ncentraçã	ĭo 1		(Concentração 2			Con	centraç	ão 3		C	Concentração 4	
	média	perações as (%) ± (%) (n=7)		Recuperações médias (%) ± RSDR (%) (n=14)	j	p	Recuperações médias (%) ± RSDr (%) (n=7)		Recupe médias RSDI (n=	S (%) ± R (%)	p	Recuperações médias (%) ± RSDr (%) (n=7)			Recuperações médias (%) ± RSDR (%) (n=14)	p
	A1	A2		, ,	A1	A2			A1	A2			A1	A2		_
Agrotóxicos	1						L	ı				I				
Acefato	76 (20)	84 (9)	80 (15)	0,164	84 (13)	101 (12)	93 (15)	0,061	86 (16)	90 (13)	88 (14)	0,619	94 (17)	108 (10)	101 (15)	0,063
Acetamiprido	107	102 (5)	105 (7)	0,273	94 (6)	89 (11)	92 (9)	0,396	86 (17)	78 (5)	82 (14)	0,295	95 (11)	98 (2)	97 (8)	0,367
Acetocloro	106 (17)	95 (11)	100 (15)	0,127	99 (8)	98 (16)	99 (12)	0,811	87 (6)	83 (9)	85 (8)	0,371	99 (5)	97 (10)	98 (8)	0,446
Aldicarbe Sulfona	90 (16)	93 (18)	91 (16)	0,726	90 (13)	84 (13)	87 (13)	0,416	99 (4)	98 (9)	98 (7)	0,728	103 (6)	111 (5)	107 (7)	0,063
Aldicarbe Sulfóxido	101 (17)	86 (20)	94 (20)	0,18	90 (13)	106 (13)	98 (15)	0,087	86 (16)	91 (19)	89 (17)	0,616	83 (5)	94 (13)	89 (12)	0,106
Atrazina	104 (13)	114 (8)	109 (11)	0,184	107 (12)	116	111 (9)	0,155	90 (10)	83 (2)	87 (8)	0,118	87 (10)	82 (2)	84 (7)	0,224
Azametifós	80 (16)	89 (14)	85 (16)	0,298	89 (20)	102	95 (15)	0,135	87 (19)	96 (3)	91 (14)	0,214	87 (12)	98 (3)	93 (10)	0,054
Azinfós metílico	75 (49)	123 (57)	99 (60)	0,059	81 (51)	168 (19)	124 (46)	0,008	82 (17)	93 (18)	88 (18)	0,294	92 (14)	79 (19)	85 (18)	0,12
Azoxistrobina	95 (19)	110 (4)	103 (14)	0,089	93 (11)	102 (6)	98 (9)	0,063	90 (9)	98 (4)	94 (8)	0,054	93 (12)	96 (1)	94 (8)	0,509
Bifenazato	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Bitertanol	83 (18)	79 (11)	81 (15)	0,518	89 (19)	81 (12)	85 (17)	0,281	95 (16)	85 (9)	90 (14)	0,195	94 (16)	92 (5)	93 (11)	0,712
Boscalida	87 (10)	110 (24)	98 (23)	0,052	83 (11)	75 (14)	79 (13)	0,219	88 (8)	82 (13)	85 (11)	0,282	91 (15)	80 (6)	85 (13)	0,061
Bupirimato	102 (10)	96 (7)	99 (9)	0,224	98 (12)	89 (5)	93 (10)	0,119	93 (9)	93 (5)	93 (7)	0,907	93 (8)	88 (3)	91 (7)	0,143
Buprofezina	101 (15)	114 (5)	108 (12)	0,091	111 (15)	111 (5)	111 (11)	0,968	86 (9)	103 (24)	94 (20)	0,172	106 (16)	110 (3)	108 (11)	0,528

Cadusafós	100 (17)	112 (7)	106 (13)	0,133	96 (13)	107 (12)	102 (13)	0,254	103 (13)	113 (8)	108 (11)	0,081	103 (19)	116 (2)	109 (14)	0,136
Carbaril	99	104 (6)	102	0,592	96	108	102 (10)	0.087	106	113	109	0.318	99	110	105 (10)	0.071
Curcum	(18)	10.(0)	(13)	0,0,2	(11)	(7)	102 (10)	0,007	(15)	(3)	(10)	0,510	(11)	(5)	100 (10)	0,071
Carbendazim	65	48 (11)	57	0,263	53	75	64 (30)	0,067	62 (11)	90 (4)	76	0	82	91	86 (9)	0,06
	(54)	()	(45)	-,	(40)	(11)	J. (23)	.,	v= ()	(-)	(20)	-	(11)	(3)	(-)	-,,,,
Carbofurano	118	115 (5)	116	0,632	115	107	111 (8)	0,139	113	104	108	0,093	116	104	110 (11)	0,117
	(11)	\ /	(8)	,	(5)	(10)			(10)	(5)	(9)	,	(13)	(2)	, ,	ĺ
Carpropamida	n.q.	n.q.	n.q.	n.q.	108	92	100 (16)	0,05	88 (9)	75	81	0,133	100	97	98 (7)	0,211
- · · · · · · · · · · · · · · · · · · ·	1	1	. 1	. 1	(10)	(19)		- ,	(-)	(17)	(15)	-,	(8)	(5)		,
Ciazofamida	76	41 (54)	59	0,136	91	93	92 (17)	0,746	96 (10)	105	101	0,091	99	107	103 (11)	0,277
	(47)	. ,	(58)		(17)	(19)	, ,		` ′	(7)	(10)	,	(11)	(10)	, ,	ĺ
Ciproconazol	92	94 (7)	93	0,866	94	103	99 (10)	0,101	90 (9)	90 (6)	90	0,946	94	88	91 (11)	0,31
1	(19)	. ,	(14)		(9)	(9)	, ,		. ,	` /	(8)	,	(10)	(12)	. ,	
Ciprodinil	75	71 (10)	73	0,469	71	73	72 (6)	0,401	70 (9)	72 (8)	71	0,678	71	78	75 (13)	0,142
1	(17)	, ,	(14)		(5)	(7)	` '		. ,	` /	(8)	,	(18)	(5)	. ,	
Clofentezina	90	79 (16)	84	0,096	76	76	76 (15)	0,998	75 (11)	93	84	0,066	89	79	84 (19)	0,289
	(20)	. ,	(19)		(12)	(18)	, ,		` ′	(18)	(19)	,	(19)	(19)	. ,	ĺ
Clomazona	83	73 (13)	78	0,271	92	98	95 (7)	0,192	93 (10)	105	99	0,209	105	111	108 (11)	0,352
	(20)	, ,	(18)		(6)	(8)	, ,			(14)	(13)	•	(9)	(12)		
Clorantraniliprole	78	56 (26)	67	0,199	78	87	82 (19)	0,488	84 (10)	91	87	0,172	97	93	95 (10)	0,39
•	(52)	, ,	(47)		(20)	(19)	, ,			(13)	(12)	•	(12)	(9)	` '	
Clorfenvinfós	97	102 (9)	100	0,599	92	100	96 (9)	0,066	89 (11)	80	84	0,34	93	108	101 (13)	0,074
	(19)	\ /	(14)		(8)	(9)	. ,		` ′	(19)	(16)	,	(16)	(4)	, ,	ĺ
Clorpirifós	112	101	107	0,174	102	103	102 (15)	0,915	83 (7)	90	87	0,116	81	81	81 (11)	0,995
•	(5)	(18)	(13)		(14)	(16)	, ,			(13)	(11)	•	(16)	(6)		
Clotianidina	109	95 (12)	102	0,051	101	88	94 (14)	0,055	92 (19)	78 (6)	85	0,049	89	84	87 (13)	0,419
	(8)	, ,	(12)		(11)	(13)	, ,		` ′	. ,	(17)	•	(17)	(5)		
Cresoxim Metílico	86	93 (19)	89	0,468	92	95	94 (15)	0,646	100	117	108	0,067	96	109	103 (11)	0,069
	(17)		(18)		(13)	(17)			(19)	(6)	(15)		(11)	(7)		
Demetom-S-metil	94	93 (6)	94	0,836	93	99	96 (7)	0,146	101	107	104	0,147	104	103	104 (6)	0,78
sulfona	(17)		(13)		(9)	(4)			(10)	(5)	(8)		(8)	(4)		
Demetom-S-metil	77	79 (16)	78	0,913	87	102	95 (15)	0,128	89 (16)	105	97	0,118	96	107	102 (9)	0,074
sulfóxido	(60)		(42)		(10)	(15)				(20)	(20)		(11)	(3)		
Diazinona	98	108	103	0,33	99	107	103 (12)	0,226	108	113	111	0,509	93	108	100 (15)	0,106
	(12)	(15)	(14)		(6)	(15)			(19)	(9)	(14)		(9)	(15)		
Dietofencarbe	82	39 (27)	61	0,013	109	98	104 (19)	0,14	89 (14)	95 (6)	92	0,357	100	94	97 (10)	0,155
	(37)		(51)		(20)	(18)					(11)		(13)	(5)		
Difenilamina	115	96 (15)	106	0,114	98	87	92 (12)	0,071	89 (11)	84 (8)	86	0,388	86	86	86 (9)	0,944
	(13)		(16)		(11)	(10)					(10)		(10)	(8)		
Difenoconazole	91	81 (6)	86	0,109	94	96	95 (8)	0,594	89 (10)	100	94	0,063	105	101	103 (12)	0,641
	(17)		(14)		(10)	(7)				(5)	(10)		(17)	(4)		
Diflubenzuron	n.q.	n.q.	n.q.	n.q.	91	54	73 (66)	0,147	89 (11)	101	95	0,17	95	115	105 (19)	0,092
					(44)	(92)				(13)	(13)		(14)	(19)		
Dimetoato	101	100 (9)	101	0,831	93	98	95 (7)	0,161	88 (18)	92 (3)	90	0,464	89	91	90 (12)	0,816
	(11)		(9)		(7)	(6)					(12)		(18)	(2)		
Dimetomorfe	93	106 (8)	100	0,125	102	110	106 (10)	0,197	91 (12)	87 (4)	89	0,398	94	86	90 (10)	0,189
	(12)		(12)		(12)	(6)			l	1	(9)		(13)	(3)		I

Diniconazol	91 (13)	83 (14)	87 (14)	0,129	91 (16)	80 (7)	85 (14)	0,061	85 (8)	79 (9)	82 (9)	0,189	89 (10)	82 (11)	85 (11)	0,275
Diuron	86 (17)	74 (7)	80 (16)	0,096	90 (8)	93 (7)	91 (7)	0,248	92 (9)	102 (5)	97 (8)	0,055	90 (9)	89 (20)	90 (15)	0,85
DMST	86 (16)	100 (18)	93 (19)	0,11	105 (20)	97 (13)	101 (17)	0,532	97 (9)	98 (16)	97 (13)	0,963	94 (13)	82 (10)	88 (13)	0,088
Epoziconazol	89 (5)	102 (17)	96 (14)	0,088	96 (10)	111 (14)	104 (14)	0,061	97 (6)	100 (15)	98 (12)	0,587	89 (15)	103	96 (14)	0,059
Espinosim A	92 (16)	79 (14)	86 (16)	0,142	89 (8)	84 (7)	86 (8)	0,097	92 (10)	85 (3)	89 (8)	0,069	93 (9)	91 (5)	92 (7)	0,727
Espinosim D	100 (17)	84 (16)	92 (19)	0,139	94 (10)	93 (13)	93 (11)	0,789	88 (6)	86 (5)	87 (6)	0,443	92 (11)	89 (5)	90 (9)	0,412
Espirodiclofeno	78 (17)	86 (17)	82 (17)	0,324	80 (15)	99 (12)	90 (17)	0,055	91 (11)	99 (8)	95 (10)	0,206	93 (9)	98 (5)	95 (7)	0,169
Espiromesifeno	74 (33)	83 (23)	79 (28)	0,359	78 (6)	91 (17)	85 (15)	0,127	80 (15)	77 (9)	78 (12)	0,675	88 (13)	78 (10)	83 (13)	0,152
Espiroxamina	104 (12)	97 (5)	101 (10)	0,208	97 (4)	100 (3)	98 (4)	0,067	91 (8)	96 (2)	93 (6)	0,153	89 (12)	96 (2)	92 (9)	0,179
Etiona	87 (14)	108 (17)	98 (19)	0,051	92 (8)	104 (14)	98 (13)	0,063	89 (9)	96 (5)	93 (8)	0,155	88 (13)	94 (6)	91 (10)	0,17
Etiprole	86 (14)	79 (19)	82 (16)	0,393	102 (12)	86 (17)	94 (16)	0,093	95 (6)	97 (17)	96 (13)	0,735	102 (14)	103 (5)	103 (10)	0,827
Etofemprox	95 (19)	87 (20)	91 (19)	0,478	107 (18)	98 (20)	103 (19)	0,452	86 (9)	80 (15)	83 (13)	0,366	85 (15)	87 (6)	86 (11)	0,821
Etoprofós	98 (16)	112 (9)	105 (14)	0,213	87 (13)	86 (8)	87 (10)	0,952	88 (9)	81 (20)	84 (15)	0,427	98 (10)	106 (10)	102 (11)	0,2
Etoxazole	92 (16)	88 (3)	90 (11)	0,464	89 (9)	86 (5)	87 (7)	0,177	86 (11)	88 (2)	87 (8)	0,572	87 (6)	87 (3)	87 (4)	0,817
Fempropimorfe	100 (13)	107 (7)	103 (11)	0,341	96 (6)	105 (12)	100 (11)	0,139	93 (5)	96 (4)	94 (5)	0,401	86 (11)	95 (2)	90 (9)	0,068
Fenamidone	97 (12)	108 (8)	102 (11)	0,111	100 (7)	97 (20)	98 (14)	0,761	93 (11)	92 (13)	93 (12)	0,689	91 (11)	86 (4)	88 (9)	0,164
Fenamifós	105 (12)	98 (11)	102 (11)	0,352	91 (13)	91 (5)	91 (9)	0,948	87 (10)	91 (3)	89 (8)	0,475	90 (14)	92 (2)	91 (9)	0,654
Fenarimol	76 (35)	48 (24)	62 (39)	0,097	89 (11)	102 (15)	96 (15)	0,118	76 (19)	74 (10)	75 (15)	0,739	89 (16)	80 (10)	85 (15)	0,117
Fenazaquim	89 (18)	84 (7)	86 (14)	0,499	89 (16)	94 (7)	91 (12)	0,384	84 (14)	93 (3)	88 (11)	0,062	83 (15)	91 (2)	87 (11)	0,161
Fenbuconzaole	65 (27)	40 (47)	53 (42)	0,025	90 (19)	110 (16)	100 (20)	0,158	98 (19)	106 (11)	102 (15)	0,403	98 (6)	99 (21)	98 (15)	0,908
Fenhexamida	81 (34)	78 (20)	79 (27)	0,854	95 (15)	94 (19)	94 (16)	0,91	93 (10)	103 (13)	98 (13)	0,099	99 (14)	104 (15)	102 (15)	0,684
Fenobucarbe	89 (20)	103 (7)	96 (16)	0,116	99 (13)	111 (9)	105 (12)	0,107	91 (10)	106 (16)	98 (15)	0,084	101 (7)	113 (13)	107 (12)	0,074
Fenotrina	113 (18)	107 (14)	110 (16)	0,548	97 (13)	113 (13)	105 (15)	0,082	83 (12)	90 (9)	86 (11)	0,154	88 (15)	82 (7)	85 (13)	0,339
Fenoxicarbe	72 (55)	52 (0)	62 (47)	0,231	81 (19)	73 (14)	77 (17)	0,191	86 (15)	79 (18)	82 (16)	0,457	94 (13)	84 (19)	89 (17)	0,259

Fenpiroximate	85 (17)	93 (4)	89 (12)	0,252	83 (11)	94 (8)	88 (11)	0,058	85 (15)	95 (5)	90 (12)	0,151	85 (7)	91 (9)	88 (9)	0,174
Fensulfotiona	104 (13)	101 (19)	103 (16)	0,752	100 (14)	99 (9)	100 (12)	0,871	113 (14)	101 (11)	107 (14)	0,079	119 (5)	111 (6)	115 (7)	0,068
Fentoato	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Fludioxonil	108	92 (15)	100 (16)	0,085	90 (18)	89 (15)	89 (16)	0,817	97 (11)	98 (12)	97 (11)	0,853	95 (9)	95 (8)	95 (8)	0,992
Flufenoxuron	n.q.	n.q.	n.q.	n.q.	105	101 (12)	103 (15)	0,522	78 (11)	79 (12)	78 (11)	0,911	96 (14)	98 (19)	97 (16)	0,833
Fluquiconazol	89 (53)	65 (40)	77 (51)	0,308	94 (15)	94 (20)	94 (17)	0,968	93 (17)	89 (17)	91 (16)	0,715	94 (14)	86 (12)	90 (14)	0,125
Flusizalol	84 (19)	104 (15)	94 (20)	0,055	94 (18)	104 (10)	99 (15)	0,172	88 (8)	78 (10)	83 (11)	0,057	96 (10)	85 (14)	91 (13)	0,157
Flutolanil	56 (39)	25 (22)	41 (54)	0,016	81 (19)	99 (18)	90 (20)	0,106	85 (13)	80 (17)	82 (15)	0,502	97 (18)	84 (16)	91 (19)	0,066
Flutriafol	99 (16)	87 (9)	93 (15)	0,118	93	84 (12)	89 (11)	0,122	87 (11)	90 (5)	88 (8)	0,509	91 (15)	82	87 (13)	0,223
Fluzazifop-Butílico	89 (13)	99 (10)	94 (12)	0,117	87 (9)	99 (9)	93 (11)	0,066	88 (10)	93 (18)	90 (14)	0,361	87 (12)	(7) 98 (14)	93 (14)	0,195
Fosalona	n.q.	n.q.	n.q.	n.q.	100 (17)	106 (13)	103 (15)	0,51	86 (10)	98 (15)	92 (14)	0,057	93 (9)	105	99 (11)	0,052
Fosmete	n.q.	n.q.	n.q.	n.q.	85 (17)	93 (16)	89 (16)	0,241	94 (15)	87 (4)	91 (12)	0,157	106 (13)	90 (15)	98 (16)	0,072
Fostiazato	105 (15)	95 (7)	100 (12)	0,172	98 (6)	94 (10)	96 (8)	0,269	89 (13)	90 (4)	89 (9)	0,788	91 (13)	89 (4)	90 (9)	0,722
Furalaxil	81 (33)	124 (5)	102 (28)	0,003	79 (14)	131 (4)	105 (27)	0	83 (10)	89 (2)	86 (8)	0,146	95 (11)	89 (2)	92 (9)	0,154
Furatiocarbe	92 (19)	108 (6)	100 (15)	0,118	92 (9)	103 (10)	97 (11)	0,151	88 (9)	100 (13)	94 (13)	0,072	87 (12)	98 (11)	93 (12)	0,086
Halofenozide	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	91 (20)	103	97 (20)	0,161	103 (15)	97 (20)	100 (17)	0,544
Haloxifo-2-etoxietil	87 (18)	92 (12)	89 (15)	0,464	87 (10)	91 (9)	89 (9)	0,312	86 (7)	98 (11)	92 (11)	0,072	93 (8)	102 (8)	97 (9)	0,151
Hexaconazol	97 (15)	95 (12)	96 (13)	0,677	97 (6)	93 (13)	95 (10)	0,464	90 (12)	85 (6)	88 (9)	0,393	86 (10)	84 (8)	85 (9)	0,67
Hexytiazox	100 (18)	81 (17)	91 (20)	0,059	90 (15)	87 (19)	88 (16)	0,712	86 (8)	83 (9)	85 (8)	0,507	86 (14)	92 (9)	89 (12)	0,327
Imazalil	96 (18)	83 (5)	89 (16)	0,101	83 (9)	88 (8)	85 (9)	0,337	85 (9)	93 (5)	89 (9)	0,087	86 (9)	89 (4)	87 (7)	0,53
Imazapic	111 (7)	75 (10)	93 (22)	0	91 (8)	82 (16)	87 (13)	0,083	86 (20)	71 (10)	78 (19)	0,114	81 (18)	74 (6)	77 (14)	0,239
Imazetapyr	94 (14)	86 (12)	90 (13)	0,118	84 (5)	89 (8)	86 (7)	0,119	72 (17)	79 (4)	76 (12)	0,22	78 (16)	79 (3)	78 (11)	0,844
Imidacloprida	100 (13)	92 (15)	96 (14)	0,428	101 (18)	88 (12)	95 (17)	0,058	99 (8)	89 (14)	94 (12)	0,062	89 (19)	92 (21)	91 (19)	0,807
Indozacarbe	82 (17)	102 (18)	92 (21)	0,091	87 (12)	90 (14)	89 (12)	0,543	93 (14)	107 (18)	100 (17)	0,054	101 (8)	109 (8)	105 (9)	0,124

Iprovalicarbe	72 (13)	76 (14)	74 (13)	0,381	79 (15)	92 (10)	86 (14)	0,05	81 (11)	97 (10)	89 (13)	0,055	94 (15)	101 (1)	98 (11)	0,223
Isoxaflutole	n.q.	n.q.	n.q.	n.q.	168	225 (85)	196 (71)	0,474	96 (18)	106 (21)	101 (19)	0,076	100 (15)	92 (10)	96 (13)	0,392
Linuron	n.q.	n.q.	n.q.	n.q.	93 (13)	101 (16)	97 (15)	0,187	118 (12)	119 (7)	119 (9)	0,803	113 (10)	116 (10)	114 (10)	0,636
Lufenuron	86 (20)	97 (11)	91 (17)	0,169	93 (15)	84 (17)	89 (16)	0,13	81 (14)	81 (9)	81 (11)	0,931	92 (11)	84 (6)	88 (10)	0,124
Malationa	103 (15)	104 (12)	104 (13)	0,962	81 (13)	91 (14)	86 (14)	0,2	84 (6)	79 (17)	82 (12)	0,378	106 (8)	114 (5)	110 (8)	0,148
Mecarbam	91 (19)	89 (14)	90 (16)	0,732	98 (11)	87 (14)	92 (14)	0,103	93 (12)	101 (11)	97 (12)	0,096	99 (7)	100 (9)	100 (7)	0,741
Mepanipirim	56 (44)	186 (31)	121 (66)	0,002	59 (31)	78 (40)	69 (39)	0,147	77 (13)	77 (14)	77 (13)	0,919	91 (7)	101 (10)	96 (10)	0,101
Metalaxil	109 (11)	100 (4)	105 (9)	0,111	96 (5)	94 (6)	95 (5)	0,438	89 (15)	88 (2)	88 (11)	0,85	88 (13)	87 (2)	88 (9)	0,857
Metamidofós	n.q.	n.q.	n.q.	n.q.	104 (15)	101 (20)	102 (17)	0,711	44 (18)	64 (11)	54 (24)	0,003	78 (17)	93 (14)	86 (17)	0,071
Metconazol	92 (20)	110 (8)	101 (16)	0,102	90 (15)	103 (5)	96 (13)	0,06	86 (18)	96 (6)	91 (14)	0,134	88 (14)	97 (5)	92 (11)	0,131
Metidationa	n.q.	n.q.	n.q.	n.q.	92 (18)	97 (17)	94 (17)	0,616	89 (18)	84 (15)	86 (16)	0,309	104 (13)	113 (10)	109 (12)	0,212
Metiocarbe	56 (43)	17 (62)	37 (74)	0,005	112 (17)	113 (13)	112 (15)	0,957	86 (9)	78 (8)	82 (10)	0,073	98 (13)	103 (16)	100 (14)	0,563
Metomil	103 (13)	113 (7)	108 (11)	0,146	100 (14)	104 (13)	102 (13)	0,679	97 (19)	107 (18)	102 (19)	0,119	102 (10)	105 (19)	103 (15)	0,841
Metoxifenozide	89 (31)	164 (8)	127 (35)	0,001	89 (17)	105 (18)	97 (19)	0,089	85 (13)	86 (19)	85 (16)	0,748	98 (9)	107 (14)	103 (13)	0,274
Miclobutanil	99 (17)	82 (10)	91 (17)	0,06	103 (6)	92 (15)	98 (12)	0,13	96 (15)	112 (8)	104 (14)	0,075	91 (12)	91 (4)	91 (9)	0,895
Monocrotofós	94 (13)	104 (11)	99 (13)	0,241	75 (14)	87 (17)	81 (17)	0,077	91 (13)	99 (8)	95 (11)	0,133	89 (10)	96 (7)	93 (9)	0,143
Nitempiram	290 (41)	871 (28)	580 (61)	0,002	141 (92)	666 (37)	404 (82)	0,002	93 (47)	244 (46)	169 (67)	0,011	109 (14)	187 (70)	148 (66)	0,183
Ofurace	97 (19)	95 (13)	96 (16)	0,783	92 (9)	85 (3)	88 (8)	0,059	91 (17)	77 (5)	84 (15)	0,079	90 (12)	81 (5)	85 (11)	0,127
Ometoato	980 (72)	697 (58)	839 (68)	0,377	210 (83)	739 (16)	475 (65)	0,001	96 (20)	107 (19)	102 (20)	0,228	89 (4)	84 (18)	86 (13)	0,447
Oxadixil	90 (17)	83 (5)	86 (13)	0,318	88 (7)	88 (8)	88 (7)	0,945	90 (17)	93 (1)	92 (12)	0,639	94 (11)	92 (3)	93 (8)	0,666
Oxamil	91 (16)	80 (6)	85 (14)	0,086	82 (14)	88 (9)	85 (12)	0,337	84 (5)	90 (12)	87 (9)	0,331	85 (10)	89 (4)	87 (7)	0,241
Paclobutrazol	105 (15)	119 (12)	112 (15)	0,163	98 (11)	(9)	105 (12)	0,054	96 (6)	107 (9)	102 (9)	0,063	93 (10)	108 (14)	100 (14)	0,063
Pencicurom	94 (17)	106 (11)	100 (15)	0,103	91 (10)	107 (13)	99 (14)	0,063	95 (11)	108 (12)	101 (13)	0,113	99 (7)	106 (4)	103 (6)	0,052
Penconazol	92 (17)	102 (11)	97 (14)	0,086	90 (9)	92 (6)	91 (7)	0,715	92 (9)	96 (6)	94 (8)	0,303	88 (9)	98 (3)	93 (8)	0,073

Pendimetalim	85 (18)	80 (18)	83 (17)	0,689	88 (11)	92 (11)	90 (11)	0,517	86 (9)	94 (6)	90 (9)	0,081	81 (7)	88 (13)	84 (11)	0,08
Picoxistrobina	101 (17)	115 (2)	108 (13)	0,068	90 (11)	102 (15)	96 (15)	0,176	95 (15)	104 (18)	99 (17)	0,419	107 (15)	112 (4)	109 (11)	0,467
Piperonil Butóxido	92 (16)	103 (6)	97 (13)	0,173	91 (8)	97 (9)	94 (9)	0,14	86 (8)	95 (11)	91 (10)	0,189	89 (10)	96 (12)	93 (11)	0,137
Piraclostrobina	88 (16)	71 (13)	79 (18)	0,056	88 (10)	93 (10)	91 (10)	0,375	83 (8)	94 (11)	89 (11)	0,132	93 (7)	97 (3)	95 (5)	0,127
Piridabem	88 (18)	84 (10)	86 (14)	0,649	87 (5)	89 (5)	88 (5)	0,146	82 (7)	89 (8)	85 (9)	0,058	82 (9)	89 (8)	85 (10)	0,097
Pirimetanil	85 (16)	73 (4)	79 (14)	0,064	78 (5)	77 (5)	78 (5)	0,367	77 (8)	73 (3)	75 (7)	0,161	78 (13)	74 (2)	76 (9)	0,475
Pirimicarbe	101 (12)	97 (5)	99 (9)	0,42	92 (5)	97 (8)	95 (7)	0,356	85 (15)	96 (4)	91 (12)	0,071	86 (11)	91 (8)	88 (10)	0,171
Pirimifós Etílico	98 (13)	104 (6)	101 (10)	0,405	97 (3)	99 (4)	98 (3)	0,245	92 (7)	99 (12)	95 (10)	0,07	104 (18)	101 (2)	103 (12)	0,65
Pirimifós Metílico	102 (13)	104 (9)	103 (11)	0,761	97 (4)	105	101 (7)	0,011	99 (13)	110 (6)	104 (11)	0,135	91 (10)	105 (14)	98 (14)	0,097
Piriproxifem	96 (16)	88 (6)	92 (13)	0,331	90 (8)	91 (7)	90 (7)	0,569	82 (8)	91 (10)	87 (10)	0,114	85 (8)	92 (3)	88 (7)	0,089
Pizazofós	275 (11)	296 (7)	286 (10)	0,097	236 (14)	257 (2)	246 (10)	0,151	205 (14)	195 (4)	200 (10)	0,384	205 (18)	193 (5)	199 (13)	0,41
Proclorás	86 (19)	105 (9)	95 (17)	0,074	85 (8)	87 (7)	86 (7)	0,728	85 (10)	92 (4)	89 (8)	0,128	90 (10)	89 (5)	90 (8)	0,907
Profam	77 (18)	88 (20)	82 (20)	0,269	84 (16)	90 (16)	87 (16)	0,475	96 (18)	89 (8)	92 (14)	0,188	103	89 (19)	96 (15)	0,157
Profenofós	100 (19)	88 (12)	94 (17)	0,193	91 (17)	91 (18)	91 (17)	0,956	92 (6)	102 (9)	97 (9)	0,074	88 (14)	103 (11)	96 (14)	0,094
Prometrina	97 (12)	101 (4)	99 (9)	0,445	94 (7)	96 (3)	95 (5)	0,477	88 (8)	95 (2)	91 (7)	0,105	88 (10)	92 (2)	90 (7)	0,305
Propamocarbe	n.q.	n.q.	n.q.	n.q.	52 (39)	5 (74)	29 (99)	0,002	59 (16)	18 (8)	38 (58)	0	86 (19)	107 (15)	97 (20)	0,063
Propanil	n.q.	n.q.	n.q.	n.q.	67 (70)	73 (45)	70 (56)	0,811	105 (17)	95 (19)	100 (18)	0,306	86 (18)	80 (16)	83 (17)	0,491
Propiconazol	82 (15)	88 (13)	85 (14)	0,258	84 (11)	96 (17)	90 (16)	0,229	84 (10)	76 (5)	80 (10)	0,082	90 (7)	98 (14)	94 (12)	0,1
Propizamida	93 (20)	102 (12)	98 (16)	0,361	84 (20)	102 (20)	93 (22)	0,196	92 (16)	79 (9)	85 (15)	0,055	100	110 (5)	105 (8)	0,056
Quinalfós	95 (19)	101 (16)	98 (17)	0,457	90 (12)	97 (17)	94 (15)	0,171	99 (17)	105 (8)	102 (13)	0,443	95 (8)	102 (7)	98 (8)	0,1
Quinoxifem	95 (16)	89 (11)	92 (14)	0,483	81 (13)	93 (11)	87 (13)	0,087	83 (9)	88 (5)	85 (8)	0,147	80 (8)	84 (5)	82 (7)	0,252
Simazina	98 (15)	96 (10)	97 (12)	0,714	92 (9)	89 (9)	90 (9)	0,48	87 (14)	89 (3)	88 (10)	0,586	89 (13)	88 (3)	89 (9)	0,863
Tau-Fluvalinato	n.q.	n.q.	n.q.	n.q.	102 (10)	103 (5)	102 (8)	0,72	93 (17)	91 (16)	92 (16)	0,754	79 (20)	98 (16)	89 (20)	0,103
Tebuconazol	97 (17)	110 (6)	104 (13)	0,11	92 (23)	112 (7)	102 (18)	0,069	86 (7)	86 (20)	86 (15)	0,904	97 (8)	108 (19)	102 (15)	0,282

Tebufempirade	98 (12)	95 (9)	97 (10)	0,444	104 (5)	107 (17)	105 (12)	0,667	93 (8)	102 (7)	97 (8)	0,108	101 (5)	107 (4)	104 (5)	0,081
Tebufenoxide	95 (18)	95 (12)	95 (15)	0,974	90 (15)	101 (11)	95 (14)	0,236	97 (15)	107	102 (12)	0,156	88 (10)	101 (7)	95 (11)	0,067
Terbutrim	100 (12)	101 (3)	100	0,746	94 (4)	95 (4)	95 (4)	0,465	88 (8)	94 (3)	91 (7)	0,09	86 (11)	92 (2)	89 (8)	0,202
Tetraclorvinfós	77 (99)	72 (110)	74 (100)	0,858	68 (44)	64 (25)	66 (35)	0,759	82 (17)	83 (16)	83 (16)	0,912	82 (14)	78 (9)	80 (11)	0,384
Tetraconazol	100 (18)	115 (9)	108 (15)	0,106	100 (10)	112 (11)	106 (12)	0,158	97 (10)	110 (10)	103 (12)	0,104	91 (17)	83 (2)	87 (13)	0,223
Tetrametina	97 (14)	97 (16)	97 (14)	0,969	90 (14)	104 (12)	97 (15)	0,124	83 (9)	92 (9)	88 (10)	0,091	88 (12)	100 (10)	94 (12)	0,068
Tiametoxam	96 (21)	113 (4)	104 (16)	0,076	86 (13)	93 (17)	90 (15)	0,437	91 (6)	97 (10)	94 (9)	0,229	93 (9)	99 (10)	96 (10)	0,093
Tiodicarbe	86 (14)	77 (6)	82 (12)	0,141	78 (9)	74 (5)	76 (8)	0,183	70 (9)	70 (5)	70 (7)	0,97	65 (13)	74 (20)	70 (18)	0,202
Triadimefom	97 (17)	83 (10)	90 (16)	0,129	97 (5)	104 (14)	100 (11)	0,325	90 (9)	91 (14)	91 (11)	0,945	92 (11)	105 (4)	99 (10)	0,052
Triadimenol	n.q.	n.q.	n.q.	n.q.	96 (19)	73 (19)	84 (23)	0,071	93 (19)	98 (13)	95 (16)	0,587	96 (20)	77 (11)	86 (20)	0,075
Triazofós	90 (16)	103 (7)	97 (13)	0,094	82 (17)	77 (7)	80 (13)	0,449	90 (14)	88 (18)	89 (15)	0,832	108 (13)	97 (5)	102 (11)	0,065
Trifloxistrobina	89 (19)	84 (10)	86 (15)	0,497	98 (10)	89 (16)	94 (14)	0,104	88 (7)	98 (15)	93 (13)	0,081	94 (7)	95 (12)	94 (10)	0,818
Triflumizole	97 (18)	92 (4)	95 (13)	0,554	94 (9)	92 (7)	93 (8)	0,527	86 (7)	93 (5)	89 (7)	0,122	89 (7)	96 (4)	92 (7)	0,097
Triticonazole	90 (20)	104 (16)	97 (19)	0,113	89 (11)	82 (6)	85 (10)	0,121	83 (9)	83 (7)	83 (8)	0,987	91 (12)	84 (5)	87 (10)	0,138
Zoxamida	86 (17)	96 (11)	91 (15)	0,092	92 (9)	95 (8)	93 (8)	0,584	89 (13)	95 (12)	92 (13)	0,129	94 (7)	96 (5)	95 (6)	0,475
Micotoxinas	(/)	I.	()		(-)	(-)			l	(/	()		(.,	(-)		
Aflatoxina B1	51 (21)	84 (15)	67 (31)	0,001	76 (8)	71 (19)	73 (14)	0,353	88 (18)	76 (14)	82 (18)	0,237	95 (10)	91 (12)	93 (11)	0,403
Aflatoxina B2	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	57 (18)	62 (10)	59 (15)	0,167	75 (18)	75 (6)	75 (13)	0,985
Aflatoxina G1	66 (58)	83 (38)	75 (47)	0,191	78 (13)	84 (16)	81 (15)	0,223	96 (14)	85 (14)	90 (15)	0,143	84 (15)	85 (11)	85 (12)	0,832
Aflatoxina G2	n.q.	n.q.	n.q.	n.q.	90 (20)	85 (11)	88 (16)	0,434	89 (19)	88 (7)	89 (14)	0,801	85 (11)	96 (11)	90 (12)	0,119
Deoxinivalenol	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	75 (11)	82 (14)	78 (18)	0,038	76 (8)	75 (9)	76 (9)	0,155
Diacetoxiscirpenol	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	73 (7)	73 (8)	73 (7)	0,547	72 (12)	75 (4)	74 (11)	0,038
Fumonisina B1	156 (2)	163 (14)	159 (10)	0,49	72 (17)	61 (0)	67 (15)	0,047	49 (39)	30 (1)	40 (41)	0,044	23 (31)	15 (1)	19 (32)	0,03
Fumonisina B2	186 (4)	186 (1)	186	0,996	86 (8)	72 (1)	79 (11)	0,002	51 (8)	36 (0)	44 (19)	0	26 (28)	18 (1)	22 (29)	0,032

Ocratoxina A	101	109 (4)	105	0,106	70	69	70 (13)	0,76	81 (14)	73 (8)	77	0,137	70	71	70 (7)	0,648
	(8)		(7)		(11)	(15)					(12)		(5)	(10)		
Toxina T2	15	17 (47)	16	0,623	24	22	23 (22)	0,585	109 (4)	109	109	0,896	87	84	86 (3)	0,157
	(40)		(43)		(25)	(19)				(6)	(5)		(3)	(3)		
Zearalenona	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	79 (8)	78 (5)	78	0,856	82	78	80 (16)	0,133
	_	_	_		_	_	-	_			(6)		(12)	(20)		

n.q.= não quantificável.

6 APLICAÇÃO EM AMOSTRAS COMERCIAIS

O método desenvolvido foi aplicado em 14 amostras comercializadas no mercado público de Porto Alegre/RS. Nestas 14 amostras não foram encontradas resultados acima do limite de quantificação em nenhuma matriz, para nenhum agrotóxico nem micotoxinas estudados. Isso contrapõe o trabalho de Huang et al, 2019, onde os limites de detecção e de quantificação variaram de 0,03 a 15 μg/kg e de 0,1 a 50 μg/kg. Foi determinado que 67% das amostras de chá verde continham algum resíduo de agrotóxicos e a maioria das amostras continham mais de cinco agrotóxicos. Além disso, as concentrações de 11 resíduos de agrotóxicos em 18 amostras foram consideradas superiores aos valores permitidos pelo Regulamento CE n.º 396/2005. No estudo de Pallarés et al. 2020, estes analisaram 224 amostras de fitoterápicos e suas infusões. Os resultados revelaram que ZEA, AF B2, AF G1 e AF G2 foram detectadas com incidências ≤6% nas infusões e em concentrações abaixo do limite de quantificação até 82,2 μg L⁻¹. A redução de micotoxinas variou de 74 a 100% após o processo de infusão. A avaliação de risco revelou que as ingestões diárias estimadas (EDIs) obtidas para ZEA estavam muito abaixo das ingestões diárias toleráveis (TDIs) estabelecidas. Com isso, é possível ressaltar a qualidade dos fitoterápicos produzidos no Brasil e avaliados nesse estudo.

7 CONCLUSÕES

A otimização e a validação dos métodos analíticos multirresíduos para determinação simultânea de resíduos de agrotóxicos e de micotoxinas são de suma importância, pois através destes pode-se verificar e buscar a garantia da qualidade dos produtos que chegam até os consumidores. Os métodos validados nesse trabalho apresentam como vantagens serem dinâmicos, rápidos e eficientes, podendo ser aplicados em qualquer laboratório, devido à redução de gargalos de processos além da simplicidade.

Os métodos validados para determinação simultânea de resíduos de agrotóxicos e micotoxinas, demonstraram ser eficientes, exatos e precisos, uma vez que apresentou percentuais de recuperação e de precisão dentro dos critérios de aceitação estabelecidos pelos documentos orientativos de validação.

O processo de purificação desenvolvido para ambas as matrizes foi o mesmo e mostrou desempenho satisfatório e grande poder de retirada de substâncias interferentes, em especial os pigmentos como clorofila, reduzindo a coloração do extrato final e diminuindo as derivas instrumentais causadas pelo acúmulo de sujeiras na fonte de ionização quando comparados ao método sem etapas de purificação.

Pode-se ainda destacar a vantagem de utilizar um único método para ambas as matrizes e a extração simultânea de 146 e 144 agrotóxicos e de 11 e 9 micotoxinas, para *Melissa officinalis* e *Malva sylvestris*, respectivamente. Somando-se a isso, foi demonstrado a importância da utilização de curvas analíticas do tipo *matrix-matched calibration* contendo o extrato individual de cada fitoterápico para a quantificação correta dos analitos estudados.

Além disso, a maioria massiva dos analitos apresentou excelente resposta linear, baseandose nos valores de r² e das concentrações recalculadas de cada concentração de solução que fez parte das curvas analíticas em relação as suas concentrações nominais (*back calculated concentration*). Consoante, faixas lineares variando de 5 a 500 ou 5 a 1000 ng g⁻¹, foram alcançadas para a grande maioria dos analitos.

Por fim, os métodos foram aplicados em amostras comerciais mostrando desempenho satisfatório na rotina analítica, visto que todos os parâmetros de validação apresentaram valores dento dos limites estabelecidos provendo resultados que contribuem para a segurança da população que faz uso de fitoterápicos comercializados no estado do Rio Grande do Sul. Os resultados em termos de resíduos de agrotóxicos e de micotoxinas apresentados por estas amostras nos mostra a qualidade dos produtos comercializados no RS, considerando os

requisitos de segurança dos alimentos uma vez que em nenhuma amostra foi quantificada os agrotóxicos e micotoxinas estudados.

REFERÊNCIAS

ABDEL-NAIME, W. A., et al. Antibacterial, antifungal, and GC–MS studies of Melissa officinalis. South African Journal of Botany, 124, 228–234. 2019. https://doi.org/10.1016/j.sajb.2019.05.011

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA. Resolução - RDC Nº 26 de 13 de maio de 2014. **Diário Oficial União**, 2014

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA. Resolução - RDC Nº 77 de 13 de maio de 2016. **Diário Oficial União**, 2016a.

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA. Resolução - RDC Nº 93 de 12 de julho de 2016. **Diário Oficial União**, 2016b.

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA — ANVISA. Resolução - RDC Nº 105 de 31 de agosto de 2016. **Diário Oficial União**, 2016c.

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA. Resolução - RDC Nº 166 de 24 de julho de 2017. **Diário Oficial União**, 2017a.

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA. Resolução - RDC Nº 196 de 22 de dezembro de 2017. **Diário Oficial União**, 2017b.

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA – ANVISA. Resolução - RDC Nº 235 de 20 de junho de 2018. **Diário Oficial União**, 2018.

ALAVANJA, M. C. R. et al. Pesticides and lung cancer risk in the agricultural health study cohort. **American Journal of Epidemiology**, 2004.

ALAVANJA, M. C. R.; BONNER, M. R. Occupational pesticide exposures and cancer risk: A reviewJournal of Toxicology and Environmental Health - Part B: Critical Reviews, 2012.

ANASTASSIADES, M. et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. **Journal of AOAC International**, 2003.

ANDERSEN, G.; POULSEN, M. E. Determination of Pesticides Residues in Wheat by GC-MS/MS SweEt method. Validation Report 11, **European Union Reference Laboratory for Cereals and feeding stuff**, 2013.

ARDREY, R. E. Liquid Chromatography Time-of-Flight Mass Spectrometry. [2009]. v. 1

BARROS, L.; CARVALHO, A. M.; FERREIRA, I. C. F. R. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. **Food and Chemical Toxicology**, 2010.

BESIL, N. et al. Evaluation of different QuEChERS procedures for pesticide residues determination in Calendula officinalis (L) inflorescences. **Journal of Applied Research on**

Medicinal and Aromatic Plants, v. 7, n. October, p. 143–148, 2017.

BIAN, Y. et al. Residue distribution and risk assessment of bifenazate and its metabolite in garlic plant. **Food Chemistry**, 379, 2022.

BRANDELLI, C. L. C.; MONTEIRO, S. DA C. Farmacobotânica: Aspectos Teóricos e Aplicação. **Farmacobotânica: Aspectos Teóricos e Aplicação**, 2017.

BRASIL. Decreto nº 5813, de 22 de junho de 2006. Diário Oficial [da República Federativa do Brasil], 2006.

BRASIL. Lei nº 7.802, de 11 de julho de 1989Diário Oficial da República Federativa do Brasil, 1989.

CLADIÈRE, M. et al. Multi-class analysis for simultaneous determination of pesticides, mycotoxins, process-induced toxicants and packaging contaminants in tea. **Food Chemistry**, v. 242, n. August 2017, p. 113–121, 2018.

COLUSSI, T. et al. Melissa officinalis L: Características gerais e biossíntese dos principais metabólitos secundários. **BioFar - Revista de Biologia e Farmácia**, 2011.

DAWSON, B. S. W.; FRANICH, R. A.; MEDER, R. Essential oil of Melissa officinalis L. subsp. altissima (Sibthr. et Smith) Arcang. **Flavour and Fragrance Journal**, 1988.

DELLA PASQUA, C. S. P., et al.. Pharmacological study of anti-inflammatory activity of aqueous extracts of Mikania glomerata (Spreng.) and Mikania laevigata (Sch. Bip. ex Baker). **Journal of Ethnopharmacology**, 231, 50–56, 2019. https://doi.org/10.1016/j.jep.2018.11.012

DIAS JV, et al. Simultaneous determination of pesticides and mycotoxins in wine by direct injection and liquid chromatography-tandem mass spectrometry analysis. **Food Chem**. 2019 Sep 30;293:83-91. doi: 10.1016/j.foodchem.2019.04.088. Epub 2019 Apr 25. PMID: 31151653.

DI BELLA, G. et al. Organic contamination of Italian and Tunisian culinary herbs and spices **J. Environ. Sci. Health B**, 54 (5), pp. 345-356, 2019.

DRUM, C. (1980). Soil chemistry of pesticides, PPG Industries, Inc. USA.

ELLNER, F.M. Results of long-term field studies into the effect of strobilurin containing fungicides on the production of mycotoxins in several winter wheat varieties. **Mycotoxin Research** 21 (2), 112–115, 2005.

EUROPEAN COMMISSION DIRECTORATE GENERAL FOR HEALTH AND FOOD SAFETY. Analytical Quality Control and Method Validation for Pesticide Residues Analysis in Food and Feed (SANTE/11312/2021). 2021.

FAO, 2020. Food and Agricultural organization Health organization (FAO/WHO). Disponível em

http://www.fao.org/3/w5975e/w5975e07.htm#definitions%20of%20risk%20analysis%20terms%20related%20to%20food%20safety1 accessado em 26 de outubro de 2022.

FERRER AMATE, C. et al. Development and validation of a LC-MS/MS method for the simultaneous determination of aflatoxins, dyes and pesticides in spices. **Analytical and Bioanalytical Chemistry**, v. 397, n. 1, p. 93–107, 2010.

FREEMAN, L. E. B. et al. Cancer incidence among male pesticide applicators in the agricultural health study cohort exposed to diazinon. **American Journal of Epidemiology**, 2005.

GASPARETTO, J. C. et al. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. **Journal of Pharmacy and Pharmacology**, 2012.

GOMES.A.L.P. Fitoterápicos da RENAME 2012, possibilidade de inclusão na padronização de medicamentos da Fundação Hospital Maternidade Santa Theresinha – RJ. Arca Fiocruz. Rio de Janeiro, 2013.

HAJEB P, Herrmann SS, Poulsen ME. Role of sample processing strategies at the European Union National Reference Laboratories (NRLs) concerning the analysis of pesticide residues. **Journal of Agricultural and Food Chemistry** 2018.

HAQUE, M. A. et al. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. **Microbial Pathogenesis**, v. 142, n. February, p. 104095, 2020.

HATCHER, J. M.; PENNELL, K. D.; MILLER, G. W. Parkinson's disease and pesticides: a toxicological perspective. **Trends in Pharmacological Sciences**, v. 29, n. 6, p. 322–329, 2008.

HIEMSTRA, M.; DE KOK, A. Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography-tandem mass spectrometry. **Journal of Chromatography A**, 2007.

HOFFMANN, E. D. E.; STROOBANT, V. Mass spectrometry: Principles and applications. Traducao . Chichester: Wiley, 2001.

HUANG, W. et al. Risk of breast cancer and adipose tissue concentrations of polychlorinated biphenyls and organochlorine pesticides: a hospital-based case-control study in Chinese women. **Environmental Science and Pollution Research**, 2019.

INMETRO, Instituto Nacional de Metrologia, Qualidade e Tecnologia, DOQ-CGCRE-008 - REVISÃO 09. Orientação sobre Validação de Métodos Analíticos. INMETRO, Rio de Janeiro, 2020

IRFAN, A., et al. Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. **Journal of Saudi Chemical Society**, 25(8), 2021. https://doi.org/10.1016/j.jscs.2021.101277

JULIATTI, F.C.; POLIZEL, A.C.; JULIATTI, F.Ca. Manejo integrado de doenças da soja. Uberlândia: Composer, Gráfica e Editora, 2004.

KHATI, P. Mycoflora and aflatoxin assessment of crude herbal drugs during storage in Haridwar, Uttarakhand, India **Indian Phytopathol.**, 67 (4), pp. 407-411 (2014).

KOWALSKA, G. PesticideResidues in some polish herbs. **Agriculture**, 10 (5), p. 154, 10.3390/agriculture10050154. 2020.

KRESSE, M. et al. Simultaneous determination of pesticides, mycotoxins, and metabolites as well as other contaminants in cereals by LC-LC-MS/MS. **Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences**, v. 1117, n. April, p. 86–102, 2019.

KUMAR, N. et al. Profiling of heavy metal and pesticide residues in medicinal plants **Environ. Sci. Pollut. Res.**, 25 (29) pp. 29505-29510, 2018.

LI, W., et al. The role of methanol addition to water samples in reducing analyte adsorption and matrix effects in liquid chromatography-tandem mass spectrometry. **Journal of Chromatography A**, *1389*, 2015.

LI, Y. et al. Neurological effects of pesticide use among farmers in China. **International Journal of Environmental Research and Public Health**, 2014.

LORENZI, H.; MATOS, F. J. DE A. Plantas medicinais no Brasil: nativas e exóticas. **Nova Odessa: Instituto Plantarum**, 2008.

LUO, L.,et al.. Detection and risk assessments of multi-pesticides in 1771 cultivated herbal medicines by LC/MS-MS and GC/MS-MS. **Chemosphere**, 262, 2021. https://doi.org/10.1016/j.chemosphere.2020.127477

MAESTRONI, B. et al. Method optimization and validation for multi-class residue analysis in turmeric. **Food Control**, v. 121, n. July 2020, 2021.

MANN, M., MENG, C.K. and FENN, J.B. Interpreting mass spectra of multiply charged ions. Anal. Chem., 61, 1702–8, 1989.

MAHAJAN, R. et al. Carbaryl exposure and incident cancer in the Agricultural Health Study. **International Journal of Cancer**, 2007.

MAPA- Ministério da Agricultura, Pecuária e Abastecimento. Agrofit.agricultura.gov.br 2021. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons/. Acesso em: 10 jan. 2022.

MAURER, H. H. Current role of liquid chromatography-mass spectrometry in clinical and forensic toxicologyAnalytical and Bioanalytical Chemistry, 2007.

MENDOZA CASTELÁN, G. Manual de cultivo de plantas medicinales. p. 184, 2017.

MENESES, M., et al.. Target specific post-harvest treatment by gamma radiation for the

microbial safety of dried Melissa officinalis and Aloysia citrodora. **Applied Radiation and Isotopes**, 168, 2021. https://doi.org/10.1016/j.apradiso.2020.109391

MINISTÉRIO DA SAÚDE-MS, A. N. DE V. S.-A. Farmacopeia Brasileira, 6^a edição. **Farmacopeia Brasileira, 6^a edição**, v. 1, p. 60–69, 72–85, 2019a.

MINISTÉRIO DA SAÚDE; ANVISA, A. N. DE V. S.-. Farmacopeia Brasileira, 6ª edição - Plantas Medicinais Volume 1. 2019b.

MINISTÉRIO DA SAÚDE; Portaria nº 145 de 11 de janeiro de 2017.

MOTAHAREH, B., et al. The effects of Melissa officinalis leaf extract on anxiety among patients undergoing orthopedic surgeries. **Journal of Herbal Medicine**, 31, 2022. https://doi.org/10.1016/j.hermed.2021.100532

MORADKHANI, H. et al. Melissa officinalis L., a valuable medicine plant: A reviewJournal of Medicinal Plants Research, 2010.

MURRAY, P.; ROSENTHAL, K.; PFALLE, M. Microbiología Medica. 2014.

OMS. Organização Mundial da Saúde. WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Genebra, 2007. Disponível em: http://apps.who.int/medicinedocs/documents/s14878e/s14878e.pdf. Acesso em: 12 fev. 2022.

ONU. World population prospects - population division, United Nations. United Nations. Available at: https://population.un.org/wpp/ . Accesso em: 7 Março, 2023. 2022

PALLARÉS, N. et al. Risk Assessment and Mitigation of the Mycotoxin Content in Medicinal Plants by the Infusion Process. Plant Foods for Human Nutrition, v. 75, n. 3, p. 362–368, 2020.

PIZZUTTI, I. R. et al. Method validation and comparison of acetonitrile and acetone extraction for the analysis of 169 pesticides in soya grain by liquid chromatography—tandem mass spectrometry. **Journal of Chromatography A**, v. 1216, p. 4539-4552, 2009.

REICHERT, B. et al. Simultaneous determination of 117 pesticides and 30 mycotoxins in raw coffee, without clean-up, by LC-ESI-MS/MS analysis. **Analytica Chimica Acta**, v. 1004, p. 40–50, 2018.

REINHOLDS, I. et al, Mycotoxins, pesticides and toxic metals in commercial spices and herbs. **Food AdditContam Part B**, 10 (19), pp. 5-14, 2017.

REIS, É. S. et al. Teor e composição química do óleo essencial de Melissa officinalis L. in vitro sob influência do meio de cultura. **Acta Scientiarum - Agronomy**, 2009.

REJCZAK, T., & TUZIMSKI, T.. A review of recent developments and trends in the QuEChERS sample preparation approach. In **Open Chemistry**, 2015.

RUTKOWSKA, E., ŁOZOWICKA, B., & KACZYŃSKI, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas

chromatography tandem mass spectrometry. **Food Chemistry**, 279, 20–29, 2019. https://doi.org/10.1016/j.foodchem.2018.11.130

SAGATA, E., REZENDE, A. A., JULIATTI, F. C. Desenvolvimento e uso de fungicidas para o controle de doenças de plantas na primeira década do século XXI. 2015.

SARI, A. O.; CEYLAN, A. Yield characteristics and essential oil composition of lemon balm (Melissa officinalis L.) grown in the Aegean region of Turkey. **Turkish Journal of Agriculture and Forestry**, 2002.

SCHALLEY, C. A. Mass Spectrometry—Principles and Applications. **International Journal of Mass Spectrometry**, 2002.

SCHMIDT-HEYDT M, STOLL D, GEISEN R. Fungicides effectively used for growth inhibition of several fungi could induce mycotoxin biosynthesis in toxigenic species. **Int J Food Microbiol**. 2013 Sep 16;166(3):407-12. doi: 10.1016/j.ijfoodmicro.2013.07.019. Epub 2013 Jul 29. PMID: 24036489.

SEDDIGHFAR, M., Mirghazanfari, S. M., & Dadpay, M.. Analgesic and anti-inflammatory properties of hydroalcoholic extracts of Malva sylvestris, Carum carvi or Medicago sativa, and their combination in a rat model. **Journal of Integrative Medicine**, 18(2), 181–188, 2020. https://doi.org/10.1016/j.joim.2020.02.003

SHABAN, N. S.,. Impact of toxic heavy metals and pesticide residues in herbal products. Beni-Suef University **Journal of Basic and Applied Sciences**, 5(1), 102–106, 2016. https://doi.org/10.1016/j.bjbas.2015.10.001

SHAKERI, A.; SAHEBKAR, A.; JAVADI, B. Melissa officinalis L. - A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 2016.

SHARMA, S. et al. Mycobial contamination and mycotoxinogenesis of Tinospora Cordifolia: an important medicinal plant of India Int. **J. Agric. Res. Innov. Technol.**, 3 (2), pp. 16-21, 2013.

SIMÕES, C.M.O. **Plantas da medicina popular no Rio Grande do Sul. 5 ed. Porto alegre,** Ed. Universidade UFRGS, 1998.

Spadotto, C.A. and Gomes, M.A.F. Agrotóxicos no Brasil. Available at: https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/agricultura-e-meio-ambiente/qualidade/dinamica/agrotoxicos-no-brasil (Accesso: 7 Março, 2023), 2021.

SWAMI, N.; NAAGRATHAN, T. Root tubers of safed musli toxigenic moulds Int. **J. Res. Appl. Sci. Biotechnol.**, 4 (2) pp. 14-16, 2017.

TOMLIN, C. (ED. . The e-Pesticide Manual, 13th ed. **BCPC Publications, Alton, Hants, UK**, 2004.

TRIPATHY, V. et al. Residues and contaminants in medicinal herbs - A reviewPhytochemistry Letters, 2015.

TRUCKSESS, M.W.; SCOTT, P.M. Mycotoxins in botanicals and dried fruits: a review **Food Addit. Contam.**, 25 (2), pp. 181-192, 2008.

VÁZQUEZ, P. et al. Pesticide residues in spices and herbs: Sample preparation methods and determination by chromatographic techniquesTrAC - Trends in Analytical Chemistry, 2019.

WEI, R.; LI, G.; SEYMOUR, A. B. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. **Analytical Chemistry**, 2010.

WU, X.,; DING, Z.. Evaluation of matrix effects for pesticide residue analysis by QuEChERs coupled with UHPLC-MS/MS in complex herbal matrix. **Food Chemistry**, *405*. 2023.

XU, X. et al. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. **Food Chemistry**, v. 276, n. October 2018, p. 419–426, 2019.

HUANG Y, et al. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. **Food Chem**. 2019

ZUBROD, J. P., et al. Fungicides: An Overlooked Pesticide Class? Environmental Science and Technology, 53(7), 3347–3365, 2019.

APÊNDICE I

Tabela 1 - Valores de recuperação e RSD (%) para os agrotóxicos fortificados (n=3) em *Melissa officinalis L*. extraídos pelos ensaios de 1 a 5, e os valores de efeito matriz percentual (EM%).

	Ensa	aio 1		Ensa	aio 2		Ensa	aio 3		Ensa	aio 4		Ensa	aio 5	EM
	10 μg	50 μg	EM	10 μg	50 μg	EM	10 μg	50 μg	EM	10 µg	50 μg	EM	10 µg	50 μg	(%)
Agrotóxicos	kg ⁻¹	kg ⁻¹	(%)	kg ⁻¹	kg ⁻¹	(%)	kg ⁻¹	kg-1		kg ⁻¹	kg ⁻¹	(%)	kg-1	kg-1	
	Rec.	Rec.	(%)	Rec.	Rec.	(%)	Rec.	Rec.	(%)	Rec.	Rec.	(%)	Rec.	REC	
	(DPR)%	(DPR)%		(DPR)%	(DPR)%		(DPR)%	(DPR)%		(DPR)%	(DPR)%		(DPR)%	(DPR)%	
Acefato	81 (0)	70 (3)	-80	n.q.	n.q.	-71	n.q.	n.q.	-86	78 (12)	87 (2)	-90	76 (12)	97 (2)	-74
Acetamiprido	72 (5)	90 (2)	-32	114 (2)	95 (2)	-18	116 (10)	96 (3)	-28	93 (13)	78 (0)	-29	101 (7)	104 (10)	-10
Acetoclor	75 (1)	96 (7)	15	115 (14)	100 (10)	1	90 (15)	89 (1)	-28	94 (17)	75 (5)	-29	79 (5)	92 (9)	-5
Aldicarbe sulfona	98 (8)	87 (14)	-41	120 (5)	107 (4)	-2	113 (17)	108 (2)	-33	77 (10)	76 (8)	-52	116 (13)	111 (10)	-24
Aldicarbe- sulfoxido	62 (57)	55 (19)	-68	60 (29)	52 (14)	-46	73 (19)	75 (7)	-72	107 (13)	76 (1)	-81	103 (7)	78(8)	-77
Atrazina	79 (4)	84 (2)	-37	95 (4)	91 (1)	-28	104 (10)	89 (2)	-31	90 (13)	73 (1)	-48	96 (13)	82 (6)	-17
Azametifós	76 (8)	91 (1)	-27	103 (3)	90 (3)	-22	108 (9)	91 (1)	-45	87 (14)	79 (3)	-67	77 (9)	101 (6)	0
Azinfós-metilico	82 (2)	105 (3)	-62	88 (4)	96 (5)	-38	103 (18)	90 (2)	-45	77 (4)	71 (13)	-67	83 (16)	83 (8)	23
Azoxistrobina	93 (9)	99 (3)	-23	115 (6)	104 (6)	-12	81 (7)	85 (16)	-20	106 (11)	85 (4)	13	99 (12)	89 (6)	55
Bifenazato	3 (39)	5 (36)	-22	24 (2)	15 (12)	-16	49 (4)	38 (1)	-20	49 (5)	31 (6)	12	79 (3)	71 (6)	11
Bitertanol	77 (5)	83 (1)	-67	102 (7)	95 (3)	-49	103 (16)	89 (1)	-56	90 (17)	73 (5)	-66	94 (7)	95 (2)	20
Boscalide	78 (3)	84 (1)	-55	87 (8)	96 (1)	-35	120 (10)	91 (2)	-41	87 (17)	75 (3)	-63	96 (12)	85 (4)	-8
Bupirimato	73 (3)	87 (4)	-22	115 (4)	94 (4)	-13	119 (10)	89 (1)	-17	86 (17)	74 (4)	-37	101(10)	82 (3)	-26
Buprofezim	75 (5)	84 (1)	-35	104 (3)	94 (3)	-21	119 (12)	90 (3)	-17	88 (16)	72 (3)	-43	91 (14)	72 (130	-32
Cadusafós	83 (6)	93 (1)	2	109 (4)	100(2)	0	71 (9)	83 (7)	-28	91 (11)	70 (3)	18	93 (7)	91 (4)	8
Carbaril	74 (5)	85 (7)	-32	100 (6)	98 (5)	-25	114 (9)	96 (5)	-28	100 (8)	70 (5)	-43	91 (12)	84 (7)	-22
Carbendazim	38 (19)	49 (16)	-75	103 (11)	71 (10)	-61	101 (16)	77 (2)	-71	80 (16)	81 (6)	-88	72 (4)	70 (4)	-67
Carbofurano	77 (3)	82 (2)	-22	92 (3)	95 (2)	-25	118 (11)	91 (1)	-18	91 (14)	78 (3)	-37	118 (5)	119 (1)	-11
Carpropramida	107 (10)	89 (5)	-31	119 (10)	96 (1)	-18	96 (17)	86 (5)	-35	84 (18)	72 (8)	-23	92 (16)	81 (9)	-13
Ciazofamida	94 (12)	90 (5)	-23	102 (10)	98 (12)	1	77 (20)	85 (6)	-26	88 (8)	74 (10)	-14	102 (18)	96 (9)	-29
Ciproconazol	80 (11)	81 (3)	-53	78 (2)	91 (1)	-36	112 (10)	89 (3)	-46	75 (13)	73 (4)	-72	102 (12)	88 (13)	7
Ciprodinil	75 (2)	84 (1)	-32	92 (8)	84 (3)	-16	107 (15)	79 (5)	-19	90 (13)	70 (8)	-46	85 (4)	71 (5)	-48

Clofentezin	89 (5)	84 (3)	-7	136 (9)	96 (7)	-6	79 (15)	71 (14)	-43	95 (11)	75 (9)	-9	81 (15)	91 (14)	-25
Clomazone	n.q.	n.q.	n.g.	n.q.	n.q.	n.g.	84 (14)	97 (3)	-7	115 (11)	72 (5)	-23	85 (4)	86 (4)	-14
Clorantraniliprole	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	116 (9)	85 (10)	-33	106 (6)	71 (2)	-38	80 (15)	97 (7)	-5
Clorfenvinfós	96 (7)	93 (8)	-15	120 (3)	104 (4)	-15	87 (17)	87 (6)	-23	80 (12)	71 (3)	14	74 (1)	92 (4)	13
Clorpirifós	98 (15)	97 (14)	-18	56 (75)	83 (7)	-17	89 (17)	85 (10)	-15	116 (15)	76 (1)	3	119 (9)	89 (5)	-3
Clorpirifós- metílico	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	88 (19)	-56	n.q.	n.q.	n.q.
Clorprofam	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Clotianidina	71 (15)	110 (18)	-52	191 (3)	106 (2)	-9	119 93)	118 (16)	-56	107 (15)	81 (3)	-67	115 (13)	93 (0)	-14
Demeton-S-Metil Sulfona	78 (8)	94 (11)	-30	109 (9)	112 (4)	-22	120 (10)	97 (1)	-24	106 (15)	82 (1)	-42	114 (5)	108 (17)	9
Diazinon	79 (7)	88 (3)	-39	100(2)	95 (5)	-25	114 (12)	89 (3)	-21	82 (17)	72 (4)	-36	95 (14)	89 (4)	-12
Dietofencarbe	87 (9)	87 (3)	-2	87 (14)	102 (1)	-9	105 (10)	94 (6)	-1	86 (14)	72 (5)	10	94 (9)	84 (8)	17
Difenconazole	75 (1)	87 (2)	-72	100 (8)	93 (2)	-47	117 (15)	97 (2)	-63	97 (16)	82 (1)	-79	105 (9)	81 (4)	-15
Difenilamina	74 (9)	87 (2)	-30	83 (5)	79 (9)	-20	121 (14)	91 (7)	-6	91 (5)	73 (5)	-19	79 (16)	77 (10)	-17
Diflubenzuron	115 (17)	103 (5)	-54	n.q.	91 (8)	-22	n.q.	91 (16)	-25	n.q.	88 (18)	-49	n.q.	n.q.	-18
Dimetoato	78 (1)	80 (2)	-38	103 (5)	90 (3)	-26	124 (12)	93 (2)	-35	114 (8)	81 (1)	-32	94 (7)	100 (7)	-23
Dimetomorfe (E)	76 (5)	82 (2)	-53	91 (6)	90 (5)	-40	111 (12)	86 (6)	-34	88 (7)	71 (4)	-40	90 (10)	90 (11)	42
Diniconazole	75 (5)	82 (2)	-65	82 (8)	87 (6)	-54	109 (15)	84 (4)	-55	88 (12)	71 (10)	-73	99 (16)	84 (18)	-8
Diuron	81 (7)	86 (1)	-27	86 (11)	100 (5)	-16	107 (17)	89 (0)	-24	71 (13)	74 (4)	-44	77 (14)	79 (10)	-42
DMST	72 (9)	75 (6)	-14	n.q.	93 (3)	-27	n.q.	84 (7)	-23	n.q.	80 (20)	-16	58 (94)	114 (12)	-7
Epoxiconazol	73 (11)	81 (4)	-60	113 (5)	97 (2)	-45	118 (17)	98 (5)	-68	94 (41)	85 (11)	-79	102 (20)	92 (5)	-4
Espinosim A	80 (4)	88 (5)	-15	103 (2)	93 (2)	-15	116 (7)	82 (3)	-10	93 (8)	70 (3)	-32	78 (13)	74 (8)	-39
Espinosim D	80 (4)	90 (2)	-15	87 (1)	89 (4)	-15	111 (3)	87 (6)	-10	84 (13)	69 (7)	-27	75 (8)	71 (10)	-35
Espirodiclofem	77 (9)	103 (6)	8	105 (11)	84 (8)	16	n.q.	73 (15)	-63	94 (16)	70 (7)	89	66 (90)	85 (12)	24
Espiromesifem	90 (14)	90 (10)	360	131 (8)	105 (9)	178	85 (13)	100 (12)	-4	91 (20)	79 (6)	201	96 (9)	100 (7)	19
Espiroxamina	74 (4)	81 (3)	-11	102 (1)	88 (3)	-12	104 (11)	81 (3)	-7	82 (14)	69 (3)	-25	89 (12)	80 (2)	-11
Etiona	71 (19)	93 (3)	14	115 (7)	99 (2)	8	57 (25)	99 (6)	-41	85 (19)	75 (8)	29	76 (11)	92 (8)	58
Etiprole	n.q.	n.q.	n.q.	n.q.	123 (9)	-29	n.q.	87 (1)	-43	75 (13)	72 (3)	-44	114 (17)	89 (16)	-15
Etirimol	33 (8)	50 (9)	-65	57 (17)	49 (5)	-46	78 (10)	64 (1)	-58	93 (8)	73 (5)	-79	n.q.	n.q.	-51
Etofemprox	86 (7)	93 (6)	-1	n.q.	108 (10)	1	159 (5)	116 (9)	-16	92 (23)	77 (14)	15	87 (8)	86 (8)	-10
Etoprofós	80 (3)	94 (2)	-24	106 (3)	104 (1)	-10	106 (3)	93 (2)	-16	80 (16)	73 (3)	-10	97 (15)	91 (5)	10
Etoxazol	82 (4)	90 (0)	-36	108 (3)	95 (2)	-21	118 (14)	93 (6)	-18	91 (14)	74 (6)	-34	88 (10)	84 (0)	-19
Famoxadona	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.

Fempiroximate (E)	94 (18)	104 (6)	-81	106 (6)	95 (3)	-48	114 (8)	87 (9)	-40	94 (19)	77 (5)	-60	89 (7)	96 (1)	-4
Fempropimorfe	73 (4)	77 (4)	-13	88 (5)	80 (2)	-11	113 (13)	81 (4)	-7	86 (10)	71 (2)	-31	85 (13)	78 (1)	-13
Fenamidona	57 (5)	81 (5)	-64	107 (4)	95 (1)	-47	102 (18)	85 (3)	-57	78 (18)	70 (1)	-67	93 (5)	78 (6)	3
Fenamifós	77 (11)	91 (3)	8	103 (1)	98 (1)	2	101 (12)	81 (3)	14	87 (12)	69 (4)	52	87 (9)	87 (9)	78
Fenarimol	71 (14)	71 (2)	-60	119 (6)	83 (2)	-47	108 (17)	106 (3)	-64	86 (10)	86 (8)	-75	89 (50)	83 (5)	-17
Fenazaquim	79 (3)	89 (3)	-49	98 92)	84 (2)	-28	107 (11)	76 (7)	-21	88 (18)	70 (4)	-41	91 (9)	91 (5)	30
Fenbuconazole	72 (19)	81 (7)	-53	78 (11)	101 (8)	-39	118 (18)	94 (10)	-44	94 (18)	78 (4)	-52	103 (7)	103 (19)	-2
Fenhexamida	42 (34)	88 (1)	-34	n.q.	58 (5)	-21	n.q.	72 (3)	-45	n.q.	79 (10)	-44	95 (9)	87 (11)	-37
Fenobucarbe	76 (16)	89 (1)	-25	109 (3)	101 (1)	-21	119 (13)	90 (4)	-21	82 (15)	73 (2)	-39	85 (19)	77 (16)	-19
Fenotrina	110 (15)	88 (8)	1	n.q.	98 (9)	-7	56 (25)	91 (11)	-46	94 (16)	75 (14)	23	n.q.	90 (7)	-19
Fenoxycarb	n.q.	89 (15)	-38	n.q.	100 (6)	-21	n.q.	96 (13)	-25	107 (9)	77 (11)	-21	76 (18)	84 (10)	-31
Fensulfotion	104 (6)	90 (3)	-26	107 (7)	99 (1)	-28	120 (9)	97 (4)	-31	85 (0)	76 (2)	-20	n.q.	95 (12)	39
Fentoato	n.q.	96 (4)	-1	n.q.	114 (20)	-20	n.q.	92 (3)	13	n.q.	89 (17)	11	89 (19)	85 (18)	-28
Fluazifope-Butil	98 (11)	93 (3)	-6	116 (4)	101 (2)	-6	48 (27)	88 (11)	-41	95 (10)	73 (5)	22	88 (9)	96 (3)	-5
Fludioxonil	85 (11)	96 (11)	-2	n.q.	95 (10)	3	n.q.	70 (4)	43	n.q.	85 (14)	4	91 (17)	86 (13)	-17
Flufenoxuron	117 (16)	93 (11)	-35	n.q.	90 (15)	-13	n.q.	81 (16)	-32	81 (19)	78 (4)	-5	107 (13)	84 (20)	-42
Fluquinconazol	143 (12)	99 (18)	-26	n.q.	91 (7)	-14	97 (15)	81 (20)	-51	107 (17)	75 (10)	-49	104 (15)	75 (12)	-25
Flusilazol	78 (3)	84 (1)	-55	87 (8)	96 (1)	-35	120 (10)	92 (2)	-41	87 (17)	75 (3)	-63	96 (12)	85 (4)	-8
Flutolanil	98 (3)	95 (1)	-19	110 (11)	102 (4)	-23	101 (19)	88 (5)	-25	90 (12)	71 (1)	-16	96 (15)	89 (6)	-2
Flutriafol	78 (8)	82 (2)	-52	97 (5)	87 (2)	-36	120 (13)	88 (3)	-53	90 (15)	72 (4)	-80	89 (20)	82 (4)	-9
Fosalona	120 (19)	98 (14)	-15	n.q.	93 (2)	-11	58 (21)	76 (5)	-38	110 (16)	70 (15)	16	74 (5)	91 (13)	-4
Fosmete	89 (5)	82 (7)	-28	98 (11)	97 (7)	-19	117 (7)	95 (5)	-29	82 (13)	71 (10)	-31	94 (13)	81 (16)	-8
Fostiazato	77 (6)	87 (7)	-8	120 (4)	100 (5)	-9	112 (9)	93 (5)	-2	89 (13)	74 (4)	-5	93 (11)	102 (9)	7
Furalaxil	85 (4)	93 (2)	-11	107 (3)	98 (1)	-9	114 (13)	92 (5)	-7	87 (12)	71 (2)	3	91 (6)	91 (2)	18
Furatiocarbe	96 (7)	100(2)	0	129 (6)	116 (5)	-1	36 (27)	82 (9)	-45	104 (11)	76 (5)	47	93 (7)	98 (5)	8
Halofenozide	117 (8)	96 (10)	-8	151 (1)	93 (9)	-5	117 (16)	100 (5)	-29	111 (12)	70 (15)	-17	152 (20)	111 (8)	-23
Haloxifope-2-	87 (15)	97 (2)	-19	115 (3)	97 (8)	-15	85 (8)	83 (12)	-40	92 (15)	75 (5)	19	88 (15)	84 (10)	-8
etoxietil	` ′	` /													
Hexaconazole	75 (14)	78 (2)	-54	101 (12)	93 (1)	-44	118 (11)	85 (5)	-48	82 (18)	73 (3)	-65	94 (13)	76 (5)	-16
Hexitiazox	79 (13)	87 (6)	-20	106 (9)	90 (4)	-11	88 (19)	87 (9)	-34	89 (12)	70 (11)	-12	82 (9)	79 (15)	-6
Imazalil	94 (6)	68 (3)	-22	70 (4)	57 (3)	-14	92 (8)	70 (5)	-16	87 (2)	71 (1)	-34	108 (1)	81 (18)	-26
Imazapic	n.q.	2(1)	-8	n.q.	n.q.	-18	n.q.	n.q.	-4	61 (4)	30 (2)	-25	92 (17)	80 (1)	-32
Imazetapir	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	79 (16)	71 (17)	3

Imidacloprid	n.q.	n.q.	n.q.	n.q.	175 (3)	3	n.q.	81 (12)	-34	107 (11)	91 (16)	-39	87 (8)	96 (2)	31
Indoxacarbe	94 (12)	89 (13)	-5	144 (7)	87 (15)	-7	86 (6)	98 (13)	-46	89 (14)	80 (9)	9	102 (13)	90 (2)	34
Iprovalicarbe	85 (8)	95 (4)	-3	118 (1)	103 (1)	-10	102 (4)	89 (5)	-7	91 (8)	70 (3)	14	91 (11)	102 (8)	20
Isoxaflutole	n.q.	90 (15)	-2	n.q.	n.q.	n.q.	93 (8)	78 (17)	-22	n.q.	78 (5)	-23	n.q.	92 (16)	-30
Kresoxim Metil	96 (17)	92 (5)	-24	105 (5)	105 (2)	-22	114 (7)	90 (10)	-33	91 (11)	74 (5)	-32	78 (17)	85 (3)	-16
Linuron	n.q.	82 (7)	-39	n.q.	92 (7)	-9	n.q.	82 (15)	-4	115 (14)	75 (10)	-39	78 (14)	85 (3)	-40
Lufenuron	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	90 (8)	96 (8)	-58
Malation	78 (3)	103 (5)	-32	135 (1)	106 (1)	-19	99 (18)	91 (6)	-28	73 (18)	72 (3)	-9	88 (20)	85 (18)	14
Mecarbam	118 (3)	100 (5)	21	97 (3)	105 (3)	1	93 (14)	91 (6)	6	85 (15)	72 (3)	15	72 (5)	92 (7)	5
Mepanipirim	79 (15)	79 (3)	-42	111 (4)	96 (6)	-18	117 (19)	81 (7)	-29	104 (16)	70 (14)	-58	78 (21)	89 (4)	-44
Metalaxil	93 (9)	92 (2)	-16	118 (3)	99 (1)	-10	117 (10)	92 (3)	-1	88 (11)	74 (3)	-6	116 (13)	98 (5)	23
Metamidofós	98 (11)	76 (18)	-70	n.q.	50 (2)	-71	99 (7)	73 (3)	-74	89 (12)	77 (5)	-90	73 (20)	79 (10)	-13
Metconazol	69 (6)	77 (14)	-70	n.q.	87 (29)	-54	n.q.	77 (9)	-64	83 (18)	72 (6)	-75	155 (15)	80 (4)	-75
Metidation	92 (12)	84 (3)	-24	78 (12)	108 (4)	-8	102 (14)	108 (9)	91	74 (18)	79 (8)	-24	n.q.	72 (4)	-5
Metiocarbe	83 (19)	102 (9)	-35	112 (19)	100 (5)	-23	105 (7)	94 (5)	-20	98 (13)	77 (8)	-31	91 (20)	81 (15)	-33
Metiocarbe Sulfona	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	118 (9)	86 (8)	-7	108 (8)	76 (7)	207	n.q.	n.q.	n.q.
Metiocarbe Sulfóxido	85 (8)	115 (7)	-9	n.q.	n.q.	n.q.	107 (8)	101 (4)	-15	112 (12)	75 (9)	-11	n.q.	n.q.	49
Metomil	73 (5)	85 (2)	-24	70 (3)	88 (2)	-35	120 (11)	96 (0)	-14	94 (14)	79 (2)	-33	96 (13)	92 (12)	-10
Metoxifenoside	94 (5)	91 (6)	-26	119 (1)	99 (2)	-6	94 (19)	84 (6)	-19	85 (13)	70 (2)	4	99 (2)	99 (3)	31
Miclobutanil	77 (14)	86 (7)	-36	116 (4)	95 (3)	-39	114 (16)	83 (3)	-42	88 (6)	70 (4)	-45	92 (15)	86 (4)	-45
Monocrotofós	74 (7)	76 (8)	-62	74 (11)	70 (6)	-44	116 (14)	94 (4)	-53	96 (14)	81 (2)	-73	87 (13)	99 (16)	
Nitempiram	n.q.	36 (4)	-82	n.q.	48 (19)	-58	34 (18)	71 (5)	-83	n.q.	80 (16)	-92	n.q.	74 (13)	-76
Ofurace	89 (4)	95 (2)	-20	100 (3)	100(1)	-13	119 (11)	93 (3)	-11	79 (12)	74 (0)	-17	97 (11)	101 (11)	46
Ometoato	40 (32)	61 (30)	-72	n.q.	50 (9)	-57	89 (4)	81 (3)	-73	79 (10)	78 (2)	-85	105 (10)	87 (20)	-76
Oxadixil	80 (1)	91 (1)	-15	108 (5)	98 (4)	-12	119 (10)	95 (4)	-5	91 (10)	77 (1)	-26	91 (19)	86 (12)	5
Oxamil	77 (4)	81 (5)	-25	107 (3)	91 (4)	-12	120 (12)	95 (1)	-20	93 (16)	81 (0)	-48	98 (14)	96 (7)	-20
Paclobutrazol	85 (3)	89 (2)	-59	93 (1)	95 (2)	-38	109 (14)	90 (1)	-46	95 (9)	73 (2)	-69	94 (9)	81 (1)	2
Paration-etil	n.q.	n.q.	n.q.	n.q.	n.q.	39	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Pencicuron	83 (2)	95 (2)	-27	103 (8)	101 (3)	-10	75 (11)	85 (6)	-36	87 (10)	70 (2)	9	79 (7)	88 (8)	6
Penconazol	93 (3)	85 (4)	-54	78 (11)	91 (8)	-48	112 (9)	93 (4)	-53	87 (20)	70 (1)	-68	93 (6)	84 (3)	-22
Pendimentalin	30 (20)	97 (9)	-5	119 (8)	99 (3)	-6	79 (19)	89 (6)	-28	79 (14)	70 (12)	4	77 (15)	92 (6)	-4
Picoxistrobina	85 (5)	91 (1)	-32	107 (1)	100 (0)	-18	113 (14)	88 (3)	-25	90 (17)	74 (6)	-31	90 (10)	94 (4)	-18

Piperonil Butóxido	78 (6)	93 (2)	-26	104 (4)	99 (1)	-11	91 (11)	88 (7)	-25	90 (15)	73 (7)	-12	89 (4)	88 (8)	-25
Piraclostrobina	83 (6)	94 (5)	-26	90 (6)	93 (7)	-11	98 (12)	88 (10)	-24	90 (17)	78 (5)	-17	81 (9)	85 (7)	-27
Pirazofós	103 (12)	109 (2)	-18	112 (11)	98 (3)	-13	70 (17)	84 (8)	-23	92 (17)	75 (6)	81	82 (17)	91 (7)	35
Piridabem	79 (5)	93 (7)	-21	115 (1)	96 (2)	-7	n.q.	n.q.	-59	94 (10)	71 (6)	19	78 (6)	84 (7)	-9
Pirimetanil	78 (7)	84 (3)	-37	101 (1)	87 (3)	-20	106 (13)	84 (3)	-31	92 (10)	72 (3)	-55	81 (18)	75 (5)	-38
Pirimicarbe	n.q.	n.q.	n.q.	n.q.	n.q.	-12	n.q.	n.q.	-1	n.q.	n.q.	n.q.	94 (13)	85 (3)	-21
Pirimifós-etil	79 (10)	91 (6)	-50	100 (4)	96 (2)	-29	107 (15)	90 (5)	-30	94 (18)	74 (5)	-46	94 (15)	85 (1)	-15
Pirimifós-metil	74 (6)	84 (2)	-45	102 (4)	96 (3)	-27	118 (12)	88 (3)	-23	91 (15)	73 (5)	-44	97 (18)	87 (3)	-20
Piriproxifem	83 (10)	81 (9)	-62	95 (3)	89 (2)	-35	118 (9)	91 (5)	-32	89 (19)	72 (5)	-60	84 (6)	84 (2)	-24
Procloraz	71 (4)	70 (1)	-26	78 (9)	76 (2)	-19	110 (11)	78 (2)	-22	92 (9)	70 (1)	-54	76 (3)	76 (5)	11
Profam	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	81 (7)	-3	98 (12)	77 (13)	-23	103 (7)	99 (9)	-33
Profenofós	106 (10)	90 (5)	-29	n.q.	99 (20)	-24	n.q.	70 (12)	-58	109 (9)	69 (11)	9	110 (13)	80 (9)	-29
Prometrim	79 (2)	87 (2)	-14	116 (2)	95 (2)	-11	114 (9)	86 (3)	-6	82 (12)	70 (3)	-30	91 (17)	83 (2)	-22
Propamocarbe	71 (2)	74 (4)	-40	87 (1)	63 (4)	3	109 (12)	82 (3)	-33	98 (15)	81 (1)	-60	262 (8)	184 (11)	-36
Propanil	n.q.	97 (8)	-41	150 (15)	103 (4)	-11	148 (31)	81 (20)	-13	n.q.	n.q.	n.q.	n.q.	83 (17)	-26
Propargite	87 (13)	99 (4)	-8	98 (14)	100 (4)	5	70 (17)	93 (4)	-34	86 (19)	72 (2)	31	n.q.	n.q.	n.q.
Propiconazole	73 (5)	87 (3)	-69	108 (2)	93 (1)	-51	106 (17)	87 (6)	-57	90 (13)	71 (3)	-67	86 (5)	88 (2)	1
Propizamida	101 (5)	83 (8)	-1	111 (5)	106 (1)	-26	120 (17)	83 (10)	-21	99 (15)	76 (7)	-34	73 (2)	83 (6)	-19
Protiofós	n.q.	n.q.	n.q.	n.q.	n.q.	-20	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Quinoxifem	91 (11)	88 (16)	-51	82 (40)	103 (6)	-32	n.q.	106 (10)	-28	56 (41)	70 (9)	-42	80 (17)	74 (9)	-16
Simazine	80 (9)	80 (3)	-38	103 (6)	89 (1)	-31	120 (12)	92 (2)	-40	84 (18)	76 (1)	-61	94 (2)	86 (1)	-35
Tau-Fluvalinato	n.q.	n.q.	-29	n.q.	113 (35)	-10	n.q.	n.q.	n.q.	111 (8)	90 (13)	-15	n.q.	92 (13)	19
Tebuconazol	73 (7)	81 (6)	-65	81 (11)	92 (4)	-39	111 (15)	86 (2)	-50	80 (12)	74 (5)	-70	93 (19)	84 (7)	8
Tebufempirade	110 (8)	99 (3)	-21	149 (16)	100 (4)	-15	71 (23)	80 (6)	-32	92 (20)	77 (4)	-4	81 (9)	91 (6)	-15
Tebufenozide	105 (9)	104 (1)	37	120 (7)	103 (7)	9	80 (8)	82 (10)	15	88 (10)	73 (13)	30	91 (19)	102 (1)	-12
Tetraclorvinfós	88 (11)	90 (19)	-47	155 (30)	90 (9)	-19	n.q.	85 (19)	-27	104 (30)	69 (8)	-24	93 (15)	95 (14)	-13
Tetraconazol	90 (4)	94 (5)	-41	99 (21)	92 (5)	-42	117 (15)	102 (3)	-60	109 (15)	82 (11)	-67	88 (16)	88 (4)	0
Tetrametrina	88 (8)	96 (10)	3	122 (21)	108 (12)	-3	n.q.	n.q.	n.q.	107 (8)	79 (5)	32	89 (10)	87 (9)	-4
Tiabendazol	n.q.	37 (14)	-74	49 (17)	45 (9)	-55	71 (11)	51 (4)	-73	75 (13)	70 (2)	-90	48 (10)	40 (2)	-75
Tiaclopride	80 (1)	91 (3)	-32	110(1)	93 (2)	-22	118 (2)	91 (4)	-31	81 (12)	74 (4)	-57	82 (2)	84 (18)	-8
Tiametoxam	35 (12)	107 (33)	-55	n.q.	109 (2)	2	119 (4)	99 (7)	-56	94 (15)	80 (6)	-78	102 (14)	96 (4)	-7
Tiodicarbe	98 (6)	97 (3)	-8	n.q.	n.q.	n.q.	114 (11)	89 (5)	4	90 (10)	73 (3)	16	96 (8)	87 (7)	-2
Tiofanato Metil	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	50 (61)	32 (50)	-59

Tolcofós Metil	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	109 (6)	-25	n.q.	n.q.	n.q.
Tolifluanide	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Triadimefon	87 (6)	88 (10)	-28	102 (12)	96 (3)	-35	110 (28)	91 (9)	-44	94 (5)	71 (3)	-58	98 (14)	82 (5)	9
Triadimenol	57 (48)	81 (7)	-55	n.q.	98 (13)	-41	n.q.	90 (20)	-51	100 (17)	83 (13)	-73	n.q.	32 (29)	21
Triazofós	84 (2)	92 (2)	-30	114 (2)	99 (5)	-25	95 (13)	87 (3)	-34	89 (14)	74 (1)	-18	91 (3)	93 (3)	20
Triclorom	27 (0)	72 (13)	-48	n.q.	87 (7)	-2	114 (8)	106 (15)	-45	114 (13)	83 (11)	-57	n.q.	n.q.	n.q.
Trifloxistrobina	84 (15)	89 (2)	-36	139 (11)	111 (2)	-24	101 (3)	86 (5)	-41	93 (14)	76 (8)	-26	84 (4)	93 (9)	-8
Triflumizol	52 (9)	72 (2)	-57	87 (1)	82 (2)	-28	115 (14)	85 (3)	-46	77 (15)	70 (4)	-67	93 (18)	79 (7)	-40
Triticonazol	76 (7)	78 (1)	-60	95 (6)	89 (1)	-38	109 (11)	87 (1)	-48	84 (8)	71 (4)	-70	96 (15)	84 (8)	4
Zoxamida	88 (6)	91 (3)	-8	113 (7)	101 (1)	-8	73 (6)	98 (12)	-52	81 (4)	71 (7)	-19	91 (12)	91 (4)	-19

n.q.= não quantificável.

Tabela 2 - Valores de recuperação e RSD (%) para as micotoxinas fortificados (n=3) em *Melissa officinalis L*. extraídos pelos ensaios de 1 a 5, e os valores de efeito matriz percentual (EM%).

-	Ens	saio 1		Ensa	aio 2		Ensa	aio 3		Ensa	aio 4		Ensa	aio 5	
Micotoxina	Nível 1	Nível 2	E.M.												
Micotoxilia	Rec. (RSD)%	Rec. (RSD)%	(%)												
Aflatoxina B1	47 (3)	77 (3)	-31	51 (32)	54 (8)	-13	39 (9)	42 (10)	-32	76 (7)	71 (3)	-55	76 (35)	81 (14)	-70
Aflatoxina B2	60 (26)	72 (1)	-34	41 (8)	54 (13)	-16	n.q.	40 (11)	-30	79 (1)	70 (2)	-57	71 (17)	74 (5)	-71
Aflatoxina G1	n.q.	73 (1)	-26	n.q.	71 (5)	-11	114 (2)	73 (2)	-25	n.q.	70 (7)	-48	n.q.	73 (6)	-53
Aflatoxina G2	n.q.	81 (1)	-22	n.q.	71 (2)	-11	71 (10)	70 (5)	-15	93 (19)	70 (8)	-28	n.q.	87 (6)	-12
Citrinina	92 (5)	26 (4)	-42	n.q.	n.q.	n.q.	33 (56)	20 (21)	-46	40 (3)	57 (5)	-41	57 (27)	38 (13)	-34
Desoxinivalenol	2 (0)	1 (9)	-2	n.q.	107 (13)	-23	n.q.	n.q.	-57	n.q.	4 (7)	-48	n.q.	84 (1)	-67
Diacetoxiscirpenol	n.q.	3 (5)	-19	n.q.	113 (11)	-15	n.q.	n.q.	-22	n.q.	3 (15)	-24	78 (6)	94 (10)	-15
Fumonisina B1	n.q.	25 (2)	-90	n.q.	n.q.	n.q.	n.q.	n.q.	-63	n.q.	63 (12)	-98	n.q.	93 (8)	51
Fumonisina B2	n.q.	29 (0)	-81	n.q.	n.q.	n.q.	n.q.	n.q.	-54	n.q.	41 (10)	-94	n.q.	44 (5)	-16
Ocratoxina A	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	12 (73)	-43	n.q.	40 (5)	-1	n.q.	90 (11)	20
Toxina HT2	n.q.	170 (23)	12	n.q.	78 (100)	-20	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	-44

Toxina T2	n.q.	102 (5)	-7	n.q.	93 (19)	-16	n.q.	89 (7)	-27	84 (6)	70 (4)	-4	n.q.	102 (6)	-12
Zearalenona	n.q.	110 (14)	-36	n.q.	106 (14)	-13	n.q.	90 (12)	-29	101 (1)	71 (17)	-37	n.q.	105 (8)	-31

n.q.= não quantificável

Tabela 03 - Valores de recuperação e RSD (%) para os agrotóxicos fortificados (n=3) em *Malva sylvestris L*. extraídos pelos ensaios de 1 a 5, e os valores de efeito matriz percentual (EM%).

	Ensa	aio 1		Ensa	aio 2		Ensa	aio 3		Ensa	aio 4		Ensa	nio 5	
	10 μg	50 μg	EM	10 μg	50 μg										
Agrotóxicos	kg ⁻¹	kg ⁻¹	(%)	kg ⁻¹	kg ⁻¹	EM (%)									
	Rec.	Rec.	(70)	Rec.	Rec.										
	(RSD)%	(RSD)%		(RSD)%	(RSD)%		(RSD)%	(RSD)%		(RSD)%	(RSD)%		(RSD)%	(RSD)%	
Acefato	n.d	44 (1)	-94	n.q.	n.q.	-95	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	91 (7)	81 (10)	-93
Acetamiprido	76 (9)	101 (0)	-33	94 (1)	91 (3)	-32	101 (4)	106 (2)	-31	79 (7)	72 (4)	-30	105 (10)	99 (7)	40
Acetoclor	55 (30)	93 (7)	12	145 (17)	107 (11)	-51	99 (17)	100(2)	17	120 (14)	92 (5)	6	116 (8)	102 (5)	-21
Aldicarbe	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	-54	n.q.	n.q.	n.q.	n.q.	n.q.	n.q
Aldicarbe sulfona	76 (9)	102 (6)	-71	133 (14)	93 (5)	-66	118 (10)	105 (2)	-57	73 (12)	63 (5)	-69	101 (15)	99 (9)	-31
Aldicarbe- sulfoxido	n.q.	73 (37)	-90	n.q.	74 (15)	-92	119 (59)	86 (19)	-93	n.q.	30 (31)	-95	115 (10)	83 (3)	-87
Aletrina	435 (7)	97 (20)	-10	n.q.	n.q.	n.q.									
Atrazina	94 (5)	98 (2)	-28	110 (3)	96 (3)	-59	112 (1)	105 (2)	-31	78 (2)	69 (3)	-39	109 (6)	90 (3)	-16
Azametifós	84 (5)	94 (2)	-35	116 (2)	99 (2)	-46	102 (6)	103 (1)	-35	50 (6)	74 (2)	-39	77 (12)	91 (5)	17
Azinfós-metilico	62 (12)	94 (7)	-63	n.q.	n.q.	-87	95 (15)	105 (1)	-58	37 (8)	69 (6)	-71	83 (52)	100 (14)	5
Azoxistrobina	92 (5)	101 (3)	-42	113 (1)	107 (1)	-57	76 (18)	104 (2)	-33	75 (15)	75 (13)	-25	93 (17)	96 (9)	44
Benfuracarbe	97 (8)	102 (1)	-10	34 (47)	41 (19)	-32	110 (8)	105 (2)	-4	85 (3)	70 (3)	0	46 (18)	56 (25)	-72
Bifenazato	66 (4)	58 (7)	-16	39 (55)	29 (19)	-34	94 (7)	88 (4)	-12	71 (1)	70 (3)	-17	23 (29)	59 (14)	17
Bitertanol	90 (10)	97 (10)	-73	n.q.	144 (6)	-85	110 (4)	102 (2)	-70	87 (12)	73 (0)	-72	65 (21)	95 (2)	19
Boscalide	78 (6)	96 (6)	-49	116 (2)	99 (3)	-80	109 (3)	108 (4)	-47	76 (5)	73 (6)	-60	92 (13)	98 (6)	-4
Bromuconazole	90 (5)	87 (4)	-63	29 (49)	109 (16)	-87	119 (7)	115 (4)	-89	103 (19)	77 (6)	-84	98 (20)	105 (3)	17

Bupirimato	86 (5)	99 (5)	-30	112 (5)	96 (1)	-50	105 (4)	109 (2)	-18	73 (1)	72 (4)	-32	107 (7)	95 (2)	-15
Buprofezim	78 (9)	95 (5)	-20	107 (2)	95 (1)	-63	106 (0)	106 (2)	-26	70 (2)	69 (4)	-36	106 (13)	90 (7)	-37
Cadusafós	83 (5)	102 (5)	-7	111 (2)	101 (2)	-27	107 (3)	103 (2)	-4	73 (0)	71 (3)	-5	88 (9)	95 (3)	-3
Carbaril	80 (7)	95 (4)	-39	118 (5)	91 (4)	-63	117 (10)	102 (1)	-35	71 (15)	70 (2)	-46	87 (15)	95 (4)	-25
Carbendazim	83 (15)	74 (9)	-94	151 (12)	84 (8)	-95	89 (11)	91 (5)	-93	81 (18)	76 (1)	-96	63 (53)	75 (18)	-89
Carbofurano	84 (5)	96 (2)	-24	111 (5)	104 (2)	-68	109 (4)	104 (3)	-22	79 (3)	73 (3)	-35	110 (14)	120 (3)	-2
Carbossulfam	52 (40)	89 (6)	-27	n.q.	70 (4)	-9	113 (5)	101 (3)	10	72 (3)	71 (3)	-17	n.q.	n.q.	n.q.
Carpropramida	87 (16)	90 (10)	-22	149 (25)	91 (11)	-50	109 (18)	93 (1)	-24	83 (9)	72 (1)	-21	n.q.	97 (10)	-29
Ciazofamida	96 (17)	112 (7)	-24	n.q.	97 (9)	-47	94 (10)	106 (5)	-2	70 (1)	72 (10)	-11	107 (11)	94 (15)	-22
Ciproconazol	66 (12)	98 (3)	-60	108 (6)	91 (3)	-86	111 (5)	111 (2)	-61	75 (11)	70 (5)	-72	103 (1)	97 (5)	2
Ciprodinil	76 (6)	88 (2)	-66	93 (10)	84 (2)	-66	100 (8)	96 (1)	-54	80 (1)	69 (4)	-58	78 (8)	76 (4)	-43
Clofentezin	110 (15)	97 (1)	-6	n.q.	77 (8)	-58	80 (18)	106 (8)	-19	65 (35)	71 (3)	-24	81 (6)	75 (6)	-41
Clomazone	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	112 (10)	106 (6)	-19	139 (78)	88 (1)	-2	87 (20)	105 (5)	-8
Clorantraniliprole	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	71 (13)	86 (7)	-40	n.q.	n.q.	n.q.	94 (10)	97 (8)	34
Clorfenvinfós	88 (15)	111 (5)	-25	108 (17)	118 (4)	-46	108 (6)	106 (4)	-4	n.q.	76 (7)	2	104 (13)	86 (2)	3
Clorpirifós	168 (27)	99 (8)	-1	n.q.	114 (14)	-59	72 (13)	93 (9)	-14	n.q.	100 (4)	-2	108 (6)	70 (19)	-31
Clorpirifós- metílico	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	114 (1)	21	n.q.	54 (98)	-9	n.q.	n.q.	n.q.
Clorprofam	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	71	n.q.	n.q.	n.q.
Clotianidina	117 (15)	91 (1)	-77	39 (47)	72 (15)	-72	119 (8)	105 (8)	-74	71 (17)	71 (3)	-78	107 (8)	95 (5)	7
Demeton-S-Metil Sulfona	82 (8)	92 (5)	-63	107 (3)	93 (0)	-48	113 (5)	101 (2)	-51	106 (15)	82 (5)	-62	104 (11)	90 (8)	22
Diazinon	82 (9)	99 (3)	-28	111 (4)	97 (4)	-59	112 (1)	106 (3)	-23	76 (1)	72 (3)	-33	102 (9)	95 (5)	-26
Diclofuanide	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Dietofencarbe	90 (15)	105 (1)	-28	105 (3)	97 (4)	-19	114 (3)	107 (7)	-26	74 (5)	70 (2)	-26	n.q.	n.q.	n.q.
Difenconazole	75 (11)	95 (5)	-69	112 (3)	89 (6)	-88	72 (9)	110 (6)	-84	93 (19)	74 (7)	-86	96 (8)	94 (6)	-10
Difenilamina	77 (8)	105 (12)	-27	100 (13)	93 (7)	-32	118 (12)	109 (2)	-10	70 (1)	73 (6)	-17	117 (18)	85 (3)	-35
Diflubenzuron	n.q.	135 (10)	-39	n.q.	124 (29)	-67	n.q.	89 (10)	-1	84 (15)	70 (16)	-31	n.q.	97 (12)	-26
Dimetoato	86 (4)	99 (1)	-25	118 (5)	97 (3)	-27	108 (3)	106 (2)	-21	85 (7)	72 (5)	-19	102 (9)	97 (7)	4
Dimetomorfe (E)	72 (16)	94 (1)	-51	108 (10)	104 (9)	-65	108 (1)	103 (2)	-44	70 (3)	70 (3)	-47	89 (10)	97 (7)	62
Diniconazole	83 (11)	98 (5)	-63	102 (15)	94 (5)	-81	103 (4)	102 (3)	-59	82 (17)	70 (7)	-69	86 (16)	92 (5)	-16
Diuron	82 (6)	95 (6)	-34	110 (12)	100 (3)	-47	115 (8)	102 (3)	-34	105 (6)	71 (9)	-39	88 (20)	89 (4)	-20
DMST	105 (15)	113 (8)	-21	n.q.	n.q.	-54	111 (18)	99 (4)	-25	109 (17)	71 (7)	-30	97 (9)	99 (14)	-2
Epoxiconazol	104 (11)	98 (5)	-60	101 (12)	111 (3)	-82	108 (19)	116 (8)	-88	106 (3)	81 (6)	-88	89 (7)	94 (6)	10

Espinosim A	95 (7)	99 (2)	-15	108 (5)	96 (3)	-38	115 (2)	101 (11)	2	82 (2)	72 (5)	-30	77 (20)	95 (3)	-32
Espinosim D	85 (7)	98 (6)	-20	90 (5)	97 (1)	-41	115 (5)	106 (4)	-24	71 (3)	71 (2)	-28	102 (17)	96 (6)	-40
Espirodiclofem	48 (34)	96 (10)	-6	87 (11)	82 (18)	75	133 (7)	99 (3)	21	74 (12)	71 (5)	22	73 (14)	91 (5)	31
Espiromesifem	75 (5)	107 (7)	287	113 (13)	100 (6)	111	95 (12)	104 (6)	190	76 (3)	70 (9)	186	65 (56)	82 (17)	58
Espiroxamina	84 (2)	93 (3)	-11	109 (2)	93 (1)	-20	105 (2)	96 (2)	-10	72 (2)	70 (2)	-25	107 (7)	92 (2)	-15
Etiona	68 (17)	103 (3)	-18	103 (17)	107 (3)	-23	119 (5)	104 (5)	15	72 (7)	70 (4)	13	90 (20)	88 (9)	82
Etiprole	89 (38)	89 (3)	-16	n.q.	96 (7)	-47	100 (19)	103 (3)	-24	70 (20)	73 (7)	-22	91 (17)	103 (11)	-11
Etirimol	48 (5)	64 (5)	-89	49 (23)	54 (14)	-89	78 (9)	73 (5)	-84	108 (10)	74 (6)	-91	n.q.	n.q.	-78
Etofemprox	81 (17)	89 (4)	-4	n.q.	122 (12)	-48	86 (11)	114 (5)	2	102 (19)	71 (14)	-3	84 (14)	78 (6)	-27
Etoprofós	81 (21)	103 (3)	-18	133 (8)	104 (3)	-45	113 (6)	110 (3)	-12	78 (9)	77 (6)	-14	96 (17)	100 (10)	10
Etoxazol	85 (7)	99 (5)	-21	118 (4)	101 (6)	-58	114 (2)	107 (2)	-20	76 (3)	73 (5)	-28	97 (12)	88 (2)	-51
Famoxadona	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Fempiroximate (E)	81 (14)	107 (7)	-65	95 (16)	100 (2)	-86	112 (3)	115 (3)	-50	87 (1)	78 (3)	-50	88 (19)	81 (3)	-23
Fempropimorfe	74 (7)	91 (3)	-15	87 (20)	93 (2)	-27	104 (2)	97 (3)	-12	79 (11)	70 (5)	-32	105 (11)	89 (5)	-14
Fenamidona	89 (5)	97 (1)	-59	99 (9)	95 (4)	-80	112 (11)	116 (5)	-63	73 (10)	73 (3)	-66	102 (14)	96 (2)	9
Fenamifós	85 (16)	98 (5)	-35	106 (5)	97 (3)	2	100 (6)	102 (4)	-29	78 (2)	70 (4)	-25	83 (1)	93 (8)	59
Fenarimol	88 (8)	89 (6)	-54	52 (42)	90 (12)	-85	114 (17)	104 (10)	-68	89 (10)	70 (2)	-78	99 (6)	84 (7)	16
Fenazaquim	48 (14)	103 (5)	-42	93 (1)	93 (4)	-73	105 (2)	100(2)	-29	77 (4)	71 (3)	-30	90 (13)	78 (7)	67
Fenbuconazole	95 (21)	91 (11)	-48	85 (3)	82 (4)	-73	111 (4)	108 (8)	-48	80 (19)	71 (7)	-55	111 (16)	94 (8)	19
Fenhexamida	119 (65)	111 (5)	-35	149 (52)	93 (6)	-58	137 (6)	100 (13)	-52	n.q.	71 (10)	-56	69 (47)	98 (7)	15
Fenobucarbe	77 (10)	100 (9)	-34	n.q.	97 (11)	-83	114 (3)	105 (4)	-30	80 (5)	69 (4)	-35	81 (7)	101 (5)	-26
Fenotrina	99 (43)	107 (5)	1	n.q.	n.q.	n.q.	120 (10)	105 (11)	8	n.q.	73 (8)	0	n.q.	87 (10)	-8
Fenoxycarb	38 (67)	105 (17)	-37	n.q.	111 (18)	-60	n.q.	102 (7)	-26	n.q.	76 (3)	-32	50 (57)	98 (18)	-20
Fensulfotion	200 (19)	100 (4)	-24	137 (9)	115 (4)	-34	103 (10)	103 (5)	-33	n.q.	70 (4)	-29	95 (14)	117 (!)	56
Fentoato	n.q.	121 (16)	-63	118 (46)	114 (30)	-3	n.q.	84 (20)	-69	71 (3)	71 (4)	2	95 (16)	95 (4)	-25
Fluazifope-Butil	74 (3)	95 (1)	-12	113 (11)	108 (3)	-35	118 (4)	106 (1)	0	n.q.	n.q.	n.q.	87 (14)	92 (7)	-24
Fludioxonil	94 (8)	100 (10)	0	n.q.	97 (27)	-20	109 (41)	89 (3)	4	n.q.	55 (7)	0	105 (13)	93 (5)	-19
Flufenoxuron	154 (35)	90 (5)	-35	106 (0)	117 (12)	-28	139 (14)	85 (3)	6	109 (17)	85 (9)	-18	n.q.	99 (17)	-34
Fluquinconazol	n.q.	92 (22)	-25	n.q.	115 (13)	-65	98 (13)	105 (17)	-34	n.q.	74 (14)	-55	96 (16)	99 (15)	-10
Flusilazol	78 (6)	96 (6)	-49	116 (2)	99 (3)	-80	108 (3)	108 (4)	-47	76 (5)	73 (6)	-60	94 (16)	98 (6)	-4
Flutolanil	108 (3)	100 (2)	-11	116 (4)	106 (1)	-51	109 (4)	105 (5)	-19	80 (7)	71 (3)	-13	77 (20)	106 (14)	6
Flutriafol	85 (19)	91 (3)	-56	136 (13)	99 (4)	-81	115 (11)	103 (3)	-64	79 (10)	69 (1)	-78	109 (10)	96 (4)	4
Fosalona	99 (8)	109 (19)	-17	n.q.	n.q.	n.q.	91 (15)	111 (19)	-13	80 (16)	73 (9)	-9	105 (18)	94 (2)	-24

Fosmete	43 (122)	114 (6)	-66	n.q.	81 (9)	-64	119 (12)	100 (8)	-69	70 (19)	75 (8)	-70	n.q.	109 (18)	-20
Fostiazato	87 (3)	106 (3)	-10	119 (4)	103 (0)	-12	119 (6)	107 (2)	-10	82 (4)	74 (3)	-11	113 (5)	97 (2)	7
Furalaxil	86 (3)	102 (2)	-16	118 (7)	101 (1)	-30	110 (9)	103 (2)	-15	73 (2)	70 (6)	-10	72 (7)	95 (14)	4
Furatiocarbe	79 (7)	101 (7)	-14	n.q.	n.q.	n.q.	111 (1)	108 (7)	6	69 (7)	71 (4)	15	96 (15)	92 (3)	-12
Halofenozide	n.q.	95 (5)	-33	n.q.	178 (4)	-53	n.q.	79 (19)	-37	n.q.	73 (17)	-49	n.q.	37 (19)	-12
Haloxifope-2- etoxietil	30 (33)	106 (9)	-37	115 (13)	104 (5)	-45	119 (4)	105 (2)	-12	70 (4)	70 (3)	-5	21 (26)	37 (8)	-28
Hexaconazole	101 (6)	93 (5)	-58	100 (2)	88 (11)	-79	114 (12)	105 (6)	-60	71 (11)	72 (6)	-66	91 (16)	93 (2)	-31
Hexitiazox	70 (3)	110(1)	-13	142 (11)	101 (5)	-50	112 (9)	99 (2)	-12	69 (6)	70 (8)	-19	104 (16)	85 (13)	-41
Imazalil	92 (4)	94 (4)	-31	104 (2)	83 (3)	-18	98 (2)	94 (4)	-23	88 (6)	70 (2)	-28	94 (20)	88 (6)	-25
Imazapic	3 (76)	2 (44)	-7	n.q.	n.q.	-11	n.q.	n.q.	-8	50 (5)	47 (2)	-16	115 (4)	89 (4)	12
Imazetapir	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	91 (11)	83 (11)	14
Imidacloprid	97 (1)	106 (6)	-52	n.q.	70 (5)	-59	99 (8)	112 (11)	-5	100 (10)	81 (3)	-33	104 (13)	92 (11)	5
Indoxacarbe	75 (17)	92 (15)	0	61 (88)	98 (14)	-42	87 (26)	107 (13)	-51	87 (14)	89 (4)	-3	75 (9)	100 (10)	36
Iprovalicarbe	90 (4)	105 (9)	-53	120 (17)	100 (5)	-18	94 (9)	101 (2)	-58	74 (7)	69 (5)	-55	78 (13)	98 (18)	0
Isoxaflutole	n.q.	103 (18)	-31	n.q.	n.q.	-43	n.q.	110 (18)	-31	n.q.	n.q.	n.q.	n.q.	103 (16)	-30
Kresoxim Metil	85 (22)	98 (6)	-19	88 (16)	93 (4)	-62	117 (6)	106 (2)	-15	78 (9)	74 (9)	-27	82 (15)	98 (18)	-28
Linuron	97 (30)	72 (11)	-33	n.q.	28 (29)	-67	109 (14)	114 (6)	-40	n.q.	69 (10)	-28	n.q.	106 (14)	-43
Lufenuron	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	120 (15)	-15	n.q.	n.q.	-48	81 (19)	96 (16)	-81
Malation	81 (21)	95 (6)	-24	103 (14)	103 (8)	-47	93 (4)	101 (8)	-12	79 (16)	76 (5)	-8	113 (12)	108 (9)	18
Mecarbam	61 (17)	101 (7)	8	114 (10)	107 (3)	-41	106 (4)	108 (5)	30	77 (0)	75 (7)	20	88 (18)	98 (7)	3
Mepanipirim	71 (14)	99 (7)	-30	113 (10)	95 (15)	-81	109 (5)	98 (6)	-30	58 (29)	70 (9)	-54	49 (92)	94 (6)	-17
Metalaxil	92 (3)	101 (3)	-16	114 (4)	102 (1)	-11	112 (4)	100 (3)	-6	77 (4)	74 (3)	-7	112 (7)	93 (3)	35
Metamidofós	72 (40)	60 (5)	-88	n.q.	34 (17)	-93	84 (4)	71 (3)	-90	118 (11)	95 (6)	-91	51 (95)	86 (11)	-91
Metconazol	84 (14)	92 (3)	-71	107 (16)	91 (5)	-87	106 (5)	106 (4)	-69	73 (6)	70 (2)	-75	70 (16)	83 (6)	-29
Metidation	65 (26)	87 (23)	-33	n.q.	96 (17)	-72	116 (12)	119 (9)	-30	77 (15)	82 (8)	-28	n.q.	43 (15)	-20
Metiocarbe	70 (12)	95 (7)	-38	129 (33)	105 (4)	-82	109 (3)	103 (5)	-22	81 (20)	70 (2)	-28	66 (33)	97 (11)	-36
Metiocarbe Sulfona	55 (2)	35 (17)	-48	n.q.	n.q.	n.q.	83 (14)	86 (9)	-24	74 (18)	73 (3)	204	n.q.	n.q.	n.q.
Metiocarbe Sulfóxido	95 (13)	86 (4)	-55	n.q.	n.q.	n.q.	98 (16)	107 (7)	-48	45 (40)	76 (6)	-51	n.q.	n.q.	n.q.
Metomil	74 (6)	96 (4)	-35	92 (5)	97 (1)	-54	118 (2)	108 (2)	-37	78 (1)	69 (3)	-55	107 (8)	106 (12)	-20
Metoxifenoside	95 (3)	100 (3)	-19	127 (6)	119 (2)	-36	111 (0)	103 (5)	-12	71 (5)	70 (5)	7	88 (14)	102 (10)	33
Miclobutanil	100 (19)	96 (3)	-42	102 (4)	106 (1)	-62	118 (1)	110 (4)	-48	72 (5)	69 (5)	-54	111 (5)	95 (7)	-1

Monocrotofós	86 (6)	79 (4)	-85	83 (11)	75 (10)	-89	103 (3)	90 (2)	-82	72 (7)	71 (0)	-91	109 (17)	90 (17)	-64
Nitempiram	614 (55)	n.q.	-93	n.q.	n.q.	n.q.	n.q.	83 (30)	-95	n.q.	n.q.	n.q.	n.q.	101 (20)	-82
Ofurace	76 (4)	102 (2)	-24	117 (11)	103 (7)	-38	105 (15)	104 (3)	-20	71 99)	71 (6)	-17	113 (4)	94 (2)	58
Ometoato	67 (62)	73 (8)	-91	n.q.	n.q.	-94	n.q.	81 (10)	-89	94 (19)	117 (17)	-92	n.q.	109 (13)	-90
Oxadixil	102 (1)	105 (1)	-48	103 (13)	102 (1)	-25	111 (2)	104 (2)	-37	77 (6)	72 (4)	-40	91 (17)	97 (6)	10
Oxamil	90 (7)	95 (4)	-59	119 (1)	90 (1)	-25	115 (2)	105 (1)	-45	71 (8)	69 (10)	-62	90 (16)	86 (14)	-34
Paclobutrazol	75 (15)	100(1)	-55	109 (4)	98 (8)	-76	114 (5)	111 (4)	-50	71 (9)	74 (6)	-68	85 (14)	97 (4)	-6
Paration-etil	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	-6	n.q.	n.q.	n.q.
Pencicuron	93 (3)	100 (5)	-22	113 (9)	104 (1)	-41	118 (4)	107 (5)	-17	73 (3)	71 (7)	-11	96 (16)	93 (6)	-17
Penconazol	90 (15)	93 (0)	-49	109 (6)	90 (5)	-71	115 (4)	101 (5)	-52	79 (5)	71 (6)	-64	89 (17)	91 (9)	-34
Pendimentalin	61 (39)	108 (7)	-4	119 (7)	105 (6)	-39	120 (15)	105 (2)	-4	78 (15)	73 (10)	-13	79 (12)	82 (4)	-20
Picoxistrobina	84 (7)	102 (5)	-26	102 (1)	99 (4)	-57	114 (1)	110 (4)	-25	74 (1)	71 (2)	-35	101 (13)	95 (8)	-27
Piperonil Butóxido	82 (5)	100 (3)	-19	115 (3)	98 (1)	-45	112 (3)	106 (1)	-9	69 (6)	72 (5)	-11	98 (13)	93 (5)	-39
Piraclostrobina	79 (9)	96 (3)	-22	113 (3)	98 (1)	-56	112 (1)	105 (6)	-17	76 93)	72 (11)	-32	90 (1)	91 (3)	-32
Pirazofós	86 (7)	108 (4)	-2	88 (5)	112 (9)	-33	105 (10)	93 (6)	33	72 (12)	75 (6)	32	88 (19)	96 (9)	34
Piridabem	66 (5)	98 (6)	-25	105 (10)	92 (11)	-15	114 (6)	100 (2)	-4	76 (3)	70 (2)	-2	90 (13)	84 (4)	-19
Pirimetanil	79 (12)	89 (3)	-33	119 (6)	111 (2)	-77	99 (6)	96 (1)	-31	69 (5)	70 (2)	-49	87 (11)	80 (2)	-35
Pirimicarbe	n.q.	n.q.	n.q.	n.q.	113 (18)	-58	n.q.	92 (16)	-41	n.q.	n.q.	-62	105 (12)	90 (4)	-36
Pirimifós-etil	79 (10)	100 (3)	-31	109 (4)	103 (3)	-69	111 (2)	109 (1)	-27	76 (2)	74 (4)	-35	101 (11)	90 (4)	-30
Pirimifós-metil	76 (12)	100 (3)	-29	104 (0)	94 (5)	-68	117 (2)	109 (2)	-27	74 (3)	72 (3)	-38	104 (11)	92 (4)	-35
Piriproxifem	75 (15)	94 (4)	-44	114 (6)	102 (8)	-85	112 (3)	105 (3)	-39	75 (3)	72 (4)	-49	98 (11)	85 (7)	-37
Procloraz	99 (9)	95 (3)	-31	94 (4)	88 (4)	-56	100 (5)	102 (2)	-76	80 (3)	71 (2)	-74	86 (18)	92 (8)	-2
Profam	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	151 (23)	99 (15)	-2	n.q.	93 (18)	-8	95 (2)	106 (6)	-47
Profenofós	119 (10)	106 (14)	-28	n.q.	110(2)	-48	92 (6)	93 (9)	-17	74 (12)	70 (10)	-9	96 (16)	91 (16)	-40
Prometrim	84 (7)	94 (4)	-14	115 (4)	104(1)	-42	114 (1)	102 (3)	-10	71 (3)	69 (4)	-26	101 (12)	90 (3)	-22
Propamocarbe	72 (13)	85 (3)	-83	n.q.	32 (3)	-77	90 (4)	75 (2)	-77	88 (4)	80 (0)	-80	53 (65)	85 (19)	-72
Propanil	107 (44)	114 (32)	-30	n.q.	n.q.	n.q.	77 (20)	98 (18)	-24	n.q.	88 (17)	-19	109 (10)	81 (15)	-28
Propargite	84 (17)	88 (4)	4	99 (12)	109 (8)	-32	101 (10)	100 (7)	14	75 (8)	70 (4)	19	22 (33)	24 (44)	154
Propiconazole	86 (6)	92 (3)	-58	151 (14)	100 (7)	-82	104 (5)	108 (3)	-50	81 (8)	70 (4)	-56	88 (18)	89 (7)	0
Propizamida	104 (13)	90 (6)	-4	n.q.	103 (11)	-64	112 (11)	96 (5)	-27	40 (2)	70 (10)	-46	78 (11)	106 (4)	-5
Protiofós	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	-17
Quinoxifem	99 (18)	101 (13)	-20	57 (65)	108 (3)	-72	88 (16)	119 (6)	-27	56 (24)	70 (18)	-33	96 (7)	78 (4)	-16
Simazine	92 (17)	91 (3)	-39	102 (19)	96 (10)	-64	120 (13)	101 (6)	-43	70 (6)	70 (1)	-57	97 (11)	91 (9)	-20

TD T1 1'	200 (55)	110 (07)	1.4				100 (16)	100 (0)			70 (0)		111 (21)	07 (20)	
Tau-Fluvalinato	208 (57)	110 (27)	-14	n.q.	n.q.	n.q.	190 (46)	102 (8)	3	n.q.	70 (9)	-3	111 (31)	87 (20)	-55
Tebuconazol	81 (13)	97 (4)	-60	120 (19)	94 (5)	-86	108 (9)	101 (1)	-56	85 (1)	69 (2)	-67	84 (2)	96 (8)	17
Tebufempirade	48 (57)	100 (5)	-23	171 (15)	107 (8)	-38	86 (6)	106 (7)	-15	73 (10)	72 (6)	-5	101 (14)	83 (11)	-29
Tebufenozide	101 (14)	109 (2)	19	106 (9)	116 (6)	-28	100 (9)	99 (3)	43	75 (3)	69 (1)	46	105 (9)	96 (4)	-16
Tetraclorvinfós	150 (20)	88 (21)	-55	121 (47)	89 (19)	-63	114 (10)	110 (8)	-46	94 (3)	70 (6)	-40	n.q.	81 (3)	-24
Tetraconazol	105 (9)	94 (5)	-37	144 (21)	99 (3)	-71	103 (13)	109 (5)	-80	111 (19)	75 (6)	-78	82 (9)	97 (9)	-2
Tetrametrina	110 (12)	98 (4)	-1	76 (14)	104 (9)	-33	118 (3)	108 (7)	-2	78 (6)	71 (10)	3	95 (12)	93 (13)	-19
Tiabendazol	64 (2)	66 (5)	-94	70 (6)	49 (8)	-95	76 (70)	n.q.	-92	72 (2)	69 (8)	-96	32 (62)	55 (22)	-91
Tiaclopride	72 (10)	89 (1)	-70	92 (5)	88 (1)	-63	115 (6)	106 (1)	-70	78 (2)	70 (2)	-71	100 (11)	95 (13)	-27
Tiametoxam	84 (19)	83 (2)	-87	n.q.	42 (7)	-81	104 (15)	96 (3)	-86	79 (3)	74 (3)	-88	76 (15)	90 (7)	14
Tiodicarbe	90 (1)	77 (2)	-24	n.q.	n.q.	n.q.	97 (3)	91 (2)	5	79 (2)	69 (5)	12	88 (11)	66 (7)	55
Tiofanato Metil	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	36 (5)	72 (4)	-26
Tolcofós Metil	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Tolifluanide	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Triadimefon	74 (9)	93 (2)	-26	155 (4)	104 (5)	-71	112 (5)	102 (7)	-53	61 (41)	71 (12)	-71	87 (18)	94 (7)	37
Triadimenol	94 (24)	93 (7)	-53	n.q.	98 (16)	-71	n.q.	97 (15)	-56	113 (12)	82 (3)	-62	155 (9)	87 (12)	59
Triazofós	80 (6)	100 (4)	-31	115 (6)	103 (4)	-47	111 (1)	102 (2)	-23	80 (3)	73 (5)	-17	71 (18)	108 (17)	21
Triclorom	26 (0)	111 (29)	-67	n.q.	n.q.	n.q.	n.q.	76 (5)	-69	n.q.	151 (9)	-49	n.q.	n.q.	n.q.
Trifloxistrobina	56 (20)	90 (4)	-36	98 (8)	93 (4)	-64	123 (19)	105 (7)	-23	72 (6)	77 (14)	-33	93 (10)	95 (6)	-46
Triflumizol	83 (14)	92 (5)	-50	104 (2)	80 (3)	-67	113 (5)	110 (4)	-53	72 (2)	71 (4)	-62	104 (14)	89 (2)	-43
Triticonazol	69 (17)	94 (4)	-66	96 (3)	88 (8)	-89	110 (11)	113 (3)	-63	119 (3)	81 (2)	-70	95 (4)	96 (12)	6
THUCOHUZOI															
Zoxamida	76 (12)	91 (4)	-10	100 (48)	83 (5)	-51	98 (12)	98 (10)	-42	72 (2)	70 (7)	-51	95 (15)	94 (9)	-20

n.q.= não quantificável

Tabela 4 - Valores de recuperação e RSD (%) para as micotoxinas fortificados (n=3) em *Malva sylvestris L*. extraídos pelos ensaios de 1 a 5, e os valores de efeito matriz percentual (EM%).

	Ensa	aio 1		Ensa	aio 2		Ensa	aio 3		Ensa	aio 4		Ensa	aio 5	
Micotoxina	Nível 1	Nível 2	EM	Nível 1	Nível 2	EM	Nível 1	Nível 2	EM	Nível 1	Nível 2	EM	Nível 1	Nível 2	EM
Micotoxilia	Rec.	Rec.	(%)	Rec.	Rec.	(%)	Rec.	Rec.	(%)	Rec.	Rec.	(%)	Rec.	Rec.	(%)
	(RSD)%	(RSD)%		(RSD)%	(RSD)%		(RSD)%	(RSD)%		(RSD)%	(RSD)%		(RSD)%	(RSD)%	
Aflatoxina B1	72 (18)	80 (2)	-40	78 (6)	74 (3)	-47	111 (7)	48 (1)	-33	115 (6)	69 (3)	-43	58 (4)	96 (5)	-20
Aflatoxina B2	n.q.	80 (11)	-87	46 (50)	70 (2)	-47	n.q.	39 (20)	-89	155 (27)	71 (11)	-88	n.q.	74 (12)	-17
Aflatoxina G1	n.q.	114 (6)	-92	n.q.	71 (8)	-44	n.q.	102 (42)	-93	n.q.	52 (39)	-91	39 (21)	82 (8)	31
Aflatoxina G2	110 (2)	100 (8)	-40	n.q.	71 (6)	-40	145 (7)	88 (6)	-29	n.q.	n.q.	-39	n.q.	88 (14)	9
Citrinina	86 (5)	20 (2)	-45	n.q.	33 (23)	120	123 (1)	30 (3)	-36	42 (1)	38 (6)	-40	n.q.	9 (30)	-11
Desoxinivalenol	5 (19)	2 (13)	8	n.q.	90 (12)	2	n.q.	n.q.	n.q.	n.q.	82 (17)	-44	n.q.	107 (6)	-65
Diacetoxiscirpenol	8 (20)	2 (7)	-37	n.q.	103 (4)	-50	n.q.	114 (14)	-40	n.q.	111 (13)	-34	n.q.	94 (12)	21
Fumonisina B1	n.q.	34 (1)	-82	n.q.	n.q.	-65	n.q.	n.q.	-77	n.q.	38 (13)	-88	n.q.	102 (39)	-1
Fumonisina B2	n.q.	34 (1)	-82	n.q.	n.q.	-62	n.q.	n.q.	-78	n.q.	53 (7)	-67	n.q.	118 (33)	-31
Ocratoxina A	n.q.	n.q.	8	n.q.	106 (34)	1	129 (3)	n.q.	-9	70 (2)	70 (14)	-8	271 (16)	96 (16)	6
Toxina HT2	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.	n.q.
Toxina T2	43 (60)	118 (2)	-16	n.q.	n.q.	-43	152 (17)	106 (4)	-29	n.q.	75 (11)	-25	n.q.	99 (7)	3
Zearalenona	n.q.	145 (7)	-21	n.q.	n.q.	n.q.	n.q.	74 (10)	-24	100 (87)	73 (15)	-37	n.d	93 (5)	-35

n.q.= não quantificável