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RESUMO

PLANEJAMENTO EXPERIMENTAL PARA MUDAS DE COUVE-FLOR E
PLANTAS DE ALFACE: DEFINIÇÃO DO TAMANHO AMOSTRAL ÓTIMO

AUTORA: Karina Chertok Bittencourt
ORIENTADOR: Marcos Toebe

A definição do tamanho amostral é uma importante etapa do planejamento de experimentos,
pois a coleta de uma amostra suficientemente representativa é essencial para obter resultados
confiáveis. Entretanto, o tamanho de amostra ótimo pode variar segundo a espécie, caracteres
avaliados e estatísticas posteriormente estimadas. Nesse sentido, pesquisas com culturas
olerícolas de importância econômica, como a couve-flor e a alface, comumente têm utilizado
tamanhos amostrais pequenos, em vista da escassez de trabalhos com foco no seu
dimensionamento amostral. Dessa forma, o presente trabalho teve como objetivo geral
otimizar o planejamento experimental de experimentos com as culturas da couve-flor e da
alface por meio do dimensionamento amostral para diferentes estatísticas e caracteres. Assim,
um experimento em ambiente protegido com mudas de couve-flor foi conduzido na área
experimental da Universidade Federal do Pampa, Campus Itaqui, e um experimento a campo
com 26 genótipos de alface foi conduzido na área experimental da Universidade Federal de
Santa Maria, Campus Frederico Westphalen. Em mudas de couve-flor, os seguintes caracteres
foram avaliados: número de folhas, altura de planta, comprimento da raiz e comprimento total
(altura de planta + comprimento de raiz), e em plantas de alface, a produtividade por planta
(massa fresca em gramas), o número de folhas, a altura de planta, diâmetro do colo e o
diâmetro médio da cabeça foram avaliados. Estatísticas de precisão foram estimadas,
obtendo-se a amplitude dos seus intervalos de confiança a 95%. Cem cenários amostrais
foram simulados para cada estatística e caractere utilizando reamostragem bootstrap com
reposição, e tamanhos amostrais ótimos foram definidos ajustando os intervalos de confiança
de 95% a modelos da família potência e encontrando o ponto máximo de curvatura. Além
disso, quatro métodos para obter o ponto de máxima curvatura foram comparados, e equações
preditivas para estatísticas de precisão com base no tamanho amostral foram propostas. A
amplitude do intervalo de confiança a 95% das estatísticas reduziu conforme o tamanho
amostral aumentou, até um ponto de estabilização. O método de distâncias perpendiculares foi
considerado o mais eficiente para definir o ponto de máxima curvatura. Os tamanhos
amostrais variaram conforme estatísticas e caracteres, sendo esta variação maior entre
estatísticas. A estatística F destacou-se por obter tamanhos amostrais maiores em todos os
estudos. As equações preditivas apresentaram excelente qualidade de ajuste, permitindo
conhecer os valores médios, máximos e mínimos de estatísticas de precisão a partir da seleção
de um tamanho amostral específico. Assim, as informações trazidas por estes estudos
contribuem para otimizar o planejamento experimental das culturas da couve-flor e da alface e
serão úteis para pesquisadores da área que desejam avaliar a precisão experimental por meio
das estatísticas e caracteres descritos.

Palavras-chave: Brassica oleracea, Lactuca sativa, estatísticas de precisão, horticultura,
reamostragem bootstrap.



ABSTRACT

EXPERIMENTAL PLANNING FOR CAULIFLOWER SEEDLINGS AND LETTUCE
PLANTS: DEFINITION OF THE OPTIMAL SAMPLE SIZE

AUTHOR: Karina Chertok Bittencourt
ADVISOR: Marcos Toebe

Defining the sample size is an important step in the planning of experiments, as collecting a
sufficiently representative sample is essential to obtain reliable results. However, the optimal
sample size may vary depending on the species, evaluated characters, and the subsequently
estimated statistics. In this sense, research on economically important vegetable crops, such as
cauliflower and lettuce, has commonly used small sample sizes, given the scarcity of studies
focusing on their sample dimensioning. Therefore, the present work aimed to optimize the
experimental planning of experiments with cauliflower and lettuce crops through sample
sizing for different statistics and characters. Thus, a greenhouse experiment with cauliflower
seedlings was conducted in the experimental area of the Federal University of Pampa, Itaqui
Campus, and a field experiment with 26 lettuce genotypes was conducted in the experimental
area of the Federal University of Santa Maria, Frederico Westphalen Campus. For cauliflower
seedlings, the following characters were assessed: number of leaves, plant height, root length,
and total length (plant height + root length), and for lettuce plants, the yield per plant (fresh
weight in grams), number of leaves, plant height, stem diameter, and mean head diameter
were evaluated. Precision statistics were estimated, obtaining the 95% confidence interval
width. One hundred sampling scenarios were simulated for each statistic and character using
bootstrap resampling with replacement, and optimal sample sizes were defined by adjusting
the 95% confidence intervals to models of the power family and finding the maximum
curvature point. Furthermore, four methods for obtaining the maximum curvature point were
compared, and predictive equations for precision statistics based on sample size were
proposed. The 95% confidence interval width of the statistics reduced as the sample size
increased, until a point of stabilization. The perpendicular distance method was considered the
most efficient for defining the maximum curvature point. The sample sizes varied according
to statistics and characters, with this variation being greater between statistics. The F statistic
stood out for obtaining larger sample sizes in all studies. The predictive equations presented
excellent fitting quality, which allows for knowing the mean, maximum, and minimum values
of precision statistics based on the selection of a specific sample size. Thus, the information
provided by these studies contributes to optimizing the experimental planning of cauliflower
and lettuce crops and may be useful for researchers in the field who wish to evaluate
experimental precision through the statistics and characters described.

Keywords: Brassica oleracea, Lactuca sativa, precision statistics, horticulture, bootstrap
resampling.
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1 INTRODUÇÃO

O planejamento prévio à realização de experimentos é de extrema importância para

prever e evitar problemas durante a sua condução, além de possibilitar a otimização de

recursos e mão-de-obra destinados aos mesmos (FREEMAN et al., 2013). Escolhas

relacionadas ao uso de delineamentos experimentais, número de tratamentos e repetições e

definição e delimitação da área, são realizadas antes da implantação de um experimento.

Entretanto, dentre os aspectos englobados pelo planejamento experimental, uma importante

decisão que normalmente é tomada de forma empírica é a definição do tamanho amostral a ser

utilizado para a coleta de dados (SOUZA et al., 2022). Na pesquisa agronômica, esta

definição refere-se, na maioria das vezes, ao número de plantas que serão avaliadas ao final

do período experimental. Sendo assim, quando delineamentos experimentais são utilizados, é

necessário considerar as restrições que estes impõem (STORCK et al., 2016), determinando,

portanto, um número de plantas a serem avaliadas dentro de cada unidade experimental

(SOUZA et al., 2022).

A importância do tamanho amostral tem sido destacada na literatura em várias

ocasiões (CONFALONIERI et al., 2009; ANDERSON et al., 2017; POLITI et al., 2023), uma

vez que a representatividade da amostra pode ser comprometida em razão da utilização de

tamanhos amostrais inadequados. Tamanhos de amostra considerados insuficientes, isto é,

extremamente pequenos, podem prejudicar a confiabilidade dos resultados obtidos por meio

da análise dos dados oriundos desta amostra (PIÑERA-CHAVEZ et al., 2020). Por outro lado,

a seleção de um número excessivo de observações resulta em maior tempo de avaliação, o

qual pode afetar diretamente a mensuração de variáveis, principalmente se tratando de

organismos vivos, além de gerar uma maior necessidade de recursos e mão-de-obra (TOEBE

et al., 2018). Dessa forma, a definição de um tamanho amostral ótimo tem sido o foco de

diversos trabalhos ao longo do tempo (TOEBE et al., 2019; CARGNELUTTI FILHO e

TOEBE, 2020, 2021, 2022; SHIMANDA et al., 2020; SOUZA et al., 2023a, 2023b, 2023c,

2023d). Entretanto, tais pesquisas destacam que este número pode variar de acordo com a

cultura utilizada e, inclusive, as características avaliadas, as condições experimentais e as

análises posteriores.

No estudo de Toebe et al. (2019), ao determinar o tamanho de amostra para estimar

coeficientes de correlação linear de Pearson em espécies de crotalária, constataram que os

tamanhos de amostra ótimos variaram de 10 a 440 vagens, dependendo da espécie, variável e

magnitude do coeficiente de correlação. Além disso, para esta mesma cultura, tamanhos de
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amostra maiores foram encontrados para estimar a média, em comparação ao coeficiente de

variação experimental (TOEBE et al., 2018). Em milho, Cargnelutti Filho e Toebe (2020)

definiram um tamanho amostral total de 260 plantas por ensaio para ajustar modelos de

regressão múltipla de forma precisa, enquanto para a análise de componentes principais, os

mesmos autores encontraram um tamanho de amostra de 267 plantas (CARGNELUTTI

FILHO e TOEBE, 2021) e de 270 plantas para análise de correlação canônica

(CARGNELUTTI FILHO e TOEBE, 2022). Para experimentos realizados com a cultura da

soja, ao definir o tamanho amostral por unidade experimental, Souza et al. (2022) concluíram

que 18 plantas foram suficientes para estimar estatísticas de precisão, à exceção da estatística

F, para a qual 41 plantas por parcela foram necessárias. Por outro lado, a amostragem de 17 a

20 plantas de soja foi considerada suficiente para otimizar o teste de Bartlett em soja (SOUZA

et al., 2023c), enquanto o teste de não aditividade de Tukey requereu de 14 a 19 plantas por

unidade experimental (SOUZA et al., 2023e). Estes exemplos ilustram a importância da

definição de tamanhos amostrais ótimos para diferentes culturas e técnicas, considerando a

mensuração de diferentes variáveis, a fim de aumentar a base de recomendações que

contribuam para a padronização da amostragem, aumentando, assim, a confiabilidade dos

resultados das pesquisas.

Nesse sentido, diversas culturas ainda carecem de recomendações de tamanhos

amostrais ótimos, principalmente visando à realização de análises específicas, que incluem a

estimativa de diferentes estatísticas, encontrando-se na literatura um menor número de

estudos de dimensionamento amostral com foco em espécies olerícolas. Dentre estes estudos,

destacam-se os trabalhos de Sari et al. (2017) com tomate cereja (Solanum lycopersicum var.

cerasiforme), Krysczun et al. (2018) com a cultura da beringela (Solanum melongena) e Alves

et al. (2022) com genótipos de pimenta (Capsicum chinense). Entretanto, outras olerícolas de

importância econômica, como as culturas da couve-flor (Brassica oleracea var. botrytis) e da

alface (Lactuca sativa), têm recebido menos atenção em estudos de dimensionamento

amostral. Ambas as espécies são amplamente cultivadas no mundo, principalmente devido ao

seu alto valor nutricional e sua utilização no preparo de diversos pratos (BHATTACHARJEE

e SINGHAL, 2018; YANG et al., 2022). Por esse motivo, estas olerícolas são alvo de

inúmeros estudos agronômicos que visam ao aumento da produtividade das mesmas (WU et

al., 2012; RAY e MISHRA, 2019; MUSTAFA et al., 2023; YAVUZ et al., 2023). Contudo,

observa-se uma grande variação do número de plantas amostradas para a realização destas

pesquisas, ressaltando a necessidade de padronização do mesmo.



16

Somado a isso, é importante destacar que metodologias mais robustas têm sido

recentemente utilizadas em estudos de dimensionamento amostral (SOUZA et al., 2022,

2023b), incluindo a simulação de um grande número de cenários amostrais por meio da

reamostragem bootstrap (EFRON, 1979) e a posterior definição de um ponto máximo de

curvatura, para o qual vários métodos podem ser utilizados. Esta abordagem apresenta

vantagens em relação a outros métodos onde o tamanho amostral é determinado por meio de

equações pré-definidas, como a equação de Cochran (1977), anteriormente utilizada para o

dimensionamento amostral para a cultura da alface (SANTOS et al., 2010), pois permite a

definição do tamanho de amostra ótimo para várias técnicas e estatísticas. Ainda, outros

avanços envolvendo o planejamento experimental demonstram-se promissores, como as

equações preditivas propostas por Souza et al. (2022), as quais permitem conhecer o valor de

estatísticas de precisão a partir de um dado tamanho de amostra em ensaios com soja. Estas

equações possuem potencial de calibração e aplicação para outras culturas e estatísticas

(SOUZA et al., 2022, 2023b). Nesse contexto, estudos com foco no dimensionamento

amostral para olerícolas de importância econômica, aliados à investigação de diferentes

metodologias e da predição da precisão experimental, tornam-se úteis para os pesquisadores

da área, funcionando como um guia para otimizar o planejamento experimental, garantindo

maior confiabilidade aos resultados obtidos.

2 HIPÓTESES

Considerando o abordado no tópico anterior, formularam-se as seguintes hipóteses:

- O ponto máximo de curvatura utilizado como referência para a determinação do

tamanho amostral ótimo diferirá segundo a metodologia utilizada para encontrá-lo.

- Estatísticas de precisão experimental exibirão uma resposta distinta entre si à

variação do número de plantas amostradas por unidade experimental.

- A amplitude dos intervalos de confiança a 95% poderá ser modelada para o

dimensionamento amostral por unidade experimental para estatísticas de precisão em mudas

de couve-flor e plantas de alface.

- A construção de modelos preditivos a partir de reamonstragem bootstrap permitirá

prever a precisão experimental para mudas de couve-flor e plantas de alface.

3 OBJETIVO GERAL
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Este trabalho teve como objetivo otimizar o planejamento experimental de

experimentos com as culturas da couve-flor e da alface por meio do dimensionamento

amostral para diferentes estatísticas e caracteres.

4 OBJETIVOS ESPECÍFICOS

- Comparar métodos utilizados para definir o tamanho amostral ótimo por unidade

experimental para mudas de couve-flor.

- Analisar a resposta da análise de variância à variação do tamanho amostral por

unidade experimental em experimentos com mudas de couve-flor.

- Definir o tamanho amostral por unidade experimental ótimo para estimar estatísticas

de precisão experimental para as culturas de couve-flor e da alface.

- Propor e adaptar modelos preditivos para estimar a precisão de experimentos com

couve-flor e alface.
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5 ARTIGO 1 – WHAT IS THE BEST WAY TO DEFINE SAMPLE SIZE FOR
CAULIFLOWER SEEDLINGS?

(Formatação da revista Ciência Rural)

Publicado no periódico: Ciência Rural

Situação: Publicado
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5.1 ABSTRACT

The aim of this study was to compare four methods for defining the ideal sample size per

experimental unit to estimate the overall experimental mean for the total length, shoot length,

root length, and the number of leaves of cauliflower seedlings. An experiment was carried out

where the number of leaves, shoot, root, and total length were measured, and the general,

perpendicular distance, linear response plateau, and spline methods were tested. While the

general method may under or overestimate sample size and the sampling of 10 seedlings

suggested by the spline method is still too far from the stabilization point of the curve, the

perpendicular distance and linear plateau response methods are recommended for obtaining

results corresponding to narrower confidence interval widths. Therefore, according to the

perpendicular distance method, at least 15 seedlings per experimental unit are required to

estimate the overall experimental mean of cauliflower seedlings reliably for the traits here

measured.

Keywords: Brassica oleracea, horticulture, experimental planning, maximum curvature

point.

5.2 RESUMO

O objetivo deste estudo foi comparar quatro métodos para definir o tamanho amostral ideal

por unidade experimental para estimar a média experimental geral para o comprimento total,

comprimento de parte aérea, comprimento de raiz e número de folhas de mudas de couve-flor.

Um experimento foi conduzido no qual foram medidos o número de folhas, o comprimento

total, de parte aérea e de radícula, e foram testados os métodos: geral, de distâncias

perpendiculares, resposta linear platô e spline. Enquanto o método geral pode sub ou

superestimar o tamanho amostral e a amostragem de 10 mudas sugerida pelo método spline

ainda se encontra muito distante do ponto de estabilização da curva, os métodos de distâncias

perpendiculares e resposta linear platô são recomendados por obter resultados que
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corresponderam a amplitudes de intervalos de confiança menores. Portanto, de acordo com o

método de distâncias perpendiculares, pelo menos 15 mudas por unidade experimental são

necessárias para estimar a média experimental geral de mudas de couve-flor confiavelmente

para os traços aqui mensurados.

Palavras-chave: Brassica oleracea, horticultura, planejamento experimental, máximo ponto

de curvatura.

5.3 SCIENTIFIC NOTE

Different methodologies have been proposed for defining sample size based on the

maximum curvature point (Federer 1955), such as the general, perpendicular distance, linear

plateau response, and spline methods (Silva & Lima 2017). However, Cargnelutti Filho et al.

(2021) showed that different methods obtained quite different results when defining optimal

plot size for several crops, making the selection of the method the first crucial step in sample

size definition since, if not appropriate, it may lead to unrepresentative numbers. Also, little

attention has been given to the definition of sample size per experimental unit, that is,

considering experimental restrictions, which are present in experiments that use experimental

designs, being this the case for experiments performed with most horticultural crops.

Cauliflower (Brassica oleracea var. botrytis L.) is an example of a widely studied

horticultural crop that has been the object of several experiments thorough the years in which

different sample sizes have been chosen empirically, once the lack of standardization for this

number can be easily visualized in the literature. While Thomson et al. (2013) assessed 20

cauliflower plants per plot, Tempesta et al. (2019) used a sample of 5 plants from each

experimental unit, and Costa et al. (2020) collected only 1 plant per cultivar. Thus, a

recommendation of the number of plants to be collected per experimental unit based on the

comparison of methods may be extremely useful to researchers that perform experiments with
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cauliflower seedlings, facilitating experimental planning and the obtention of more reliable

results. Therefore, the aim of this study was to compare four methods for defining the ideal

sample size per experimental unit to estimate the overall experimental mean for the total

length, shoot length, root length, and the number of leaves of cauliflower seedlings.

The experiment was conducted in a greenhouse at the Federal University of Pampa

(UNIPAMPA), Itaqui, Rio Grande do Sul, Brazil. Cultivar Teresópolis Gigante was sown

using three substrates (50% Mecplant® + 50% Carolina Padrão®, 75% Mecplant® + 25% rice

husk, and 75% Carolina Padrão® + 25% rice husk), in 72 and 128 cell-trays (3𝗑2 two-factor

scheme) with four replications, in a completely randomized design. Thirty days later, twenty

seedlings were randomly collected from each experimental unit, considering higher sample

numbers are rarely used in cauliflower studies (Thomson et al. 2013; Tempesta et al. 2019;

Costa et al. 2020). Then, the following traits were measured: a) Number of Leaves (NL) in

units, b) Shoot Length (SL), from neck to leaflet insertion, in cm; c) Root Length (RL), from

neck to root apex, in cm; and d) Total Length (TL), as the sum of SL and RL, in cm. Other

experiments with 1, 2, …, 100 seedlings per experimental unit were simulated using bootstrap

resampling, with 10,000 resamples with repositioning (Efron 1979).

The statistical analyses were performed using R software (R Development Core Team

2021) in several of its functions, and R package soilphysics (Silva & Lima 2015) according to

the applications carried out to determine the sample size by Silva & Lima (2017). After

subdividing the database per experimental unit, these sample sizes were subjected to analysis

of variance, performed according to the following model:

, where Yijk is the value observed in the response variable𝑌
𝑖𝑗𝑘

= 𝑚 + 𝑇
𝑖
+ 𝑆

𝑗
+ 𝑇𝑆( )

𝑖𝑗
+ ε

𝑖𝑗𝑘

in plot ijk, m is the overall mean, Ti is the fixed effect of level i (i = 1 and 2) of the

tray-cell-size factor, Sj is the fixed effect of level j (j = 1, 2, 3) of the substrate factor, (TS)ij is

the interaction fixed effect of level i of the tray-cell-size factor with level j of the substrate
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factor and ɛijk is the experimental error effect (Storck et al. 2016). Thereafter, m effect was

extracted from this model in each resampling, using specific routines with sample() and aov()

functions.

Resamplings for each planned sample scenario were subjected to descriptive analysis

defining minimum, percentiles of 2.5, mean, percentiles of 97.5, and maximum values. 95%

confidence interval width (CI95%) was estimated from the difference between percentiles of

97.5 and percentiles of 2.5. Next, CI95% estimates were fitted using nls() function through the

following power model: , where α is the coefficient of interception, n,𝐶𝐼
95%

= α×𝑛β + ε

sample size, β, exponential rate of decay, and ɛ, random effect error. Posteriorly, four methods

for determining the maximum curvature point were used: the general, perpendicular distances,

linear plateau response, and spline methods, according to Silva & Lima (2017), using

maxcurv() function from soilphysics package (Silva & Lima 2015). This point was considered

the representative sample size.

In the reference experiment, the effects of the substrate, tray-cell size, and substrate ×

tray-cell size interaction factors were significant. As expected, for all traits, CI95% decreased

exponentially as sample size increased up to a stabilization point (Fig. 1), that is, the sampling

of 1 seedling corresponds to a much wider CI95% compared with the sampling of 100 seedlings

per experimental unit. This reflects the higher the number of seedlings collected, the more

representative the sample (Siegel 2016), once too small sample sizes may subject results to

over or underestimation (Cargnelutti Filho et al. 2018). Nevertheless, the mean property of m

was constant for all traits (4.62 units for NL, 7.82 cm for SL, 8.51 cm for RL, and 16.34 cm

for TL), which was also observed by Toebe et al. (2018), who reported this statistic as a

non-biased estimator. Moreover, power models presented satisfactory fitting-quality

(Moinester & Gottfried 2014), verified through the coefficient of determination (R2), root

mean square error (RMSE), and d index (Table 1).
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Although the optimal sample size variated slightly between traits, the four methods led

to quite different results (Fig. 2). Whilst the general method considered two seedlings were

enough, the others required either 10 (spline), 15 (perpendicular distance), or even 19

seedlings per experimental unit (linear plateau response) to estimate m reliably. However,

considering the CI95% observed when sampling only two seedlings, such a low number would

most likely lead to unreliable estimates. Also, the sampling of 10 seedlings per experimental

unit is still too far from the stabilization point of the curve, meaning the general and spline

methods may not be ideal choices for the conditions under study.

Moreover, although both perpendicular distance and linear plateau response methods

presented representative sample numbers, the precision gain obtained by the linear plateau

response in relation to the perpendicular distance method is too little to justify selecting the

first over the latter. Thus, although both could be used reliably, the results obtained using the

perpendicular distance method may come up as more efficient under the practical perspective

of researchers for being closer to the minimum sufficient number of seedlings to be sampled

per experimental unit enough to reach high precision, avoiding collecting greater samples, as

recommended by the linear plateau response, which often requires more resources and

manpower. Therefore, we highly encourage the sampling of at least 15 cauliflower seedlings

per experimental unit in order to estimate the overall experimental mean reliably for the traits

here measured.

In this sense, even if the sampling recommendations here proposed might be highly

practical and efficient for optimizing experimental planning of experiments with cauliflower

seedlings, considering the majority of them use experimental restrictions, these should not be

applied to other horticultural crops without performing preliminary studies, as well as the

method comparison here presented should only serve as a basis to researchers who aim at

defining sample size for other species from the Brassicaceae family.
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5.5 TABLE

Table 1 - Coefficient of determination (R2), root mean square error (RMSE) and d index of the
power models, and maximum curvature points and sample sizes for the overall experimental
mean of the number of leaves (NL), shoot length (SL), root length (RL) and total length (TL)
of cauliflower seedlings.

Trait Power model R2 RMSE d index

NL CI95% = 0.5019×n-0.4985 0.9995 0.0015 0.9999

SL CI95% = 3.7533×n-0.5466 0.9588 0.1009 0.9892

RL CI95% = 1.2576×n-0.5017 0.9998 0.0022 0.9998

TL CI95% = 4.1439×n-0.5534 0.9837 0.0703 0.9957

Trait Maximum curvature method Maximum
Curvature

Maximum
CI95%

Sample size

NL General method 1.0000 0.5019 1

NL Spline method 9.9940 0.1593 10

NL Perpendicular distance method 14.4865 0.1324 15

NL Linear plateau response method 18.9407 0.1158 19

SL General method 1.4951 3.0126 2

SL Spline method 9.4000 1.1028 10

SL Perpendicular distance method 13.9518 0.8887 14

SL Linear plateau response method 16.9607 0.7987 17

RL General method 1.0000 1.2576 1

RL Spline method 9.9542 0.3971 10

RL Perpendicular distance method 14.4469 0.3294 15

RL Linear plateau response method 18.8022 0.2886 19

TL General method 1.5941 3.2014 2

TL Spline method 9.3205 1.2048 10

TL Perpendicular distance method 13.8726 0.9668 14

TL Linear plateau response method 16.7023 0.8724 17
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5.6 FIGURES

Figure 1 - Minimum, 2.5 percentile, mean, 97.5 percentile, and maximum values of the
overall experimental mean of cauliflower seedlings.
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Figure 2 - Sample size determination via power model and maximum curvature points for
estimating the overall experimental mean of cauliflower seedlings.
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6.1 ABSTRACT

The aim of this study was to verify whether sample size would affect the precision of the

analysis of variance in experiments with cauliflower seedlings. An experiment was carried out

where the number of leaves, shoot, root and total length were measured. For each variable,

resamplings with repositions were performed in sample scenarios of 1, 2, …, 100 seedlings

per experimental unit and sample size was defined for the variance components through

Schumacher models and maximum curvature points. The mean squares of the analysis of

variance suffer direct interference of the number of sampled seedlings. The sampling of 16

seedlings per experimental unit is enough to estimate the analysis of variance reliably,

promoting satisfactory precision gains compared to the sampling of only one seedling per

experimental unit.

Key words: Brassica oleracea, horticulture, experimental planning, precision gain.

6.2 RESUMO

O objetivo deste estudo foi verificar se o tamanho de amostra afeta a precisão da análise de

variância em experimentos com mudas de couve-flor. Um experimento foi conduzido onde o

número de folhas, comprimento de parte aérea, raiz e total foram mensurados. Para cada

variável, reamostragens com reposição foram realizadas em cenários amostrais de 1, 2, ..., 100

mudas por unidade experimental e o tamanho de amostra foi definido para os componentes de

variância por meio de modelos de Schumacher e pontos de máxima curvatura. Os quadrados

médios da análise de variância sofrem interferência direta do número de mudas amostradas. A

amostragem de 16 mudas por unidade experimental é suficiente para estimar a análise de

variância de forma confiável, promovendo satisfatórios ganhos de precisão ao comparar-se

com a amostragem de apenas uma muda por unidade experimental.

Palavras-chave: Brassica oleracea, horticultura, planejamento experimental, ganho de

precisão.
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6.3 SCIENTIFIC NOTE

In a previous work, four methods based on the maximum curvature point were

compared to determine the optimal sample size per experimental unit to estimate the overall

experimental mean of cauliflower (Brassica oleracea L. var. botrytis) seedlings

(BITTENCOURT et al., 2022), where a reduction in the 95% confidence interval width

(CI95%) of the statistic was verified as sample size increased, up to a stabilization point. Thus,

the methods that found values closer to the stabilization point of the curve were chosen, once

precision gain up from this point would no longer be enough to justify increasing the number

of sampled plants (CARGNELUTTI FILHO et al., 2018; SOUZA et al., 2022). That example

highlights the importance of quantifying precision gain when defining sample size, which

would not only facilitate the decision on the number of plants to be sampled per experimental

unit but would also guarantee a minimum acceptable precision to the results. However, the

previous approach focused only on the overall experimental mean without exploring other

components of the analysis of variance.

The analysis of variance is widely performed to summarize data in experiments with

experimental designs (WELHAM et al., 2015). Nonetheless, in order to find actual significant

differences through the F test that follows, mean squares must be estimated reliably, avoiding

type I and II errors (ANDERSON et al., 2017). For this, sample size plays a crucial role, as

verified by SOUZA et al. (2022) for soybean crop, based on its impact for estimating other

statistics in experiments performed with crotalaria and maize (TOEBE et al., 2018;

CARGNELUTTI FILHO & TOEBE, 2021). Therefore, considering that studies connecting

sample size and the precision gain of the analysis of variance have not been found in the

literature for horticultural crops such as cauliflower, the aim of this study was to verify

whether sample size would affect the precision of the analysis of variance in experiments with

cauliflower seedlings.
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The experiment was carried out at the Federal University of Pampa (UNIPAMPA),

Itaqui, Rio Grande do Sul, Brazil. Cauliflower cultivar Teresopolis Gigante was sown using

three substrate mixtures (50% Mecplant® + 50% Carolina Padrão®, 75% Mecplant® + 25%

rice husk, and 75% Carolina Padrão® + 25% rice husk), and trays with 72 and 128 cells,

forming a 3𝗑2 two-factor scheme, in a completely randomized design with four repetitions.

Seedlings were kept in a greenhouse for a period of thirty days. During the sampling, twenty

seedlings were randomly collected from each experimental unit, considering the sample

numbers used in cauliflower experiments (THOMSON et al., 2013; TEMPESTA et al., 2019;

COSTA et al., 2020). Then, the following traits were measured: a) Number of Leaves (NL) in

units, b) Shoot Length (SL), from neck to leaflet insertion, in cm; c) Root Length (RL), from

neck to root apex, in cm; and d) Total Length (TL), as the sum of SL and RL, in cm. Other

experiments with 1, 2, …, 100 seedlings per experimental unit were simulated using bootstrap

resampling, with 10,000 resamples with reposition (EFRON, 1979).

The statistical analyses were performed using native functions and packages from R

software (R DEVELOPMENT CORE TEAM, 2022). First, the database was stratified into

experimental units, and in each sample size, an analysis of variance was performed through

the following mathematical model: , where Yijk is the𝑌
𝑖𝑗𝑘

= 𝑚 + 𝑇
𝑖
+ 𝑆

𝑗
+ 𝑇𝑆( )

𝑖𝑗
+ ε

𝑖𝑗𝑘

value observed in the response variable in plot ijk, m is the overall mean, Ti is the fixed effect

of level i (i = 1 and 2) of the tray-cell-size factor, Sj is the fixed effect of level j (j = 1, 2, 3) of

the substrate factor, (TS)ij is the interaction fixed effect of level i of the tray-cell-size factor

with level j of the substrate factor and ɛijk is the experimental error effect. Thereafter, the mean

squares of Ti, Sj, (TS)ij, and ɛijk were extracted in the sample scenarios per experimental unit.

This process was carried out using sample() and aov() functions.

Resamplings for each planned sample scenario were subjected to descriptive analysis

defining minimum, percentiles of 2.5, mean, percentiles of 97.5, and maximum values. The
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95% confidence interval width (CI95%) was estimated as the difference between percentiles of

97.5 and percentiles of 2.5. Posteriorly, the precision gain criterion was estimated in

percentage, assuming that the greater the CI95%, the lower the precision of the

analysis-of-variance mean squares’ estimates (SOUZA et al., 2022). Thus, the sample size of

one seedling per experimental unit (CI1) was taken as a reference, where the CI95% is

maximum and the precision is minimum. The following formula was used to estimate

precision gain:

𝑃𝐺 = 100 −
𝐶𝐼

𝑖

𝐶𝐼
1

( ) * 100

where CIi is the 95% confidence interval width, obtained from the sample sizes of 2, 3, ...,

100 seedlings per experimental unit [for further information vide CARGNELUTTI FILHO et

al. (2018) and SOUZA et al. (2022)].

Finally, the precision gain was fitted using nls() function through Schumacher’s model

(SCHUMACHER, 1939): , where PGi is the ith precision gain𝑃𝐺
𝑖
= α×𝑒𝑥𝑝 β×𝑛−1( ) + ε

observation per statistic, in each n sample size, 𝛼 and β are parameters of the model, exp is the

exponential function and ɛi is the error of random effect. A maximum curvature point was

defined over the fitted models through the perpendicular distances’ method (SILVA & LIMA,

2017), as recommended by BITTENCOURT et al. (2022) for cauliflower, using maxcurv()

function from soilphysics package (SILVA & LIMA, 2015).

The variance components fluctuated in response to the variation of the number of

seedlings sampled per experimental unit, also varying for each specific trait (Figure 1). In all

cases, CI95% tends to reduce gradually as the number of sampled seedlings is increased, which

means estimates become more accurate (TOEBE et al., 2018; BITTENCOURT et al., 2022;

SOUZA et al., 2022). On the other hand, small sample sizes (≤ 5 seedlings per experimental

unit) result in greater CI95%, making the mean squares estimates more biased. These results are



34

similar to the ones observed by SOUZA et al. (2022) when analyzing the response of variance

components in soybean.

From this response, it was observed that the precision of the analysis-of-variance mean

squares was increased as sample size increased, establishing a direct relationship between

result reliability and the number of seedlings used for data collection, especially considering

the influence of the analysis of variance in the determination of significant differences

between treatments. In general, the sufficient sample sizes for obtaining reliable estimates of

the analysis of variance varied from 13 to 16 cauliflower seedlings per experimental unit, with

precision gains oscillating from ≥ 76.52% to ≤ 93.42%, depending on the variance component

and trait analyzed (Table 1 and Figure 2). These values were obtained through the

parametrization of precise Schumacher models (SCHUMACHER, 1939), with coefficients of

determination (R2) ≥ 0.78, root mean square error (RMSE) oscillating from 1.43 to 4.83, and d

index ≥ 0.93. Furthermore, in sample sizes ≤ 3, a considerable precision gain is observed

every time there is an increase in the number of sampled seedlings. This response remains

until the sampling number reaches 10 seedlings per experimental unit, up from where

precision gain starts becoming lower and lower, until finally reaching the maximum curvature

point, that is, the ideal sample size for each trait and variance component.

In that perspective, considering all traits and variance components jointly, the minimum

sampling number of 16 seedlings per experimental unit can be recommended as sufficient to

make accurate mean square estimates for the analysis of variance of experiments with

cauliflower seedlings, corroborating the results obtained by BITTENCOURT et al. (2022),

who suggested the sampling of at least 15 cauliflower seedlings per experimental unit to

estimate the overall experimental mean. The collection of greater samples normally demands

more resources and manpower that are not justified by the little precision gain obtained

(TOEBE et al., 2015), and in some cases, oversampling may even result in greater variations
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between experimental units that can inflate the error mean square (SOUZA et al., 2022),

harming the detection of significant differences between treatments due to the occurrence of

type II error (ANDERSON et al., 2017). Importantly, the practical results here obtained

should be applied cautiously in cauliflower seedlings’ experiments with experimental designs,

and should not be used for other horticultural crops without performing preliminary studies,

serving only as a support to researchers that conduct experiments with other species from the

Brassicaceae family.
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6.5 TABLE

Table 1 - Coefficient of determination (R2), root mean square error (RMSE) and d index of the
Schumacher models, precision gains, and sample sizes for the analysis of variance of the
number of leaves (NL), shoot length (SL), root length (RL) and total length (TL) of
cauliflower seedlings.

Trait Statistic* Schumacher model R2 RMSE d Precision
gain (%)

Sample
size

NL EMS PGi = 92.7268 × exp(-2.0653 × n-1) 0.98 1.70 0.99 80.34 15

NL TMS PGi = 90.8951 × exp(-2.6275 × n-1) 0.99 1.59 0.99 76.82 16

NL SMS PGi = 90.9115 × exp(-2.7168 × n-1) 0.99 1.43 0.99 76.55 16

NL IMS PGi = 92.1433 × exp(-2.2303 × n-1) 0.98 1.65 0.99 79.22 15

TL EMS PGi = 101.0929 × exp(-0.9950 × n-1) 0.79 4.69 0.93 93.11 13

TL TMS PGi = 95.2857 × exp(-1.4891 × n-1) 0.94 2.61 0.98 85.09 14

TL SMS PGi = 97.0627 × exp(-1.3535 × n-1) 0.93 2.96 0.98 87.37 13

TL IMS PGi = 98.4280 × exp(-1.2088 × n-1) 0.89 3.52 0.97 89.40 13

SL EMS PGi = 101.2845 × exp(-0.9737 × n-1) 0.78 4.83 0.93 93.42 13

SL TMS PGi = 97.7196 × exp(-1.1904 × n-1) 0.88 3.64 0.96 88.85 13

SL SMS PGi = 98.8328 × exp(-1.1430 × n-1) 0.87 3.86 0.96 90.14 13

SL IMS PGi = 100.1760 × exp(-1.0428 × n-1) 0.82 4.39 0.94 91.96 13

RL EMS PGi = 94.5164 × exp(-1.9269 × n-1) 0.98 1.66 0.99 82.45 15

RL TMS PGi = 90.8445 × exp(-2.6214 × n-1) 0.99 1.54 0.99 76.79 16

RL SMS PGi = 90.6974 × exp(-2.6674 × n-1) 0.99 1.55 0.99 76.52 16

RL IMS PGi = 91.0810 × exp(-2.5692 × n-1) 0.99 1.52 0.99 77.17 16
* EMS: error mean square; TMS: tray cell size mean square; SMS: substrate mean square; IMS: interaction mean
square.
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6.6 FIGURES

Figure 1 - Minimum, 2.5 percentile, mean, 97.5 percentile and maximum values of the mean
squares of the error, tray cell size, substrate, and tray cell size × substrate interaction in the
number of leaves (a, b, c, and d), total length (e, f, g, and h), shoot length (i, j, k, and l), and
root length (m, n, o, and p) of cauliflower seedlings.
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Figure 2 - Sample size determination via Schumacher model and maximum curvature points
for estimating the mean squares of the error, tray cell size, substrate, and tray cell size ×
substrate interaction in the number of leaves (a, b, c, and d), total length (e, f, g, and h), shoot
length (i, j, k, and l), and root length (m, n, o, and p) of cauliflower seedlings.
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7.1 ABSTRACT

The aims of this study were to determine the adequate sample size of cauliflower seedlings

per experimental unit to estimate experimental precision statistics and to forecast

experimental precision statistics. From a reference experiment in which 20 seedlings per

experimental unit were sampled and the number of leaves, shoot length, root length, and total

length were measured, a bootstrapping procedure was applied with replacement, recreating

experiments with sample sizes ranging from 1 to 100 seedlings per experimental unit,

obtaining 10,000 resamples for each size. For each resample, 13 precision statistics were

estimated, for which the 95% confidence interval widths were calculated, fitting these values

to the sampling scenarios through traditional power models. The sample size was then

determined through the maximum curvature point through the perpendicular distances method

for each precision statistic and trait, for which a modified power model was used for

forecasting. The reference experiment showed high experimental precision, which varied

according to the trait and precision statistic considered. An exponential decrease in the

confidence interval width was observed as the sample number was increased, and the optimal

sample size varied slightly among statistics and traits, where the maximum value found was

20 seedlings per experimental unit, representing the sufficient sample size for estimating

experimental precision statistics in experiments with cauliflower seedlings. Also, the

forecasting models showed excellent fitting quality and can be used and adapted by

researchers performing experiments on seedling production of cauliflower or other

horticultural crops.

Keywords: Brassica oleracea, experimental planning, sample size, forecasting.

7.2 INTRODUCTION
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Seedling production is a crucial step in the productive process of most horticultural

crops (Postemsky et al., 2016; Zhou et al., 2019; Ors et al., 2021). This is because seedling

quality can be a determinant to achieve cultivation success, once this stage directly affects

field performance and yield (Yan et al., 2019). In this regard, vegetables from the

Brassicaceae family respond positively to protected cultivation during the seedling stage

before transplanting, mainly due to temperature width reduction, moisture maintenance, and

reduction in the incidence of pests and diseases (Muimba-Kankolongo, 2018). Among these,

cauliflower (Brassica oleracea L. var. botrytis L.) is one of the most important vegetables

grown in the world, especially because of its high nutritional value (Bhattacharjee and

Singhal, 2018). Hence, several studies have been carried out over the years on management

techniques to optimize the growth and quality of cauliflower seedlings (Leśniewicz et al.,

2010; Wu et al., 2012; Ray and Mishra, 2017; Wu et al., 2019). However, experimental

precision is a key factor in research that has been little investigated for experiments with this

crop, namely in terms of experimental planning and sample size determination, considering

the latter can be decisive for the validation of research results that aim to provide such

technical recommendations.

Many studies use precision statistics to evaluate the impact of the experimental error,

that is, the variation between experimental units that had received the same treatment

(Cargnelutti Filho et al., 2009; Górdon-Mendoza and Camargo-Buitrago, 2015; Storck et al.,

2016). Some of the most important are the coefficient of experimental variation, the variation

index, the F-test value, and the least significant difference. Although the coefficient of

experimental variation (Pimentel-Gomes, 1990) is the most commonly addressed among these

statistics, other indicators were proposed in order to compensate for the criticism regarding its

strong association with the experimental mean (Döring et al., 2015; Döring and Reckling,

2018; Cargnelutti Filho et al., 2018), such as the variation index (Pimentel-Gomes, 1991) and
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the F-test value (Resende and Duarte, 2007). Furthermore, several studies have reported the

least significant difference as an appropriate precision indicator as well (Lúcio et al., 1999;

Cargnelutti Filho et al., 2009; Górdon-Mendoza and Camargo-Buitrago, 2015; Cargnelutti

Filho et al., 2018). Nevertheless, estimating these values reliably also requires acute

experimental planning, which includes the use of representative sample sizes (Souza et al.,

2022).

The first step in the planning of experiments should be defining the number of plants

that will be evaluated per experimental unit, that is, sample size (Confalonieri et al., 2009).

Setting the ideal sample size is fundamental because, if under or overestimated, it may result

in incorrect inferences (Confalonieri et al., 2009; Alvez-Silva et al., 2018) and, as a

consequence, misleading results and recommendations. Bittencourt et al. (2022), Souza et al.

(2022), and Souza et al. (2023) defined sample size per experimental unit, that is, considering

experimental restrictions, which facilitates the application of such recommendations in

experiments that use experimental designs, which is extremely common in seedling trials,

where trays are normally considered experimental units. Thus, this approach should be

acknowledged when finding the ideal sample size for this type of experiment. Thereafter,

once the sample size is defined, an interesting next step would be forecasting what will be the

experimental precision reached as a function of this number (Souza et al., 2022).

In this sense, Souza et al. (2022) proposed for the first time, for soybean experiments, a

methodology based on inverse predictive equations to estimate experimental precision

statistics using its 95% confidence interval width, in which the desired sample size is added

jointly to a power-model-based formula. As highlighted by these authors, this method should

be tested for other crops as well since it can be an aidful tool to optimize experimental

planning and bring support to researchers. On that basis, we tested the following hypothesis:

(i) experimental precision is associated with sample size so that a representative sampling
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increases the precision of inferences, such as experimental precision statistics, estimated in

experiments with cauliflower seedlings; and (ii) the experimental precision of experiments

with cauliflower seedlings can be forecasted from a sample size defined a priori. Therefore,

the aims of this study were to determine the adequate sample size of cauliflower seedlings per

experimental unit to estimate experimental precision statistics and to forecast experimental

precision statistics.

7.3 MATERIAL AND METHODS

1.1.1. Experimental design

The experiment was carried out in a greenhouse at the Federal University of Pampa

(UNIPAMPA), Itaqui Campus, in the state of Rio Grande do Sul, Brazil, on May 23rd, 2015.

Seeds of cauliflower cultivar Teresopolis Gigante were sown in three substrates (50%

Mecplant® + 50% Carolina Padrão®, 75% Mecplant® + 25% rice husk, or 75% Carolina

Padrão® + 25% rice husk), and for each substrate, polystyrene trays of 72 and 128 cells were

used, where cells had a volume of 113 cm3 and 36 cm3, respectively. Thus, a two-factor

scheme (3 𝗑 2) with four replications was set in a completely randomized design, totaling 24

experimental units (12 trays of 72 cells and 12 trays of 128 cells). These factors were selected

for being frequently evaluated for seedling production.

After 30 days, twenty seedlings from each experimental unit were randomly collected

considering a useful area of 40 cells and 84 cells, for the trays with 72 and 128 cells,

respectively, where a border area of 1 cell was excluded from each far end. Thus, the

following traits were measured: a) the number of leaves (NL), in units; b) shoot length (SL),
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from neck to leaflet insertion, in cm; c) root length (RL), from neck to root apex, in cm; and

d) total length (TL), as the sum of SL and RL, in cm.

1.1.1. Bootstrapping procedure and precision statistics

From the experiment with 20 seedlings measured per experimental unit (reference

experiment), other experiments with 1, 2, …, 100 seedlings per experimental unit were carried

out, following the methodology by Bittencourt et al. (2022), Souza et al. (2022), and Souza et

al. (2023). For this, 100 sample sizes were planned, fluctuating from 1 to 100 seedlings per

experimental unit, with an increase of 1 seedling at a time. These sample sizes were initially

subjected to the analysis of variance procedure, for which the database was previously

subdivided per experimental unit and the average value of each experimental unit in each

scenario was obtained, that is, in the sampling scenario of 2 seedlings per experimental unit,

an average was calculated for each experimental unit considering the 2 sampled seedlings.

This analysis was performed according to the following mathematical model:

𝑌
𝑖𝑗𝑘

= 𝑚 + 𝑇
𝑖
+ 𝑆

𝑗
+ 𝑇𝑆( )

𝑖𝑗
+ ε

𝑖𝑗𝑘

where Yijk is the value observed in the response trait in plot ijk, m is the overall mean, Ti is the

fixed effect of level i (i = 1 and 2) of the tray cell size factor, Sj is the fixed effect of level j (j

= 1, 2, 3) of the substrate factor, (TS)ij is the fixed effect of the interaction of level i of the tray

cell size factor with level j of the substrate factor and ɛijk is the effect of the experimental error,

supposedly normal and independently distributed with an average of zero and a common

variance σ2 (Storck et al., 2016). This procedure was performed with 10,000 resamples with

replacement (Efron, 1979).

In each resampling, after obtaining the variance components, 13 experimental precision

statistics were estimated according to studies by Pimentel-Gomes et al. (1990),
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Pimentel-Gomes et al. (1991), Lúcio (1997), Resende and Duarte (2007), Cargnelutti Filho et

al. (2009) and Souza et al. (2022). Calculation formulas are shown in Table 1. Thus, the sum

of combinations performed as a function of the number of seedlings evaluated per

experimental unit totalizes a database of 1,000,000 simulated experiments for each trait,

considering 100 sample scenarios and 10,000 experiments for each scenario. These statistical

analyses were performed with specific routines using the sample() and aov() functions.

1.1.1. Sample size definition

The sample size was defined by finding the 95% confidence interval width (CI95%) of

the statistics, as suggested by Roth & Greenland (2018), followed by the determination of the

maximum curvature point. Descriptive statistics such as minimum values, percentiles of 2.5,

means, percentiles of 97.5, and maximum values were estimated for each statistic in each

bootstrap resample of the sampling scenarios per experimental unit. The CI95% was obtained

through the following equation:

𝐶𝐼
95%

= 𝑈𝑃 − 𝐿𝑃

where UP is the upper percentile (97.5 percentile) and LP is the lower percentile (2.5

percentile) of the bootstrap estimates.

Posteriorly, the CI95% estimates were adjusted to the scenarios of 1, 2, ..., 100 seedlings

per experimental unit through the traditional power model. Thus, the following model was

used, which was parameterized through the nls() function:

𝐶𝐼
95%

= α×𝑛β + ε

where α is the coefficient of interception, n is the sample size, β is the exponential rate of

decay, and ɛ is the error of random effect. Next, the maximum curvature point was determined

through the perpendicular distances method (Lorentz et al., 2012) adapted by Silva and Lima



48

(2017), as suggested by Bittencourt et al. (2022), using the maxcurv (method = “pd”)

function, for each precision statistic and trait. This point was considered the adequate sample

size for the precision statistics under study.

1.1.1. Forecasting experimental precision statistics

Experimental precision statistics were predicted through the methodology proposed by

Souza et al. (2022), using a modified power model by Olivoto et al. (2018), for NL, SL, RL,

and TL. Thus, the following model was used for each precision statistic in each trait:

𝐶𝐼
95%

= δ𝑃𝑆×α×𝑛β + ε

where δ is the adjustment factor of the coefficient of interception proposed by Olivoto et al.

(2018), α is the coefficient of interception, n is the sample size, β is the exponential rate of

decay, PS is the mean value of each precision statistic of the bootstrap resamples per sample

size and ɛ is the error of random effect. The parameterization of the models was performed

with 700,000 values, equivalent to 70% of the resamples for each precision statistic. The other

300,000 values (30%) were used for validation.

In the validation phase, simple linear regressions were applied between the observed

and predicted CI95% per experimental precision statistic for each trait. The fitting quality of the

104 generated models (13 precision statistics × 4 response traits × 2 types of power models)

was analyzed through the coefficient of determination, Willmott’s agreement index, and root

mean square error, using the hydrogof package. Finally, the modified power models were

inverted, similar to the methodology by Souza et al. (2022), generating new formulas for

forecasting experimental precision statistics, according to the following equations:

𝐶𝐼
95%

= δ𝑃𝑆×α×𝑛β + ε
𝐼( )
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δ𝑃𝑆 =
𝐶𝐼

95%

α×𝑛β 𝐼𝐼( )

𝑃𝑆 = 𝑙𝑜𝑔
δ

𝐶𝐼
95%

α×𝑛β( )
𝐼𝐼𝐼( )

Statistical analyses were performed with Microsoft Office Excel and R software (R

Development Core Team, 2022).

7.4 RESULTS

1.1.1. High experimental precision was obtained in the reference experiment

The reference experiment, performed with 20 seedlings per experimental unit,

presented F-test values varying from 22.28 (SL) to 92.53 (RL) for the tray cell size factor and

from 19.08 (RL) to 57.25 (SL) for the substrate factor (Table 2). The lowest F values were

obtained for the interaction factor, which fluctuated from 3.97 (SL) to 22.58 (RL). As for CVe

and VI, NL presented the lowest values (7.23% and 3.61%, respectively), and SL, had the

highest (16.85% and 8.43%).

The least significant difference shows the tray cell size factor allowed treatments to

differ more easily than the substrate factor since LSDt presented a lower overall mean (0.96)

compared to LSDs (1.43). The same was observed regarding the mean values of the least

significant difference of the interaction for LSDts (1.66) compared to LSDst (2.02).

Accordingly, for the least significant difference as a percentage of the average, the lowest

means were observed for LSDt%, followed by LSDs%, LSDts%, and LSDst%, subsequently.
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1.1.1. Confidence interval width decreased exponentially in response to sample

size increase

For all statistics and traits, CI95% tended to an exponential decrease as sample size was

increased, that is, a much greater width was observed when only 1 seedling was sampled than

when 100 seedlings were taken, in general. A summary of this response can be seen in Fig. 1,

where some statistics and traits were randomly chosen (for more information see

Supplementary Fig. 1, 2, 3, 4, 5, 6, 7, and 8). This can be exemplified by considering the

confidence upper limit of Ft for the NL, where the sampling of only 10 seedlings per

experimental unit promoted a value of 41.33, which decreased to 35.63 when 90 seedlings

were considered. However, the confidence lower limit presented an opposite response, where

the value obtained for 10 seedlings (11.73) was lower than the one obtained for 90 seedlings

per experimental unit (22.11), which contributed to creating a “funnel” shape.

As for CVe and VI, higher mean values were obtained for the measurement traits,

where SL was the one that presented the highest means, with values of 24.98% and 12.49%,

respectively, for 1 seedling per experimental unit, which decreased to 17.24% and 8.62%

when 100 seedlings were sampled (Supplementary Fig. 2d and 2e). The counting trait (NL)

presented the lowest CVe and VI, with means of 15.19% and 7.60%, respectively, for 1

seedling per experimental unit. Accordingly, such values decreased to 7.35% and 3.67%,

respectively, for a sample number of 100 seedlings (Supplementary Fig. 1d and 1e).

For all characteristics, the highest least significant difference mean values correspond

to the substrate factor within the tray cell size factor (LSDst), followed by the tray cell size

within the substrate (LSDts), and subsequently, the substrate factor (LSDs). Thus, the tray cell

size presented the lowest value (LSDt). Also, lower means were observed for the NL
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compared with the other traits. The same pattern was observed for the least significant

difference as a percentage of the average (LSDt%, LSDs%, LSDts%, and LSDst%).

1.1.1. Sample size varied slightly among traits and experimental precision
statistics

All experimental precision statistics of all traits obtained good fitting quality

indicators, of which all R² values were higher than 0.84 and all d indexes were higher than

0.90 (Tables 3, 4, 5, and 6). For TL, RMSE varied from 0.37 to 6.20 among statistics. The

lowest RMSE values were obtained for NL, which fluctuated from 0.01 to 4.92, whereas the

highest were obtained for RL and SL, which reached values up to 7.36 and 7.37, respectively.

A little variation in the optimal sample size per experimental unit was observed among

traits and experimental precision statistics (Supplementary Fig. 5, 6, 7, and 8). While both NL

and RL required 16 to 19 seedlings per experimental unit, the ideal sample number for SL

oscillated from 14 to 20 seedlings, and from 13 to 19 for TL. Hence, considering all traits and

statistics, 20 cauliflower seedlings per experimental unit was the maximum value obtained.

1.1.1. Fitting quality and validation of the forecasting models

The modified power models for forecasting also showed excellent fitting quality as

indicated by R², RMSE, and d index (Tables 3, 4, 5, and 6). All R² values were higher than

0.91 and all d indexes were higher than 0.97. RMSE varied from 0.01 to 1.08 among statistics

for the NL, and from 0.01 to 1.46 for RL. Higher RMSE values were obtained for SL and TL,

where the first one fluctuated from 0.08 to 6.88, and the latter, from 0.22 to 2.37.

Furthermore, the predicted CI95% of the modified power models was closer to the observed
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CI95% in comparison to the traditional power models (Fig. 2, 3, 4, and 5, and Supplementary

Fig. 9, 10, 11, and 12). Interestingly, smaller sample sizes, which naturally correspond to

greater CI95%, tended to express an inferior predictive capacity, gradually increasing

predictability as the number of seedlings increases until stabilizing, when the sufficient

sample size is reached, equally to the observed by Souza et al. (2022).

7.5 DISCUSSION

In this study, we defined the ideal sample size per experimental unit for estimating

experimental precision statistics in experiments with cauliflower seedlings, based on seedling

traits that are commonly measured by researchers and producers when assessing seedling

quality (Hussain et al., 2016; Collela et al., 2019; Chrysargyris et al., 2020; Soares et al.,

2020). Furthermore, we proposed forecasting models for such precision statistics along with a

step-by-step for its application. Hence, our findings intend to optimize experimental planning,

not only regarding the importance of a sufficient sample size to make reliable statistical

inferences (Confalonieri et al., 2009; Butturi-Gomes et al., 2014; Alvez-Silva et al., 2018;

Khosravi et al., 2020), but also facilitating the decision-making on this number to achieve the

desired experimental precision through an easily applicable forecasting tool (Souza et al.,

2022).

As observed in Table 2, a much higher Ft value was obtained for RL compared to the

other traits. This reflects the strong relationship between tray cell size and root growth since

trays with bigger cells allow increases in RL, which may be limited as that space is reduced

(Poorter et al., 2012; Williams et al., 2016). As for Fs, however, SL and NL obtained higher

values than RL, suggesting the substrate factor influences these characteristics the most. An

explanation for this is that the type of substrate used for seedling production directly affects
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water and nutrient uptake (Carmona et al., 2012; Zhang et al., 2012), and although this also

affects root growth, the latter may be limited by tray cell size, as mentioned, so that the

resources absorbed by the roots are still being directed to shoot growth and leave emission

(Taiz et al., 2017). Consequently, when associating both factors (tray cell size and substrate)

RL is still the trait with a more evident response, thus obtaining the highest Fi.

Moreover, when comparing CVe and VI results, VI values were logically much lower,

equaling half the CVe values. Thus, the effect of the number of replicates, which is taken into

account only for VI calculation (Pimentel-Gomes, 1991), is easily visualized. Importantly, this

parameter included in the VI calculation structure serves as a mechanism to reduce its

association with the experimental mean (Cargnelutti Filho et al., 2009; Górdon-Mendoza and

Camargo-Buitrago, 2015; Cargnelutti Filho et al., 2018, Souza et al., 2022), for which CVe

has been strongly criticized (Döring and Reckling, 2018). Nevertheless, for both these

statistics, NL was the one trait that obtained the lowest values. This could be partially

explained by the natural tendency of this trait to present a greater uniformity per se in

comparison to the others, considering the seedling production period. Accordingly, all least

significant differences were lower for the NL as well, which simply reflects how low

variations among replicates allow treatments to differ more easily. Overall, these results

highlight experimental precision may variate depending not only on which trait is analyzed

but also on the experimental precision statistic that is considered, suggesting such statistics

should be used jointly to increase reliability.

Once the CI95% of these statistics was analyzed in response to the proposed sample

scenarios, an exponential decrease was perceived as the number of seedlings sampled per

experimental unit was increased. Nonetheless, this is not the first time this particularity was

reported (Cargnelutti Filho et al., 2013; Toebe et al., 2014; Toebe et al., 2015; Toebe et al.,

2018; Souza et al., 2022). Simply put, it means the smaller the sample number, the farther the
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lower and upper limits are from the real values, thus creating wider intervals that make room

for over and/or underestimating results. For instance, the sampling of only one seedling per

experimental unit would most likely lack representativeness and consequently, lead to

unreliable estimates.

However, although determining the ideal sample size of a certain crop is essential to

reach more accurate results, it is also a useful instrument to avoid oversampling, which

optimizes evaluation time and manpower (Toebe et al., 2018; Bittencourt et al., 2022; Souza

et al., 2022). Therefore, since sample size variates according to the experimental precision

statistic and trait, the maximum value obtained among all represents the sufficient number of

seedlings to estimate all of these statistics for all four characteristics in a reliable manner,

which is, in this case, 20 cauliflower seedlings per experimental unit.

Aside from that recommendation, experimental planning can be enhanced even more by

predicting experimental precision as a function of the chosen sample size. For that purpose,

Souza et al. (2022) proposed forecasting equations for experiments with soybean crops, based

on the aforementioned CI95% decreasing mechanism in response to sample size increase. As

shown in Tables 3, 4, 5, and 6, we have now proposed an adaptation of this method for

cauliflower seedlings. The first step to applying it is selecting the precision statistic that will

be predicted for a given trait and arbitrating a hypothetical sample size (n). Note that this

value should be close to the one recommended for the statistic in question for more accurate

predictability. Next, by adding this number to the respective power model

, the CI95% of the statistic can be obtained. Finally, both these values can𝐶𝐼
95%

= α×𝑛β + ε⎡⎢⎣
⎤⎥⎦

be added to the corresponding forecasting equation in order to estimate𝑃𝑆 = 𝑙𝑜𝑔
δ

𝐶𝐼
95%

α×𝑛β( )⎡⎢⎣
⎤⎥⎦

the value of the desired experimental precision statistic for the chosen sample size. Additional

equations are shown in Supplementary Tables 1, 2, 3, 4, 5, 6, 7, and 8 for estimating the upper
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and lower limits of the predicted value of the statistics. A scheme of this process is outlined in

Fig. 6.

The calibration and testing of this method for experiments with cauliflower seedlings that

measure different traits and/or study different factors are highly encouraged, as well as for

experiments on the seedling production of other horticultural crops, given the high fitting

quality achieved by the models, despite its possible limitations. In this sense, researchers that

aim at optimizing experimental planning through sample size definition and forecasting

should perform the required preliminary tests in order to adapt or modify the equations

proposed here.

7.6 CONCLUSIONS

A slight variation was observed among traits and precision statistics regarding sample

size definition. Considering all traits and statistics under study, the sampling of 20 cauliflower

seedlings per experimental unit was enough for estimating experimental precision statistics

reliably. The proposed modified power models were successful in forecasting experimental

precision statistics and presented excellent fitting quality. Therefore, these equations may be

applied or modified by researchers performing similar experiments. The recommendations

and information presented here represent an extremely useful tool for optimizing the planning

of experiments with cauliflower seedlings and may be adapted, serving as a basis for other

horticultural crops.
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7.8 TABLES

Table 1. Codes, calculation structures and references of the experimental precision statistics.

Precision statistic Code Equation(*) Reference

F-test value for the tray cell size Ft
𝑇𝐶𝑆𝑀𝑆
𝐸𝑀𝑆

Storck et al.
(2016)

F-test value for the substrate Fs
𝑆𝑀𝑆
𝐸𝑀𝑆

Storck et al.
(2016)

F-test value for the interaction Fi
𝐼𝑀𝑆
𝐸𝑀𝑆

Storck et al.
(2016)

Coefficient of experimental variation CVe 100 𝐸𝑀𝑆
𝑚

Pimentel-Gome
s (1990)

Variation index VI
𝐶𝑉𝑒
𝑟

Pimentel-Gome
s (1991)

Least significant difference for the
tray cell size LSDt 𝑞

ɑ 𝑖;𝐸𝑑𝑓( )
𝐸𝑀𝑆
𝑗𝑟 Lúcio (1997)

Least significant difference for the
substrate LSDs 𝑞

ɑ 𝑗;𝐸𝑑𝑓( )
𝐸𝑀𝑆
𝑖𝑟 Lúcio (1997)

Least significant difference for the
tray cell size within the substrate LSDts 𝑞

ɑ 𝑖;𝐸𝑑𝑓( )
𝐸𝑀𝑆
𝑟 Lúcio (1997)

Least significant difference for the
substrate within the tray cell size LSDst 𝑞

ɑ 𝑗;𝐸𝑑𝑓( )
𝐸𝑀𝑆
𝑟 Lúcio (1997)

Least significant difference as a
percentage of the average for the tray
cell size

LSDt% 100 𝐿𝑆𝐷𝑡
𝑚 Lúcio (1997)

Least significant difference as a
percentage of the average for the
substrate

LSDs% 100 𝐿𝑆𝐷𝑠
𝑚 Lúcio (1997)

Least significant difference as a
percentage of the average for the tray
cell size within the substrate

LSDts% 100 𝐿𝑆𝐷𝑡𝑠
𝑚 Lúcio (1997)

Least significant difference as a
percentage of the average for the
substrate within the tray cell size

LSDst% 100 𝐿𝑆𝐷𝑠𝑡
𝑚 Lúcio (1997)

(*) TCSMS: tray cell size mean squares; SMS: substrate mean squares; EMS: error mean squares; IMS: mean

squares of the interaction between substrate and tray cell size; m: overall experimental mean; r: number of

replicates; i: number of levels of the tray cell size factor; j: number of levels of the substrate factor; qɑ(i or j;Edf):

critical value for Tukey’s test performed at 5%; Edf: degrees of freedom of the error.
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Table 2. Values of experimental precision statistics obtained from the reference experiment.

Precision statistic(*) Trait
Number of leaves Shoot length Root length Total length

Ft 28.84 22.28 92.53 61.85
Fs 47.44 57.25 19.08 53.57
Fi 5.68 3.97 22.58 12.45
CVe 7.23 16.85 10.71 11.67
VI 3.61 8.43 5.36 5.84
LSDt 0.29 1.13 0.78 1.64
LSDs 0.43 1.68 1.16 2.43
LSDts 0.50 1.96 1.36 2.83
LSDst 0.60 2.38 1.65 3.44
LSDt% 6.20 14.45 9.19 10.01
LSDs% 9.22 21.50 13.67 14.89
LSDts% 10.73 25.03 15.92 17.34
LSDst% 13.04 30.41 19.33 21.06
(*) The codes of the precision statistics are shown in Table 1.
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Table 3. Power models, forecasting equations, and sample size recommendation for

estimating experimental precision statistics when measuring the number of leaves of

cauliflower seedlings.

Precision
statistic(*) Power model Maximum

CI95%

Maximum
Curvature R2(£) RMSE d Sample

size

Ft CI95% = 38.8809×n-0.1974 21.8789 18.4077 0.84 2.92 0.90 19

Fs CI95% = 68.9120×n-0.1935 39.1965 18.4671 0.85 4.92 0.90 19

Fi CI95% = 10.8721×n-0.2318 5.5697 17.9126 0.88 0.72 0.93 18

CVe CI95% = 11.0005×n-0.3926 3.7266 15.7540 0.99 0.13 0.99 16

VI CI95% = 5.5003×n-0.3926 1.8633 15.7540 0.99 0.07 0.99 16

LSDt CI95% = 0.4209×n-0.3865 0.1447 15.8332 0.99 0.01 0.99 16

LSDs CI95% = 0.6262×n-0.3865 0.2153 15.8332 0.99 0.01 0.99 16

LSDts CI95% = 0.7290×n-0.3865 0.2507 15.8332 0.99 0.01 0.99 16

LSDst CI95% = 0.8856×n-0.3865 0.3045 15.8332 0.99 0.01 0.99 16

LSDt% CI95% = 9.4351×n-0.3926 3.1963 15.7540 0.99 0.11 0.99 16

LSDs% CI95% = 14.0376×n-0.3926 4.7555 15.7540 0.99 0.17 0.99 16

LSDts% CI95% = 16.3421×n-0.3926 5.5362 15.7540 0.99 0.19 0.99 16

LSDst% CI95% = 19.8521×n-0.3926 6.7253 15.7540 0.99 0.23 0.99 16

 Modified power model Forecasting equation R2 RMS
E d

Ft CI95% =1.0997Ft×12.3654×n-0.5766  𝐹𝑡 = 𝑙𝑜𝑔
1.0997

𝐶𝐼
95%

12.3654×𝑛−0.5766( ) 0.99 0.57 0.99

Fs CI95% =1.0733Fs×13.5348×n-0.6021  𝐹𝑠 = 𝑙𝑜𝑔
1.0733

𝐶𝐼
95%

13.5348×𝑛−0.6021( ) 0.99 1.08 0.99

Fi CI95% =1.6605Fi×2.5268×n-0.5747  𝐹𝑖 = 𝑙𝑜𝑔
1.6605

𝐶𝐼
95%

2.5268×𝑛−0.5747( ) 0.99 0.15 0.99

CVe CI95% =0.9693CVe×16.5426×n-0.4412  𝐶𝑉𝑒 = 𝑙𝑜𝑔
0.9693

𝐶𝐼
95%

16.5426×𝑛−0.4412( ) 0.99 0.07 0.99

VI CI95% =0.9396VI×8.2713×n-0.4412  𝑉𝐼 = 𝑙𝑜𝑔
0.9396

𝐶𝐼
95%

8.2713×𝑛−0.4412( ) 0.99 0.04 0.99

LSDt CI95% =0.3916LSDt×0.6842×n-0.4441  𝐿𝑆𝐷𝑡 = 𝑙𝑜𝑔
0.3916

𝐶𝐼
95%

0.6842×𝑛−0.4441( ) 0.99 0.01 0.99

LSDs CI95% =0.5325LSDs×1.0179×n-0.4441  𝐿𝑆𝐷𝑠 = 𝑙𝑜𝑔
0.5325

𝐶𝐼
95%

1.0179×𝑛−0.4441( ) 0.99 0.01 0.99

LSDts CI95% =0.5820LSDts×1.1850×n-0.4441  𝐿𝑆𝐷𝑡𝑠 = 𝑙𝑜𝑔
0.5820

𝐶𝐼
95%

1.1850×𝑛−0.4441( ) 0.99 0.01 0.99

LSDst CI95% =0.6404LSDst×1.4396×n-0.4441  𝐿𝑆𝐷𝑠𝑡 = 𝑙𝑜𝑔
0.6404

𝐶𝐼
95%

1.4396×𝑛−0.4441( ) 0.99 0.01 0.99

LSDt% CI95% =0.9644LSDt%×14.1886×n-0.4412  𝐿𝑆𝐷𝑡% = 𝑙𝑜𝑔
0.9644

𝐶𝐼
95%

14.1886×𝑛−0.4412( ) 0.99 0.06 0.99

LSDs% CI95% =0.9759LSDs%×21.1097×n-0.4412  𝐿𝑆𝐷𝑠% = 𝑙𝑜𝑔
0.9759

𝐶𝐼
95%

21.1097×𝑛−0.4412( ) 0.99 0.09 0.99

LSDts% CI95% =0.9793LSDts%×24.5753×n-0.4412  𝐿𝑆𝐷𝑡𝑠% = 𝑙𝑜𝑔
0.9793

𝐶𝐼
95%

24.5753×𝑛−0.4412( ) 0.99 0.10 0.99

LSDst% CI95% =0.9829LSDst%×29.8536×n-0.4412  𝐿𝑆𝐷𝑠𝑡% = 𝑙𝑜𝑔
0.9829

𝐶𝐼
95%

29.8536×𝑛−0.4412( ) 0.99 0.13 0.99
(*) The codes of the precision statistics are shown in Table 1. (£) Coefficient of determination (R²), Root Mean Square Error

(RMSE) and Willmott’s agreement index (d).
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Table 4. Power models, forecasting equations, and sample size recommendation for

estimating experimental precision statistics when measuring shoot length of cauliflower

seedlings.

Precision
statistic(*) Power model Maximum

CI95%

Maximum
Curvature R2(£) RMSE d Sample

size

Ft CI95% = 51.4615×n-0.1602 32.1192 18.9622 0.89 1.81 0.97 19

Fs CI95% = 162.7358×n-0.1286 111.0982 19.4573 0.88 7.37 0.93 20

Fi CI95% = 7.8452×n-0.2274 4.0673 17.9720 0.98 0.13 0.99 18

CVe CI95% = 138.1435×n-0.5256 34.2907 14.1696 0.98 3.90 0.99 15

VI CI95% = 69.0717×n-0.5256 17.1453 14.1696 0.95 1.95 0.99 15

LSDt CI95% = 13.5909×n-0.6290 2.6971 13.0804 0.93 0.46 0.98 14

LSDs CI95% = 20.2206×n-0.6290 4.0127 13.0804 0.93 0.68 0.98 14

LSDts CI95% = 23.5401×n-0.6290 4.6715 13.0804 0.93 0.80 0.98 14

LSDst CI95% = 28.5961×n-0.6290 5.6748 13.0804 0.93 0.97 0.98 14

LSDt% CI95% = 118.4853×n-0.5256 29.4110 14.1696 0.95 3.34 0.99 15

LSDs% CI95% = 176.2823×n-0.5256 43.7577 14.1696 0.95 4.97 0.99 15

LSDts% CI95% = 205.2223×n-0.5256 50.9414 14.1696 0.96 5.79 0.99 15

LSDst% CI95% = 249.3009×n-0.5256 61.8828 14.1696 0.96 7.05 0.99 15

 Modified power model Forecasting equation R2 RMS
E d

Ft CI95% =1.0671Ft×13.4733×n-0.1999  𝐹𝑡 = 𝑙𝑜𝑔
1.0671

𝐶𝐼
95%

13.4733×𝑛−0.1999( ) 0.97 0.98 0.99

Fs CI95% =1.0167Fs×48.8494×n-0.0911  𝐹𝑠 = 𝑙𝑜𝑔
1.0167

𝐶𝐼
95%

48.8494×𝑛−0.0911( ) 0.91 4.87 0.97

Fi CI95% =1.4190Fi×2.7183×n-0.3071  𝐹𝑖 = 𝑙𝑜𝑔
1.4190

𝐶𝐼
95%

2.7183×𝑛−0.3071( ) 0.99 0.08 0.99

CVe CI95% =1.0923CVe×15.4262×n-0.3621  𝐶𝑉𝑒 = 𝑙𝑜𝑔
1.0923

𝐶𝐼
95%

15.4262×𝑛−0.3621( ) 0.96 3.81 0.99

VI CI95% =1.1932VI×7.7131×n-0.3621  𝑉𝐼 = 𝑙𝑜𝑔
1.1932

𝐶𝐼
95%

7.7131×𝑛−0.3621( ) 0.96 1.91 0.99

LSDt CI95% =14.9987LSDt×0.0861×n-0.1282  𝐿𝑆𝐷𝑡 = 𝑙𝑜𝑔
14.9987

𝐶𝐼
95%

0.0861×𝑛−0.1282( ) 0.97 0.31 0.99

LSDs CI95% =6.1726LSDs×0.1280×n-0.1282  𝐿𝑆𝐷𝑠 = 𝑙𝑜𝑔
6.1726

𝐶𝐼
95%

0.1280×𝑛−0.1282( ) 0.97 0.47 0.99

LSDts CI95% =4.7753LSDts×0.1491×n-0.1282  𝐿𝑆𝐷𝑡𝑠 = 𝑙𝑜𝑔
4.7753

𝐶𝐼
95%

0.1491×𝑛−0.1282( ) 0.97 0.54 0.99

LSDst CI95% =3.6220LSDst×0.1811×n-0.1282  𝐿𝑆𝐷𝑠𝑡 = 𝑙𝑜𝑔
3.6220

𝐶𝐼
95%

0.1811×𝑛−0.1282( ) 0.97 0.66 0.99

LSDt% CI95% =1.1085LSDt%×13.2309×n-0.3621  𝐿𝑆𝐷𝑡% = 𝑙𝑜𝑔
1.1085

𝐶𝐼
95%

13.2309×𝑛−0.3621( ) 0.96 3.27 0.99

LSDs% CI95% =1.0717LSDs%×19.6850×n-0.3621  𝐿𝑆𝐷𝑠% = 𝑙𝑜𝑔
1.0717

𝐶𝐼
95%

19.6850×𝑛−0.3621( ) 0.96 4.86 0.99

LSDts% CI95% =1.0613LSDts%×22.9168×n-0.3621  𝐿𝑆𝐷𝑡𝑠% = 𝑙𝑜𝑔
1.0613

𝐶𝐼
95%

22.9168×𝑛−0.3621( ) 0.96 5.66 0.99

LSDst% CI95% =1.0502LSDst%×27.8389×n-0.3621  𝐿𝑆𝐷𝑠𝑡% = 𝑙𝑜𝑔
1.0502

𝐶𝐼
95%

27.8389×𝑛−0.3621( ) 0.96 6.88 0.99
(*) The codes of the precision statistics are shown in Table 1. (£) Coefficient of determination (R²), Root Mean Square Error

(RMSE) and Willmott’s agreement index (d).
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Table 5. Power models, forecasting equations, and sample size recommendation for

estimating experimental precision statistics when measuring root length of cauliflower

seedlings.

Precision
statistic(*) Power model Maximum

CI95%

Maximum
Curvature R2(£) RMSE d Sample

size

Ft CI95% = 100.4150×n-0.2149 53.8472 18.1700 0.85 7.36 0.91 19

Fs CI95% = 29.2548×n-0.2440 14.5040 17.7344 0.90 1.74 0.94 18

Fi CI95% = 32.2181×n-0.2259 16.7718 17.9918 0.87 2.19 0.92 18

CVe CI95% = 13.9265×n-0.4488 4.1231 15.0608 0.99 0.07 0.99 16

VI CI95% = 6.9633×n-0.4488 2.0616 15.0608 0.99 0.04 0.99 16

LSDt CI95% = 1.0258×n-0.4463 0.3054 15.1004 0.99 0.01 0.99 16

LSDs CI95% = 1.5265×n-0.4463 0.4544 15.1004 0.99 0.01 0.99 16

LSDts CI95% = 1.7768×n-0.4463 0.5290 15.1004 0.99 0.01 0.99 16

LSDst CI95% = 2.1584×n-0.4463 0.6426 15.1004 0.99 0.01 0.99 16

LSDt% CI95% = 11.9447×n-0.4488 3.5364 15.0608 0.99 0.06 0.99 16

LSDs% CI95% = 17.7714×n-0.4488 5.2614 15.0608 0.99 0.09 0.99 16

LSDts% CI95% = 20.6889×n-0.4488 6.1252 15.0608 0.99 0.11 0.99 16

LSDst% CI95% = 25.1325×n-0.4488 7.4408 15.0608 0.99 0.13 0.99 16

 Modified power model Forecasting equation R2 RMS
E d

Ft CI95% =1.0312Ft×28.2462×n-0.5898  𝐹𝑡 = 𝑙𝑜𝑔
1.0312

𝐶𝐼
95%

28.2462×𝑛−0.5898( ) 0.99 1.46 0.99

Fs CI95% =1.1455Fs×8.4549×n-0.5688  𝐹𝑠 = 𝑙𝑜𝑔
1.1455

𝐶𝐼
95%

8.4549×𝑛−0.5688( ) 0.99 0.31 0.99

Fi CI95% =1.1290Fi×8.7612×n-0.5712  𝐹𝑖 = 𝑙𝑜𝑔
1.1290

𝐶𝐼
95%

8.7612×𝑛−0.5712( ) 0.99 0.39 0.99

CVe CI95% =0.9877CVe×17.5093×n-0.4752  𝐶𝑉𝑒 = 𝑙𝑜𝑔
0.9877

𝐶𝐼
95%

17.5093×𝑛−0.4752( ) 0.99 0.04 0.99

VI CI95% =0.9756VI×8.7547×n-0.4752  𝑉𝐼 = 𝑙𝑜𝑔
0.9756

𝐶𝐼
95%

8.7547×𝑛−0.4752( ) 0.99 0.02 0.99

LSDt CI95% =0.8192LSDt×1.3440×n-0.4774  𝐿𝑆𝐷𝑡 = 𝑙𝑜𝑔
0.8192

𝐶𝐼
95%

1.3440×𝑛−0.4774( ) 0.99 0.01 0.99

LSDs CI95% =0.8745LSDs×1.9996×n-0.4774  𝐿𝑆𝐷𝑠 = 𝑙𝑜𝑔
0.8745

𝐶𝐼
95%

1.9996×𝑛−0.4774( ) 0.99 0.01 0.99

LSDts CI95% =0.8912LSDts×2.3279×n-0.4774  𝐿𝑆𝐷𝑡𝑠 = 𝑙𝑜𝑔
0.8912

𝐶𝐼
95%

2.3279×𝑛−0.4774( ) 0.99 0.01 0.99

LSDst CI95% =0.9096LSDst×2.8278×n-0.4774  𝐿𝑆𝐷𝑠𝑡 = 𝑙𝑜𝑔
0.9096

𝐶𝐼
95%

2.8278×𝑛−0.4774( ) 0.99 0.01 0.99

LSDt% CI95% =0.9857LSDt%×15.0177×n-0.4752  𝐿𝑆𝐷𝑡% = 𝑙𝑜𝑔
0.9857

𝐶𝐼
95%

15.0177×𝑛−0.4752( ) 0.99 0.03 0.99

LSDs% CI95% =0.9904LSDs%×22.3433×n-0.4752  𝐿𝑆𝐷𝑠% = 𝑙𝑜𝑔
0.9904

𝐶𝐼
95%

22.3433×𝑛−0.4752( ) 0.99 0.05 0.99

LSDts% CI95% =0.9917LSDts%×26.0115×n-0.4752  𝐿𝑆𝐷𝑡𝑠% = 𝑙𝑜𝑔
0.9917

𝐶𝐼
95%

26.0115×𝑛−0.4752( ) 0.99 0.05 0.99
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LSDst% CI95% =0.9932LSDst%×31.5983×n-0.4752  𝐿𝑆𝐷𝑠𝑡% = 𝑙𝑜𝑔
0.9932

𝐶𝐼
95%

31.5983×𝑛−0.4752( ) 0.99 0.07 0.99
(*) The codes of the precision statistics are shown in Table 1. (£) Coefficient of determination (R²), Root Mean

Square Error (RMSE) and Willmott’s agreement index (d).

Table 6. Power models, forecasting equations, and sample size recommendation for

estimating experimental precision statistics when measuring total length of cauliflower

seedlings.

Precision
statistic(*) Power model Maximum

CI95%

Maximum
Curvature R2(£) RMSE d Sample

size

Ft CI95% = 113.0647×n-0.1986 63.4013 18.4077 0.89 6.20 0.94 19

Fs CI95% = 105.5724×n-0.1831 61.8007 18.6255 0.88 6.03 0.93 19

Fi CI95% = 25.3622×n-0.2270 13.1609 17.9918 0.93 1.22 0.96 18

CVe CI95% = 74.4849×n-0.6120 13.2587 15.3144 0.98 1.91 0.99 16

VI CI95% = 37.2424×n-0.6120 7.6571 13.2587 0.98 0.95 0.99 14

LSDt CI95% = 12.8180×n-0.6668 2.3534 12.7041 0.97 0.37 0.99 13

LSDs CI95% = 19.0706×n-0.6668 3.5015 12.7041 0.97 0.55 0.99 13

LSDts CI95% = 22.2014×n-0.6668 4.0763 12.7041 0.98 0.64 0.99 13

LSDst CI95% = 26.9698×n-0.6668 4.9519 12.7041 0.98 0.78 0.99 13

LSDt% CI95% = 63.8855×n-0.6120 13.1351 13.2587 0.96 1.64 0.99 14

LSDs% CI95% = 95.0486×n-0.6120 19.5423 13.2587 0.96 2.43 0.99 14

LSDts% CI95% = 110.6529×n-0.6120 22.7506 13.2587 0.96 2.83 0.99 14

LSDst% CI95% = 134.4192×n-0.6120 27.6371 13.2587 0.96 3.44 0.99 14

 Modified power model Forecasting equation R2 RMS
E d

Ft CI95% =1.0515Ft×13.2247×n-0.4254  𝐹𝑡 = 𝑙𝑜𝑔
1.0515

𝐶𝐼
95%

13.2247×𝑛−0.4254( ) 0.99 1.46 0.99

Fs CI95% =1.0549Fs×11.7756×n-0.3478  𝐹𝑠 = 𝑙𝑜𝑔
1.0549

𝐶𝐼
95%

11.7756×𝑛−0.3478( ) 0.98 1.84 0.99

Fi CI95% =1.2687Fi×3.0933×n-0.4318  𝐹𝑖 = 𝑙𝑜𝑔
1.2687

𝐶𝐼
95%

3.0933×𝑛−0.4318( ) 0.99 0.27 0.99

CVe CI95% =1.1354CVe×6.8408×n-0.3703  𝐶𝑉𝑒 = 𝑙𝑜𝑔
1.1354

𝐶𝐼
95%

6.8408×𝑛−0.3703( ) 0.98 1.31 0.99

VI CI95% =1.2892VI×3.4204×n-0.3703  𝑉𝐼 = 𝑙𝑜𝑔
1.2892

𝐶𝐼
95%

3.4204×𝑛−0.3703( ) 0.98 0.66 0.99

LSDt CI95% =2.8947LSDt×0.6893×n-0.3409  𝐿𝑆𝐷𝑡 = 𝑙𝑜𝑔
2.8947

𝐶𝐼
95%

0.6893×𝑛−0.3409( ) 0.98 0.22 0.99

LSDs CI95% =2.0430LSDs×1.0255×n-0.3409  𝐿𝑆𝐷𝑠 = 𝑙𝑜𝑔
2.0430

𝐶𝐼
95%

1.0255×𝑛−0.3409( ) 0.98 0.33 0.99

LSDts CI95% =1.8472LSDts×1.1938×n-0.3409  𝐿𝑆𝐷𝑡𝑠 = 𝑙𝑜𝑔
1.8472

𝐶𝐼
95%

1.1938×𝑛−0.3409( ) 0.98 0.38 0.99

LSDst CI95% =1.6572LSDst×1.4503×n-0.3409  𝐿𝑆𝐷𝑠𝑡 = 𝑙𝑜𝑔
1.6572

𝐶𝐼
95%

1.4503×𝑛−0.3409( ) 0.98 0.46 0.99

LSDt% CI95% =1.1596LSDt%×5.8674×n-0.3703  𝐿𝑆𝐷𝑡% = 𝑙𝑜𝑔
1.1596

𝐶𝐼
95%

5.8674×𝑛−0.3703( ) 0.98 1.13 0.99
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LSDs% CI95% =1.1047LSDs%×8.7294×n-0.3703  𝐿𝑆𝐷𝑠% = 𝑙𝑜𝑔
1.1047

𝐶𝐼
95%

8.7294×𝑛−0.3703( ) 0.98 1.68 0.99

LSDts% CI95% =1.0893LSDts%×10.1626×n-0.3703  𝐿𝑆𝐷𝑡𝑠% = 𝑙𝑜𝑔
1.0893

𝐶𝐼
95%

10.1626×𝑛−0.3703( ) 0.98 1.95 0.99

LSDst% CI95% =1.0729LSDst%×12.3453×n-0.3703  𝐿𝑆𝐷𝑠𝑡% = 𝑙𝑜𝑔
1.0729

𝐶𝐼
95%

12.3453×𝑛−0.3703( ) 0.98 2.37 0.99
(*) The codes of the precision statistics are shown in Table 1. (£) Coefficient of determination (R²), Root Mean

Square Error (RMSE) and Willmott’s agreement index (d).

7.9 FIGURE CAPTIONS

Fig. 1. Minimum, 2.5 percentile, mean, 97.5 percentile and maximum values of the precision

statistics F-test value for the interaction (a), coefficient of experimental variation (b), variation

index (c), and least significant difference as a percentage of the average for the tray cell size

within the substrate (d), when measuring the number of leaves, shoot length, root length and

total length of cauliflower seedlings, respectively, at the planned sample sizes from 1 to 100

seedlings per experimental unit.

Fig. 2. Observed and predicted values of the 95% confidence interval width (CI95%) for the

validation of the modified power models for the precision statistics F-test value for the tray

cell size (a), F-test value for the substrate (b), F-test value for the interaction (c), coefficient of

experimental variation (d), variation index (e), least significant difference for the tray cell size

(f), least significant difference for the substrate (g), least significant difference for the tray cell

size within the substrate (h), least significant difference for the substrate within the tray cell

size (i), least significant difference as a percentage of the average for the tray cell size (j),

least significant difference as a percentage of the average for the substrate (k), least significant

difference as a percentage of the average for the tray cell size within the substrate (l), and

least significant difference for the substrate within the tray cell size (m), when measuring the

number of leaves of cauliflower seedlings at the planned sample sizes from 1 to 100 seedlings

per experimental unit.
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Fig. 3. Observed and predicted values of the 95% confidence interval width (CI95%) for the

validation of the modified power models for the precision statistics F-test value for the tray

cell size (a), F-test value for the substrate (b), F-test value for the interaction (c), coefficient of

experimental variation (d), variation index (e), least significant difference for the tray cell size

(f), least significant difference for the substrate (g), least significant difference for the tray cell

size within the substrate (h), least significant difference for the substrate within the tray cell

size (i), least significant difference as a percentage of the average for the tray cell size (j),

least significant difference as a percentage of the average for the substrate (k), least significant

difference as a percentage of the average for the tray cell size within the substrate (l), and

least significant difference for the substrate within the tray cell size (m), when measuring

shoot length of cauliflower seedlings at the planned sample sizes from 1 to 100 seedlings per

experimental unit.

Fig. 4. Observed and predicted values of the 95% confidence interval width (CI95%) for the

validation of the modified power models for the precision statistics F-test value for the tray

cell size (a), F-test value for the substrate (b), F-test value for the interaction (c), coefficient of

experimental variation (d), variation index (e), least significant difference for the tray cell size

(f), least significant difference for the substrate (g), least significant difference for the tray cell

size within the substrate (h), least significant difference for the substrate within the tray cell

size (i), least significant difference as a percentage of the average for the tray cell size (j),

least significant difference as a percentage of the average for the substrate (k), least significant

difference as a percentage of the average for the tray cell size within the substrate (l), and

least significant difference for the substrate within the tray cell size (m), when measuring root
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length of cauliflower seedlings at the planned sample sizes from 1 to 100 seedlings per

experimental unit.

Fig. 5. Observed and predicted values of the 95% confidence interval width (CI95%) for the

validation of the modified power models for the precision statistics F-test value for the tray

cell size (a), F-test value for the substrate (b), F-test value for the interaction (c), coefficient of

experimental variation (d), variation index (e), least significant difference for the tray cell size

(f), least significant difference for the substrate (g), least significant difference for the tray cell

size within the substrate (h), least significant difference for the substrate within the tray cell

size (i), least significant difference as a percentage of the average for the tray cell size (j),

least significant difference as a percentage of the average for the substrate (k), least significant

difference as a percentage of the average for the tray cell size within the substrate (l), and

least significant difference for the substrate within the tray cell size (m), when measuring the

total length of cauliflower seedlings at the planned sample sizes from 1 to 100 seedlings per

experimental unit.

Fig. 6. Step-by-step scheme of the forecasting methodology for experimental precision

statistics, considering an exponential decreasing response of the 95% confidence interval

width (CI95%) as a function of the increase in the number of seedlings sampled per

experimental unit, from the choice of the desired sample size (n) and its inclusion in a power

model to estimate CI95%, which will be used in an inverted modified power model.

* The codes of the precision statistics are shown in Supplementary Table 1. ** 𝛼 is the coefficient of interception;

β is the exponential rate of decay; 𝛿 is the adjustment factor proposed by Olivoto et al. (2018); ε is the error of

random effect.
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7.10 FIGURES
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7.11 SUPPLEMENTARY MATERIAL

Supplementary material for this article is available online.
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8 ARTIGO 4 – SAMPLE SIZE MATTERS: PRECISION STATISTICS ARE
AFFECTED BY THE NUMBER OF PLANTS ASSESSED IN EXPERIMENTS
WITH LETTUCE

(Formatação da revista Scientia Horticulturae)

Publicado no periódico: Scientia Horticulturae
Situação: Submetido
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8.1 ABSTRACT

Evidence has shown that precision statistics results are influenced by sample size. However,

several horticultural crops such as lettuce have not received enough attention in sample-size

studies. Thus, this study aimed (i) to find the optimal sample size to estimate precision

indicators in experiments that measure lettuce yield and (ii) to provide equations to forecast

such precision indicators based on sample size. With data from an experiment with 26 lettuce

genotypes, where 15 plants per experimental unit were sampled and lettuce yield per plant

was measured, a bootstrap procedure with replacement was performed, simulating scenarios

from 1 to 100 plants per experimental unit. Next, 16 precision statistics were estimated in

each scenario, obtaining their 95% confidence interval widths. These values were fitted using

shifted power models and sample size was found via maximum curvature point. Finally,

forecasting formulas were adapted using an inverted modified power model, and the

contribution of the statistics was analyzed through the principal component analysis. The 95%

confidence interval widths decreased in response to sample size increase, and sample size

varied among statistics. The optimal sample size to estimate precision statistics for lettuce

yield per plant was 19 plants per experimental unit, considering the statistics with the greatest

contributions to the total variation. Excellent fitting quality was obtained for the forecasting

models, which were successful in predicting the value of statistics based on sample size.

Keywords: experimental planning, Lactuca sativa L., precision indicators.

8.2 INTRODUCTION

Precision statistics, also known as precision indicators, are important tools utilized to

measure experimental precision (Górdon-Mendoza and Camargo-Buitrago, 2015; Storck et

al., 2016). When analyzing result reliability, researchers normally rely on indexes such as the
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coefficient of variation (CV) (Pimentel-Gomes, 1990) and the variation index (VI)

(Pimentel-Gomes, 1991), which facilitate making comparisons between the precision of

different evaluations or trials, besides being widely used due to their simple calculation

structures. Variance components such as mean squares are also important to measure the

amount of error (error mean square) and the variability between genotypes or treatments

(genotype or treatment mean square), besides being used in the calculation of the F-test value

(F) (Resende and Duarte, 2007). The latter is determinant in finding differences between

treatments, as well as the least significant difference (LSD), for which these statistics are also

used as indicators of experimental precision (Lúcio et al., 1997; Cargnelutti Filho et al., 2009;

Górdon-Mendoza and Camargo-Buitrago, 2015). Moreover, when studying genotypes,

namely in plant breeding programs, other criteria become important, such as selective

accuracy (SA) and heritability (H) (Resende and Duarte, 2007). However, the values of all of

these indicators can be massively influenced by the sample size selected for data collection

(Souza et al., 2022; Bittencourt et al., 2023; Souza et al., 2023), which can put into question

their own reliability depending on the sampling conditions.

Defining the sample size to be used in an experiment should be part of the initial phase

of experimental planning, once the results can be negatively affected by sampling an

insufficient number of observations, and the process of data collection, as well as the

measurements of variables, can be harmed when this number is too high (Confalonieri et al.,

2009; Alvez-Silva et al., 2018). Hence, several studies on sample size have focused on

optimizing this number by finding the ideal sample size for different situations, which in the

field of agronomy essentially means different crops (Cargnelutti Filho et al., 2013; Toebe et

al., 2015; Toebe et al., 2018; Souza et al., 2022; Bittencourt et al., 2023; Souza et al., 2023).

Importantly, these studies have evidenced that the optimal sample size may also vary within

the same species depending on the trait, environmental conditions, and even the selected
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statistic. In this sense, the lack of sample size recommendations in the literature for crops of

economic importance, under distinct possible scenarios, makes it difficult for researchers to

follow a pattern that will guarantee a minimum acceptable precision without leading to

resource wastage.

Namely, sample size recommendations for horticultural crops are scarcer in comparison

to other species, making this group of plants a preferential target for sample size studies, as

recently highlighted by Bittencourt et al. (2023). In the latter, sample size was defined for

cauliflower seedlings considering precision indicators, and a forecasting methodology for

such statistics was adapted from Souza et al. (2022), which allows researchers to know the

value of a given statistic based on the number of plants selected per experimental unit. This

approach has contributed to the field, optimizing the planning of experiments, and its

calibration for different crops and conditions is encouraged.

On that basis, among the many horticultural crops, lettuce (Lactuca sativa L.) is the

most consumed and cultivated leafy vegetable around the world (Noumedem et al., 2017),

mainly for being a source of vitamins, minerals, and bioactive compounds that are beneficial

to human health (Yang et al., 2022). Because of that, several studies on lettuce are performed

every year aiming at increasing its yield and nutritional quality. However, in many cases,

small sample sizes are used during evaluations, which may vary from three plants per

experimental unit (Mustafa et al., 2023) to six (Qiao et al., 2023) or 10 plants (Yavuz et al.,

2023) per treatment. This lack of standardization regarding an optimal sample size for the

crop may be compromising the reliability of results from lettuce research, and consequently,

the technical recommendations that derive from those. Therefore, the aims of this study were

(i) to find the optimal sample size to estimate precision indicators in experiments that measure

lettuce yield and (ii) to provide equations to forecast such precision indicators based on

sample size.
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8.3 MATERIAL AND METHODS

8.3.1 Reference experiment conduction and data collection

A reference experiment with 26 lettuce genotypes (Table 1) was carried out in the

experimental area of the Federal University of Santa Maria (UFSM), in the Frederico

Westphalen Campus, Rio Grande do Sul, Brazil (27º23’50” S latitude, 53º25’37” W

longitude, at an altitude of 522 m). The region’s climate is humid subtropical, with no dry

season defined, belonging to the cfa type (Wrege et al., 2012), and its soil is classified as

Dystrophic Red Latosol (Santos et al., 2018). Seedling production was carried out in a

greenhouse, under controlled temperature (15-20ºC) and humidity (60-70%). The seeds were

sown on November 7th, 2022, in expanded polystyrene trays of 128 cells containing a

vermiculite-based commercial substrate, watered daily, and kept in the greenhouse for 72

days.

Afterward, the seedlings were transplanted to the field and arranged in a completely

randomized block design with two repetitions, totaling 52 experimental units. Each

experimental unit contained 24 lettuce plants, spaced by 0.30 m within each row and between

rows. Base fertilization was performed according to soil analysis and recommendations for

the crop (CQFS - Comissão de Química e Fertilidade do Solo, 2016), and cover fertilization

was carried out 34 days after transplant. Sixty-five days after transplant, yield was measured

considering fresh weight per plant in grams (g), by randomly selecting 15 plants from each

experimental unit.
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8.3.2 Bootstrap resampling and estimate of precision statistics

All statistical analyses were performed using R software (R Development Core Team,

2023) and Microsoft Office Excel. First, a bootstrapping procedure was performed, in which

experiments with different sampling scenarios were carried out based on the reference

experiment, following the methodology of Bittencourt et al. (2022) and Souza et al. (2022).

Hence, a total of 100 sample sizes were obtained, varying from 1 to 100 plants per

experimental unit.

Next, an analysis of variance was performed for each sample size, after subdividing

the data into experimental units, and the average value of each unit in each sampling scenario

was obtained. The following mathematical model was used:

𝑌
𝑖𝑗
= 𝑚 + 𝐺

𝑖
+ β

𝑗
+ ε

𝑖𝑗

in which represents the observed value in the response trait in plot ij, is the overall𝑌
𝑖𝑗

𝑚

mean, is the fixed effect of level i (i = 1, 2, …, 26) of the genotype factor, is the random𝐺
𝑖

β
𝑗

effect of level j (j = 1 and 2) of the block, and is the effect of the experimental error, whichε
𝑖𝑗

is supposedly normal and independently distributed with an average of zero and a common

variance σ2 (Storck et al., 2016).

The procedure was carried out with 10,000 resamples with replacement (Efron, 1979).

Hence, a database of 1,000,000 simulated experiments was obtained, considering the 100

sampling scenarios and 10,000 resamples for each scenario. Afterward, 16 precision statistics

were estimated for each resampling. The codes, calculation structures, and references of each

statistic are shown in Table 2. These statistical analyses were performed with specific

routines, including the sample() and aov() functions.
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8.3.3 Definition of the optimal sample size per experimental unit

To find the optimal sample size for each statistic, the 95% confidence interval width

(CI95%) of the statistics was calculated (Rothman and Greenland, 2018), and the maximum

curvature point was defined, using the perpendicular distances method (Silva and Lima,

2017), as suggested by Bittencourt et al. (2022) and Souza et al. (2022). First, the minimum,

2.5 percentile, mean, 97.5 percentile, and maximum values of each statistic were obtained in

each resample of every sample scenario (Supplementary Table 2). Then, the following

equation was used to calculate the CI95%:

𝐶𝐼
95%

= 𝑈𝑃 − 𝐿𝑃

in which UP is the upper percentile (97.5 percentile) and LP is the lower percentile (2.5

percentile).

The resulting CI95% values were fitted to the sampling scenarios of 1 to 100 plants per

experimental unit using a shifted power model, which was parameterized with the nls()

function:

𝐶𝐼
95%

= α× 𝑛 − β( )𝑐 + ε

in which α represents the coefficient of interception, n, the sample size, β and c, coefficients

of second and third order, and ɛ, the random-effect error.

Then, the maximum curvature point was found for each statistic using the maxcurv

function through the perpendicular distances method, and this point was considered the

optimal sample size. Additionally, a principal component analysis was performed, by using

the svd() function and setting a mean of zero and a unitary variance to all statistics. This was

done to verify the contribution of the precision statistics to the total variation in the sampling
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scenarios so that the final decision on the optimal sample size was made based on the

statistics with the greatest contributions.

8.3.4 Forecasting precision statistics

The methodology proposed by Souza et al. (2022) was adapted to forecast precision

statistics, using a modified power model proposed by Olivoto et al. (2018). Hence, the

following model was used for each statistic:

𝐶𝐼
95%

= δ𝑃𝑆 × α × 𝑛β + ε

in which δ is the adjustment factor of the coefficient of interception (Olivoto et al., 2018), α is

the coefficient of interception, n is the given sample size, β is the exponential rate of decay,

PS is the mean value of the precision statistic, and ɛ is the random-effect error. Also, the CI95%

of the parameters of the model were obtained using the confint() function. The model was

parameterized using 700,000 values, which represents 70% of the resamples for each

precision statistic. The remaining 300,000 values were used for validation.

The validation process consisted of applying simple linear regressions between the

observed and predicted CI95% values of each precision statistic. The models’ fitting quality was

assessed through the following indicators: coefficient of determination (R2), Willmott's

agreement index (d index), and root mean square error (RMSE). The hydrogof package was

used for the analyses. Finally, the forecasting formulas were generated from the inversion of

the modified power models, as follows:

𝐶𝐼
95%

= δ𝑃𝑆×α×𝑛β + ε
𝐼( )

δ𝑃𝑆 =
𝐶𝐼

95%

α×𝑛β 𝐼𝐼( )



85

𝑃𝑆 = 𝑙𝑜𝑔
δ

𝐶𝐼
95%

α×𝑛β( )
𝐼𝐼𝐼( )

8.4 RESULTS

8.4.2 Experimental precision of the reference experiment

High mean square values were obtained for blocks and genotypes in comparison to the

error mean square in the reference experiment, which resulted in high F values, so that the use

of blocks in the experimental design was considered efficient (F = 11.20; p-value = 0.00259),

and significant differences between genotypes were observed (F = 2.13; p-value = 0.03250).

The overall mean of the fresh weight was 128.94 g, which led to a CVe of 34.66% and a VI of

24.51%. Also, a CVg of 26.00% and a CVr of 0.75 were obtained. The variance values

oscillated from 998.35 (Vres) to 1123.78 (Vgen) and 2122.13 (Vphen). Moreover, an LSD5 of

183.63 and an LSD5% of 142.42% were obtained, and for SA and H, values of 0.73 and 0.53

were found, respectively.

8.4.3 Response of the statistics’ confidence interval width to sample size

variation

The CI95% of all statistics decreased exponentially as the number of plants sampled per

experimental unit increased. As shown in Fig. 1, wider confidence intervals are observed in

scenarios where small sample sizes were simulated compared to those where a larger number

of plants was selected. For example, the CI95% of the CVe reduced from 24.37 when only one

plant per experimental unit was sampled to 2.91 for 100 plants per experimental unit. This is

the result of a reduction in the upper limit values and an increase in the lower limit values of
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the statistics. Moreover, the mean property of some precision statistics reduced with sample

size increase, such as the mean squares, the least significant differences, Vphen, Vres, CVe,

and VI, while the means of others such as F, Vgen, CVg, CVr, SA, and H increased. This

indicates an increase in precision in scenarios of greater sample sizes. On the other hand, the

mean property of the mean remained stable.

8.4.4 Fitting quality of the shifted power models and optimal sample sizes

The shifted power models obtained good fitting quality for all precision statistics, as

expressed by the fitting quality indicators shown in Table 3. R2 and d index were close to 1 for

all statistics. R2 values varied from 0.9980 (SA) to 0.9999 (GMS and Vphen), while d index

values varied from 0.9995 (SA and H) to 0.9999, which was obtained for most statistics. Also,

low RMSE values were obtained, which oscillated from 0.0038 for SA to 104.5083 for BMS,

possibly due to the high value obtained for this statistic.

The optimal sample sizes found varied among statistics (Fig. 2). The lowest sample

size was obtained for GMS, EMS, Vphen, Vgen, and Vres, which corresponds to 14 plants per

experimental unit. An optimal size of 15 plants per experimental unit was found to estimate

the mean, BMS, and CVg, while SA required 16 plants, CVe, LSD5, LSD5%, and VI required

17 plants, and CVg, CVr, and H required 19 plants. The maximum sample size obtained was

21 plants per experimental unit to estimate F. In this sense, the statistics that contributed the

most to the total variation, which was retained in the first principal component (PC1), are the

ones with a contribution percentage higher than the one marked by the dashed line, as shown

in Fig. 3. Thus, although the F statistic had a high contribution, the remaining statistics can be

reliably estimated with the sampling of 19 lettuce plants per experimental unit, which is the
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second highest optimal sample size obtained among the statistics with the greatest

contributions.

8.4.5 Fitting quality of the forecasting models for precision statistics

Good fitting quality was also obtained for the modified power models used for

forecasting precision statistics (Table 4). R2 values varied from 0.9967 for H to 0.9998 for the

majority of the statistics, and d index values varied from 0.9992 (H) to 0.9999 (most

statistics), whereas the RMSE values fluctuated from 0.0045 for SA to 106.5006 for BMS.

Moreover, the upper and lower limits of the parameters of the models were obtained (Table 5).

These values can be used in the forecasting formulas to know the range of the optimal sample

sizes for each statistic. Regarding the validation process (Fig. 4), the predicted CI95% values

were close to the observed CI95% of the models. It was also noted that predictability was

affected by the number of plants sampled in each scenario, as a lower forecasting capacity

was observed at small sample sizes (wide confidence intervals), which was also pointed out

by Bittencourt et al. (2023) and Souza et al. (2022).

8.5 DISCUSSION

This study addressed an important issue concerning the planning of experiments by

finding an optimal sample size per experimental unit (Alvez-Silva et al., 2018; Bittencourt et

al., 2023; Souza et al., 2022) for a widely grown and consumed horticultural crop, such as

lettuce (Noumedem et al., 2017). Focusing on lettuce yield, the response of different precision

statistics to sample size variation was analyzed. Besides, forecasting equations to predict the

value of those statistics based on sample size were proposed by adapting the methodology of
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Souza et al. (2022). Thus, the information presented here can be useful to researchers

performing experiments with the crop, facilitating the selection of a feasible sample size that

still guarantees acceptable precision.

A satisfactory precision was obtained in the reference experiment, as demonstrated by

the precision statistics results (Table 1). The slightly higher CVe value obtained, in

comparison to other indexes such as VI, was most likely influenced by the low overall

experimental mean, given the strong association between these two statistics, for which the

CVe has been previously criticized (Döring and Reckling, 2018). Also, CVe, LSD5, and

LSD5% higher values may be an effect of these statistics being more associated with residual

variances than with genetic variances (Górdon-Mendoza and Camargo-Buitrago, 2015; Souza

et al., 2023a). Thus, a better understanding of the experimental precision can be achieved by

considering all statistics jointly (Souza et al. 2022; Bittencourt et al., 2023), especially in

studies that compare genotypes. The values obtained by the F (higher than 1.96 and lower

than 5.26) and SA (higher than 0.70 and lower than 0.90) statistics, for example, indicate high

precision according to the scale of Resende and Duarte (2007). Another point worth

mentioning is the significant difference existent between the lettuce genotypes selected for the

experiment. This represents an advantage when defining an optimal sample size for the crop,

once the sample sizes found apply to a wide range of genotypes.

Once sample size is highly associated with result reliability, the CI95% of each statistic

was analyzed as a function of the number of plants sampled per experimental unit. The CI95%

decrease in response to sample size increase (Fig. 1) is a normally observed pattern in sample

size studies (Cargnelutti Filho et al., 2013; Olivoto et al., 2018; Toebe et al., 2018; Souza et

al., 2023a). This occurs because the smallest sample sizes are not representative enough,

causing the upper and lower limits to be distant from the real values (Rothman and Greenland,

2018). Therefore, when using these sizes, there is a high risk of under or overestimation of
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results (Souza et al., 2022). Such under or overestimation can be better visualized when

focusing on the mean property of the statistics. Notably, the statistics that indicate high

precision at high values (the higher, the better), such as F, SA, H, CVg, and CVr, had their

mean values underestimated at low sample sizes, and the opposite was observed for the

statistics that indicate high precision at low values (the lower, the better), such as CVe, VI,

GMS, EMS, Vphen, Vres, LSD5, and LSD5%, which had their mean values overestimated.

Some exceptions were noted with BMS and Vgen, for which that pattern was not as

attenuated. Still, this observation highlights the strong relationship between precision and

sample size. In this sense, finding an optimal sample size means narrowing the CI95% until its

value stabilizes, but also avoiding the selection of an unnecessarily high number of plants,

which could be thought of as oversampling (Toebe et al., 2015; Souza et al., 2023a; Souza et

al., 2023b).

As expected, although similar sample sizes were found among the statistics, some of

them required the sampling of more plants per experimental unit than others (Fig. 2).

Interestingly, the F statistic was the one that required the most robust sampling, which was

also observed in the studies by Souza et al. (2022), Souza et al. (2023a), and Bittencourt et al.

(2023). This specificity should be taken into account, especially in cases where this statistic is

used as the only precision indicator in order to guarantee an accurate estimate. However, the

second greatest optimal sample size among the statistics that contributed the most to the total

variation retained in the first principal component was attributed to H (Fig. 3), the statistic

with the greatest contribution, which required 19 plants per experimental unit, thus making

this number the optimal sample size to estimate precision statistics reliably when measuring

lettuce yield per plant.

Furthermore, the forecasting equations here proposed, adapted from the work of Souza

et al. (2022), can be used to facilitate the decision on the number of plants to sample per
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experimental unit based on the desired precision (Table 4). This prediction implicates

arbitrating a sample size per experimental unit in order to know the value of a given statistic.

Thus, such a number can be added to the shifted power model parametrized for the statistic in

question [ ] by replacing n so that the CI95% of the statistic can be𝐶𝐼
95%

= α× 𝑛 − β( )𝑐 + ε

calculated. Next, by adding the CI95% and the same sample size (n) to the forecasting equation

, the precision statistic value can be found. The following example𝑃𝑆 = 𝑙𝑜𝑔
δ

𝐶𝐼
95%

α×𝑛β( )⎡⎢⎣
⎤⎥⎦

illustrates the application of the forecasting methodology using the VI statistic, and arbitrating

a sample size of 17 plants per experimental unit, based on the recommendations here made: 1)

The CI95% is given by , resulting in 4.9633; 2)𝐶𝐼
95%

= 20. 6933× 17 − − 0. 4427( )[ ]0.4994

By applying the forecasting equation, VI is given by ,𝑉𝐼 = 𝑙𝑜𝑔
0.9801

4.9633

33.7778×17−0.4986( )
resulting in a mean VI of 25.13%.

Moreover, those formulas can also be applied by using the upper and lower limits of the

parameters of the shifted power (Supplementary Table 1) and modified power (Table 5)

models. In this way, a maximum and minimum value can be set for the statistic, considering a

confidence interval for its result. Thus, in the aforementioned example, the value of VI can

vary from 22.69% to 27.63%, when sampling 17 plants per experimental unit. Importantly,

the forecasting formulas here shown must be calibrated and tested before being applied to

other lettuce traits, statistics, or experiments performed in extremely different environmental

conditions than the one in this study.

8.6 CONCLUSIONS
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The optimal sample sizes found varied among precision statistics. Taking into account

the statistics with the greatest contributions to the total variation, 19 plants per experimental

unit were enough to estimate experimental precision statistics for lettuce yield per plant

reliably, with the exception of F, which required 21 plants per experimental unit. The

proposed forecasting equations were successful in predicting the value of the precision

statistics based on sample size. The sample size recommendations and models demonstrated

in the present study contribute to improving and optimizing the planning of lettuce

experiments that measure yield per plant.

8.7 REFERENCES

Alvez-Silva, E., Santos, J.C., Cornelissen, T.G., 2018. How many leaves are enough? The

influence of sample size on estimates of plant developmental instability and leaf asymmetry.

Ecol. Indic. 89, 912–924. doi:10.1016/j.ecolind.2017.12.060

Bittencourt, K.C., Souza, R.R. de, Pazetto, S.B., Toebe, M., Toebe, I.C.D., 2022. What is the

best way to define sample size for cauliflower seedlings?. Cienc. Rural 52, e20210747.

doi:10.1590/0103-8478cr20210747

Bittencourt, K.C., Souza, R.R. de, Pazetto, S.B., Toebe, M., Toebe, I.C.D., Cargnelutti Filho,

A., 2023. How many cauliflower seedlings are necessary to estimate experimental precision

statistics reliably? Sci. Hortic. 310, 111788. doi:10.1016/j.scienta.2022.111788

Cargnelutti Filho, A., Storck, L., Ribeiro, N.D., 2009. Measures of experimental precision in

common bean and soybean genotype trials. Pesqui. Agropec. Bras. 44, 1225-1231.

doi:10.1590/S0100-204x2009001000003



92

Cargnelutti Filho, A., Toebe, M., Facco, G., Santos, G.O., dos, Alves, B.M., Bolzan, A., 2013.

Sample size for estimation of the plastochron in pigeonpea. Eur. J. Agron. 48, 12–18.

doi:10.1016/j.eja.2013.02.003.

Confalonieri, R., Perego, A., Chiodini, M.E., Scaglia, B., Rosenmund, A.S., Acutis, M., 2009.

Analysis of sample size for variables related to plant, soil, and soil microbial respiration in a

paddy rice field. Field Crops Res. 113, 125–130. doi:10.1016/j.fcr.2009.04.014

CQFS - Comissão de Química e Fertilidade do Solo, 2016. Manual of fertilization and liming

for the states of Rio Grande do Sul and Santa Catarina. Porto Alegre: Sociedade Brasileira de

Ciência do Solo.

Cruz, C.D., Carneiro, P.C.S., Regazzi, A.J., 2012. Biometric Models Applied to Genetical

Improvement, fourth ed. Viçosa: UFV.

Efron, B., 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26.

doi:10.1214/aos/1176344552

Górdon-Mendoza, R., Camargo-Buitrago, I., 2015. Statistical selection for estimating the

accuracy in experimental corn trials. Agron. Mesoam. 26, 55-63.

doi:10.15517/am.v26i1.16920

Lúcio, A.D., 1997. Experimental precision parameters for main annual crops of Rio Grande

do Sul state. Cienc. Rural 27, 530-531. doi:10.1590/S0103-84781997000300029

Mustafa, M., Zoltan, P., Ahmed, H.M., Quilong, L., 2023. Effects of BRT Ever Green and

Aqua Perla as substrate improvement agents on vegetative growth, yield, and nutrient of

lettuce (Lactuca sativa L). J. King Saud. Univ. Sci. 35, 102718.

doi:10.1016/j.jksus.2023.102718

Noumedem, J.A.K., Djeussi, D.E., Hritcu, L., Mihasan, M., Kuete, V., 2017. Lactuca sativa

In: Medicinal Spices and Vegetables from Africa, Therapeutic Potential Against Metabolic,



93

Inflammatory, Infectious and Systemic Diseases, 437-449.

doi:10.1016/B978-0-12-809286-6.00020-0

Olivoto, T., Lúcio, A.D.C., Souza, V.Q. de, Nardino, M., Diel, M.I., Sari, B.G., Krysczun,

D.K., Meira, D., Meier, C., 2018. Confidence interval width for Pearson's correlation

coefficient: a gaussian-independent estimator based on sample size and strength of

association. Agron. J. 110, 1–8. doi:10.2134/agronj2017.09.0566

Pimentel-Gomes, F., 1990. Experimental Statistics Course Nobel, thirteenth ed. Piracicaba:

IPEF.

Pimentel-Gomes, F., 1991. The Variation index, an Advantageous Substitute For the Variation

Coefficient, first ed. Piracicaba: IPEF..

Qiao, Z., Luo, K., Zhou, S., Fu, M., Shao, X., Gong, K., Peng, C., Zhang, W., 2023. Response

mechanism of lettuce (Lactuca sativa L.) under combined stress of Cd and DBDPE: An

integrated physiological and metabolomics analysis. Sci. Total Environ. 887, 164204.

doi:10.1016/j.scitotenv.2023.164204

R Development Core Team, 2023. R: A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing.

Resende, M.D.V. de, Duarte, J.B., 2007. Precision and quality control in variety trials. Pesq

Agropec. Trop. 37, 182-194.

Rothman, K.J., Greenland, S. Planning study size based on precision rather than power.

Epidemiology, 29, 599–603. doi:10.1097/EDE.0000000000000876

Silva, A.R. da, Lima, R.P., 2017. Determination of maximum curvature point with the R

package soilphysics. Int J Curr Res 9, 45241–45245.

Souza, R.R. de , Toebe, M., Marchioro, V.S., Cargnelutti Filho, A., Lúcio, A.D., Benin, G.,

Mello, A.C., Tartaglia, F. de L., Manfio, G.L., 2022. Soybean yield variability per plant in



94

subtropical climate: sample size definition and prediction models for precision statistics. Eur.

J. Agron. 136, 126489. doi:10.1016/j.eja.2022.126489

Souza, R.R. de, Toebe, M., Marchioro, V.M., Cargnelutti Filho, A., Bittencourt, K.C., Mello,

A.C., Paraginski, J.A., 2023a. Sample size and modeling of plant variability using precision

statistics in soybean counting traits. Field Crops Res. 291, 108789.

doi:10.1016/j.fcr.2022.108789

Souza, R.R. de, Toebe, M., Mello, A.C., Bittencourt, K.C., 2023b. Sample size and

Shapiro-Wilk

test: an analysis for soybean grain yield. Eur. J. Agron. 142, 126666.

doi:10.1016/j.eja.2022.126666

Storck, L., Garcia, D.C., Lopes, S.J., Estefanel, V., 2016. Plant Experimentation, third ed.

Santa Maria: UFSM.

Toebe, M., Cargnelutti Filho, A., Lopes, S.J., Burin, C., Silveira, T.R. da, Casarotto, G., 2015.

Sample dimensioning for estimating coefficients of correlation in maize hybrids, harvests and

precision levels. Bragantia 74, 16–24. doi:10.1590/1678-4499.0324

Toebe, M., Machado, L.N., Tartaglia, F., Carvalho, J.O.de, Bandeira, C.T., Cargnelutti Filho,

A., 2018. Sample size for estimating mean and coefficient of variation in species of

crotalarias. An. Acad. Bras. Ciênc. 90, 1705–1715. doi:10.1590/0001-3765201820170813

Willmott, C.J., Robeson, S.M., Matsuura, K., 2012. A refined index of model performance.

Int J Climatol 32, 2088–2094. doi:10.1002/joc.2419

Wrege, M.S., Steinmetz, S., Reisser Júnior, C., Almeida, I.R. de, 2012. Climatic Atlas of the

South Region of Brazil: States of Paraná, Santa Catarina and Rio Grande do Sul, second ed.

Brasília: EMPRAPA.



95

Yang, X., Gil, M.I., Yang, Q., Tomás-Barberán, F.A., 2022. Bioactive compounds in lettuce:

Highlighting the benefits to human health and impacts of preharvest and postharvest

practices. Compr. Rev. Food Sci. Food Saf. 21, 4-45. doi: 10.1111/1541-4337.12877

Yavuz, D., Seymen, M. Kal, Ü., Atakul, Z., Tanrıverdi, O.B., Türkmen, O., Yavuz, N., 2023.

Agronomic and physio-biochemical responses of lettuce to exogenous sodium nitroprusside

(SNP) applied under different irrigation regimes. Agric. Water Manag. 277, 108127.

doi:10.1016/j.agwat.2022.108127

8.8 TABLES

Table 1. Phenotypical description of the 26 lettuce genotypes used in the reference experiment

regarding type, variety, leaf color, cycle (days), and brand.

Code Genotype Variety Leaf Color Cycle (days) Brand
G1 Gamboa Butterhead Green 60 ISLA
G2 Creta Erect Purple 60 ISLA
G3 Sibéria Iceberg Green 80 ISLA
G4 Trindade Iceberg Light green 75 ISLA
G5 Mimosa Brava Salad bowl Green 55 ISLA
G6 Itapuã Super Looseleaf Light green 55 ISLA
G7 Grand Rapids Looseleaf Light Green 60 ISLA
G8 Simpson Looseleaf Green 70 ISLA
G9 Hanson Crisphead Light green 80 ISLA
G10 Cerbiatta Oakleaf Green 72 ISLA
G11 Friseé Atalaia Frisée Purple 55 ISLA
G12 Baba de verão Butterhead Light green 60 ISLA
G13 Itaúna Frisée Frisée Green 55 ISLA
G14 Batávia cacimba Curly red-leaf Dark red 60 ISLA
G15 Regina de verão Loose butterhead Yellowish green 65 ISLA
G16 Mimosa Prado Mimosa Dark red 55 ISLA
G17 Brunela Frisée Light green 55 Feltrin
G18 Giovana Mimosa Light green 45 Feltrin
G19 Betania Mimosa Purple 55 Feltrin
G20 Stella Butterhead Light green 60 Feltrin
G21 Cinderela Curly green-leaf Light green 70 Feltrin
G22 Delícia Americana Crisphead Light green 80 ISLA
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G23 Americana GL 659 Iceberg Green 75 Feltrin
G24 Fortaleza Butterhead Green 60 ISLA
G25 Repolhuda todo ano Butterhead Light green 70 Feltrin
G26 Mônica Curly green-leaf Green 65 Feltrin

Table 2. Codes, calculation structures, and references of the precision statistics.

Precision statistic Code Equation(*) Reference

Block mean square BMS σ2 + 𝑖σ
𝑏
2

Storck et al. (2016)

Genotype mean square GMS σ2 + 𝑟
𝑖−1

𝑖
∑𝐺

𝑖
² Storck et al. (2016)

Error mean square EMS σ2 Storck et al. (2016)

F-test value F
𝐺𝑀𝑆
𝐸𝑀𝑆 Storck et al. (2016)

Overall experimental mean m
∑𝐺

𝑖𝑟

𝑖×𝑟
Storck et al. (2016)

Phenotypic variance Vphe
n

𝐺𝑀𝑆
𝑟 Cruz et al. (2012)

Genotypic variance Vgen
𝐺𝑀𝑆−𝐸𝑀𝑆

𝑟 Cruz et al. (2012)

Mean residual variance Vres
𝐸𝑀𝑆
𝑟 Cruz et al. (2012)

Coefficient of genetic variation CVg 100 𝑉𝑔𝑒𝑛
𝑚

Resende & Duarte
(2007)

Coefficient of experimental variation CVe 100 𝐸𝑀𝑆
𝑚

Pimentel-Gomes
(1990)

Coefficient of relative variation CVr
𝐶𝑉𝑔
𝐶𝑉𝑒

Resende & Duarte
(2007)

Variation index VI
𝐶𝑉𝑒
𝑟

Pimentel-Gomes
(1991)

Selective accuracy SA
1

1−𝐹( )0.5 Resende & Duarte
(2007)
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Heritability H 𝑆𝐴2 Resende & Duarte
(2007)

Least significant difference at 5% LSD5 𝑞
ɑ 𝑖;𝐸𝑑𝑓( )

𝐸𝑀𝑆
𝑟 Lúcio (1997)

Least significant difference as a percentage of the
average at 5%

LSD5
%

100 𝐿𝑆𝐷5
𝑚 Lúcio (1997)

(*) σ2: experimental variance; : variance of the repetitions; i: number of genotypes, which is 26; r: number ofσ
𝑏
2

repetitions; qɑ(i; Edf): is the critical value for Tukey’s test performed at 5% ; Edf: are the degrees of freedom of the

error estimated .𝐸𝑑𝑓 = 𝑟 − 1( ) 𝑛 − 1( )

Table 3. Fitting quality indicators and parameters of the shifted power model used to define

optimal sample sizes to estimate experimental precision statistics for lettuce yield per plant (g

plant-1).

Precision statistic (*) α (†) β c R2 (‡) RMSE d index Sample size

BMS 49479.0756 0.0611 -0.5002 0.9998 104.5083 0.9999 15
GMS 4209.1137 0.2466 -0.5043 0.9999 7.4542 0.9999 14
EMS 3477.3272 0.1963 -0.5076 0.9998 6.1631 0.9999 14
F 4.4436 -2.4683 -0.5220 0.9992 0.0100 0.9998 21
m 22.7886 0.0178 -0.4982 0.9998 0.0419 0.9999 15
Vphen 2104.5569 0.2466 -0.5043 0.9999 3.7271 0.9999 14
Vgen 2604.6147 0.2242 -0.5014 0.9997 6.1135 0.9999 14
Vres 1738.6634 0.1963 -0.5076 0.9998 3.0815 0.9999 14
CVe 29.2647 -0.4427 -0.4994 0.9998 0.0468 0.9999 17
CVg 33.4087 -0.1317 -0.5369 0.9990 0.1333 0.9997 15
CVr 1.4718 -1.5295 -0.5218 0.9991 0.0040 0.9998 19
VI 20.6933 -0.4427 -0.4994 0.9998 0.0331 0.9999 17
LSD5 154.0846 -0.4054 -0.4985 0.9998 0.2625 0.9999 17
LSD5% 120.2631 -0.4427 -0.4994 0.9998 0.1925 0.9999 17
SA 0.7493 -0.4100 -0.5503 0.9980 0.0038 0.9995 16
H 1.0673 -1.4406 -0.5429 0.9982 0.0042 0.9995 19
(*) The codes of the precision statistics are shown in Table 2; (†) α: coefficient of interception; β and c: coefficients

of second and third order; (‡) R²: coefficient of determination; RMSE: root mean square error; d index: Willmott’s

agreement index.
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Table 4. Fitting quality indicators and parameters of the modified power models used for forecasting precision statistics for lettuce yield per plant

(g plant-1).

Precision statistic (*) δ (†) α β R2 (‡) RMSE d index Forecasting equation

BMS 1.0000 34564.5503 -0.5006 0.9997 106.5003 0.9999 𝐵𝑀𝑆 = 𝑙𝑜𝑔
1.0000

𝐶𝐼
95%

34564.5503×𝑛−0.5006( )
GMS 1.0001 2904.0600 -0.5022 0.9998 7.6547 0.9999 𝐺𝑀𝑆 = 𝑙𝑜𝑔

1.0001

𝐶𝐼
95%

2904.0600×𝑛−0.5022( )
SEM 1.0001 3034.4802 -0.5061 0.9998 6.0941 0.9999 𝐸𝑀𝑆 = 𝑙𝑜𝑔

1.0001

𝐶𝐼
95%

3034.4802×𝑛−0.5061( )
F 4.0629 0.2105 -0.5063 0.9995 0.0082 0.9999 𝐹 = 𝑙𝑜𝑔

4.0629

𝐶𝐼
95%

0.2105×𝑛−0.5063( )
M 0.9192 1196122.3082 -0.4986 0.9998 0.0402 0.9999 𝑚 = 𝑙𝑜𝑔

0.9192

𝐶𝐼
95%

1196122.3082×𝑛−0.4986( )
Vphen 1.0002 1452.0300 -0.5022 0.9998 3.8273 0.9999 𝑉𝑝ℎ𝑒𝑛 = 𝑙𝑜𝑔

1.0002

𝐶𝐼
95%

1452.0300×𝑛−0.5022( )
Vgen 0.9968 104929.3648 -0.5262 0.9986 14.4969 0.9996 𝑉𝑔𝑒𝑛 = 𝑙𝑜𝑔

0.9968

𝐶𝐼
95%

104929.3648×𝑛−0.5262( )
Vres 1.0001 1517.2400 -0.5061 0.9998 3.0470 0.9999 𝑉𝑟𝑒𝑠 = 𝑙𝑜𝑔

1.0001

𝐶𝐼
95%

1517.2400×𝑛−0.5061( )
CVe 0.9859 47.7690 -0.4986 0.9998 0.0465 0.9999 𝐶𝑉𝑒 = 𝑙𝑜𝑔

0.9859

𝐶𝐼
95%

47.7690×𝑛−0.4986( )
CVg 0.8600 1513.8293 -0.5090 0.9998 0.0643 0.9999 𝐶𝑉𝑔 = 𝑙𝑜𝑔

0.8600

𝐶𝐼
95%

1513.8293×𝑛−0.5090( )
CVr 16.9134 0.1797 -0.5267 0.9984 0.0056 0.9996 𝐶𝑉𝑟 = 𝑙𝑜𝑔

16.9134

𝐶𝐼
95%

0.1797×𝑛−0.5267( )
VI 0.9801 33.7778 -0.4986 0.9998 0.0329 0.9999 𝑉𝐼 = 𝑙𝑜𝑔

0.9801

𝐶𝐼
95%

33.7778×𝑛−0.4986( )
LSD5 0.9975 243.8286 -0.4980 0.9998 0.2632 0.9999 𝐿𝑆𝐷5 = 𝑙𝑜𝑔

0.9975

𝐶𝐼
95%

243.8286×𝑛−0.4980( )
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LSD5% 0.9965 196.3062 -0.4986 0.9998 0.1910 0.9999 𝐿𝑆𝐷5% = 𝑙𝑜𝑔
0.9965

𝐶𝐼
95%

196.3062×𝑛−0.4986( )
AS 4.3731 0.2587 -0.5523 0.9972 0.0045 0.9993 𝑆𝐴 = 𝑙𝑜𝑔

4.3731

𝐶𝐼
95%

0.2587×𝑛−0.5523( )
H 31.1741 0.1784 -0.5510 0.9967 0.0057 0.9992 𝐻 = 𝑙𝑜𝑔

31.1741

𝐶𝐼
95%

0.1784×𝑛−0.5510( )
(*) The codes of the precision statistics are shown in Table 2. (†) δ: adjustment factor of the coefficient of interception; α: coefficient of interception; β: exponential rate of

decay; (‡) R²: coefficient of determination; RMSE: root mean square error; d index: Willmott’s agreement index.

Table 5. Upper and lower limits of the parameters of the modified power models used to forecast precision statistics for lettuce yield per plant (g

plant-1).

Precision statistic (*)  Lower limits  Modified power model  Upper limits
 δ (†) α β  δ α β  δ α β

BMS  1.0000 29840.2628
-0.503

3  1 34564.5503
-0.500

6  1.0000 39288.8377
-0.498

0

GMS  1.0001 2822.2513
-0.504

4  1.0001 2904.0600
-0.502

2  1.0001 2985.8686
-0.499

9

SEM  1.0001 2984.0063
-0.508

4  1.0001 3034.4802
-0.506

1  1.0001 3084.9541
-0.503

9

F  3.9069 0.1957
-0.509

7  4.0629 0.2105
-0.506

3  4.2190 0.2253
-0.502

8

M  0.8755 -6134878.1345
-0.500

0  0.9192 1196122.3082
-0.498

6  0.9629 8527122.7508
-0.497

2

Vphen  1.0002 1411.1249
-0.504

4  1.0002 1452.0300
-0.502

2  1.0002 1492.9352
-0.499

9

Vgen  0.9951 -92776.3124
-0.530

0  0.9968 104929.3648
-0.526

2  0.9985 302635.0419
-0.522

5

Vres  1.0001 1492.0028
-0.508

4  1.0001 1517.2400
-0.506

1  1.0001 1542.4772
-0.503

9
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CVe  0.9851 46.2018
-0.500

8  0.9859 47.7690
-0.498

6  0.9866 49.3361
-0.496

4

CVg  0.8484 988.7712
-0.510

8  0.86 1513.8293 -0.509  0.8717 2038.8874
-0.507

3

CVr  13.8250 0.1595
-0.534

0  16.9134 0.1797
-0.526

7  20.0017 0.2000
-0.519

4

VI  0.9790 32.6696
-0.500

8  0.9801 33.7778
-0.498

6  0.9811 34.8859
-0.496

4

LSD5  0.9973 235.2356
-0.500

3  0.9975 243.8286 -0.498  0.9976 252.4216
-0.495

6

LSD5%  0.9964 189.8661
-0.500

8  0.9965 196.3062
-0.498

6  0.9967 202.7463
-0.496

4

AS  2.8564 0.2029
-0.563

5  4.3731 0.2587
-0.552

3  5.8898 0.3145
-0.541

0

H  21.0312 0.1544
-0.562

2  31.1741 0.1784 -0.551  41.3170 0.2025
-0.539

8
(*) The codes of the precision statistics are shown in Table 2. (†) δ: adjustment factor of the coefficient of interception; α: coefficient of interception; β: exponential rate of

decay.
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8.9 FIGURE CAPTIONS

Fig. 1. Minimum, 2.5 percentile, mean, 97.5 percentile, and maximum values obtained from

the planned sample sizes of 1 to 100 lettuce plants per experimental unit for the experimental

precision statistics block mean square (a), genotype mean square (b), error mean square (c),

F-test value (d), mean (e), phenotypic variance (f), genotypic variance (g), mean residual

variance (h), coefficient of experimental variation (i), coefficient of genetic variation (j),

coefficient of relative variation (k), variation index (l), least significant difference at 5% (m),

least significant difference as a percentage of the average at 5% (n), selective accuracy (o),

and heritability (p) for lettuce yield per plant (g plant-1).

(*) Dashed lines represent minimum and maximum values, colored straight lines represent 2.5 and 97.5

percentiles, and black straight lines represent mean values.

Fig. 2. Optimal sample sizes defined via shifted power model and maximum curvature point

to estimate the precision statistics block mean square (a), genotype mean square (b), error

mean square (c), F-test value (d), mean (e), phenotypic variance (f), genotypic variance (g),

mean residual variance (h), coefficient of experimental variation (i), coefficient of genetic

variation (j), coefficient of relative variation (k), variation index (l), least significant

difference at 5% (m), least significant difference as a percentage of the average at 5% (n),

selective accuracy (o), and heritability (p) for lettuce yield per plant (g plant-1).

Fig. 3. Principal component analysis of the definition of the optimal sample size per

experimental unit to estimate precision statistics for lettuce yield per plant (g plant-1) and

contribution percentage of the precision statistics to the total variation retained in the first

principal component.

(*) PC1: first principal component; PC2: second principal component.
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(†) The codes of the precision statistics are shown in Table 2.

Fig. 4. Observed and predicted 95% confidence interval width of the precision statistics block

mean square (a), genotype mean square (b), error mean square (c), F-test value (d), mean (e),

phenotypic variance (f), genotypic variance (g), mean residual variance (h), coefficient of

experimental variation (i), coefficient of genetic variation (j), coefficient of relative variation

(k), variation index (l), least significant difference at 5% (m), least significant difference as a

percentage of the average at 5% (n), selective accuracy (o), and heritability (p) for lettuce

yield per plant (g plant-1) obtained through the validation process of the modified power

models.
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8.10 FIGURES
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8.11 SUPPLEMENTARY MATERIAL

Supplementary material for this article is available.
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9 ARTIGO 5 – PLANNING LETTUCE EXPERIMENTS: SAMPLE SIZE
DEFINITION TOMEASURE THE PRECISION OF BIOMETRIC TRAITS

(Formatação da revista Scientia Horticulturae)

Submetido ao periódico: Scientia Horticulturae
Situação: Submetido
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9.1 ABSTRACT

The aims of this study were (i) to define the optimal sample size per experimental unit to

estimate precision statistics for lettuce biometric traits and (ii) to propose forecasting

equations for precision statistics from the selection of a sample size per experimental unit. An

experiment with 26 lettuce genotypes was performed and the plant height, number of leaves,

neck diameter, and mean head diameter were measured. Then, a bootstrap resampling

procedure was applied, creating sampling scenarios from 1 to 100 plants per experimental

unit, and five precision statistics were calculated for each trait, fitting their 95% confidence

interval width to the sampling scenarios via shifted power models. Sample size was defined

by finding the maximum curvature point, using the perpendicular distances method, and

considering the contribution of the statistics to the total variation retained in the first principal

component. Also, forecasting formulas for precision statistics based on sample size were

adapted using an inverted modified power model. The 95% confidence interval width of the

statistics reduced with the increase in sample size, gaining precision. A greater variation was

observed in the sample sizes between statistics than between traits. All traits and statistics can

be reliably estimated with 24 lettuce plants per experimental unit. The SA and F statistics

contributed the most to the total variation. The precision statistics here estimated can be

accurately predicted using the forecasting formulas, as well as their confidence interval,

allowing the optimization of the planning of lettuce experiments.

Keywords: Lactuca sativa L., number of plants, precision statistics.

9.2 INTRODUCTION

Experimental precision can be measured through the calculation of several precision

statistics (Cargnelutti Filho et al., 2009; Górdon-Mendoza and Camargo-Buitrago, 2015;
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Souza et al., 2022). Some of the most common precision statistics are the coefficient of

experimental variation (CVe) (Pimentel-Gomes, 1990), the variation index (VI)

(Pimentel-Gomes, 1991), and the F-test value (F) (Resende and Duarte, 2007). In genetic

studies, other indexes related to precision are also relevant, such as the coefficient of genetic

variation (CVg) (Burton, 1952), which is widely used to know the existent genetic variation in

experiments (Ziegler and Tambarussi, 2022). Another less-known but equally important

indicator is selective accuracy (SA), as highlighted by Resende and Duarte (2007) and

Resende and Alves (2022). This statistic establishes a correlation between the real and

predicted genotypic values.

Several studies have shown how such precision statistics are affected by sample size

(Cargnelutti Filho et al., 2009; Bittencourt et al., 2023; Souza et al., 2022; Souza et al.,

2023a). A representative sample size must be selected in order to ensure precise and reliable

results. However, other problems may derive from the use of excessively large sample sizes,

such as the need for a higher amount of time and resources, besides leading to biased

measurements in some cases (Toebe et al., 2018). Those aspects become extremely relevant in

the field of agricultural sciences, where living beings such as plants are normally the study

object, and considering these experiments are known for requiring great labor and large areas,

especially in plant breeding programs where a great number of treatments (genotypes) are

tested. In this sense, defining an ideal sample size can help optimize the planning and conduct

of experiments (Confalonieri et al., 2009; Alvez-Silva et al., 2018). Nonetheless, this value

may vary according to the crop, trait, and statistical parameter (Toebe et al., 2015; Souza et

al., 2022).

Lettuce (Lactuca sativa L.) is considered one of the most popular vegetable crops in the

world, being widely consumed in salads and sandwiches, for which it has great economic

importance in the field of horticulture (Hassan et al., 2021). This is reflected in research, with
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numerous publications focusing on the crop every year (Zhang et al., 2020; Wei et al., 2021;

Muscolo et al., 2022; Hasan and Jho, 2023). However, studies on sample size are still scarce

for lettuce, making the decision on this number empirical, which may later affect

experimental precision. Importantly, several traits are commonly measured in lettuce

experiments, such as the number of leaves, plant height, and neck and mean head diameter,

which may require specific sample size recommendations. Another point worth mentioning is

the large number of lettuce genotypes available in the market. Therefore, sample-size studies

should include as many genotypes as possible in order to be representative.

Moreover, recent work on the subject has focused on forecasting precision according to

a selected sample size (Souza et al., 2022; Souza et al., 2023a; Souza et al., 2023b;

Bittencourt et al., 2023), which provides a better understanding of the response of statistics to

sample size variation and helps in the making of more efficient choices on the number of

plants to be sampled per experimental unit. Therefore, the aims of this study were (i) to define

the optimal sample size per experimental unit to estimate precision statistics for lettuce

biometric traits and (ii) to propose forecasting equations for precision statistics from the

selection of a sample size per experimental unit.

9.3 MATERIAL AND METHODS

1.1.1. Experimental conduction of the reference experiment

A lettuce experiment was performed in the experimental area of the Federal University

of Santa Maria (UFSM), located in the municipality of Frederico Westphalen, Rio Grande do

Sul State, Brazil (27º23’50” S latitude, 53º25’37” W longitude, and 522 m of altitude).

Twenty-six lettuce cultivars were used in the experiment, which are described in
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Supplementary Table 1. In Frederico Westphalen, the climate is classified as cfa, humid

subtropical, with no dry season defined (Wrege et al., 2012), and the soil is of the Dystrophic

Red Latosol type (Santos et al., 2018).

Initially, lettuce seedlings were grown in a greenhouse, under controlled conditions of

temperature (15-20ºC) and humidity (60-70%). The sowing was carried out on November 7th,

2022, using expanded polystyrene trays with 128 cells and a vermiculite-based commercial

substrate. The seedling production period lasted 72 days, after which the seedlings were

transplanted to the field. A completely randomized block experimental design with two

repetitions was used, resulting in 54 experimental units, with 24 plants each. The plants were

spaced 0.30 m apart within each row and 0.30 m apart between rows. Base fertilization was

applied based on soil analysis and the recommendations for the crop (CQFS - Comissão de

Química e Fertilidade do Solo, 2016), followed by cover fertilization, 34 days after transplant.

Finally, fifteen plants were randomly taken from each experimental unit, and the following

traits were measured: number of leaves (NL), in units, plant height (PH), in cm, neck diameter

(ND), in cm, and mean head diameter (MHD), in cm.

1.1.1. Bootstrap resampling procedure

The reference experiment was used to perform a bootstrap resampling in order to

simulate experiments with different sampling scenarios. Hence, 100 different sample sizes

were planned for each trait, which varied from 1 to 100 plants per experimental unit, with an

interval of 1 plant between each sample size. The same methodology described by Bittencourt

et al. (2023) and Souza et al. (2022) was applied.
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Subsequently, the database was divided into experimental units and an analysis of

variance was performed for each sample size, thus obtaining the mean value of each unit in

each scenario for each trait. For this, the following mathematical model was used:

𝑌
𝑖𝑗
= 𝑚 + 𝐺

𝑖
+ β

𝑗
+ ε

𝑖𝑗

where is the value observed in the response trait in the ij plot, is the overall mean, is𝑌
𝑖𝑗

𝑚 𝐺
𝑖

the fixed effect of the ith level (i = 1, 2, …, 26) of the genotype factor, is the random effectβ
𝑗

of the jth level (j = 1 and 2) of the block, and is the experimental error effect, supposedlyε
𝑖𝑗

normal and independently distributed with a mean of zero and a common variance σ2 (Storck

et al., 2016).

The procedure was conducted with replacement and 10,000 resamples (Efron, 1979).

This resulted in 1,000,000 experiments, considering the 100 sample sizes and 10,000

resamples for each size. Finally, five precision statistics (Table 1) were estimated for each

resampling and each trait, obtaining the respective descriptive statistics (Supplementary

Tables 2, 3, 4, and 5). The statistical analyses were performed with R software (R

Development Core Team, 2023) and Microsoft Office Excel. Specific routines were used,

which included the sample() and aov() functions.

1.1.1. Finding the ideal sample size per experimental unit

To define sample size per experimental unit, first, the 95% confidence interval width

(CI95%) of each statistic was calculated for each trait. For this, the minimum values, 2.5

percentiles, means, 97.5 percentiles, and maximum values of the statistics were obtained for

each resample of each sampling scenario, and the following equation was applied:
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𝐶𝐼
95%

= 𝑈𝑃 − 𝐿𝑃

where UP is the 97.5 percentile (upper percentile) and LP is the 2.5 percentile (lower

percentile).

Next, the CI95% values were adjusted to the sample sizes of 1 to 100 plants per

experimental unit through a shifted power model parameterized using the nls() function, as

follows:

𝐶𝐼
95%

= α× 𝑛 − β( )𝑐 + ε

where α is the coefficient of interception, n is the sample size, β is the coefficient of second

order, c is the coefficient of third order, and ɛ is the random-effect error. The upper and lower

limits of the parameters of the shifted power model were also obtained (Supplementary Table

6).

Afterward, the maximum curvature point was defined for each statistic and trait, using

the perpendicular distances method, described by Silva and Lima (2017) and following the

recommendations of Bittencourt et al. (2022) and Souza et al. (2022). For this, the maxcurv

function was used, and the maximum curvature point was considered the optimal sample size

for each case. Moreover, a principal component analysis was carried out, setting a mean of

zero and a unitary variance to all statistics. This was done using the svd() function. Through

this analysis, the contribution of each statistic to the total variation in the sampling scenarios

was verified, which allowed making the final decision on the optimal sample size considering

the statistics that had the greatest contributions.

1.1.1. Forecasting precision statistics based on sample size
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The methodology of Souza et al. (2022) was followed and adapted to propose

forecasting formulas for precision statistics based on sample size. Thus, a modified power

model proposed by Olivoto et al. (2018) was applied, so that the following model was used

for each statistic:

𝐶𝐼
95%

= δ𝑃𝑆 × α × 𝑛β + ε

where δ is the adjustment factor of the coefficient of interception (Olivoto et al., 2018), α is

the coefficient of interception, n is the sample size, β is the exponential rate of decay, PS is the

precision statistic mean value, and ɛ is the random-effect error. A total of 700,000 values,

representing 70% of the resamples for each statistic, were used to parametrize the model, and

the remaining 30% were used in a validation process.

Validation consisted of simple linear regressions between the observed and predicted

CI95% of the precision statistics. The hydrogof package was used for the analyses, and the

fitting quality of the models was evaluated through the coefficient of determination (R2),

Willmott's agreement index (d index), and root mean square error (RMSE). Lastly, the

modified power models were inverted to generate the forecasting formulas, as demonstrated

below:

𝐶𝐼
95%

= δ𝑃𝑆×α×𝑛β + ε
𝐼( )

δ𝑃𝑆 =
𝐶𝐼

95%

α×𝑛β 𝐼𝐼( )

𝑃𝑆 = 𝑙𝑜𝑔
δ

𝐶𝐼
95%

α×𝑛β( )
𝐼𝐼𝐼( )

9.4 RESULTS

1.1.1. Experimental precision achieved in the reference experiment
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The reference experiment obtained high experimental precision as verified through the

CV, CVg, F, VI, and SA. In general, NL was the trait with the highest precision, obtaining the

highest F, CVg, and SA values, followed by PH, which obtained the lowest CVe and VI

values, and MHD was the less precise evaluated trait, followed by ND. Medium CVe values

were obtained, which varied from 16.04% to 18.14%, and lower VI values were found, which

varied from 11.34% to 12.83%, corresponding to PH and NL, respectively. F values varied

from 3.69 for NL to 2.33 for MHD. Regarding the other genetic indicators, CVg varied from

21.08% for NL to 14.17% for MHD, while SA values were close to one, varying from 0.85

for NL to 0.76 for MHD. Furthermore, significant differences were found between genotypes

for all traits, with p-values of 0.000876, 0.002530, 0.004210, and 0.019300, respectively for

NL, PH, ND, and MHD.

1.1.1. Confidence interval width of the precision statistics in different sampling
scenarios

Figs. 1, 2, 3, and 4 (a, b, c, d, and e) show the response of the CI95% of the precision

statistics to the variation of the sample size per experimental unit. As expected, for all

statistics and traits, the CI95% was reduced as the number of sampled plants per experimental

unit increased up to a point where a certain stabilization was reached. Thus, higher CI95%

values were obtained in scenarios of small sample sizes in comparison to greater samples. For

example, considering the CVe of the number of leaves, a CI95% of 11.74 was obtained when

only one plant was sampled per experimental unit, whereas a value of 1.77 was observed

when sampling 50 plants per experimental unit. Moreover, the mean property of some

statistics was underestimated (F, CVg, and SA) at small sample sizes while others were

overestimated (CV and VI) in those scenarios, eventually stabilizing. This can be illustrated

by the mean value of the VI obtained for PH, which was overestimated when only 5 plants per
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experimental unit were sampled, resulting in 12.23% and reducing to 11.57% with the

sampling of 20 plants. On the other hand, the value of SA, for example, which was

underestimated, resulted in 0.80 when 5 plants were sampled and increased to 0.82 with 20

plants per experimental unit.

1.1.1. Optimal sample sizes defined per experimental unit for lettuce traits

The indicators shown in Table 2 verified the fitting quality of the shifted powers model

used in the first part of the sample size definition process. As observed, the models presented

good fitting quality, which can be concluded once R2 and d index values were close to 1 and

low RMSE values were obtained. The R2 values obtained were higher than 0.9993, 0.9993,

0.9981, and 0.9994, for PH, NL, ND, and MHD, respectively, while the d index values were

higher than 0.9998, 0.9998, 0.9995, and 0.9999 for PH, NL, ND, and MHD, respectively.

Regarding the RMSE, the values varied from 0.0007 to 0.0221 for PH, 0.0006 to 0.0216 for

NL, 0.0188 to 0.0540 for ND, and 0.0013 to 0.0280 for MHD.

The optimal sample sizes are shown in Figs. 1, 2, 3, and 4 (g, h, i, j, and k). Such sizes

varied among statistics and slightly among traits, with 24 plants per experimental unit being

the maximum optimal sample size found, corresponding to the estimate of F for ND, whereas

13 plants per experimental unit was the minimum optimal sample size found, which

corresponded to the estimate of SA for PH, NL, and ND. In this sense, the principal

component analysis (Fig. 5) indicated that the statistics that contributed the most to the total

variation retained in the first principal component were SA and F for all traits, although VI

and CVe also presented high contributions for PH, NL, and ND. For this reason, the sampling

of 24 plants per experimental unit is considered enough to measure the precision of all lettuce

biometrics traits here evaluated reliably through all precision statistics here used.
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1.1.1. Models to forecast precision statistics for lettuce traits

The forecasting models used to predict precision statistics for lettuce traits also

presented good fitting quality. This was evidenced by the fitting quality indicators shown in

Table 3. The R2 values obtained were higher than 0.9996, 0.9995, 0.9987, and 0.9995 for PH,

NL, ND, and MHD, respectively, while the d index values were all higher than 0.9997.

Moreover, the RMSE values varied from 0.0006 to 0.0242 for PH, 0.0005 to 0.0216 for NL,

0.0023 to 0.0303 for ND, and 0.0012 to 0.0254 for MHD. In order to allow applying

equations in confidence intervals, the upper and lower limits of the parameters of the models

were obtained and are shown in Table 4. Finally, the validation of the forecasting models is

shown in Supplementary Figs. 1 and 2, and it is possible to observe that the predicted CI95%

values were extremely close to the observed CI95% values.

9.5 DISCUSSION

Through this study, the planning of field experiments with lettuce can be enhanced,

once the selection of optimal sample size is essential to achieve reliable results (Cargnelutti

Filho et al., 2013; Toebe et al., 2018), especially taking into account that statistics used to

measure experimental precision are affected by sample size variation (Souza et al., 2022).

Also, defining this number per experimental unit becomes even more useful considering most

experiments use experimental designs, requiring the application of experimental restrictions

(Storck et al., 2016). Therefore, the sample size recommendations here can be useful to

researchers performing experiments with lettuce where traits such as the plant height, number

of leaves, neck diameter, and mean head diameter are evaluated. Importantly, such plant
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growth parameters are associated with lettuce yield (Lou et al., 2022) and play an important

role in plant breeding studies (Peixoto et al., 2021). Furthermore, the forecasting formulas

proposed allow for knowing how precise the experiment will be based on the chosen sample

size (Souza et al., 2022; Bittencourt et al., 2023). This contributes to making a decision on

such a number considering the specific goals and requirements of the research, which is

namely useful in experiments with a high number of treatments, such as plant breeding

programs, where time and labor may be a limiting factor.

When evaluating experimental precision, taking into account various statistics is crucial

for drawing conclusions on this matter, once each statistic is influenced by specific factors,

such as the components of their calculation structures (Table 1). An example of this is the

influence of the overall experimental mean on the CVe (Doring and Reckling, 2018), which is

not as outstanding for the VI once the latter includes the number of repetitions, which causes

VI values to be lower than CVe values. Another important point is the inclusion of the

genotype mean square (GMS) in the calculation of F, and therefore in SA, for which these

statistics are strongly associated with genetic variances, differently than CVe and VI, which

are more associated with residual variances, as they use only the error mean square (EMS).

Hence, CVg, F, and SA are extremely relevant in studies that assess genotypes and should be

prioritized when measuring the experimental precision of those (Resende and Duarte, 2007;

Resende and Alves, 2022). This can be perceived in the reference experiment, where, based

on the CVe and VI, the experimental precision is considered medium (Pimentel-Gomes, 1990;

Pimentel-Gomes, 1991), as these values are between 10 and 20 %, however, according to the

scale by Resende and Duarte (2007) for F and SA, the experimental precision is high, once F

values were between 1.96 and 5.26, and SA values were between 0.70 and 0.90.

As observed in previous studies on sample size definition based on the CI95%

(Cargnelutti Filho et al., 2013; Toebe et al., 2015; Toebe et al., 2018; Souza et al., 2023b), the
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maximum and minimum values of the statistics approached their real values as sample size

increased, and stabilized once the optimal sample size was reached, which indicates a gain in

the precision for estimating the value of the statistics with the increase in the number of

sampled plants, reducing the chances of over and underestimation of results. Furthermore,

although there were slight differences in the optimal sample sizes between traits, the precision

statistics had a more prominent effect since a greater variation was observed in the sample

sizes found between precision statistics. This was also observed by Bittencourt et al. (2023)

and Souza et al. (2023a), when defining sample size for different traits of cauliflower

seedlings and soybean genotypes, respectively, which highlights that statistics respond

differently to sample size variation, making sample size definition for specific indicators

extremely relevant.

Also, the F statistic was the one that required the highest number of plants for all traits,

which also occurred in the work of Bittencourt et al. (2023), Souza et al. (2022), and Souza et

al. (2023a), suggesting this statistic may not be an appropriate precision indicator in studies

with small sample sizes, which is common in horticultural research (Bittencourt et al., 2022).

Importantly, in this study, F contributed significantly to the total variation retained in the first

principal component, presenting the second greatest contribution after SA and, at the same

time, obtained the maximum optimal sample size of 24 plants per experimental unit to

estimate ND, which was reduced to 21 for PH and NL, and 20 for MHD. Therefore, in order

to estimate all traits and statistics reliably, 24 plants per experimental unit are required,

however, specific recommendations can be followed for each trait and statistic as needed.

Researchers can also use the forecasting formulas proposed to know how much

precision could be gained or lost in the case of selecting a slightly higher or lower sample size

than the optimal one (Table 3). From such equations, a precision interval can be defined, that

is, a range for the value of each statistic, by using the lower and upper limits of the parameters
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of both the shifted power and modified power models presented in Supplementary Table 6

and Table 4, respectively. In order to apply this methodology, the following steps should be

followed: 1) Select a sample size (n) and statistic of interest; 2) Use that sample size in the

shifted power model to find the CI95% of the statistic [ ]; 3) With the𝐶𝐼
95%

= α× 𝑛 − β( )𝑐 + ε

CI95% value, use the forecasting formula for the precision statistic in question to find its value

. This procedure will result in a predicted mean value of the statistic when𝑃𝑆 = 𝑙𝑜𝑔
δ

𝐶𝐼
95%

α×𝑛β( )⎡⎢⎣
⎤⎥⎦

using the selected sample size, however, the same steps should be followed again replacing

the parameters of the models by their upper and lower limits to obtain a confidence interval

for such value. Importantly, the equations here presented should be only applied by

researchers performing experiments in similar environmental conditions to the ones of this

study, and assessing the same traits here measured. In different scenarios, such formulas must

be adapted and properly calibrated to obtain accurate results.

9.6 CONCLUSIONS

A greater variation was observed in the optimal sample sizes found between precision

statistics than between traits. All precision statistics and traits can be reliably estimated with

the sampling of 24 lettuce plants per experimental unit. The precision statistics SA and F

contributed the most to the total variation retained in the first principal component,

considering all traits. The forecasting models demonstrated excellent fitting quality and

allowed predicting precision statistics for lettuce biometric traits. The recommendations and

equations proposed are valuable for optimizing the planning of experiments with lettuce that

measure the plant height, number of leaves, neck diameter, and mean head diameter.



122

9.7 REFERENCES

Alvez-Silva, E., Santos, J.C., Cornelissen, T.G., 2018. How many leaves are enough? The

influence of sample size on estimates of plant developmental instability and leaf asymmetry.

Ecol. Indic. 89, 912–924. doi:10.1016/j.ecolind.2017.12.060

Bittencourt, K.C., Souza, R.R. de, Pazetto, S.B., Toebe, M., Toebe, I.C.D., 2022. What is the

best way to define sample size for cauliflower seedlings?. Cienc Rural 52, e20210747.

doi:10.1590/0103-8478cr20210747

Bittencourt, K.C., Souza, R.R. de, Pazetto, S.B., Toebe, M., Toebe, I.C.D., Cargnelutti Filho,

A., 2023. How many cauliflower seedlings are necessary to estimate experimental precision

statistics reliably? Sci. Hortic. 310, 111788. doi:10.1016/j.scienta.2022.111788

Cargnelutti Filho, A., Storck, L., Ribeiro, N.D., 2009. Measures of experimental precision in

common bean and soybean genotype trials. Pesqui. 44, 1225-1231.

doi:10.1590/S0100-204x2009001000003

Cargnelutti Filho, A., Toebe, M., Facco, G., Santos, G.O., dos, Alves, B.M., Bolzan, A., 2013.

Sample size for estimation of the plastochron in pigeonpea. Eur. J. Agron. 48, 12–18.

doi:10.1016/j.eja.2013.02.003.

Confalonieri, R., Perego, A., Chiodini, M.E., Scaglia, B., Rosenmund, A.S., Acutis, M., 2009.

Analysis of sample size for variables related to plant, soil, and soil microbial respiration in a

paddy rice field. Field Crops Res. 113, 125–130. doi:10.1016/j.fcr.2009.04.014

CQFS - Comissão de Química e Fertilidade do Solo, 2016. Manual of fertilization and liming

for the states of Rio Grande do Sul and Santa Catarina. Porto Alegre: Sociedade Brasileira de

Ciência do Solo.

Efron, B., 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26.

doi:10.1214/aos/1176344552



123

Górdon-Mendoza, R., Camargo-Buitrago, I., 2015. Statistical selection for estimating the

accuracy in experimental corn trials. Agron. Mesoam. 26, 55–63.

doi:10.15517/am.v26i1.16920

Hasan, M.M., Jho, E.H., 2023. Effect of different types and shapes of microplastics on the

growth of lettuce. Chemosphere, 339, 139660. doi:10.1016/j.chemosphere.2023.139660

Hassan, M.N., Mekkawy, S.A., Mahdy, M., Salem, K.F.M., Tawfik, E., 2021. Recent

molecular and breeding strategies in lettuce (Lactuca spp.). Genet. Resour. Crop Evol. 68,

3055–3079. doi:10.1007/s10722-021-01246-w

Lou, M., Lu, J., Wang, L., Jiang, H., Zhou, M., 2022. Growth parameter acquisition and

geometric point cloud completion of lettuce. Front. Plant Sci. 13, 1–13.

doi:10.3389/fpls.2022.947690

Muscolo, A., Marra, F., Canino, F., Maffia, A., Mallamaci, C., Russo, M., 2022. Growth,

nutritional quality and antioxidant capacity of lettuce grown on two different soils with

sulphur-based fertilizer, organic and chemical fertilizers. Sci. Hortic. 305, 111421. doi:

10.1016/j.scienta.2022.111421

Olivoto, T., Lúcio, A.D.C., Souza, V.Q. de, Nardino, M., Diel, M.I., Sari, B.G., Krysczun,

D.K., Meira, D., Meier, C., 2018. Confidence interval width for Pearson's correlation

coefficient: a gaussian-independent estimator based on sample size and strength of

association. Agron. J. 110, 1–8. doi:10.2134/agronj2017.09.0566

Peixoto, J.V.M., Maciel, G.M., Finzi, R.R., Pereira, L.M., Siquieroli, A.C.S., Silva, M.F.,

Clemente, A.A., 2021. Genetic parameters and selection indexes for biofortified red leaf

lettuce. Pesqui. 56, e02431. doi:10.1590/S1678-3921.pab2021.v56.02431

Pimentel-Gomes, F., 1990. Experimental Statistics Course Nobel, Piracicaba (1990),

thirteenth ed.



124

Pimentel-Gomes, F., 1991. The Variation index, an Advantageous Substitute For the Variation

Coefficient, IPEF, Piracicaba, first ed.

R Development Core Team, 2023. R: A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing.

Resende, M.D.V. de, Alves, R.S., 2022. Statistical significance, selection accuracy, and

experimental precision in plant breeding. Crop. Breed. Appl. Biotechnol. 22, e42712238.

doi:10.1590/1984-70332022v22n3a31

Resende, M.D.V. de, Duarte, J.B., 2007. Precision and quality control in variety trials. Pesq

Agropec. Trop. 37, 182-194.

Silva, A.R. da, Lima, R.P., 2017. Determination of maximum curvature point with the R

package soilphysics. Int J Curr Res 9, 45241–45245.

Souza, R.R. de , Toebe, M., Marchioro, V.S., Cargnelutti Filho, A., Lúcio, A.D., Benin, G.,

Mello, A.C., Tartaglia, F. de L., Manfio, G.L., 2022. Soybean yield variability per plant in

subtropical climate: sample size definition and prediction models for precision statistics. Eur.

J. Agron. 136, 126489. doi:10.1016/j.eja.2022.126489

Souza, R.R. de, Toebe, M., Marchioro, V.M., Cargnelutti Filho, A., Bittencourt, K.C., Mello,

A.C., Paraginski, J.A., 2023a. Sample size and modeling of plant variability using precision

statistics in soybean counting traits. Field Crops Res. 291, 108789.

doi:10.1016/j.fcr.2022.108789

Souza, R.R. de, Toebe, M., Mello, A.C., Bittencourt, K.C., 2023. Sample size and

Shapiro-Wilk

test: an analysis for soybean grain yield. Eur. J. Agron. 142, 126666.

doi:10.1016/j.eja.2022.126666

Storck, L., Garcia, D.C., Lopes, S.J., Estefanel, V., 2016. Plant Experimentation, third ed.

UFSM, Santa Maria.



125

Toebe, M., Cargnelutti Filho, A., Lopes, S.J., Burin, C., Silveira, T.R. da, Casarotto, G., 2015.

Sample dimensioning for estimating coefficients of correlation in maize hybrids, harvests and

precision levels. Bragantia 74, 16–24. doi:10.1590/1678-4499.0324

Toebe, M., Machado, L.N., Tartaglia, F., Carvalho, J.O.de, Bandeira, C.T., Cargnelutti Filho,

A., 2018. Sample size for estimating mean and coefficient of variation in species of

crotalarias. An. Acad. Bras. Ciênc. 90, 1705–1715. doi:10.1590/0001-3765201820170813

Wei, S., Zhang, L., Huo, G., Ge, G., Luo, L., Yang, Q., Yang, X., Long, P., 2021. Comparative

transcriptomics and metabolomics analyses provide insights into thermal resistance in lettuce

(Lactuca sativa L.). Sci. Hortic. 289, 110423. doi:10.1016/j.scienta.2021.110423

Willmott, C.J., Robeson, S.M., Matsuura, K., 2012. A refined index of model performance.

Int J Climatol 32, 2088–2094. doi:10.1002/joc.2419

Wrege, M.S., Steinmetz, S., Reisser Júnior, C., Almeida, I.R. de, 2012. Climatic Atlas of the

South Region of Brazil: States of Paraná, Santa Catarina and Rio Grande do Sul, second ed.

EMBRAPA, Brasília.

Ziegler, A.C. de F., Tambarussi, E.V., 2022. Classifying coefficients of genetic variation and

heritability for Eucalyptus spp. Crop. Breed. Appl. Biotechnol. 22, e40372222. doi:

10.1590/1984-70332022v22n2a12

Zhang, G., Yan, Z., Wang, Y., Feng, Y., Yuan, Q., 2020. Exogenous proline improve the

growth and yield of lettuce with low potassium content. Sci. Hortic. 271, 109469.

doi:10.1016/j.scienta.2020.109469



126

9.8 TABLES

Table 1. Codes, equations, and references of the precision statistics.

Precision statistic Code Equation(*) Reference

F-test value F
𝐺𝑀𝑆
𝐸𝑀𝑆 Storck et al. (2016)

Coefficient of genetic variation CVg 100 𝑉𝑔𝑒𝑛
𝑚 Resende & Duarte (2007)

Coefficient of experimental variation CVe 100 𝐸𝑀𝑆
𝑚 Pimentel-Gomes (1990)

Variation index VI
𝐶𝑉𝑒
𝑟 Pimentel-Gomes (1991)

Selective accuracy SA
1

1−𝐹( )0.5 Resende & Duarte (2007)

(*) GMS: genotype mean square, given by ; EMS: error mean square, given by ; Vgen: geneticσ2 + 𝑟
𝑖−1

𝑖
∑𝐺

𝑖
² σ2

variance, given by ; m: overall experimental mean, given by ; : experimental variance; i:𝐺𝑀𝑆−𝐸𝑀𝑆
𝑟

∑𝐺
𝑖𝑟

𝑖×𝑟 σ2

number of genotypes; r: number of repetitions.
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Table 2. Fitting quality indicators and parameters of the shifted power model used to define

optimal sample sizes to estimate experimental precision statistics for the plant height (PH),

number of leaves (NL), neck diameter (ND), and mean head diameter (MHD) in experiments

with lettuce.

Trait Precision statistic (*) α (†) β c R2 (‡) RMSE d index

PH

F 6.0961
-2.849

9 -0.5241 0.9993 0.0123 0.9998

CVe 11.2211
-0.138

3 -0.4898 0.9998 0.0221 0.9999
CVg 11.5335 0.2852 -0.4995 0.9999 0.0183 0.9999

VI 7.9345
-0.138

3 -0.4898 0.9998 0.0156 0.9999
AS 0.3381 0.3572 -0.5117 0.9998 0.0007 0.9999

NL

F 6.0870
-2.586

8 -0.5197 0.9993 0.0134 0.9998
CVe 12.3670 -0.1128 -0.4948 0.9998 0.0216 0.9999
CVg 10.8926 0.2680 -0.4992 0.9998 0.0196 0.9999
VI 8.7448 -0.1128 -0.4948 0.9998 0.0153 1.0000
SA 0.2483 0.3808 -0.5093 0.9998 0.0006 0.9999

ND

F 6.8906
-4.996

9 -0.5454 0.9981 0.0188 0.9995
CVe 13.2389 0.1004 -0.4886 0.9997 0.0293 0.9999
CVg 14.4669 0.1914 -0.5180 0.9993 0.0540 0.9998
VI 9.3613 0.1004 -0.4886 0.9997 0.0207 0.9999
SA 0.4534 0.2451 -0.5400 0.9984 0.0027 0.9996

MH
D

F 3.5603
-1.589

7 -0.5155 0.9994 0.0079 0.9999

CVe 10.7004
-0.282

2 -0.5015 0.9998 0.0178 0.9999
CVg 11.1993 0.1605 -0.5098 0.9997 0.0280 0.9999

VI 7.5663
-0.282

2 -0.5015 0.9998 0.0126 0.9999
SA 0.4288 0.1705 -0.5152 0.9996 0.0013 0.9999

(*) The codes of the precision statistics are shown in Table 1 (†) α: coefficient of interception; β: coefficient of

second order; c: coefficient of third order; (‡) R²: coefficient of determination; RMSE: root mean square error; d

index: Willmott’s agreement index.
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Table 3. Fitting quality indicators and parameters of the modified power models for forecasting precision statistics and forecasting equations for

the plant height (PH), number of leaves (NL), neck diameter (ND), and medium head diameter (MHD) of lettuce plants.

Trait Precision statistic (*) δ (†) α β R2 (‡) RMSE d index Forecasting equation

PH

F 2.1154 0.5228 -0.5111 0.9996 0.0099 0.9999 𝐹 = 𝑙𝑜𝑔
2.1154

𝐶𝐼
95%

0.5228×𝑛−0.5111( )
CVe 0.9884 13.5743 -0.4905 0.9998 0.0218 0.9999 𝐶𝑉𝑒 = 𝑙𝑜𝑔

0.9884

𝐶𝐼
95%

13.5743×𝑛−0.4905( )
CVg 0.6186 36939.5167 -0.4986 0.9998 0.0242 0.9999 𝐶𝑉𝑔 = 𝑙𝑜𝑔

0.6186

𝐶𝐼
95%

36939.5167×𝑛−0.4986( )
VI 0.9836 9.5985 -0.4905 0.9998 0.0154 0.9999 𝑉𝐼 = 𝑙𝑜𝑔

0.9836

𝐶𝐼
95%

9.5985×𝑛−0.4905( )
AS 0.0912 2.3659 -0.5015 0.9999 0.0006 0.9999 𝑆𝐴 = 𝑙𝑜𝑔

0.0912

𝐶𝐼
95%

2.3659×𝑛−0.5015( )

NL

F 1.7999 0.6587 -0.5079 0.9995 0.0115 0.9999 𝐹 = 𝑙𝑜𝑔
1.7999

𝐶𝐼
95%

0.6587×𝑛−0.5079( )
CVe 0.9910 14.6059 -0.4952 0.9998 0.0216 0.9999 𝐶𝑉𝑒 = 𝑙𝑜𝑔

0.9910

𝐶𝐼
95%

14.6059×𝑛−0.4952( )
CVg 0.6384 139918.7163 -0.5033 0.9998 0.0209 0.9999 𝐶𝑉𝑔 = 𝑙𝑜𝑔

0.6384

𝐶𝐼
95%

139918.7163×𝑛−0.5033( )
VI 0.9872 10.3279 -0.4952 0.9998 0.0153 0.9999 𝑉𝐼 = 𝑙𝑜𝑔

0.9872

𝐶𝐼
95%

10.3279×𝑛−0.4952( )
AS 0.0451 3.3765 -0.4999 0.9998 0.0005 0.9999 𝑆𝐴 = 𝑙𝑜𝑔

0.0451

𝐶𝐼
95%

3.3765×𝑛−0.4999( )

ND

F 2.4632 0.4300 -0.5261 0.9987 0.0155 0.9997 𝐹 = 𝑙𝑜𝑔
2.4632

𝐶𝐼
95%

0.4300×𝑛−0.5261( )
CVe 1.0067 11.8345 -0.4877 0.9997 0.0303 0.9999 𝐶𝑉𝑒 = 𝑙𝑜𝑔

1.0067

𝐶𝐼
95%

11.8345×𝑛−0.4877( )
CVg 0.6413 16811.2358 -0.5045 0.9998 0.0305 0.9999 𝐶𝑉𝑔 = 𝑙𝑜𝑔

0.6413

𝐶𝐼
95%

16811.2358×𝑛−0.5045( )
VI 1.0096 8.3682 -0.4877 0.9997 0.0215 0.9999 𝑉𝐼 = 𝑙𝑜𝑔

1.0096

𝐶𝐼
95%

8.3682×𝑛−0.4877( )
AS 0.2625 1.2786 -0.5258 0.9988 0.0023 0.9997 𝑆𝐴 = 𝑙𝑜𝑔

0.2625

𝐶𝐼
95%

1.2786×𝑛−0.5258( )
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MHD

F 3.3596 0.2041 -0.5087 0.9995 0.0072 0.9999 𝐹 = 𝑙𝑜𝑔
3.3596

𝐶𝐼
95%

0.2041×𝑛−0.5087( )
CVe 0.9714 17.6780 -0.5013 0.9998 0.0177 0.9999 𝐶𝑉𝑒 = 𝑙𝑜𝑔

0.9714

𝐶𝐼
95%

17.6780×𝑛−0.5013( )
CVg 0.6895 2145.0384 -0.5064 0.9997 0.0254 0.9999 𝐶𝑉𝑔 = 𝑙𝑜𝑔

0.6895

𝐶𝐼
95%

2145.0384×𝑛−0.5064( )
VI 0.9598 12.5002 -0.5013 0.9998 0.0125 0.9999 𝑉𝐼 = 𝑙𝑜𝑔

0.9598

𝐶𝐼
95%

12.5002×𝑛−0.5013( )
AS 0.3129 1.0171 -0.5114 0.9996 0.0012 0.9999 𝑆𝐴 = 𝑙𝑜𝑔

0.3129

𝐶𝐼
95%

0.5114×𝑛−0.9996( )
(*) The codes of the precision statistics are shown in Table 1. (†) δ: adjustment factor of the coefficient of interception; α: coefficient of interception; β: exponential rate of

decay; (‡) R²: coefficient of determination; RMSE: root mean square error; d index: Willmott’s agreement index.
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Table 4. Upper and lower limits of the parameters of the modified power models used to forecast precision statistics for the plant height (PH),

number of leaves (NL), neck diameter (ND), and mean head diameter (MHD) of lettuce plants.

Trait Precision statistic (*) Lower limits Modified power model Upper limits
δ (†) α β δ α β δ α β

PH

F 2.0777 0.4988 -0.5144 2.1154 0.5228 -0.5111 2.1530 0.5468 -0.5078
CVe 0.9865 13.0470 -0.4931 0.9884 13.5743 -0.4905 0.9903 14.1016 -0.4879
CVg 0.6018 20335.8361 -0.5011 0.6186 36939.5167 -0.4986 0.6354 53543.1974 -0.4961
VI 0.9809 9.2256 -0.4931 0.9836 9.5985 -0.4905 0.9862 9.9713 -0.4879
AS 0.0842 2.2313 -0.5038 0.0912 2.3659 -0.5015 0.0982 2.5005 -0.4993

NL

F 1.7705 0.6270 -0.5115 1.7999 0.6587 -0.5079 1.8292 0.6904 -0.5042
CVe 0.9894 14.0762 -0.4976 0.9910 14.6059 -0.4952 0.9925 15.1356 -0.4929
CVg 0.6226 67474.0655 -0.5053 0.6384 139918.7163 -0.5033 0.6543 212363.3671 -0.5013
VI 0.9850 9.9533 -0.4976 0.9872 10.3279 -0.4952 0.9895 10.7025 -0.4929
SA 0.0403 3.1010 -0.5024 0.0451 3.3765 -0.4999 0.0498 3.6519 -0.4974

ND

F 2.3926 0.4022 -0.5320 2.4632 0.4300 -0.5261 2.5337 0.4578 -0.5202
CVe 1.0052 11.4317 -0.4907 1.0067 11.8345 -0.4877 1.0083 12.2372 -0.4847
CVg 0.6198 7967.9118 -0.5077 0.6413 16811.2358 -0.5045 0.6628 25654.5599 -0.5013
VI 1.0074 8.0834 -0.4907 1.0096 8.3682 -0.4877 1.0117 8.6530 -0.4847
SA 0.2140 1.1165 -0.5334 0.2625 1.2786 -0.5258 0.3111 1.4408 -0.5182
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MHD

F 3.2217 0.1869 -0.5122 3.3596 0.2041 -0.5087 3.4975 0.2214 -0.5052
CVe 0.9693 16.8782 -0.5036 0.9714 17.6780 -0.5013 0.9736 18.4778 -0.4991
CVg 0.6595 844.8452 -0.5095 0.6895 2145.0384 -0.5064 0.7194 3445.2316 -0.5034
VI 0.9569 11.9347 -0.5036 0.9598 12.5002 -0.5013 0.9628 13.0658 -0.4991
SA 0.2652 0.9116 -0.5151 0.3129 1.0171 -0.5114 0.3607 1.1225 -0.5076

(*) The codes of the precision statistics are shown in Table 1. (†) δ: adjustment factor of the coefficient of interception; α: coefficient of interception; β: exponential rate of decay.
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9.9 FIGURE CAPTIONS

Fig. 1. Minimum, 2.5 percentile, mean, 97.5 percentile, and maximum values obtained from

the planned sample sizes of 1 to 100 lettuce plants per experimental unit for the experimental

precision statistics F-test value (a), coefficient of experimental variation (b), coefficient of

genetic variation (c), variation index (d), and selective accuracy (e), and optimal sample sizes

defined via shifted power model and maximum curvature point to estimate the precision

statistics F-test value (f), coefficient of experimental variation (g), coefficient of genetic

variation (h), variation index (i), and selective accuracy (j) for the plant height of lettuce

plants.

(*) Dashed lines represent minimum and maximum values, colored straight lines represent 2.5 and 97.5

percentiles, and black straight lines represent mean values.

Fig. 2. Minimum, 2.5 percentile, mean, 97.5 percentile, and maximum values obtained from

the planned sample sizes of 1 to 100 lettuce plants per experimental unit for the experimental

precision statistics F-test value (a), coefficient of experimental variation (b), coefficient of

genetic variation (c), variation index (d), and selective accuracy (e), and optimal sample sizes

defined via shifted power model and maximum curvature point to estimate the precision

statistics F-test value (f), coefficient of experimental variation (g), coefficient of genetic

variation (h), variation index (i), and selective accuracy (j) for the number of leaves of lettuce

plants.

Fig. 3. Minimum, 2.5 percentile, mean, 97.5 percentile, and maximum values obtained from

the planned sample sizes of 1 to 100 lettuce plants per experimental unit for the experimental

precision statistics F-test value (a), coefficient of experimental variation (b), coefficient of

genetic variation (c), variation index (d), and selective accuracy (e), and optimal sample sizes
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defined via shifted power model and maximum curvature point to estimate the precision

statistics F-test value (f), coefficient of experimental variation (g), coefficient of genetic

variation (h), variation index (i), and selective accuracy (j) for the neck diameter of lettuce

plants.

Fig. 4. Minimum, 2.5 percentile, mean, 97.5 percentile, and maximum values obtained from

the planned sample sizes of 1 to 100 lettuce plants per experimental unit for the experimental

precision statistics F-test value (a), coefficient of experimental variation (b), coefficient of

genetic variation (c), variation index (d), and selective accuracy (e), and optimal sample sizes

defined via shifted power model and maximum curvature point to estimate the precision

statistics F-test value (f), coefficient of experimental variation (g), coefficient of genetic

variation (h), variation index (i), and selective accuracy (j) for the mean head diameter of

lettuce plants.

Fig. 5. Principal component analysis of the definition of the optimal sample size per

experimental unit to estimate precision statistics for the plant height (a), number of leaves (b),

neck diameter (c), and mean head diameter (d) of lettuce plants, and contribution percentage

of the precision statistics to the total variation retained in the first principal component for the

plant height (e), number of leaves (f), neck diameter (g), and mean head diameter (h) of

lettuce plants.

(*) PC1: first principal component; PC2: second principal component.

(†) The codes of the precision statistics are shown in Table 1.
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9.10 FIGURES
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9.11 SUPPLEMENTARY MATERIAL

Supplementary material for this article is available.
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10 DISCUSSÃO

A partir dos estudos realizados, tamanhos amostrais ótimos por unidade experimental

foram propostos para mudas de couve-flor e plantas de alface, considerando a estimativa de

diferentes estatísticas de precisão. Além disso, a comparação de métodos de definição de um

ponto de máxima curvatura permitiu a seleção de metodologias precisas e eficientes para a

determinação do tamanho ótimo de amostra para mudas de couve-flor. Ainda, as equações

preditivas propostas permitem conhecer o valor de estatísticas de precisão por meio da seleção

de um determinado tamanho amostral, sendo ferramentas úteis para facilitar a decisão de

pesquisadores quanto ao número de plantas a amostrar por unidade experimental com base na

precisão desejada.

Quatro metodologias para a definição do tamanho amostral de mudas de couve-flor,

considerando a estimativa da média geral experimental, a partir da determinação de um ponto

de máxima curvatura, foram comparadas: o método geral, o método de distâncias

perpendiculares, o método de resposta linear platô e o método spline. Assim, os métodos

testados apresentaram divergências, corroborando os resultados obtidos por Souza et al.

(2023b, 2023c e 2023d), onde os mesmos métodos foram testados para a definição do

tamanho amostral para a cultura da soja. Nesses estudos, assim como no presente, o método

geral e o spline levaram ao dimensionamento de tamanhos amostrais inadequados, sugerindo

que estes apresentam uma tendência de sub ou superestimativa do tamanho de amostra. Dessa

forma, os métodos de distâncias perpendiculares e de resposta linear platô proporcionaram

resultados que corresponderam a menores amplitudes dos intervalos de confiança da média, o

que confere a estes maior precisão para o dimensionamento amostral. Ainda, é importante

ressaltar que o método de distâncias perpendiculares apresentou maior eficiência por

apresentar valores menores, porém suficientemente precisos, pelo qual o mesmo foi utilizado

nos seguintes estudos de dimensionamento amostral aqui apresentados.

De forma geral, observou-se, em todos os estudos expostos, a redução da amplitude do

intervalo de confiança em resposta ao aumento do tamanho amostral por unidade

experimental, até sua eventual estabilização. Isto permitiu a determinação de tamanhos

amostrais ótimos a serem coletados dentro de cada unidade experimental para as culturas da

couve-flor e da alface. Esta abordagem considera as restrições experimentais impostas pelos

delineamentos experimentais (STORCK et al., 2016), isto é, a separação da área em unidades

experimentais, tornando as recomendações de amostragem mais práticas (SOUZA et al.,

2022). Nesse sentido, os tamanhos amostrais ótimos variaram conforme as diferentes



141

estatísticas e características avaliadas. Em experimentos com mudas de couve-flor, ao

mensurar o número de folhas, comprimento de raiz, altura e comprimento total, os tamanhos

amostrais ótimos oscilaram de 15 mudas por unidade experimental para a estimativa confiável

da média geral experimental, a 16 mudas para os quadrados médios da análise de variância, o

coeficiente de variação experimental, o índice de variação e as diferenças mínimas

significativas, e 20 mudas por unidade experimental para a estatística F.

Em alface, ao avaliar a produtividade por planta (massa fresca), observou-se a

necessidade de amostrar pelo menos 19 plantas por unidade experimental para estimar a

maioria das estatísticas de precisão confiavelmente, considerando aquelas que contribuíram

mais para a variação total retida no primeiro componente principal, com exceção da estatística

F, para a qual foi necessária a amostragem de 21 plantas por unidade experimental. Por outro

lado, para medir a altura de planta, o número de folhas, o diâmetro do colo e o diâmetro

médio da cabeça, 24 plantas por unidade experimental foram necessárias para estimar

estatísticas de precisão, sendo este número o maior tamanho de amostra encontrado, atribuído

também à estatística F. Tal variação evidencia as diferentes respostas das estatísticas e

caracteres à variação do tamanho amostral, ressaltando a necessidade de considerar condições

específicas ao realizar o dimensionamento amostral de culturas. Entretanto, notou-se que a

variação existente entre estatísticas foi mais significativa do que a variação entre caracteres, o

qual também foi evidenciado no estudo de Souza et al. (2023b). Nesse sentido, a estatística F

destacou-se por ser a que requereu maiores tamanhos amostrais em todas as condições

avaliadas, sugerindo que este indicador deve ser utilizado com cautela em estudos onde

tamanhos amostrais pequenos são coletados, o qual inclui grande parte das pesquisas com as

culturas da alface e couve-flor (TEMPESTA et al., 2019; COSTA et al., 2020; MUSTAFA et

al., 2023; QIAO et al., 2023). Apesar disso, é importante ressaltar que esta estatística se torna

especialmente relevante para a avaliação da precisão de estudos que comparam genótipos, por

considerar variâncias genéticas em sua estrutura de cálculo, assim como para a estimativa da

acurácia seletiva (RESENDE e DUARTE, 2007).

Portanto, os resultados obtidos a partir destas pesquisas poderão servir como um guia

para a padronização do tamanho de amostra em estudos com couve-flor e alface, aumentando

a eficiência durante a coleta de dados, assim como a confiabilidade de seus resultados. Além

disso, a predição da precisão experimental a partir da seleção do tamanho amostral, obtida

pelas equações propostas, constitui uma ferramenta útil para adequar a tomada de decisão

com relação ao número de plantas a serem amostradas por unidade experimental aos objetivos

específicos da pesquisa, podendo considerar os diversos fatores que influenciam na
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amostragem. Assim, em casos em que é inviável utilizar os tamanhos amostrais ótimos

recomendados, ainda é possível prever qual será o intervalo de confiança das estatísticas

utilizando tamanhos amostrais menores, ou inclusive avaliar o ganho de precisão ao utilizar

tamanhos amostrais maiores.

11 CONCLUSÕES GERAIS

Os estudos realizados contribuem para a otimização do planejamento experimental

para experimentos realizados com as culturas da couve-flor e da alface, por meio do

dimensionamento amostral, considerando restrições experimentais, para técnicas e

características específicas. Os métodos de distâncias perpendiculares e resposta linear platô

foram considerados adequados para a definição do tamanho amostral a partir de um ponto de

máxima curvatura para mudas de couve-flor. A estimativa confiável da média geral

experimental em experimentos com mudas de couve-flor requer pelo menos 15 mudas por

unidade experimental, enquanto para estimar estatísticas de precisão, 16 mudas são

necessárias, à exceção da estatística F, para a qual 20 mudas por unidade experimental devem

ser amostradas. Em experimentos com alface, estatísticas de precisão podem ser estimadas

confiavelmente a partir da amostragem de 19 plantas por unidade experimental para a

produtividade por planta e 24 plantas por unidade experimental para a altura de planta,

número de folhas, diâmetro do colo e diâmetro médio da cabeça. Finalmente, os modelos de

potência modificados adaptados para prever estatísticas de precisão para mudas de couve-flor

e plantas de alface permitiram a formulação de equações preditivas, as quais podem ser

utilizadas por outros pesquisadores e calibradas para outras culturas e características.
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