UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS RURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA

CAPACIDADE DE COLETA DE TRÊS MÉTODOS DE AMOSTRAGEM E TAMANHO DE AMOSTRA PARA LAGARTAS E PERCEVEJOS EM SOJA

DISSERTAÇÃO DE MESTRADO

Glauber Renato Stürmer

Santa Maria, RS, Brasil.

2012

CAPACIDADE DE COLETA DE TRÊS MÉTODOS DE AMOSTRAGEM E TAMANHO DE AMOSTRA PARA LAGARTAS E PERCEVEJOS EM SOJA

Glauber Renato Stürmer

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Agronomia, Área de Concentração em Produção Vegetal, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de Mestre em Agronomia.

Orientador: Prof. Dr. Alberto Cargnelutti Filho

Santa Maria, RS, Brasil.

S936c

Stürmer, Glauber Renato

Capacidade de coleta de três métodos de amostragem e tamanho de amostra para lagartas e percevejos em soja / por Glauber Renato Stürmer. – 2012.

120 p.; il.; 30 cm

Orientador: Alberto Cargnelutti Filho

Dissertação (mestrado) – Universidade Federal de Santa Maria, Centro de Ciências Rurais, Programa de Pós-Graduação em Agronomia, RS, 2012

1. Agronomia 2. Glycine max 3. Insetos-praga 4. Métodos de amostragem 5. Tamanho de amostra I. Cargnelutti Filho, Alberto II. Título.

CDU 632.7:633.34

Ficha catalográfica elaborada por Cláudia Terezinha Branco Gallotti – CRB 10/1109 Biblioteca Central UFSM

© 2012

Todos os direitos autorais reservados a **Glauber Renato Stürmer**. A reprodução de partes ou do todo deste trabalho só poderá ser feita com autorização por escrito do autor.

Endereço: Linha Pipiri, Interior, Três Palmeiras, RS, Brasil

CEP: 99675-000

Fone (55) 9680 0779; E-mail: glauber.sturmer@gmail.com

Universidade Federal de Santa Maria Centro de Ciências Rurais Programa de Pós-Graduação em Agronomia

A Comissão Examinadora, abaixo assinada, aprova a Dissertação de Mestrado

CAPACIDADE DE COLETA DE TRÊS MÉTODOS DE AMOSTRAGEM E TAMANHO DE AMOSTRA PARA LAGARTAS E PERCEVEJOS EM SOJA

elaborada por Glauber Renato Stürmer

como requisito parcial para obtenção do grau de **Mestre em Agronomia**

COMISSÃO EXAMINADORA:

Alberto Cargnelutti Filho, Dr. (UFSM) (Presidente/Orientador)

Jerson Vanderlei Carús Guedes, Dr. (UFSM)

Alfredo do Nascimento Junior, Dr. (EMBRAPA)

Santa Maria, 16 de fevereiro de 2012.

DEDICATÓRIA

Aos meus amados pais, JOSÉ e NEIVA, meu irmão CLEBER, MARIANE (cunhada) e minha namorada VERÔNICA, essa conquista é nossa.

AGRADECIMENTOS

A DEUS por todas as realizações conquistadas.

À UNIVERSIDADE FEDERAL DE SANTA MARIA e ao PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA pela oportunidade de realização deste curso.

À COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR (CAPES), pela concessão da bolsa.

Ao Professor ALBERTO CARGNELUTTI FILHO pela orientação e ensinamentos.

Ao Professor JERSON CARÚS GUEDES pela co-orientação, ensinamentos, amizade e anos de convivência.

Ao Professor LINDOLFO STORCK pela co-orientação desse trabalho.

Ao Professor HÉRCULES NOGUEIRA FILHO por disponibilizar a infraestrutura física e os materiais necessários para a condução do experimento no campo, agradeço pela confiança e amizade.

Aos funcionários do Departamento de Defesa Fitossanitária ANGELITA MARTINS, MARIZETE POZZOBON, FIORAVANTE AMARAL, FERNANDO GNOCATTO e SILON JUNIOR PROCATH DA SILVA pelo apoio em prol deste trabalho.

Ao grande amigo JORGE ANTONIO SILVEIRA FRANÇA pelos seus ensinamentos, camaradagem e colaboração através de sua experiência e conhecimento.

Aos colegas de pós-graduação ADRIANO ARRUÉ, AFFONSO HERMETO JUNG, BRUNA MENDONÇA, CLÁUDIA CAROLINA CABRAL, DÉBORA GRACIANI SCHALLEMBERGER, ELDER DAL PRÁ, GABRIELE CASAROTTO, GILIARDI DALAZEN, JANINE PALMA, JONAS ANDRÉ ARNEMANN, MARIANA CHERMAN, MAURICIO BIGOLIN, MARCOS TOEBE, RODRIGO TASCHETO MACHADO, RUBENS ALEX FIORIN, SIMONE MICHELON e VALMIR AITA, pela amizade e ajuda.

Aos colegas do Laboratório de Manejo Integrado de Pragas (LabMIP), ALESSANDRO FIORENTINI, BRUNO RUVIARO TOMAZI, BRUNO GIACOMINI SARI, CAROLINE HUTH, CLÉRISON RÉGIS PERINI, CLEITON WARTHA, DEISE CAGLIARI, GUSTAVO OLIVEIRA DOS SANTOS, GIOVANI FACCO, GIOVANA GHISLENI RIBAS, GRACIANE CEOLIN, IVAIR VALMORBIDA, JÉSSICA STECCA, LEONARDO MOREIRA BURTET, LUCAS DA SILVA STEFANELO, LUIS EDUARDO CURIOLETTI, MOISÉS BOSCHETTI, RÉGIS FELIPE STACKE, pela auxílio na realização desse trabalho.

Agradecimento especial aos estimados amigos e parceiros, ADRIANO, ALESSANDRO, RUBENS, "TUPAN" e STEFANELO.

Ao colega e amigo MAURICIO BIGOLIN, pelo desenho dos métodos de amostragem que integram essa obra.

Ao grande amigo RODRIGO BORKOWSKI RODRIGUES, pelos anos de convivência e parceria.

Em especial, agradeço à minha família, pela motivação, compreensão e apoio incondicional. Aos meus pais, JOSÉ FERNANDO e NEIVA TEREZINHA STÜRMER, reforço que a educação e caráter a mim transmitidos, foram suporte fundamental durante o período de vestibular, graduação e mestrado na Universidade Federal de Santa Maria. A meu irmão CLEBER FERNANDO STÜRMER e minha cunhada MARIANE KRYSZEZUN, agradeço por todos os conselhos e ajuda nessa caminhada. A minha namorada VERÔNICA DALMOLIN CATTELAN, que além de administradora, tornou-se conhecedora de diversas pragas da cultura de soja.

A ADEMAR JOÃO CATTELAN, IVONE DALMOLIN CATTELAN e ANDERSON DALMOLIN CATTELAN, por todo o apoio prestado durante esta etapa. A ADILSON ELIAS RIBAS e BELONI LEMES VIEIRA, pela convivência e colaboração.

À todos os demais amigos e colegas que não foram citados acima, mas que fizeram parte desta conquista, deixo meus sinceros agradecimentos.

"Habilidade é o que você é capaz de fazer. Motivação determina o que você faz. Atitude determina a qualidade do que você faz."

(Lou Holtz)

RESUMO

Dissertação de Mestrado Programa de Pós-Graduação em Agronomia Universidade Federal de Santa Maria, RS, Brasil

CAPACIDADE DE COLETA DE TRÊS MÉTODOS DE AMOSTRAGEM E TAMANHO DE AMOSTRA PARA LAGARTAS E PERCEVEJOS EM SOJA

AUTOR: GLAUBER RENATO STÜRMER
ORIENTADOR: ALBERTO CARGNELUTTI FILHO
Data e Local da Defesa: Santa Maria, 16 de fevereiro de 2012.

Este trabalho teve por objetivos comparar a capacidade de coleta de métodos de amostragem de lagartas e de percevejos e determinar o tamanho amostral (número de pontos amostrais) para a estimativa do número de lagartas e percevejos coletados por três métodos de amostragem na cultura de soja. O trabalho foi realizado na área experimental do Departamento de Defesa Fitossanitária da Universidade Federal de Santa Maria, em área de 6,1 ha de soja, foi demarcado um gride de 154 pontos amostrais, espaçados de 20 × 20 m. Em cada um desses 154 pontos foram coletadas lagartas das espécies Anticarsia gemmatalis, Pseudoplusia includens e Spodoptera eridania (pequenas, grandes e total) e percevejos das espécies Dichelops furcatus, Piezodorus guildinii, Nezara viridula, Euschistus heros, Edessa meditabunda e Acrosternum hilare (ninfas, adultos e total), por meio dos métodos de amostragem pano-de-batida, pano-de-batida largo e pano-de-batida vertical, em 14 estádios fenológicos da cultura de soja, totalizando 6.468 coletas. Para o estudo de comparação da capacidade de coleta os dados foram comparados pelo teste t (bilateral) de *Student* para dados pareados, em nível de 5% de probabilidade. Foi calculado o tamanho de amostra (número de pontos amostrais) para a estimação da média de lagartas e percevejos. O número de lagartas coletadas por meio dos métodos de amostragem é decrescente na seguinte ordem: pano-debatida vertical, pano-de-batida largo e pano-de-batida. O número de percevejos coletados por meio dos métodos de amostragem pano-de-batida vertical e pano-de-batida largo é superior ao pano-de-batida. O tamanho de amostra diferiu entre as espécies coletadas, entre as fases (pequenas e grandes) e entre os estádios de desenvolvimento da cultura. Após o estádio V11 o tamanho de amostra diminuiu consideravelmente, atingindo os menores valores no estádio R4. Nas fases críticas da cultura (R3 e R4) são necessários 15 pontos amostrais para quantificar a densidade populacional de lagartas em lavoura de soja. Para a estimação da média do número de percevejos, 52 pontos amostrais (erro de estimação de 20%) são suficientes para o pano-de-batida. Para o pano-de-batida largo e pano-de-batida vertical são necessários 27 pontos amostrais (erro de estimação de 20%) em uma lavoura de soja.

Palavras-chave: Amostragem. Dimensionamento de amostra. Precisão experimental. Insetospraga.

ABSTRACT

Master of Science Dissertation Programa de Pós-Graduação em Agronomia Universidade Federal de Santa Maria, RS, Brasil

COLLECTION CAPACITY OF THREE METHODS SAMPLING AND SAMPLE SIZE FOR CATERPILLARS AND STINK BUGS IN SOYBEAN

AUTOR: GLAUBER RENATO STÜRMER ADVISER: ALBERTO CARGNELUTTI FILHO Defense Place and Date: Santa Maria, February 16nd, 2012.

This study aimed to compare the caterpillar and stinkbug collection capability of sampling methods and to determine the sample size (number of sampling points) to estimate the number of caterpillars and stinkbugs collected by three sampling methods in soybean plants. The study was carried out in the experimental area of the Phytosanitary Department of the Federal University of Santa Maria on an area of 6.1 ha of soybean crop; a grid of 154 sample points was marked with a 20 × 20 m spacement. In each of these 154 points caterpillars of the species Anticarsia gemmatalis, Pseudoplusia includens and Spodoptera eridania (small, large and total) and stinkbugs of the species Dichelops furcatus, Piezodorus guildinii, Nezara viridula, Euschistus heros, Edessa meditabunda and Acrosternum hilare (nymphs, adults and total) were collected by means of beating cloth, wide beating cloth and vertical beat sheet sampling on 14 different soybeans growth stages, for a total of 6468 sample collections. For the study comparing the ability to collect samples, data were compared by Student t test (bilateral) for data paired in the 5% level of probability. Sample sizes (number of sampling points) were calculated to estimate the average number of caterpillars and stinkbugs. The number of caterpillars collected by means of sampling decreases in the following order: vertical beat sheet, wide beating cloth and beating cloth. The number of bugs collected from the wide beating cloth and vertical beat sheet sampling exceeded the number of bugs in the beating cloth sampling method. Sample size differed among the species collected, between growth phases (small and large) and between crop development stages. After stage V11, the sample size decreased significantly, reaching the lowest values at stage R4. In the Critical phases of culture (R3 and R4) 15 sample points are needed to quantify the population density of caterpillars on soybean plants. To estimate the average number of stinkbugs, 52 sampling points (estimation error of 20%) are sufficient for the beating cloth method. For the wide beating cloth and vertical beat sheet methods 27 sampling points are required (estimation error of 20%) in a soybean crop.

Keywords: Sampling. Sample dimensioning. Experimental precision. Insect-pest.

LISTA DE FIGURAS

Figura 1 -	Representação do pano-de-batida (A), do pano-de-batida largo (B) e do pano-	
	de-batida vertical (C) utilizados como métodos de amostragem de lagartas e de	<u>,</u>
	percevejos na cultura de soja.	. 39

LISTA DE TABELAS

CAPÍTULO I

 Tabela 1 - Média do número de lagartas⁽¹⁾ coletadas por meio dos métodos de amostragem pano-de-batida (PB), pano-de-batida largo (PBL) e pano-de-batida vertical (PBV) em 14 estádios fenológicos da cultura de soja. Santa Maria, RS, 2011	
Maria, RS, 2011	
CAPÍTULO II	
 Tabela 1 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas pequenas da espécie <i>Anticarsia gemmatalis</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011	55
desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas grandes da espécie <i>Anticarsia gemmatalis</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011	56
Tabela 3 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas pequenas da espécie <i>Pseudoplusia includens</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011	58
Tabela 4 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas grandes da espécie <i>Pseudoplusia includens</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011	50
Tabela 5 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas pequenas da espécie <i>Spodoptera eridania</i> na cultura de	
soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011	υU

número de lagartas grandes da espécie Spodoptera eridania na cultu	ra de
soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011	61
Tabela 7 - Mínimo (min), máximo (max), média (m), mediana (med), variância	ι (s ²),
desvio-padrão (s) e coeficiente de variação (CV), da estimação da méd	lia do
número total de lagartas das espécies Anticarsia gemmatalis, Pseudop	olusia
includens e Spodoptera eridania na cultura de soja, com base em 154 p	ontos
de 1m² de área. Santa Maria, RS, 2011	
Tabela 8 - Tamanho de amostra (número de pontos amostrais) para a estimação da n	média
do número de lagartas pequenas e grandes de <i>Anticarsia gemma</i>	
Pseudoplusia includens e Spodoptera eridania e total de lagartas, pa	
erros de estimação iguais a 10, 20,, 50% da estimativa da méd	
semiamplitude do intervalo de confiança (Erro%), com base nos 154 p	
de 1 m ² de área, coletados pelo método pano-de-batida, nos estádios	
R4. Santa Maria, RS, 2011	
Tabela 9 - Tamanho de amostra (número de pontos amostrais) para a estimação da 1	
do número de lagartas pequenas e grandes de <i>Anticarsia gemma</i>	
Pseudoplusia includens e Spodoptera eridania e total de lagartas, pa	
erros de estimação iguais a 10, 20,, 50% da estimativa da méd	
3	
semiamplitude do intervalo de confiança (Erro%), com base nos 154 p	
de 1 m ² de área, coletados pelo método pano-de-batida, nos estádios R	
R8.2. Santa Maria, RS, 2011.	
Tabela 10 - Tamanho de amostra (número de pontos amostrais) para a estimação	
média do número de lagartas pequenas e grandes de Anticarsia gemmo	
Pseudoplusia includens e Spodoptera eridania e total de lagartas, pa	
erros de estimação iguais a 10, 20,, 50% da estimativa da méd	
semiamplitude do intervalo de confiança (Erro%), com base nos 154 p	
de 1 m ² de área, coletados pelo método pano-de-batida largo, nos est	
V7 a R4. Santa Maria, RS, 2011.	
Tabela 11 - Tamanho de amostra (número de pontos amostrais) para a estimação	
média do número de lagartas pequenas e grandes de Anticarsia gemmo	
Pseudoplusia includens e Spodoptera eridania e total de lagartas, pa	
erros de estimação iguais a 10, 20,, 50% da estimativa da méd	•
semiamplitude do intervalo de confiança (Erro%), com base nos 154 p	
de 1 m ² de área, coletados pelo método pano-de-batida largo, nos est	
R5.1 a R8.2. Santa Maria, RS, 2011	70
Tabela 12 - Tamanho de amostra (número de pontos amostrais) para a estimação	ão da
média do número de lagartas pequenas e grandes de Anticarsia gemmo	ıtalis,
Pseudoplusia includens e Spodoptera eridania e total de lagartas, pa	ıra os
erros de estimação iguais a 10, 20,, 50% da estimativa da méd	lia, e
semiamplitude do intervalo de confiança (Erro%), com base nos 154 p	ontos
de 1 m ² de área, coletados pelo método pano-de-batida vertical, nos est	tádios
V7 a R4. Santa Maria, RS, 2011	71
Tabela 13 - Tamanho de amostra (número de pontos amostrais) para a estimação	ão da
média do número de lagartas pequenas e grandes de Anticarsia gemmo	atalis

	de 1 m ² de área, coletados pelo método pano-de-batida vertical, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011
CAPÍTULO	O III
Tabela 1 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie <i>Dichelops furcatus</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011
Tabela 2 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie <i>Dichelops furcatus</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011
Tabela 3 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie <i>Piezodorus guildinii</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011
Tabela 4 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie <i>Piezodorus guildinii</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011 87
Tabela 5 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie <i>Edessa meditabunda</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011
Tabela 6 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie <i>Edessa meditabunda</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011 89
Tabela 7 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie <i>Nezara viridula</i> na cultura de
Tabela 8 -	soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 201190 Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie <i>Nezara viridula</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 201191
Tabela 9 -	Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie <i>Euschistus heros</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 201192

Pseudoplusia includens e *Spodoptera eridania* e total de lagartas, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos

Tabela	10 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²),
	desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do
	número de adultos de percevejos da espécie <i>Euschistus heros</i> na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 201193
Tabala	11 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s ²),
Tabela	desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do
	número de ninfas de percevejos da espécie <i>Acrosternum hilare</i> na cultura de
	soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 201194
Tahala	12 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s ²),
Tabela	desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do
	número de adultos de percevejos da espécie <i>Acrosternum hilare</i> na cultura de
	soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 201195
Tahela	13 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²),
Tabela	desvio-padrão (s) e coeficiente de variação (CV), da estimação da média do
	número total de percevejos das espécies Dichelops furcatus, Piezodorus
	guildinii, Edessa meditabunda, Nezara viridula, Euschistus heros e
	Acrosternum hilare na cultura de soja, com base em 154 pontos de 1m² de
	área. Santa Maria, RS, 201196
Tabela	14 - Tamanho de amostra (número de pontos amostrais) para a estimação da
	média do número de percevejos, para os erros de estimação iguais a 10,
	20,, 50% da estimativa da média, e semiamplitude do intervalo de
	confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
	método pano-de-batida, nos estádios V7 a R4. Santa Maria, RS, 201199
Tabela	15 - Tamanho de amostra (número de pontos amostrais) para a estimação da
	média do número de percevejos, para os erros de estimação iguais a 10,
	20,, 50% da estimativa da média, e semiamplitude do intervalo de
	confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
	método pano-de-batida, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011100
Tabela	16 - Tamanho de amostra (número de pontos amostrais) para a estimação da
	média do número de percevejos, para os erros de estimação iguais a 10,
	20,, 50% da estimativa da média, e semiamplitude do intervalo de
	confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
	método pano-de-batida, nos estádios V7 a R4. Santa Maria, RS, 2011101
Tabela	17 - Tamanho de amostra (número de pontos amostrais) para a estimação da
	média do número de percevejos, para os erros de estimação iguais a 10,
	20,, 50% da estimativa da média, e semiamplitude do intervalo de
	confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
m 1 1	método pano-de-batida, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011102
Tabela	18 - Tamanho de amostra (número de pontos amostrais) para a estimação da
	média do número de percevejos, para os erros de estimação iguais a 10,
	20,, 50% da estimativa da média, e semiamplitude do intervalo de
	confiança (Erro%), com base nos 154 pontos de 1 m ² de área, coletados pelo
	método pano-de-batida largo, nos estádios V7 a R4. Santa Maria, RS, 2011105

 Tabela 19 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,, 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida largo, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.
Tabela 20 - Tamanho de amostra (número de pontos amostrais) para a estimação da
média do número de percevejos, para os erros de estimação iguais a 10,
20,, 50% da estimativa da média, e semiamplitude do intervalo de
confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
método pano-de-batida largo, nos estádios V7 a R4. Santa Maria, RS, 2011 107
Tabela 21 - Tamanho de amostra (número de pontos amostrais) para a estimação da
média do número de percevejos, para os erros de estimação iguais a 10,
20,, 50% da estimativa da média, e semiamplitude do intervalo de
confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
método pano-de-batida largo, nos estádios R5.1 a R8.2. Santa Maria, RS,
2011
Tabela 22 - Tamanho de amostra (número de pontos amostrais) para a estimação da
média do número de percevejos, para os erros de estimação iguais a 10,
20,, 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
método pano-de-batida vertical, nos estádios V7 a R4. Santa Maria, RS,
2011
Tabela 23 - Tamanho de amostra (número de pontos amostrais) para a estimação da
média do número de percevejos, para os erros de estimação iguais a 10,
20,, 50% da estimativa da média, e semiamplitude do intervalo de
confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
método pano-de-batida vertical, nos estádios R5.1 a R8.2. Santa Maria, RS,
2011110
Tabela 24 - Tamanho de amostra (número de pontos amostrais) para a estimação da
média do número de percevejos, para os erros de estimação iguais a 10,
20,, 50% da estimativa da média, e semiamplitude do intervalo de
confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
método pano-de-batida vertical, nos estádios V7 a R4. Santa Maria, RS,
2011111
Tabela 25 - Tamanho de amostra (número de pontos amostrais) para a estimação da
média do número de percevejos, para os erros de estimação iguais a 10,
20,, 50% da estimativa da média, e semiamplitude do intervalo de
confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo
método pano-de-batida vertical, nos estádios R5.1 a R8.2. Santa Maria, RS,
2011112

LISTA DE ANEXOS

Anexo A - Mapa da área de estudo com a malha de amostragem utilizada	. 119
Anexo B - Descrição dos estádios de desenvolvimento da soja.	. 120

SUMÁRIO

1 INTRODUÇÃO	19
2 REVISÃO BIBLIOGRÁFICA	21
2.1 Lagartas desfolhadoras na cultura de soja	21
2.2 Percevejos sugadores de grãos de soja	22
2.3 Manejo integrado de pragas da soja	22
2.4 Métodos de amostragem de insetos-praga	23
2.5 Tamanho de amostra	25
3 REFERÊNCIAS	29
4 CAPÍTULO I: EFICIÊNCIA DE MÉTODOS DE AMOST	RAGEM DE
LAGARTAS E DE PERCEVEJOS NA CULTURA DE SOJA	35
Resumo	35
Abstract	36
4.1 Introdução	37
4.2 Material e métodos	38
4.3 Resultados e discussão	41
4.4 Conclusões	47
4.5 Referências	47
5 CAPÍTULO II: TAMANHO DE AMOSTRA PARA A ESTI	MAÇÃO DA
MÉDIA DE LAGARTAS NA CULTURA DE SOJA	49
Resumo	49
Abstract	50
5.1 Introdução	51
5.2 Material e métodos	51
5.3 Resultados e discussão	53
5.4 Conclusões	74

5.5 Referências	74
6 CAPÍTULO III: TAMANHO DE AMOSTRA PARA	A ESTIMAÇÃO
DA MÉDIA DE PERCEVEJOS NA CULTURA DE SOJA	77
Resumo	77
Abstract	78
6.1 Introdução	79
6.2 Material e métodos	79
6.3 Resultados e discussão	81
6.4 Conclusões	113
6.5 Referências	113
7 CONCLUSÃO GERAL	115
ANEXOS	117

1 INTRODUÇÃO

A cultura de soja expandiu-se no Brasil e no Rio Grande do Sul (RS). Atualmente, no Brasil é cultivada em aproximadamente 24,2 milhões de hectares e produziu 75,3 milhões de toneladas na safra agrícola 2010/11, representando um dos mais importantes produtos de exportação do Brasil (CONAB, 2011). Nos últimos anos tem ampliado sua importância e o volume de grãos produzidos, pela incorporação de novas áreas de cultivo e, principalmente, devido ao ganho em produção por área.

No RS, a área cultivada está em torno de 4,1 milhões de ha, com produtividade média de 2,85 toneladas ha⁻¹, participando com aproximadamente 15% da produção nacional na safra agrícola 2010/11 (CONAB, 2011).

Dentre os principais fatores limitantes da produção de soja encontram-se os insetospraga destacando-se as lagartas desfolhadoras e os percevejos sugadores. As lagartas alimentam-se tanto do limbo como das nervuras foliares, podendo ocasionar desfolhamento total (HOFFMANN-CAMPO et al., 2000) e perdas na produtividade de grãos de até 75% (SILVA, 1995). Ao se alimentarem dos grãos, os percevejos afetam o peso e a qualidade desses, fazendo com que fiquem atrofiados, de tamanho pequeno, menor massa de grãos e diminuição do potencial germinativo (CORRÊA-FERREIRA; PANIZZI, 1999; BONATO, 2000).

Entre as estratégias de manejo, o controle químico é o método mais usado para lagartas e percevejos. No campo, nem sempre é considerado o momento correto para a aplicação dos inseticidas. Para o controle satisfatório, algumas espécies de lagartas e percevejos requerem o uso de várias aplicações de inseticidas e em doses maiores durante o ciclo da soja. Isso acarreta em impacto ambiental, com efeitos negativos no equilíbrio de pragas na lavoura, ao agricultor e ao ecossistema do local.

Portanto, aplicar os inseticidas no momento correto significa considerar a sustentabilidade do ambiente em que a lavoura está inserida e, evitar desperdícios com aplicações desnecessárias. Inúmeras vezes a população de pragas se eleva em níveis toleráveis, mas o agricultor já interfere com o controle químico. A escolha de inseticidas não seletivos provoca desequilíbrio aos inimigos naturais, e, como consequência, ocorre a reinfestação dos insetos-praga na lavoura.

Nesse contexto, a amostragem da população de pragas é fundamental para a tomada de decisão, pois possibilita definir o momento no qual a população alcança o nível que é preconizado o controle. O número de amostras deve representar a quantidade real das pragas na lavoura. O tamanho amostral (número de pontos amostrados) define o número de amostragens que deve ser realizado para garantir a quantificação segura dos insetos-praga na lavoura.

Este trabalho teve por objetivos comparar a capacidade de coleta de três métodos de amostragem de lagartas e de percevejos e determinar o tamanho amostral (número de pontos amostrais) para a estimativa do número de lagartas e percevejos coletadas por três métodos de amostragem na cultura de soja.

2 REVISÃO BIBLIOGRÁFICA

2.1 Lagartas desfolhadoras na cultura de soja

As lagartas desfolhadoras mais frequentes na cultura de soja são: *Anticarsia gemmatalis* (Hübner, 1818), *Pseudoplusia includens* (Walker, 1857) e *Spodoptera eridania* (Cramer, 1872) (DEGRANDE; VIVIAN, 2007). As lagartas alimentam-se do limbo e das nervuras foliares, ocasionando desfolhamento de até 100% e redução na produtividade de grãos (HOFFMANN-CAMPO et al., 2000).

A lagarta-da-soja *A. gemmatalis* é encontrada na maioria dos locais de cultivo, sendo a desfolhadora mais comum que ataca a cultura de soja. O ciclo de vida médio de *A. gemmatalis* é de 47 dias. A fase adulta tem duração média de 15 dias, a mariposa apresenta envergadura de 40 mm e coloração pardo-acizentada. O período larval pode durar até 25 dias, podendo ocorrer 6 instares. A lagarta pode atingir 30 mm de comprimento e sua coloração é variável de verde, pardo-avermelhada, e até preta, com cinco listras brancas longitudinais no corpo. São muito ativas e podem consumir cerca de 90 cm² de folhas (GALLO et al., 2002).

Os adultos da lagarta-falsa-medideira *P. includens*, apresentam 35 mm de envergadura, com as asas anteriores de coloração marrom acinzentada. O ciclo de vida pode durar cerca de 46 dias. A lagarta pode atingir 35 mm de comprimento e sua coloração é verdeclara, com linhas longitudinais esbranquiçadas no dorso. Esta espécie diferencia-se da lagarta-da-soja por apresentar apenas três pares de pernas abdominais e não se alimenta das nervuras das folhas. Seu consumo de área foliar pode chegar a 120 cm² (GALLO et al., 2002).

A lagarta-preta *S. eridania*, é um inseto-praga em expansão na cultura de soja, principalmente pelo dano ocasionado aos legumes. Os adultos de *S. eridania*, apresentam 40 mm de envergadura, possuem nas asas anteriores uma mancha preta na parte central, e as asas posteriores de cor branca. A lagarta pode atingir de 35 a 50 mm de comprimento e sua coloração apresenta tonalidade esverdeada e listras amarelas sobre o dorso. Seu consumo de área foliar pode chegar a 120 cm² (SANTOS, et al., 2005).

2.2 Percevejos sugadores de grãos de soja

Os percevejos fitófagos são o grupo mais importante de insetos-praga da cultura de soja. Por se alimentarem diretamente dos legumes, causam danos aos grãos, que por sua vez afetam o rendimento, e reduzem qualidade fisiológica e sanitária da semente (CORRÊA-FERREIRA et al., 2009). O ataque de percevejos pode levar ao aborto de grãos e legumes, reduzir a germinação e o vigor das sementes, reduzir o teor de óleo dos grãos, causar distúrbios fisiológicos como o retardamento da maturação, e ainda transmitir patógenos, como o fungo *Nematospora corily*, causador da mancha fermento (PANIZZI; SLANSKY, 1985; CORRÊA-FERREIRA; AZEVEDO, 2002).

São encontrados 25 espécies de percevejo no Brasil e três são economicamente importantes, *Euschistus heros* (Fabricius, 1794), *Nezara viridula* (Linnaeus, 1758) e *Piezodorus guildinii* (Westwood, 1873) (PANIZZI; SLANSKY, 1985). No entanto, as espécies *Dichelops furcatus* (Fabricius, 1775), *Edessa meditabunda* (Fabricius, 1794) e *Acrosternum hilare* (Say, 1831), são encontradas com frequência em soja (KUSS-ROGGIA, 2009; STÜRMER et al., 2011).

O ciclo de vida dos percevejos é composto pela fase de ovo, ninfa e adulto. A fase de ninfa é composta por cinco estádios; estas apresentam coloração variada com manchas distribuídas pelo corpo, completando seu desenvolvimento em cerca de 25 a 40 dias. Os adultos iniciam a cópula em torno de 10 dias e as primeiras oviposições ocorrem após 13 dias. Apresentam longevidade média que varia entre 50 e 120 dias e de três a seis gerações anuais (CORRÊA-FERREIRA; PANIZZI, 1999).

2.3 manejo integrado de pragas da soja

O manejo integrado de pragas (MIP) pressupõe a adoção de um conjunto de práticas que visam manter a população dos insetos-praga e ácaros inferior aos níveis que causam danos às culturas de interesse econômico. No MIP, a adoção de estratégias de controle é determinada pelo nível de dano econômico, que está associado ao nível populacional dos insetos-praga levantados pelos métodos de amostragem (GUEDES et al., 2006). A tomada de decisão de controlar ou não a população de insetos-praga deve ser realizada, sempre com uma

margem de segurança em relação ao nível de dano econômico (NDE) (BUENO et al. 2010). Esse nível de segurança deve ser inferior ao nível de dano econômico que é conhecido como nível de controle (NC) ou nível de ação (NA); e que representa o momento economicamente correto para que medidas de controle sejam tomadas, evitando assim que a população de insetos aumente demasiadamente e ultrapasse o NDE (PEDIGO et al., 1986).

O nível de controle considera a população de insetos-praga, por meio de avaliações de amostras do número de insetos presentes na área. Com relação ao número de lagartas desfolhadoras da cultura de soja, o NC recomendado para iniciar o controle é de 40 lagartas grandes (≥ 1,5 cm) por m². E com relação à desfolha, o NC é de 30% de desfolha no período vegetativo e 15% na fase reprodutiva da cultura (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). Em relação aos percevejos da soja, o NC é quatro percevejos (adultos ou ninfas a partir do terceiro instar) por pano-de-batida em um metro quadrado. No caso de lavouras de produção de sementes, este nível deve ser reduzido para dois percevejos por pano-de-batida em um metro quadrado (CORRÊA-FERREIRA; PANIZZI, 1999).

2.4 Métodos de amostragem de insetos-praga

Existem diversos métodos para amostragem e quantificação de insetos-praga. A escolha do método de amostragem é dependente da cultura, do estádio fenológico, das espécies-alvo, da precisão e exatidão requerida, da facilidade de uso, do tempo e do custo requerido (WADE et al., 2006). Métodos de amostragem como o pano-de-batida (BOYER; DUMAS, 1969), o pano-de-batida largo (CORRÊA-FERREIRA; PAVÃO, 2005) e o pano-de-batida vertical (DREES; RICE, 1985) são utilizados para amostragem de insetos-praga na cultura de soja.

Em soja, o método mais utilizado é o pano-de-batida (DREES; RICE, 1985). O uso do pano-de-batida foi instituído no Brasil a partir de pesquisa de Turnipseed (1975). O pano-de-batida, como método de amostragem, foi descrito por Boyer e Dumas (1969) e modificado por Shepard et al. (1974), sendo este método adotado para o monitoramento de lagartas desfolhadoras, percevejos sugadores e alguns inimigos naturais (HOFFMANN-CAMPO et al., 2000). É o método mais utilizado para a avaliação do nível populacional dos principais insetos-pragas da soja no Brasil (GUEDES et al., 2006).

O pano-de-batida constitui-se de um pano ou plástico branco, de 1m de comprimento e largura adaptável ao espaçamento entre as fileiras de soja, contendo um suporte de madeira nas bordas laterais, o qual deve ser estendido entre as duas fileiras de soja. As plantas das duas fileiras compreendidas pelo pano-de-batida devem ser vigorosamente sacudidas para que ocorra a queda dos insetos-praga (CORRÊA-FERREIRA; PANIZZI, 1999).

Os níveis de controle, bem como as técnicas de amostragens utilizadas em programas de monitoramento de populações de insetos-praga, foram desenvolvidos quando a soja ainda era semeada com espaçamento de 0,80 m entre linhas. Para Drees e Rice (1985), estes níveis e técnicas de amostragens não são aplicáveis em menores espaçamentos, como os adotados atualmente (0,40 a 0,50 m). Ao longo dos anos, com a redução do espaçamento utilizado pelos produtores no cultivo da soja e o porte elevado de algumas cultivares, especialmente em anos mais chuvosos, a eficiência deste método fica extremamente comprometida (CORRÊA-FERREIRA; PAVÃO, 2005). Quando realiza-se a amostragem com esse método e agita-se as duas fileiras adjacentes, parte dos insetos permanece nas plantas de soja, em função do emaranhado de folhas.

Assim o pano-de-batida largo pode ser uma alternativa ao pano-de-batida, sendo que para esse método é recomendado realizar a amostragem em apenas uma fileira de soja. O pano-de-batida largo é constituído de dois bastões de madeira ligados entre si por um tecido branco, com comprimento de 1 m e largura ajustável a altura das plantas (CORRÊA-FERREIRA; PAVÃO, 2005). O pano é colocado cuidadosamente enrolado entre as fileiras de soja, para não perturbar os insetos. Uma ponta do pano é ajustada à base das plantas e a outra é estendida sobre as plantas da fileira adjacente. As plantas de apenas uma fileira são agitadas para a queda dos insetos.

Uma alternativa para o pano-de-batida e o pano-de-batida largo é o pano-de-batida vertical, recomendado desde 1994 na Argentina para amostragem de insetos-praga da soja, especialmente em semeadura direta ou com espaçamentos menores que 0,70 m (MASSARO; GAMUNDI, 2003). O pano-de-batida vertical, atualmente é utilizado pelo Instituto Nacional de Tecnologia Agrícola (INTA - Argentina) e experimentalmente no Laboratório de Manejo Integrado de Pragas (LabMIP-UFSM), foi uma adaptação do método desenvolvido por Drees e Rice (1985) que constava de uma chapa de alumínio inteiriça, com 0,91 m de largura e 0,86 m de altura, formando uma superfície de amostragem de 0,79 m².

Estudos comparativos entre métodos de amostragem para a coleta de insetos-praga nas culturas de soja (SHEPARD et al., 1974; PANIZZI; FERREIRA, 1978; COSTA; CORSEUIL, 1979; LINK; COSTA, 1982; SANE et al., 1999; MASSARO; GAMUNDI,

2003; CORRÊA-FERREIRA; PAVÃO, 2005; GUEDES et al., 2006) têm sido realizados. De maneira geral, esses trabalhos evidenciaram que as quantidades de insetos-praga coletadas por meio dos métodos são variáveis.

A comparação do pano-de-batida vertical com o pano-de-batida, demonstraram que em espaçamentos menores, o pano-vertical apresenta uma maior eficiência de coleta de lagartas e percevejos (GUEDES et al., 2006; KUSS et al., 2007). Essa maior eficiência está relacionada à presença da superfície de batida entre as linhas, impedindo que algumas lagartas desalojadas, prendam-se nas plantas da linha ao lado. Em cultivos nos quais os espaçamentos entre linhas são menores (0,35 a 0,52 m) e com insetos-praga muito móveis (percevejos), o uso do pano-de-batida vertical permite a coleta de um número maior de indivíduos (GAMUNDI, 1995; MASSARO; PLUIS, 2006). O método do pano-de-batida-vertical é considerado confiável, prático e simples para a execução em campo (MASSARO; PLUIS, 2006).

Na prática, é importante utilizar o método de amostragem relativo que colete o maior número de insetos-praga, ou seja, o mais próximo possível da densidade populacional real, mas exige um equipamento simples e de fácil utilização (PANIZZI; FERREIRA, 1978). Na cultura de soja, alguns métodos de amostragem carecem de estudos comparativos sobre a sua capacidade de coleta.

2.5 Tamanho de amostra

No contexto do MIP, a tomada de decisão é um aspecto chave e básico sobre a necessidade ou não de alguma ação de controle nas populações de insetos-praga. A importância de entender a dinâmica populacional dos insetos para a tomada de decisão é indispensável como princípio do MIP. Assim, considerando que o controle dos insetos-praga também é um problema de decisão estatística, o conhecimento de uma forma de amostragem rápida e eficiente é fundamental.

A amostragem pode ser definida como o processo de realizar amostragens para fazer inferências sobre a população em estudo. Portanto, insetos são amostrados para determinar várias características da população, tais como a densidade e o número de espécies que ocupam certa área, a dispersão ou a distribuição dos indivíduos no espaço, mudanças nas taxas de

natalidade e mortalidade, número relativo de vários estágios dos insetos e mudanças em seu número, ao longo do tempo (PEDIGO, 1993).

Para um programa de monitoramento de insetos-praga é necessário desenvolver um plano de amostragem e um modelo de distribuição, e que este seja fundamentado em princípios básicos de estatística e no conhecimento da distribuição espacial, do ciclo de vida e do comportamento do inseto. Pois um método de amostragem não é universal, sendo que pode ser empregado para um determinado inseto e não se aplicar a outro. Assim é necessário estabelecer a melhor e a mais eficiente maneira de efetuar um levantamento populacional, para tornar-se uma ferramenta aplicável ao monitoramento de insetos-praga (SILVEIRA NETO et al., 1976).

Após a definição do modelo de distribuição espacial do inseto no campo, as etapas subsequentes para o desenvolvimento de um plano de amostragem são: determinação do tamanho da unidade amostral, determinação do número de amostras necessárias para estimar a população real com a precisão desejada e como as amostras serão tomadas na área (BIANCO, 1995).

A expressão na qual utiliza a distribuição t de *Student*, para o cálculo do tamanho de amostra apresenta as mesmas estimativas que outras metodologias. O que confirma que essa metodologia é apropriada quando os insetos se distribuem de forma agregada na área. Em trabalho realizado por Cargnelutti Filho et al. (2011) no qual calcularam o tamanho de amostra para o número de trincheiras necessárias para estimar a densidade populacional de corós, estes utilizaram duas metodologias e encontraram o mesmo valor de tamanho de amostra.

Dois aspectos devem ser analisados ao se estabelecer um plano de amostragem: a acurácia e a precisão. O primeiro reflete quanto o resultado obtido se aproxima da população real presente na área, enquanto o segundo refere-se à constância da variação, que permite estimar o erro da amostragem. O grau de precisão estabelecido pelo pesquisador interfere no número de unidades amostrais a serem tomadas de forma que diminuindo o grau de precisão diminuirá concomitantemente o número de unidades amostrais necessárias para quantificar a população de insetos-praga (COSTA et al., 1987).

A disponibilidade de tempo, mão-de-obra, recursos financeiros e humanos, muitas vezes, são limitantes para a amostragem dos insetos-praga nas lavouras de soja. Nesse caso, o uso do tamanho de amostra pode inferir no número de pontos necessários para a quantificação da população de insetos-praga, com um erro de estimação conhecido. Portanto o plano de

amostragem deve ser economicamente executável e os resultados que ele proporciona estatisticamente confiável (NORRIS et al., 2001).

Visando estimar parâmetros populacionais com desejado grau de precisão, alguns pesquisadores estudaram o tamanho ideal de parcela e/ou tamanho de amostra para insetospragas de culturas, como milho (NAGAI et al., 1986); algodão (REAY-JONES et al., 2010); soja (COSTA; LINK, 1980; COSTA; LINK, 1982; NAGAI et al., 1987; SILVA; COSTA, 1998, CARGNELUTTI FILHO et al., 2011); pepino (BACCI et al., 2008) e erva-mate (BERTOLDO et al., 2008; LÚCIO et al., 2009). Planejamentos experimentais quantificando as dimensões de parcelas em soja (MARTIN, et al., 2005); tamanho de amostra para a determinação de caracteres de genótipos de soja (CARGNELUTTI FILHO et al., 2009; CARGNELUTTI FILHO; GONÇALVES, 2011); feijão (CARGNELUTTI FILHO et al., 2008); mamoneira (CARGNELUTTI FILHO et al., 2010) e milho (SILVA et al., 1998; STORCK et al., 2007); tamanho de amostra para caracterização nutricional em goiabeiras (ROZANE et al., 2009) e maracujá-amarelo (COELHO et al., 2011) foram realizados. No entanto, estudos comparativos de diferentes métodos de amostragem de insetos-praga em relação ao dimensionamento do tamanho de amostra são escassos e carecem de estudos adicionais. É fundamental que o tamanho de amostra seja capaz de quantificar corretamente a população de insetos-pragas com redução do tempo de amostragem e custo com mão-de-obra.

O tamanho de amostra é diretamente proporcional à variabilidade dos dados populacionais e também ao grau de confiança desejado na estimativa; porém inversamente proporcional ao erro permitido, fixado *a priori* pelo pesquisador (CARGNELUTTI FILHO et al., 2009). Desta forma, é necessário conhecer o tamanho amostral que possibilite avaliar, com eficiência e praticidade, a população de insetos-pragas na soja. Zeiss e Klubertanz (1993) consideram que um programa de amostragem deve ser eficiente, exequível, de fácil operação para ser aceito pelos agricultores e extensionistas.

3 REFERÊNCIAS

BACCI, L. et al. Sampling plan for thrips (Thysanoptera: Thripidae) on cucumber. **Neotropical Entomology**, Londrina, v. 37, n. 5, p. 582-590, 2008.

BERTOLDO, G. et al. Plano de amostragem para *Dichopelmus notus* (Eriophyidae) na cultura da erva-mate. **Ciência Rural**, Santa Maria, v. 38, n. 3, p. 601-606, 2008.

BIANCO, R. Construção e validação de planos de amostragem para o manejo da lagarta do cartucho *Spodoptera frugiperda* (J. E. Smith, 1797) (Lepidoptera: Noctuidae) na cultura do milho. 1995. 103 f. Tese (Doutorado na Escola Superior de Agricultura "Luiz de Queiroz")-Universidade de São Paulo, Piracicaba, 1995.

BONATO, R. B. Estresses em Soja. Passo Fundo: EMBRAPA-CNPT, 2000. 254 p.

BOYER, W. P.; DUMAS, B. A. Plant shaking methods for soybean insect survey in Arkansas. In:__. Survey methods for some economic insects. United State: Department of Agriculture, Agricultural Research Service, 1969. p. 92-94.

BUENO, A. de F. et al. **Níveis de desfolha tolerados na cultura da soja sem a ocorrência de prejuízos à produtividade**. Londrina: EMBRAPA-CNPSo, 2010. 12 p. (Circular Técnica, 79).

CARGNELUTTI FILHO, A. et al. Dimensionamento de amostra na estimação da população de corós em áreas de campo nativo e de cultivo no Estado do Rio Grande do Sul. **Ciência Rural,** Santa Maria, v. 41, n. 8, p. 1300-1306, 2011.

CARGNELUTTI FILHO, A. et al. Tamanho de amostra de caracteres de cultivares de feijão. **Ciência Rural,** Santa Maria, v. 38, n. 3, p. 635-642, 2008.

CARGNELUTTI FILHO, A. et al. Tamanho de amostra de caracteres de genótipos de soja. **Ciência Rural,** Santa Maria, v. 39, n. 4, p. 983-991, 2009.

CARGNELUTTI FILHO, A. et al. Tamanho de amostra de caracteres em híbridos de mamoneira. **Ciência Rural**, Santa Maria, v. 40, n. 2, p. 280-287, 2010.

CARGNELUTTI FILHO, A.; GONÇALVES, E. C. P. Estimativa do número de repetições para a avaliação de caracteres de produtividade e de morfologia em genótipos de soja. **Comunicata Scientiae**, Bom Jesus, v. 2, n. 1, p. 25-33, 2011.

COELHO, A. A. et al. Dimensionamento amostral para a caracterização da qualidade póscolheita do maracujá-amarelo. **Revista Ceres**, Viçosa, v. 58, n. 1, p. 23-28, 2011.

CONAB - **Companhia Nacional de Abastecimento**. 2011 Disponível em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_11_09_15_03_02_boletim_2o_levantamento_safra_2011_12.pdf>. Acesso em: 28 nov. 2011.

CORRÊA-FERREIRA, B. S. et al. **Percevejos e a qualidade da semente de soja - série sementes.** Londrina: EMBRAPA-CNPSo, 2009. 16 p. (Circular Técnica, 67).

CORRÊA-FERREIRA, B. S.; PANIZZI, A. R. **Percevejos da soja e seu manejo.** Londrina: EMBRAPA-CNPSo, 1999. 45 p. (Circular Técnica, 24).

CORRÊA-FERREIRA, B. S.; PAVÃO, A. L. Monitoramento de percevejos da soja: maior eficiência no uso do pano-de-batida. In: REUNIÃO DE PESQUISA DE SOJA DA REGIÃO CENTRAL DO BRASIL, 27., 2005. **Anais...** Londrina: EMBRAPA-CNPSo, 2005. p. 152-153.

CORRÊA-FERREIRA, B. S.; AZEVEDO, J. Soybean seed damage by different species of stink bugs. **Agricultural and Forest Entomology**, London, v. 4, p. 145-150. 2002.

COSTA, E. C. et al. Distribuição espacial e plano de amostragem sequencial para lagartas na soja. **Revista do Centro de Ciências Rurais**, Santa Maria, v. 17, n. 3, p. 181-192, 1987.

COSTA, E. C.; CORSEUIL, E. Avaliação da eficiência de cinco métodos de levantamento de artrópodes associados à cultura da soja (*Glycine max* (L.) Merril). **Revista do Centro de Ciências Rurais**, Santa Maria, v. 9, n. 1, p. 81-93, 1979.

COSTA, E. C.; LINK, D. Determinação do tamanho da unidade amostral para o método da lona de coleta no levantamento de lagartas da soja. **Revista do Centro de Ciências Rurais**, Santa Maria, v. 12, n. 1, p. 45-55, 1982.

COSTA, E. C.; LINK, D. Determinação do tamanho da unidade amostral para o método da rede em soja, para insetos de importância agrícola. **Revista do Centro de Ciências Rurais**, Santa Maria, v. 10, n. 2, p. 115-123, 1980.

DEGRANDE, P. E.; VIVIAN, L. M. Pragas da soja. In:____. **Boletim de Pesquisa da Soja**. Rondonópolis: Fundação MT, 274 p. 2007.

DREES, B. M.; RICE, M. E. The vertical beat sheet: a new device for sampling soybean insects. **Journal of Economic Entomology**, Lanham, v. 78, n. 6, p. 1507-1510, 1985.

GALLO, D. et al. **Entomologia agrícola**. Piracicaba: FEALQ, 2002. 920 p.

GAMUNDI, J. C. Evaluación de técnicas de muestreo de insectos plaga y depredadores en cultivos de soja con diferentes sistemas de siembra y labranza. In: CONGRESSO NACIONAL DE SOJA. REUNIÓN NACIONAL DE OLEAGINOSOS, 2., 1995, Buenos Aires, **Anais...** Buenos Aires: Bolsa de Cereales de Pergamino, 1995. p. 1-8.

GUEDES, J. V. C. et al. Capacidade de coleta de dois métodos de amostragem de insetospraga da soja em diferentes espaçamentos entre linhas. **Ciência Rural**, Santa Maria, v. 36, n. 4, p. 1299-1302, 2006.

HOFFMANN-CAMPO, C. B. et al. **Pragas da soja no Brasil e seu manejo integrado.** Londrina: EMBRAPA-CNPSo, 2000. 70 p. (Circular Técnico, 30).

KUSS, R. C. R. et al. Amostragem de percevejos-da-soja com diferentes métodos e horários de coleta. In: REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 35., Santa Maria. **Anais...** Santa Maria: Universidade Federal de Santa Maria, 2007. p. 115.

KUSS-ROGGIA, R. C. R. Distribuição espacial e temporal de percevejos da soja e comportamento de *Piezodorus guildinii* (Westwood, 1837) (Hemiptera: Pentatomidae) na soja (*Glycine max* (L.) Merrill) ao longo do dia. 2009. 130 f. Tese (Doutorado em Agronomia)- Universidade Federal de Santa Maria, Santa Maria, 2009.

LINK, D.; COSTA, E. C. Influência do método de coleta na captura de Chrysomelidae em soja. **Revista do Centro de Ciências Rurais**, Santa Maria, v. 12, n. 2-3, p. 103-107, 1982.

LÚCIO, A. D. C. et al. Distribuição espacial e tamanho de amostra para o ácaro-do-bronzeado da erva-mate. **Revista Árvore**, Viçosa, v. 33, n. 1, p. 143-150, 2009.

MARTIN, T. N. et al. Tamanho ótimo de parcela e número de repetições em soja (*Glycine max* (L.) Merrill). **Ciência Rural**, Santa Maria, v. 35, n. 2, p. 271-276, 2005.

MASSARO, R. A.; GAMUNDI, J. C. Control de insectos plaga en soja: del ojímetro...; al paño vertical! – 2003. INTA: EEA Oliveros, 2003.

MASSARO, R. A.; PLUIS, E. Que la soja no se "enchinche"! INTA: EEA Oliveros, 2006.

NAGAI, V. et al. Resistência de soja a insetos: IX. Amostragem para avaliação de danos de percevejos. **Bragantia**, Campinas, v. 46, n. 2, p. 365-370, 1987.

NAGAI, V. et al. Técnicas de amostragem para comparar o dano causado pela lagarta-da-espiga. *Heliothis zea* (Boddie), em cultivares de milho. **Bragantia**, Campinas, v. 45, n. 1, p. 57-73, 1986.

NORRIS, R. F. et al. Concepts in Integrated Pest Management. New Jersey: Prentice Hall. 2001, 608 p.

PANIZZI, A. R.; FERREIRA, B. S. C. Comparação de dois métodos de amostragem de artrópodos em soja. **Anais da Sociedade Entomológica do Brasil**, Londrina, v. 7, n. 1, p. 60-66, 1978.

- PANIZZI, A. R.; SLANSKY, F. Review of phytophagous pentatomids (Hemiptera: Pentatomidae) associated with soybean in the Americas. **Florida Entomologist**, Florida, v. 68, n. 1, p. 184-214. 1985.
- PEDIGO, L. P. et al. Economic injury levels in theory and practice. **Annual Review of Entomology**, Palo Alto, v. 31, n. 1, p. 341-368, 1986.
- PEDIGO, L. P. Introduction to sampling arthropod populations. In: PEDIGO, L. P.; BUNTIN, G. D. (Eds.). **Handbook of sampling methods for arthropods in agriculture**. Boca Raton: CRC Press. 1993, p.1-11.
- REAY-JONES, F. P. F. et al. Development of sampling plans for cotton bolls injured by stink bugs (Hemiptera: Pentatomidae). **Journal of Economic Entomology**, Lanham, v. 103, n. 2, p. 525-532, 2010.
- REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 38., 2010, Cruz Alta. Indicações técnicas para a cultura da soja no Rio Grande do Sul e em Santa Catarina 2010/2011 e 2011/2012. Cruz Alta: Fundacep Fecotrigo, 2010. 168 p.
- ROZANE, D. E. et al. Tamanho da amostra foliar para avaliação do estado nutricional de goiabeiras com e sem irrigação. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 13, n. 3, p. 233-239, 2009.
- SANE, I. et al. Efficiency of conventional sampling methods for determining arthropod densities in close-row soybeans. **Journal Agricultural and Urban Entomology**, Charleston, v. 16, n. 1, p. 65-84, 1999.
- SANTOS, K. B. dos et al. Biologia de *Spodoptera eridania* (Cramer) (Lepidoptera: Noctuidae) em diferentes hospedeiros. **Neotropical entomology**, Londrina, v. 34, n. 6, p. 903-910, 2005.
- SHEPARD, M. et al. A comparison of three sampling methods for arthopods in soybeans. **Environmental Entomology**, Lanham, v. 3, n. 2, p. 227-232, 1974.
- SILVA J. da et al. Amostragem e tamanho da amostra na estimação de caracteres da espiga do milho. **Pesquisa Agropecuária Brasileira**, Brasília, v. 33, n. 12, p. 1983-1988, 1998.
- SILVA, M. T. B. da. Associação de *Baculovirus anticarsia* com subdosagens de inseticidas no controle de lagartas de *Anticarsia gemmatalis* (Hübner, 1818). **Ciência Rural**, Santa Maria, v. 25, n. 3, p. 353-358, 1995.
- SILVA, M. T. B.; COSTA, E. C. Tamanho e número de unidades de amostra de solo para amostragem de larvas de *Diloboderus abderus* (Sturm) (Coleoptera: Melolonthidae) em plantio direto. **Anais da Sociedade Entomológica do Brasil**, Londrina, v. 27, n. 2, p. 193-197, 1998.

SILVEIRA NETO, S.; NAKANO, O.; BARBIN, D. **Manual de ecologia dos insetos**. São Paulo: Agronômica Ceres, 1976, 419p.

STORCK, L. et al. Sample size for single, double and three-way hybrid corn ear traits. **Scientia Agricola**, Piracicaba, v. 64, n. 1, p. 30-35, 2007.

STÜRMER, G. R. et al. Proporção de espécies de percevejos durante o ciclo de desenvolvimento da soja. In: SIMPÓSIO DE ENSINO, PESQUISA E EXTENSÃO, 15., Santa Maria. Anais... Santa Maria: Centro Universitário Franciscano, 2011.

TURNIPSEED, S. G. Manejo das pragas da soja no sul do Brasil. **Trigo e Soja**, Porto Alegre, v. 1, n. 1, p. 4-7 1975.

WADE, M. R. et al. Temporal variation in arthropod sampling effectiveness: the case for using the beat sheet method in cotton. **Entomologia Experimentalis et Applicata**, Amsterdam, v. 120, n. 2, p. 139-153, 2006.

ZEISS, M. R.; KLUBERTANZ, T. H. Sampling programs for soybean arthropods. In: PEDIGO, L.P.; BUNTIN, G. D. (Eds.). **Handbook of sampling methods for arthropods in agriculture**. Boca Raton: CRC - Press. 1993. cap.19, p. 539-601.

4 CAPÍTULO I

EFICIÊNCIA DE MÉTODOS DE AMOSTRAGEM DE LAGARTAS E DE PERCEVEJOS NA CULTURA DE SOJA

RESUMO

O objetivo desse trabalho foi comparar a capacidade de coleta de três métodos de amostragem de lagartas e de percevejos na cultura de soja. Para isso em área de 6,1 ha de soja, foi demarcado um gride de 154 pontos amostrais, espaçados de 20 × 20 m. Em cada um desses 154 pontos foram coletadas lagartas (pequenas, grandes e total) e percevejos (ninfas, adultos e total) (seis variáveis), por meio dos métodos de amostragem pano-de-batida, pano-de-batida largo e pano-de-batida vertical, em 14 estádios fenológicos da cultura de soja, totalizando 6.468 coletas. Para cada uma dessas seis variáveis, em cada um dos 14 estádios fenológicos e no geral (todos os estádios fenológicos), as médias dos três métodos de amostragem, foram comparadas pelo teste t (bilateral) de *Student* para dados pareados, em nível de 5% de probabilidade. O número de lagartas coletadas por meio dos métodos de amostragem é decrescente na seguinte ordem: pano-de-batida vertical, pano-de-batida largo e pano-de-batida. O número de percevejos coletados por meio dos métodos de amostragem pano-de-batida vertical e pano-de-batida largo é superior ao pano-de-batida. O pano-de-batida vertical é o mais eficiente para a coleta de lagartas e de percevejos na cultura de soja.

Palavras-chave: Pano-de-batida. Pano-de-batida largo. Pano-de-batida vertical. Amostragem de pragas.

4 CHAPTER I

EFFICIENCY OF SAMPLING METHODS FOR CATERPILLARS AND STINK BUGS IN SOYBEAN

ABSTRACT

The aim of this study was to compare the collect capacity of three sampling methods for caterpillars and stink bugs in soybean. Therefore, in a 6,1 ha soybean field, a grid of 154 sampling points spaced 20×20 m was marked. In each of these 154 points were collected caterpillars (small, large and total) and stink bugs (nymphs, adults and total) (six variables) by the sampling methods beating cloth, wide beating cloth and vertical beat sheet, on 14 phenological stages of the soybean crop, totaling 6,468 samples. For each of these six variables, on each of the 14 phenological stages and overall (all phenological stages), the averages of the three sampling methods were compared by Student's t test (bilateral) for paired data, in a 5 % probability level. The number of caterpillars collected by the sampling methods decreases in the following order: vertical beat sheet, wide beating cloth and beating cloth. The number of stink bugs collected by the sampling methods vertical beat sheet and wide beating cloth is higher than beating cloth. Vertical beat sheet is the most efficient to collect caterpillars and stink bugs.

Key words: Beating cloth. Wide beating cloth. Vertical beat sheet. Sampling pest.

4.1 Introdução

Entre os principais fatores limitantes da produtividade de grãos da cultura de soja estão os problemas fitossanitários, como a presença das lagartas (*Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania*) e dos percevejos (*Piezodorus guildinii*, *Nezara viridula*, *Euschistus heros*, *Dichelops furcatus*, *Edessa meditabunda* e *Acrosternum hilare*). As lagartas alimentam-se do limbo e das nervuras foliares, ocasionando desfolhamento de até 100% e redução na produtividade de grãos (HOFFMANN-CAMPO et al., 2000). Ao se alimentarem dos grãos, os percevejos causam atrofiamento, diminuição do peso e da qualidade desses (CORRÊA-FERREIRA; AZEVEDO, 2002; BELORTE et al., 2003).

É importante quantificar a densidade populacional de lagartas e de percevejos, para que, com base nos níveis de controle estabelecidos, sejam tomadas decisões adequadas sobre o seu manejo. Na soja, o nível de controle recomendado é de 40 lagartas grandes (≥ 1,5 cm) por m². Para percevejos, o nível de controle recomendado é de quatro e dois percevejos por m², para lavouras comerciais e de produção de sementes, respectivamente (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010).

Existem diversos métodos para amostragem e quantificação de insetos-praga. A escolha do método de amostragem é dependente da cultura, do estádio fenológico, das espécies-alvo, da precisão e exatidão requerida, da facilidade de uso, do tempo e do custo requerido (WADE et al., 2006). Métodos de amostragem como o pano-de-batida (BOYER; DUMAS, 1969), o pano-de-batida largo (CORRÊA-FERREIRA; PAVÃO, 2005) e o pano-de-batida vertical (MASSARO; GAMUNDI, 2003) são utilizados para amostragem de insetos-praga na cultura de soja.

Na prática, é importante utilizar o método de amostragem relativo que colete o maior número de insetos-praga, ou seja, o mais próximo possível da densidade populacional real, que seria mensurada somente por método de amostragem absoluto. Há métodos de amostragem que ainda carecem de estudos comparativos sobre a sua capacidade de coleta. O objetivo desse trabalho foi comparar a capacidade de coleta de três métodos de amostragem de lagartas e de percevejos na cultura de soja.

4.2 Material e métodos

O experimento foi conduzido em área de 6,1 ha de soja, localizada no Departamento de Defesa Fitossanitária da Universidade Federal de Santa Maria, no Município de Santa Maria, Estado do Rio Grande do Sul. A cultivar de soja BMX Potência RR, foi semeada no dia 29 de outubro de 2010, em linhas espaçadas a 0,5 m, com densidade de 25 plantas m⁻². A adubação, o controle de plantas daninhas e de doenças foram realizados de acordo com as recomendações técnicas para a cultura (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). Foi realizada uma aplicação de metomil (107 g i.a. ha⁻¹) para o controle de lagartas no dia 03 de fevereiro de 2011, em função da desfolha ter atingido o nível de controle (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). Para os percevejos não foi realizado controle, pois o nível de controle foi atingido somente no estádio fenológico R7.1.

Sobre a área do estudo foi demarcado um gride de 154 pontos amostrais (Anexo A), espaçados de 20 × 20 m. Em cada um desses 154 pontos foram contados o número de lagartas pequenas (≤ 1,5 cm) e grandes (> 1,5 cm) das espécies *Anticarsia gemmatalis* (Hübner, 1818), *Pseudoplusia includens* (Walker, 1857) e *Spodoptera eridania* (Cramer, 1872); e o número de percevejos ninfas e adultos das espécies *Dichelops furcatus* (Fabricius, 1775), *Piezodorus guildinii* (Westwood, 1873), *Nezara viridula* (Linnaeus, 1758), *Euschistus heros* (Fabricius, 1794), *Edessa meditabunda* (Fabricius, 1794) e *Acrosternum hilare* (Say, 1831). Após também foi contado o número total de lagartas pequenas, grandes e pequenas + grandes e de percevejos ninfas, adultos e ninfas + adultos, independentemente de espécie, por meio dos métodos de amostragem pano-de-batida, pano-de-batida largo e pano-de-batida vertical (Figura 1), em 14 estádios fenológicos da cultura de soja (V7, V9, V11, R1, R2, R3, R4, R5.1, R5.3, R5.5, R6, R7.1, R7.3 e R8.2), utilizando a escala proposta por Ritchie et al. (1982) (Anexo B). Os três métodos de amostragem e a forma de coleta foram os seguintes:

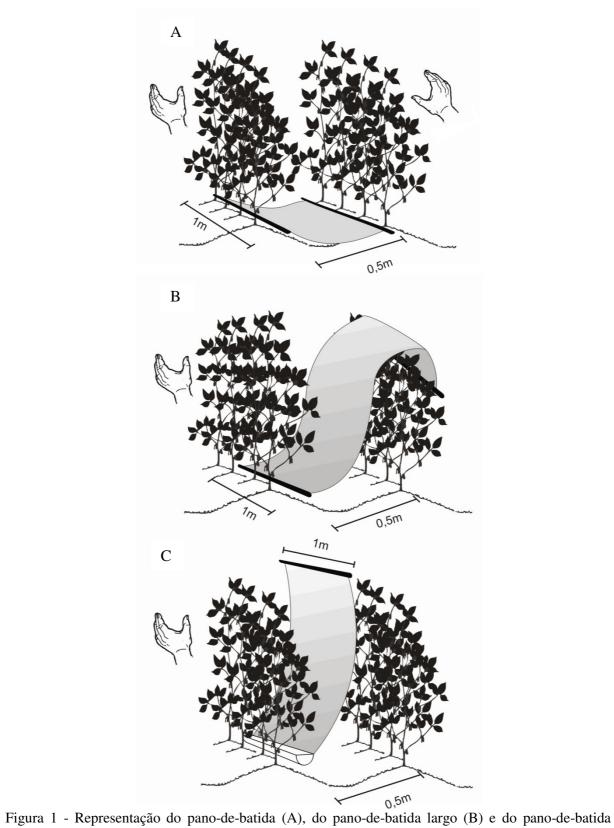


Figura 1 - Representação do pano-de-batida (A), do pano-de-batida largo (B) e do pano-de-batida vertical (C) utilizados como métodos de amostragem de lagartas e de percevejos na cultura de soja.

Pano-de-batida: constituído de dois bastões de madeira ligados entre si por um tecido branco, com comprimento de 1 m e largura ajustável ao espaçamento entre linhas. Para a coleta dos insetos-praga o pano foi cuidadosamente desenrolado sobre o solo, entre as fileiras de soja. Posteriormente, as plantas das duas fileiras (área = 1 m²) foram sacudidas, vigorosamente, a fim de derrubar os insetos-praga sobre o pano.

Pano-de-batida largo: constituído de dois bastões de madeira ligados entre si por um tecido branco, com comprimento de 1 m e largura de 1,4 m. Para as coletas, uma extremidade do pano foi colocada entre as fileiras de soja, sendo ajustada à base das plantas de uma linha e a outra estendida sobre as plantas da linha adjacente. As plantas de uma fileira (área = 0.5 m^2) foram sacudidas, vigorosamente, a fim de derrubar os insetos-praga sobre o pano. Esse procedimento foi realizado em dois metros de linha de soja, a fim de amostrar 1 m² de área.

Pano-de-batida vertical: constituído de um bastão de madeira, na extremidade superior, e um tubo de policloreto de polivinila (100 mm), cortado ao meio longitudinalmente, na extremidade inferior, ligados entre si por um tecido branco, com comprimento de 1 m e com altura ajustável a estatura das plantas de soja. O tubo de policloreto de polivinila serviu de calha coletora dos insetos-praga. Para a coleta dos insetos, o pano foi colocado verticalmente na entre linha da cultura, e as plantas de apenas uma fileira eram sacudidas contra a superfície do pano. Esse procedimento foi realizado em dois metros de linha de soja, a fim de amostrar 1 m² de área.

Em cada uma das 6.468 coletas, de 1 m² de área, formadas pela combinação de 3 métodos de amostragem \times 154 pontos \times 14 estádios fenológicos, foi contado o número de lagartas pequenas (\leq 1,5 cm), grandes (> 1,5 cm) e o total (pequenas + grandes) e o número de percevejos ninfas, adultos e total (ninfas + adultos).

Para cada uma dessas seis variáveis, em cada um dos 14 estádios fenológicos e no geral (todos os estádios fenológicos), as médias dos três métodos de amostragem, foram comparadas pelo teste t (bilateral) de *Student* para dados pareados, em nível de 5% de probabilidade. As análises estatísticas foram realizadas com o auxílio do programa GENES (CRUZ, 2006) e do aplicativo Office Excel.

4.3 Resultados e discussão

A densidade populacional de lagartas (média dos 154 pontos amostrais) oscilou entre 0,00 e 49,86 lagartas m⁻² e a de percevejos variou entre 0,06 e 19,44 percevejos m⁻² (Tabelas 1, 2 e 3). De maneira geral, em relação à média de lagartas (pequenas, grandes e total) e de percevejos (ninfas, adultos e total) coletadas nos 154 pontos, houve variabilidade entre os métodos de amostragem (pano-de-batida, pano-de-batida largo e pano-de-batida vertical) para os estádios fenológicos e para todos os estádios fenológicos. Essa variabilidade sugere que a capacidade de coleta de lagartas e de percevejos pode ser diferente entre os três métodos, e merece ser investigada para a identificação da eficiência dos métodos e sua recomendação na cultura de soja.

Em relação à densidade populacional, de maneira geral, nos estádios fenológicos V7 e V9, houve baixa incidência de lagartas (≤ 1,02 lagartas m⁻²) (Tabela 1). A partir de V11 a densidade populacional foi crescente, até atingir o pico populacional em R4 (49,86 lagartas m⁻²). Após, houve decréscimo até R6, ocasionado, principalmente pela aplicação de inseticida e pela competição entre as lagartas, por alimento. A partir de R7.1 em nenhum dos três métodos de amostragem, foram coletadas lagartas. Já a densidade populacional de percevejos, de maneira geral, foi baixa (≤ 0,46 percevejos m⁻²) até o estádio fenológico R2, devido, provavelmente ao ingresso tardio de percevejos e a cultura ainda não apresentar o alimento preferencial dos pentatomídeos (CORRÊA-FERREIRA, 2005). Após houve acréscimo da incidência de percevejos até atingir o pico populacional em R7.3 (19,44 percevejos m⁻²) e posterior redução, a partir desse estádio fenológico. O período compreendido a partir do aparecimento dos legumes (R3) até os legumes com 100% de grãos cheios (R6) é considerado o período crítico para o ataque dos percevejos (CORRÊA-FERREIRA; AZEVEDO, 2002).

Nos estádios fenológicos com baixa incidência de lagartas (≤ 1,02 lagartas m⁻²) e de percevejos (≤ 0,46 percevejos m⁻²) a comparação dos três métodos de amostragem foi dificultada pela menor presença desses insetos (Tabela 1). Por outro lado, nos demais estádios fenológicos a diferença entre os métodos pode ser comparada, de forma mais eficiente, pela maior densidade populacional. Portanto, diante das considerações realizadas, pode-se inferir que esse banco de dados oferece credibilidade ao estudo comparativo desses três métodos de amostragem.

Tabela 1 - Média do número de lagartas⁽¹⁾ coletadas por meio dos métodos de amostragem pano-de-batida (PB), pano-de-batida largo (PBL) e pano-de-batida vertical (PBV) em 14 estádios fenológicos da cultura de soja. Santa Maria, RS, 2011.

Estádio ⁽²⁾	Método	LANP	LPLP	LSPP	LTP	LANG	LPLG	LSPG	LTG	LT
	PB	0,25 a	0,04 a	0,08 a	0,38 ab	0.03 a	0,01 a	0.00 a	0,04 b	0,42 ab
V7	PBL	0,27 a	0,05 a	0,08 a	0,40 a	0,08 a	0,04 a	0,01 a	0,12 a	0,53 a
	PBV	0,10b	0,09 a	0,06 a	0,25 b	0,04 a	0,01 a	0,01 a	0,05 b	0,31 b
	PB	0,19 a	0,27 a	0,10b	0,56b	0,13 a	0,06 a	0,02 a	0,21 a	0,77 b
V9	PBL	0,30 a	0,25 a	0,15 b	0,69 ab	0,14 a	0,05 a	0,00 a	0,19 a	0,89 ab
	PBV	0,19 a	0,28 a	0,36 a	0,83 a	0,11 a	0,07 a	0,01 a	0,19 a	1,02 a
	PB	0,81 b	0,30b	0,10 a	1,20 c	0,47 b	0,22 a	0,02 b	0,71 b	1,91 b
V11	PBL	0,93 b	0,55 a	0,10 a	1,57 b	0,45 b	0,07 b	0,09 a	0,61 b	2,18b
	PBV	1,93 a	0,44 ab	0,19 a	2,56 a	0,88 a	0,14 ab	0,07 ab	1,09 a	3,65 a
	PB	1,23 c	0,55 a	0,06b	1,84 c	0,51 b	0,20 a	0,01 a	0,72 b	2,56 c
R1	PBL	2,88 b	0,57 a	0,32 a	3,77 b	0,97 a	0,08b	0,03 a	1,08 a	4,85 b
	PBV	4,17 a	0,67 a	0,27 a	5,11 a	0,92 a	0,15 ab	0,02 a	1,08 a	6,19 a
	PB	1,69 c	0,68 c	0,25 c	2,63 c	1,44 b	0,43 a	0,14 a	2,01 b	4,64 c
R2	PBL	3,82 b	1,20b	0,53 b	5,55 b	3,27 a	0,44 a	0,14 a	3,85 a	9,40b
	PBV	6,16a	1,95 a	0,94 a	9,05 a	2,61 a	0,58 a	0,10 a	3,29 a	12,34 a
	PB	7,66b	2,06b	0,16b	9,88 b	3,06b	0,66b	0,23 b	3,95 b	13,83 c
R3	PBL	19,99 a	4,77 a	0,76 a	25,51 a	6,28 a	1,86 a	0,47 a	8,61 a	34,12b
	PBV	20,81 a	4,92 a	0,79 a	26,51 a	7,12 a	2,40 a	0,49 a	10,01 a	36,53 a
	PB	10,13 b	0,92 b	0,25 b	11,29 b	7,68 c	0,91 b	0,42 b	9,01 c	20,31 c
R4	PBL	22,44 a	1,57 a	0,45 a	24,45 a	16,14b	2,28 a	0,75 a	19,16b	43,62 b
	PBV	22,41 a	1,55 a	0,38 ab	24,33 a	22,38 a	2,44 a	0,71 a	25,53 a	49,86 a
	PB	1,01 b	0,59b	0,08b	1,68 c	1,29 b	0,38 b	0,05 b	1,73 c	3,40 c
R5.1	PBL	2,47 a	1,31 a	0,07 b	3,86b	2,75 a	1,08 a	0,09b	3,93 b	7,79 b
	PBV	2,82 a	1,51 a	0,18 a	4,52 a	2,98 a	1,34 a	0,21 a	4,54 a	9,06 a
	PB	0,32b	0,60 c	0,03 b	0,95 c	0,22 b	0,61 b	0,06 a	0,90b	1,84 c
R5.3	PBL	0,60 a	0,88 b	0,10 a	1,57 b	0,58 a	1,08 a	0,05 a	1,71 a	3,28 b
	PBV	0,79 a	1,26 a	0,09 a	2,14 a	0,55 a	1,12 a	0,06 a	1,73 a	3,86 a
	PB	0,51 b	0,17c	0,01 b	0,68b	0,02b	0,15 b	0,01 a	0,18 c	0,86 b
R5.5	PBL	0,88 a	0,82 a	0,08 a	1,78 a	0,12 a	0,25 ab	0,03 a	0,39 b	2,17 a
	PBV	0,88 a	0,42 b	0,13 a	1,44 a	0,18 a	0,38 a	0,03 a	0,59 a	2,03 a
	PB	0,06b	0.04c	0,04 a	0.14c	0,00b	0,03 b	0,00 a	0,03 b	0,16b
R6	PBL	0,13 ab	0,11 b	0,03 a	0,27 b	0,03 a	0,10 a	0,02 a	0,15 a	0,42 a
	PBV	0,17 a	0,29 a	0,06 a	0,51 a	0,03 a	0,06 ab	0,01 a	0,10 a	0,62 a
	PB	0,00 a								
R7.1	PBL	0,00 a								
	PBV	0,00 a								
	PB	0,00 a								
R7.3	PBL	0,00 a								
	PBV	0,00 a								
	PB	0,00 a								
R8.2	PBL	0,00 a								
	PBV	0,00 a								

Médias não seguidas de mesma letra diferem pelo teste t (bilateral) de *Student* para dados pareados, em nível de 5% de probabilidade.

(1) LANP: A. gemmatalis pequena; LPLP: P. includens pequena; LSPP: S. eridania pequena; LTP: Total lagarta pequena; LANG: A. gemmatalis grande; LPLG: P. includens grande; LSPG: S. eridania grande; LTG: Total lagarta grande; LT: Total de lagartas (pequenas + grandes)

grandes).
(2) Estádios definidos no anexo B.

Tabela 2 - Média do número de percevejos ninfas⁽¹⁾ coletados por meio dos métodos de amostragem pano-de-batida (PB), pano-de-batida largo (PBL) e pano-de-batida vertical (PBV) em 14 estádios fenológicos da cultura de soja. Santa Maria, RS, 2011.

Estádio ⁽²⁾	Método	PDIN	PPIN	PEDN	PNEN	PEUN	PACN	PTN
Littaro	PB	0,00 a	0,00 a	0,00 a	0,01 a	0,00 a	0,00 a	0,01 a
V7	PBL	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a
• •	PBV	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a
-	PB	0,01 a	0,01 a	0,00 a	0,00 a	0,00 a	0,00 a	0,02 a
V9	PBL	0,01 a	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a	0,02 a
, ,	PBV	0,00 a	0,02 a	0,00 a	0,00 a	0,00 a	0,00 a	0,02 a
	PB	0,01 a	0,00 a	0,00 a	0,00 a	0,00 a	0,00 a	0,01 a
V11	PBL	0,01 a	0,00 a 0,01 a	0,00 a 0,01 a	0,00 a	0,00 a	0,00 a	0,04 a
, 11	PBV	0,01 a	0,01 a	0,00 a	0,03 a	0,00 a	0,00 a	0,05 a
-	PB	0,02 a	0,02 a	0,00 a	0,01 a	0,00 a	0,00 a	0,05 a
R1	PBL	0,02 a	0,05 a	0,00 a	0,01 a	0,00 a	0,00 a	0,09 a
111	PBV	0,04 a	0,08 a	0,00 a	0,00 a	0,00 a	0,00 a	0,12 a
-	PB	0,01 b	0,08 a	0,00 a	0,00 a	0,00 a	0,00 a	0,12 b
R2	PBL	0,01 b	0,08 a	0,02 a 0,01 a	0,01 b	0,00 a	0,05 a	0,12 b
112	PBV	0,09 a	0,08 a		0,03 ab	0,00 a	0,02 a	0,27 a
	PB	0,05 b	0,02 b	0,01 a	0,01 b	0,01 a	0,00 b	0,10 b
R3	PBL	0,03 o	0,02 o	0,03 a	0,01 o	0,00 a	0,04 a	0,52 a
113	PBV	0,13 a	0,22 a	0,04 a	0,06 a	0,00 a	0,07 a	0,53 a
-	PB	0,03 b	0,15 a	0,03 a	0,00 b	0,01 a	0,04 a	0,25 b
R4	PBL	0,08 a	0,13 a	0,05 a	0,06 a	0,00 a	0,05 a	0,48 a
	PBV	0,08 ab	0,19 a	0,11 a	0,04 a	0,01 a	0,10 a	0,53 a
-	PB	0,03 a	0,06 b	0,03 b	0,04 a	0,01 a	0,01 b	0,18 b
R5.1	PBL	0,08 a	0,18 a	0,06 ab	0,14 a	0,00 a	0,19 a	0,66 a
	PBV	0,04 a	0,26 a	0,11 a		0,03 a	0,17 a	0,69 a
-	PB	0,01 b	0,10 a	0,04 a	0,02 a	0,01 a	0,06 b	0,24 b
R5.3	PBL	0,07 a	0,09 a			0,01 a	0,10 ab	0,39 a
	PBV	0,07 a	0,11 a	0,05 a	0,05 a 0,05 a	0,01 a	0,18 a	0,47 a
	PB	0,04 a	0,13 b	0,08 a	0,04 a	0,00 a	0,16 a	0,45 b
R5.5	PBL	0,06 a	0,28 a	0,11 a	0,06 a	0,01 a	0,50 a	1,03 ab
	PBV	0,07 a	0,32 a	0,16 a	0,12 a	0,01 a	0,52 a	1,19 a
	PB	0,17 b	0,68 b	0,03 b	0,04 b	0,01 c	0,22 b	1,15 c
R6	PBL	0,18 b	1,90 a	0,14 a	0,25 a	0,07 b	0,21 b	2,76 b
	PBV	0,37 a	2,26 a	0,15 a	0,14 a	0,19 a	0,80 a	3,92 a
	PB	0,38 b	2,02 b	0,06 b	0,19 a	0,01 b	0,31 b	2,96 b
R7.1	PBL	0,84 a	7,14 a	0,18 a	0,29 a	0,07 a	0,83 a	9,36 a
	PBV	0,80 a	7,11 a	0,24 a	0,50 a	0,07 a	1,06 a	9,78 a
	PB	0,46 b	2,71 b	0,12 b	0,33 a	0,03 a	0,81 b	4,46 b
R7.3		1,06 a	10,03 a	0,37 a	0,45 a	0,05 a	2,13 a	14,09 a
			10,31 a		0,55 a	0,05 a	2,08 a	14,47 a
-	PB	0.16 c	2.77 b	0.19 a	0.40 a	0.04 a	0.45 h	4,01 b
R8.2	PBL	0,75 a	7,75 a	0,21 a	0,38 a	0,03 a	0,84 ab	9,97 a
	PBV	0,42 b	8,01 a	0,22 a	0,31 a	0,08 a	1,01 a	
		0,75 a	7,75 a	0,21 a	0,38 a	0,03 a	0,84 ab	9,97 a

Médias não seguidas de mesma letra diferem pelo teste t (bilateral) de *Student* para dados pareados, em nível de 5% de probabilidade (1) **PDIN:** *D. furcatus* ninfa; **PPIN:** *P. guildinii* ninfa; **PEDN:** *E. meditabunda* ninfa; **PNEN:** *N. viridula* ninfa; **PEUN:** *E. heros* ninfa; PACN: A. hilare ninfa; PTN: Total de percevejos ninfas.

(2) Estádios definidos no anexo B.

Tabela 3 - Média do número de percevejos adultos⁽¹⁾ coletados por meio dos métodos de amostragem pano-de-batida (PB), pano-de-batida largo (PBL) e pano-de-batida vertical (PBV) em 14 estádios fenológicos da cultura de soja. Santa Maria, RS, 2011.

Estádio ⁽²⁾	Método	PDIA	PPIA	PEDA	PNEA	PEUA	PACA	PTA	PT
	PB	0,04 ab	0,01 b	0,01 a	0,00 a	0,00 a	0,00 a	0,05 b	0,06 ab
V7	PBL	0.05 a	0,05 a	0,01 a	0,01 a	0,01 a	0,00 a	0,13 a	0,13 a
	PBV	0,01 b	0,02 ab	0,00 a	0,01 a	0,00 a	0,00 a	0,04 b	0,04 b
	PB	0,01 b	0,03 a	0,01 a	0,01 a	0,01 a	0,00 a	0,06 b	0,08 a
V9	PBL	0,06 a	0,05 a	0,00 a	0,00 a	0,00 a	0,00 a	0,11 ab	0,12 a
	PBV	0,08 a	0,02 a	0,01 a	0,01 a	0,00 a	0,01 a	0,14 a	0,16 a
	PB	0,04 a	0,01 a	0,01 a	0,00 a	0,00 a	0,00 a	0,06 a	0,06 a
V11	PBL	0,03 a	0,01 a	0,01 a	0,00 a	0,00 a	0,00 a	0,04 a	0,08 a
	PBV	0,06 a	0,01 a	0,00 a	0,01 a	0,00 a	0,00 a	0,08 a	0,13 a
	PB	0,01 b	0,01 b	0,01 a	0,00 a	0,00 a	0,00 a	0,03 c	0,07 b
R1	PBL	0,16 a	0,07 a	0,01 a	0,01 a	0,00 a	0,00 a	0,26 a	0,35 a
	PBV	0,04 b	0,06 ab	0,01 a	0,01 a	0,00 a	0,00 a	0,12 b	0,24 a
	PB	0,01 b	0,04 b	0,01 a	0,00 a	0,01 a	0.00 a	0,06 b	0,18 b
R2	PBL	0,09 a	0,11 ab	0,00 a	0,01 a	0,00 a	0,00 a	0,21 a	0,43 a
	PBV	0,05 ab	0,13 a	0,00 a	0,01 a	0,01 a	0,00 a	0,19 a	0,46 a
	PB	0,06 a	0.05 b	0,01 a	0,00 a	0,00 a	0,00 a	0,11 b	0,21 b
R3	PBL	0,08 a	0,10 ab	0,03 a	0,02 a	0,00 a	0,01 a	0,24 a	0,76 a
	PBV	0,12 a	0,15 a	0,02 a	0,03 a	0,02 a	0,00 a	0,34 a	0,87 a
	PB	0,05 b	0,09 a	0,02 a	0,00 a	0,01 a	0,01 a	0,17 b	0,42 b
R4	PBL	0,08 b	0,11 a	0,04 a	0,02 a	0,00 a	0,03 a	0,27 ab	
	PBV	0,17 a	0,10 a	0,03 a	0,02 a	0,01 a	0,00 a	0,34 a	0,86 a
	PB	0,07 b	0,06 b	0,02 b	0,00 a	0,00 a	0.02 a	0,18 b	0,36 b
R5.1	PBL	0,19 a	0,19 ab	0,08 a	0,01 a	0,02 a	0,03 a	0,53 a	1,19 a
	PBV	0,13 ab	0,19 a	0,07 ab	0,02 a	0,01 a	0,05 a		1,16 a
	PB	0,07 b	0,10 b	0.05 b	0,01 a	0,01 a	0.04 a	0,28 b	0,52 b
R5.3	PBL	0,20 a	0,25 a	0,12 a	0,02 a	0,01 a	0,08 a	0,69 a	1,08 a
	PBV	0,18 a	0,22 a	0,07 ab	0,02 a	0,01 a	0,07 a	0,57 a	1,04 a
	PB	0.07 b	0,10 b	0,01 b	0,01 a	0,01 a	0,00 b	0,21 b	0,66 b
R5.5	PBL	0,10 ab	0,27 a	0,10 a	0,05 a	0,02 a	0,05 a	0,59 a	1,62 a
	PBV	0,19 a	0,29 a	0,08 a	0,05 a	0,01 a	0,05 a	0,69 a	1,88 a
	PB	0,09 ab	0,12 b	0,02 b	0,02 b	0,01 b	0,01 a	0,27 b	1,42 c
R6	PBL	0,11 a	0,31 a	0,06 ab	0,06 ab	0,05 a	0,03 a	0,63 a	3,39 b
	PBV	0,05 b	0,31 a	0,14 a	0,12 a	0,04 ab	0,03 a	0,69 a	4,60 a
	PB	0,11 b	0,36 b	0,04 b	0,01 b	0,02 a	0,06 a	0,60 b	3,56 b
R7.1	PBL	0,22 a	1,27 a	0,14 a	0,15 a	0.04 a	0,03 a	1,85 a	11,21 a
	PBV	0,24 a	1,08 a	0,11 a	0,14 a	0,05 a	0,08 a	1,71 a	11,49 a
	PB	0,27 b	1,03 c	0,05 b	0,10 a	0,04 b	0.04 a	1,53 b	5,99 b
R7.3	PBL	0,68 a	4,29 a	0,12 a	0,10 a	0,08 ab	0,09 a	5,34 a	19,44 a
	PBV	0,70 a	3,59 b	0,18 a	0,18 a	0,14 a	0,09 a		19,34 a
	PB		1,88 c	0.00 c	0,03 b	0,01 b	0,02 a	2,07 b	6,08 b
R8.2			4,53 a	0,07 b	0,10 a	0,05 b	0,03 a		15,46 a
	PBV	0,72 a	3,80 b	0,19 a	0,06 ab	0,21 a	0,03 a	5,01 a	15,06 a

Médias não seguidas de mesma letra diferem pelo teste t (bilateral) de *Student* para dados pareados, em nível de 5% de probabilidade (1) **PDIA**: *D. furcatus* adulto; **PPIA**: *P. guildinii* adulto; **PEDA**: *E. meditabunda* adulto; **PNEA**: *N. viridula* adulto; **PEUA**: *E. heros* adulto; **PACA**: *A. hilare* adulto; **PTA**: Total de percevejos adultos; **PT**: Total de percevejos (ninfas + adultos). (2) Estádios definidos no anexo B.

De maneira geral, o número de lagartas pequenas e grandes coletadas por meio dos três métodos de amostragem, houve menor discriminação entre as médias dos métodos, nos estádios fenológicos iniciais (V7 e V9) e finais (R7.1, R7.3 e R8.2) (Tabela 1). Essa menor diferenciação entre a capacidade de coleta dos métodos, está associada ao menor número de lagartas pequenas e grandes coletadas nesses estádios (≤ 0,83 e ≤ 0,21 lagartas m⁻²) respectivamente, o que dificulta a comparação dos mesmos. Entre os nove estádios fenológicos intermediários, em três deles (R3, R4 e R5.5) o número de lagartas pequenas coletadas não diferiu entre os métodos pano-de-batida vertical e pano-de-batida largo, porém em ambos, o número de lagartas coletadas foi superior ao método pano-de-batida. Nos demais seis momentos (V11, R1, R2, R5.1, R5.3 e R6) e no geral (todos os estádios fenológicos) o número de lagartas pequenas, coletadas por meio dos métodos de amostragem, foi decrescente na seguinte ordem: pano-de-batida vertical, pano-de-batida largo e pano-de-batida. Para lagartas grandes, em seis estádios fenológicos (V11, R1, R2, R3, R5.3 e R6) houve predominância do número de lagartas grandes coletadas não diferir entre os métodos pano-debatida vertical e pano-de-batida largo. Nos demais três momentos (R4, R5 e R5.5) e no geral (todos os estádios fenológicos) o número de lagartas grandes, coletadas por meio dos métodos de amostragem, foi decrescente na seguinte ordem: pano-de-batida vertical, pano-de-batida largo e pano-de-batida. Embora em trabalho realizado por Shepard et al. (1974) não tenham sido comparado os três métodos de amostragem utilizados nesse trabalho, os autores também verificaram que o pano-de-batida coletou menor número de lagartas pequenas comparado aos métodos da rede de varredura e de D-Vac.

O número total de lagartas (pequenas + grandes), os resultados, como esperado, são semelhantes ao número de lagartas pequenas e grandes (Tabela 1). Portanto, quanto ao número de lagartas, coletadas por meio dos métodos de amostragem, pode-se definir que foi decrescente na seguinte ordem: pano-de-batida vertical, pano-de-batida largo e pano-de-batida. Resultado semelhante foi observado por Guedes et al. (2006), que verificaram que o pano-de-batida vertical foi mais eficiente na coleta de *Anticarsia gemmatalis*, em relação ao pano-de-batida. A maior eficiência de coleta do pano-de-batida vertical, está relacionada à presença da superfície de batida entre as linhas de soja, impedindo que as lagartas desalojadas de uma linha prendam-se nas plantas da linha ao lado. Os autores salientam que em avaliações realizadas em estádios fenológicos mais avançados da cultura, a área foliar também pode interferir na capacidade de coleta dos métodos. Por outro lado, a baixa capacidade de coleta do pano-de-batida, pode ser explicada pela forma que é realizada a amostragem, ou seja, após acondicionar o pano-de-batida na entrelinha da cultura, ambas as fileiras são agitadas para a

queda das lagartas, com isto ocorre um entrelaçamento das folhas e assim, algumas lagartas não caem no pano de amostragem. Segundo Drees e Rice (1985) fatores como o tempo de amostragem, a utilização em locais com a presença de ervas daninhas e restos culturais entre as fileiras, dificultam a utilização do pano-de-batida e diminuem sua eficiência de coleta.

Comparações entre os métodos de coleta, com base nas amostragens realizadas até o estádio fenológico R2, foram dificultadas pela menor densidade populacional de percevejos (≤ 0,46 percevejos m⁻²) (Tabelas 2 e 3). Assim, com base nos estádios fenológicos com maior densidade populacional de percevejos (R3, R4, R5.1, R5.3, R5.5, R6, R7.1, R7.3 e R8.2) e no geral (para todos os estádios fenológicos), os resultados evidenciaram que os métodos de amostragem pano-de-batida vertical e pano-de-batida largo não diferenciam-se em relação ao número de percevejos ninfas, adultos e total (ninfas + adultos) coletados. Ainda, de maneira geral, esses dois métodos de amostragem são mais eficientes que o método pano-de-batida, devido a sua maior capacidade de coleta de percevejos. Resultado semelhante foi obtido por Massaro e Gamundi (2003), que verificaram que o pano-de-batida vertical coletou mais percevejos que o pano-de-batida e com diferenças mais acentuadas quando avaliado em espaçamentos menores. A maior extração de percevejos constatada, quando o pano é utilizado em apenas uma fileira de soja, é facilmente explicada pelo efeito do reduzido espaçamento e do maior porte das plantas. Assim, forma-se um emaranhado de massa foliar quando as plantas das duas fileiras adjacentes são curvadas e batidas sobre o pano, impedindo o total desalojamento dos percevejos para o pano. Outros trabalhos como Guedes et al. (2006), compararam o pano-de-batida e pano-de-batida vertical e verificaram maior eficiência de coleta de Piezodorus guildinii do pano-de-batida vertical no espaçamento de 0,40 m entre linhas. Em trabalho realizado por Corrêa-Ferreira e Pavão (2005) o pano-de-batida largo, foi mais eficiente na coleta de percevejos, em relação ao pano-de-batida, confirmando o encontrado nesse trabalho.

Procedimentos de amostragem adequados e que possam ser utilizados para quantificar a densidade populacional de todas as espécies de artrópodes encontrados na soja são inexistentes. Na prática, o método de amostragem a ser utilizado é determinado pela espécie a ser amostrada, pela precisão desejada, pelo custo de amostragem, pelo tempo necessário e pela reprodutibilidade de resultados (WADE et al., 2006). Nesse estudo, ficou evidenciado que há diferença entre os métodos de amostragem em relação à capacidade de coleta de lagartas e de percevejos, e que o método de amostragem pano-de-batida vertical deve ser o preferido pela sua maior eficácia para espécies e idades dos insetos-praga ou para distintos momentos da fenologia da cultura.

Considerando os resultados obtidos para lagartas e percevejos e a ordem de eficácia de amostragem dos métodos, é possível inferir que os métodos do pano-de-batida vertical e pano-de-batida largo, nessa ordem, são mais eficazes na amostragem de insetos-praga na cultura de soja. Entre os dois métodos mais eficazes, o pano-de-batida vertical foi ligeiramente mais eficiente, que somado a sua facilidade de uso (instalação, sacudida das plantas e contagem dos insetos) torna sua recomendação pelos órgãos de pesquisa e adoção pelos produtores mais fácil e adequado ao manejo de pragas de soja.

4.4 Conclusões

Na cultura de soja o número de lagartas coletadas por meio dos métodos de amostragem é decrescente na seguinte ordem: pano-de-batida vertical, pano-de-batida largo e pano-de-batida.

O número de percevejos coletados por meio dos métodos de amostragem pano-debatida vertical e o pano-de-batida largo são superiores ao pano-de-batida.

O pano-de-batida vertical é o mais eficiente para a coleta de lagartas e de percevejos na cultura de soja.

4.5 Referências

BELORTE, L. C. et al. Danos causados por percevejos (Hemiptera: Pentatomidae) em cinco cultivares de soja (*Glycine max* (L.) Merrill, 1917) no município de Araçatuba, SP. **Arquivos Instituto Biológico**, Campinas, v. 70, n. 2, p. 169-175, 2003.

BOYER, W. P.; DUMAS, B. A. Plant shaking methods for soybean insect survey in Arkansas. In:__. **Survey methods for some economic insects.** United State: Department of Agriculture, Agricultural Research Service, 1969. p. 92-94.

CORRÊA-FERREIRA, B. S.; PAVÃO, A. L. Monitoramento de percevejos da soja: maior eficiência no uso do pano-de-batida. In: REUNIÃO DE PESQUISA DE SOJA DA REGIÃO CENTRAL DO BRASIL, 27., 2005. **Anais...** Londrina: EMBRAPA-CNPSo, 2005. p. 152-153.

CORRÊA-FERREIRA, B. S. Suscetibilidade da soja a percevejos na fase anterior ao desenvolvimento das vagens. **Pesquisa Agropecuária Brasileira**, Brasília, v. 40, n. 11, p. 1067-1072, 2005.

CORRÊA-FERREIRA, B. S.; AZEVEDO, J. Soybean seed damage by different species of stink bugs. **Agriculture and Forest Entomology**, Londres, v. 4, n. 1, p. 145-150, 2002.

CRUZ, C. D. **Programa genes**: estatística experimental e matrizes. Viçosa: UFV, 2006. 285 p.

DREES, B. M.; RICE, M. E. The vertical beat sheet: a new device for sampling soybean insects. **Journal of Economic Entomology**, Lanham, v. 78, n. 6, p. 1507-1510, 1985.

GUEDES, J. V. C. et al. Capacidade de coleta de dois métodos de amostragem de insetospraga da soja em diferentes espaçamentos entre linhas. **Ciência Rural**, Santa Maria, v. 36, n. 4, p. 1299-1302, 2006.

MASSARO, R. A.; GAMUNDI, J. C. Control de insectos plaga en soja: del ojímetro...; al paño vertical! – 2003. INTA: EEA Oliveros, 2003.

REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 38., 2010, Cruz Alta. Indicações técnicas para a cultura da soja no Rio Grande do Sul e em Santa Catarina 2010/2011 e 2011/2012. Cruz Alta: Fundacep Fecotrigo, 2010. 168 p.

RITCHIE, S. W. et al. **How a soybean plant develops**. Ames: Iowa State University of Science And Technology Cooperative Extension Service. Special Report, 53, mar. 1982.

SHEPARD, M. et al. A comparison of three sampling methods for arthopods in soybeans. **Environmental Entomology**, Lanham, v. 3, n. 2, p. 227-232, 1974.

WADE, M. R. et al. Temporal variation in arthropod sampling effectiveness: the case for using the beat sheet method in cotton. **Entomologia Experimentalis et Applicata**, Amsterdam, v. 120, n. 2, p. 139-153, 2006.

HOFFMANN-CAMPO, C. B. et al. **Pragas da soja no Brasil e seu manejo integrado.** Londrina: EMBRAPA-CNPSo, 2000. 70 p. (Circular Técnico, 30).

5 CAPÍTULO II

TAMANHO DE AMOSTRA PARA A ESTIMAÇÃO DA MÉDIA DE LAGARTAS NA CULTURA DE SOJA

RESUMO

O objetivo desse trabalho foi determinar o tamanho amostral (número de pontos amostrados) para a estimativa do número de lagartas coletadas por três métodos de amostragem na cultura de soja. Para isso em área de 6,1 ha de soja, foi demarcado um gride de 154 pontos amostrais, espaçados de 20 × 20 m. Em cada um desses 154 pontos foram coletadas lagartas (pequenas, grandes e total), por meio dos métodos de amostragem pano-debatida, pano-de-batida largo e pano-de-batida vertical, em 14 estádios fenológicos da cultura de soja. Foram calculadas medidas de tendência central e de variabilidade. Após foi calculado o tamanho de amostra (número de pontos amostrados) para a estimação do número de lagartas em cada coleta e em cada método de amostragem utilizado. O tamanho de amostra diferiu entre as espécies, entre os tamanhos/idades das lagartas (pequenas e grandes) e entre os estádios da soja. Anticarsia gemmatalis pequena e grande, é necessário um número menor de pontos de amostragem em relação às espécies Pseudoplusia includens e Spodoptera eridania, independentemente do método de amostragem. Após o estádio V11 o tamanho de amostra diminuiu consideravelmente, atingindo os menores valores no estádio R4. O tamanho de amostra para lagartas é dependente do estádio fenológico, do tamanho da lagarta e da precisão desejada, e independente do método de amostragem. Nas fases críticas da cultura são necessários 15 pontos amostrais para quantificar a densidade populacional de lagartas em lavoura de soja, independente da sua área.

Palavras-chave: Amostragem. Dimensionamento de amostra. Precisão experimental. *Anticarsia gemmatalis*.

5 CHAPTER II

SAMPLE SIZE FOR ESTIMATING THE AVERAGE CATERPILLARS IN SOYBEAN

ABSTRACT

This study aimed to determine sample size (number of sampling points) to estimate the number of caterpillars collected by three sampling methods in a soybean crop. To do so in an area of 6.1 ha of soybeans a grid of 154 sampling points spaced 20 × 20 m from each other was marked. In each of these 154 points caterpillars (small, large and total) were collected by means of beating cloth, wide beating cloth and vertical beat sheet sampling on 14 different soybeans growth stages. Measurements of central tendency and variability were calculated. Afterwards sample size (number of sampling points) was calculated to estimate the number of caterpillars in each sample collection and sampling method used. The sample size differed between species, between the size / age of the caterpillars (small and large) and between soybean growth stages. For Anticarsia gemmatalis both small and large, a smaller number of sampling points is needed when compared to species such as Pseudoplusia includens and Spodoptera eridania, regardless of the sampling method. After the V11 stage, sample size decreased significantly, reaching the lowest values at stage R4. The sample size for caterpillars is dependent on the development stage and size of the caterpillar as well as the desired accuracy, and does not depend on the sampling method. Critical phases of culture 15 sampling points are needed to quantify the population density of caterpillars on soybean plants, regardless the area.

Key words: Sampling. Sample dimensioning. Experimental precision. *Anticarsia gemmatalis*.

5.1 Introdução

A soja é umas das principais culturas agrícolas do Brasil, sendo cultivada em praticamente todo território nacional, sob diferentes sistemas produtivos e níveis tecnológicos. Em termos mundiais, atualmente o Brasil participa com cerca de 28,6% e 32,8%, respectivamente, da produção e da exportação de soja em grão (USDA, 2011).

Existem fatores limitantes a produção de soja, e entre eles os problemas fitossanitários tem grande relevância. Dentro desses problemas destacam-se as lagartas desfolhadoras, que podem acarretar em prejuízos significativos a cultura, ocasionado pelo consumo de folhas. Acarretando em diminuição da área fotossinteticamente ativa e consequente diminuição da produção.

Entre as estratégias de manejo, o controle químico é o método mais usado para o controle de lagartas desfolhadoras. Em campo, nem sempre é considerado o momento correto para a aplicação dos inseticidas. Além do momento correto, a não realização da amostragem também acarreta em não identificação das espécies de lagartas que estão ocorrendo na lavoura. Podendo acarretar em uso inadequado de inseticida.

Portanto, utilizar os princípios do manejo integrado de pragas, significa considerar diversos fatores, entre eles o monitoramento dessa população de lagartas. A amostragem da população de lagartas é fundamental para a tomada de decisão, pois informa o momento em que a população alcança os níveis nos quais a pesquisa preconiza executar o controle. É importante saber quantos pontos amostrais são necessários para quantificar com precisão população de lagartas em uma lavoura de soja, pois o número de pontos amostrais deve indicar a quantidade real dos insetos-praga na lavoura. Assim, o objetivo desse trabalho foi determinar o tamanho amostral (número de pontos amostrados) para a estimativa do número de lagartas coletadas por três métodos de amostragem na cultura de soja.

5.2 Material e métodos

O experimento foi conduzido em área de 6,1 ha de soja, localizada no Departamento de Defesa Fitossanitária da Universidade Federal de Santa Maria, no Município de Santa

Maria, Estado do Rio Grande do Sul. O solo do local pertence à unidade de mapeamento São Pedro, classificado como ARGISSOLO VERMELHO Distrófico arênico pelo Sistema Brasileiro de Classificação de Solos (EMBRAPA, 1999). As coordenadas geográficas do local são: latitude, 29°42'24"S; longitude, 53°48'42"W; e altitude, 95 m.

A cultivar de soja BMX Potência RR, foi semeada no dia 29 de outubro de 2010, em linhas espaçadas a 0,5 m, com densidade de 25 plantas m⁻². As sementes foram previamente tratadas com o inseticida imidacloprido + tiodicarbe (150 + 450 g L⁻¹), na dose de 300 mL por 100 kg⁻¹, e com a mistura comercial dos fungicidas carbendazim + thiram (150 + 350 g L⁻¹), na dose de 200 mL por 100 kg⁻¹ de sementes e homogeneizadas utilizando um tambor rotativo com eixo excêntrico.

A adubação de base foi de 300 kg ha⁻¹ de NPK da fórmula 02-25-25. O controle de plantas daninhas e doenças foram realizados de acordo com as recomendações da pesquisa para a cultura (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). No caso de inseticidas, foi realizada uma aplicação de metomil (500 mL ha⁻¹) para o controle de lagartas no dia 03 de fevereiro de 2011, em função da desfolha ter atingido o nível de controle.

Sobre a cultura foi demarcado um gride de 154 pontos amostrais (Anexo A), espaçados de 20 × 20 m. Em cada um desses 154 pontos foram coletadas lagartas, por meio dos métodos de amostragem pano-de-batida, pano-de-batida largo e pano-de-batida vertical, em 14 estádios fenológicos da cultura de soja (V7, V9, V11, R1, R2, R3, R4, R5.1, R5.3, R5.5, R6, R7.1, R7.3 e R8.2), utilizando a escala proposta por Ritchie et al. (1982) (Anexo B). Os três métodos de amostragem e a forma de coleta foram os seguintes:

Pano-de-batida: constituído de dois bastões de madeira ligados entre si por um tecido branco, com comprimento de 1 m e largura ajustável ao espaçamento entre linhas. Para a coleta dos insetos-praga o pano foi desenrolado sobre o solo, entre as fileiras de soja. Posteriormente, as plantas das duas fileiras (área = 1 m²) foram sacudidas, vigorosamente, a fim de derrubar os insetos-praga sobre o pano.

Pano-de-batida largo: constituído de dois bastões de madeira ligados entre si por um tecido branco, com comprimento de 1 m e largura de 1,4 m. Para as coletas, uma extremidade do pano foi colocada entre as fileiras de soja, sendo ajustada à base das plantas de uma linha e a outra estendida sobre as plantas da linha adjacente. As plantas de uma fileira (área = 0.5 m^2) foram sacudidas, vigorosamente, a fim de derrubar os insetos-praga sobre o pano. Esse procedimento foi realizado em dois metros de linha de soja, a fim de amostrar 1 m² de área.

Pano-de-batida vertical: constituído de um bastão de madeira, na extremidade superior, e um tubo de policloreto de polivinila (100 mm), cortado ao meio longitudinalmente,

na extremidade inferior, ligados entre si por um tecido branco, com comprimento de 1 m e com altura ajustável a estatura das plantas de soja. O tubo de policloreto de polivinila serviu de calha coletora dos insetos-praga. Para a coleta dos insetos, o pano foi colocado verticalmente na entre linha da cultura, e as plantas de apenas uma fileira eram sacudidas contra a superfície do pano. Esse procedimento foi realizado em dois metros de linha de soja, a fim de amostrar 1 m² de área.

Em cada uma das 6.468 coletas, de 1 m² de área, formadas pela combinação de 3 métodos de amostragem × 154 pontos × 14 estádios fenológicos foi contado o número de lagartas pequenas (≤ 1,5 cm) e grandes (> 1,5 cm) da espécie *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania*.

Em relação aos dados do número de lagartas, em cada coleta e método, foram calculadas medidas de tendência central (mínimo, máximo, média e mediana) e de variabilidade (variância, desvio padrão e coeficiente de variação).

Foi calculado o tamanho de amostra (número de pontos amostrais) para a estimação da densidade populacional de lagartas em cada coleta, espécie avaliada e método de amostragem. Nesses cálculos, foram consideradas as semiamplitudes do intervalo de confiança (erro de estimação) iguais a 10, 20, 30, 40 e 50% da média, com grau de confiança (1- α) de 95%. A expressão utilizada foi $n = \frac{t_{\alpha/2}^2 \text{ s}^2}{\text{e}^2}$ (FONSECA; MARTINS, 1995; BARBETTA et al., 2004; BUSSAB; MORETTIN, 2004; SPIEGEL et al., 2004), na qual e - é a semiamplitude do intervalo de confiança (fixado em 10, 20, 30, 40 e 50% da média); $t_{\alpha/2}$ - valor da distribuição t de Student, cuja área à direita é igual a $\alpha/2$, isto é, é o valor de t, tal que: P(t> $t_{\alpha/2}$)= $\alpha/2$, com (n-1) graus de liberdade, com α =5% de probabilidade de erro; n - número de amostra de cada método de amostragem e s² é a variância amostral.

5.3 Resultados e discussão

Em relação ao coeficiente de variação, foram observados valores elevados. Para a população coletada de *Anticarsia gemmatalis* (pequena e grande). O coeficiente de variação oscilou em função da variação da população das lagartas (Tabelas 1 e 2). Quando observada menor densidade populacional de lagartas, o coeficiente de variação chegou a valores de 711,77%. Esses valores elevados de coeficiente de variação são diretamente proporcionais à

média da densidade populacional observada. Em trabalho realizado por Storck et al. (2010), os autores verificaram elevados valores de coeficientes de variação com valores baixos de produção de grãos. Sendo que o mesmo autor recomenda não descartar ensaios apenas por apresentar coeficiente de variação muito alto.

Quando a densidade populacional de lagartas foi mais elevada (R3 e R4), o coeficiente de variação foi de 44,39%, portanto mais baixo (Tabela 2). Segundo Gomes (1990), quanto maior o coeficiente de variação, menor é a precisão do experimento. Assim os experimentos podem ser classificados quanto ao coeficiente de variação em: (inferior a 10%, entre 10 e 20%, entre 20 e 30% e superiores a 30%) que de acordo com a precisão experimental resulta em alta, média, baixa e muito baixa precisão, respectivamente. Quando se trabalha com insetos-praga, normalmente encontram-se coeficientes de variação mais elevados e não necessariamente com precisão experimental reduzida. Em trabalho realizado por Cargnelutti Filho et al. (2011) a ausência de corós nas trincheiras contribuiu para originar elevados coeficientes de variação.

Tabela 1 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas pequenas da espécie *Anticarsia gemmatalis* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

E-44.1: -(1)				Pano-de-batid	a		
Estádio ⁽¹⁾ –	min	max	m	med	s^2	S	CV(%)
V7	0	3	0,25	0	0,29	0,54	214,44
V9	0	4	0,19	0	0,30	0,55	289,71
V11	0	4	0,81	0	1,05	1,02	127,06
R1	0	9	1,23	1	2,81	1,68	135,81
R2	0	10	1,69	1	4,55	2,13	125,91
R3	0	29	7,66	7	19,87	4,46	58,18
R4	0	35	10,13	9,5	43,04	6,56	64,77
R5.1	0	9	1,01	1	1,75	1,32	131,25
R5.3	0	4	0,32	0	0,56	0,75	234,82
R5.5	0	5	0,51	0	0,76	0,87	172,28
R6	Ö	2	0,06	Ö	0,07	0,26	447,70
R7.1	Ö	$\bar{0}$	0,000	Ö	0,00	0,00	0,00
R7.3	Ö	Ö	0,000	Ö	0,00	0,00	0,00
R8.2	ŏ	ő	0,000	Õ	0,00	0,00	0,00
				no-de-batida l		0,00	0,00
Estádio –	min	max	m	med	s^2	S	CV(%)
V7	0	3	0,27	0	0,31	0,56	210,57
V9	0	2	0,30	0	0,32	0,56	188,02
V11	0	12	0,93	0	2,89	1,70	183,09
R1	0	11	2,88	2	6,39	2,53	87,69
R2	0	16	3,82	3	11,13	3,34	87,38
R3	2	55	19,99	18	151,14	12,29	61,51
R4	0	84	22,44	19	183,49	13,55	60,38
R5.1	0	16	2,47	2	6,77	2,60	105,20
R5.3	0	9	0,60	0	1,76	1,33	221,97
R5.5	0	6	0,88	1	1,43	1,20	136,37
R6	0	2	0,13	0	0,17	0,41	313,75
R7.1	0	0	0,000	0	0,00	0,00	0,00
R7.3	0	0	0,000	0	0,00	0,00	0,00
R8.2	0	0	0,000	0	0,00	0,00	0,00
Estádio -			Par	o-de-batida ve	rtical	·	·
Estadio	min	max	m	med	s ²	S	CV(%)
V7	0	2	0,10	0	0,10	0,32	327,19
V9	0	4	0,19	0	0,28	0,53	283,28
V11	0	10	1,93	1,5	3,74	1,93	100,28
R1	0	18	4,17	3	10,72	3,27	78,53
R2	0	21	6,16	5	21,90	4,68	75,94
R3	0	57	20,81	19	170,07	13,04	62,68
R4	3	61	22,41	20	109,08	10,44	46,61
R5.1	0	12	2,82	2	6,68	2,58	91,51
R5.3	0	9	0,79	0	2,12	1,46	185,19
R5.5	0	6	0,88	0	1,62	1,27	144,14
R6	0	4	0,17	0	0,36	0,60	357,09
R7.1	0	0	0,000	0	0,00	0,00	0,00
R7.3	0	0	0,000	0	0,00	0,00	0,00
R8.2	0	0	0,000	0	0,00	0,00	0,00
1 Definides no enevo	D		•		•	•	•

¹Definidos no anexo B

Tabela 2 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas grandes da espécie *Anticarsia gemmatalis* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾ —				Pano-de-bati	da		
Estaulo	min	max	m	med	s ²	S	CV(%)
V7	0	1	0,03	0	0,03	0,18	547,67
V9	0	2	0,13	0	0,14	0,37	287,99
V11	0	4	0,47	0	0,77	0,88	188,11
R1	0	4	0,51	0	0,66	0,81	160,01
R2	0	8	1,44	1	1,96	1,40	97,55
R3	0	19	3,06	2	8,69	2,95	96,17
R4	0	22	7,68	7	16,15	4,02	52,32
R5.1	0	9	1,29	1	2,44	1,56	120,97
R5.3	0	2	0,22	0	0,23	0,47	215,06
R5.5	0	1	0,02	0	0,02	0,14	711,77
R6	0	0	0,00	0	0,00	0,00	0,00
R7.1	0	Õ	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Estádio —				ano-de-batida	largo	-,	- ,
Estaulo	min	max	m	med	s ²	S	CV(%)
V7	0	2	0,08	0	0,09	0,29	375,01
V9	0	2 5	0,14	0	0,15	0,39	270,56
V11	0		0,45	0	0,58	0,76	169,35
R1	0	5	0,97	1	1,40	1,18	121,39
R2	0	19	3,27	2	14,97	3,87	118,45
R3	0	26	6,28	5	26,15	5,11	81,44
R4	1	42	16,14	15	74,80	8,65	53,60
R5.1	0	13	2,75	2	6,53	2,55	92,79
R5.3	0	3	0,58	0	0,62	0,79	136,75
R5.5	0	3	0,12	0	0,18	0,43	365,32
R6	0	1	0,03	0	0,03	0,18	547,67
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Estádio —			Pa	no-de-batida v	ertical		
	min	max	m	med	s ²	S	CV(%)
V7	0	1	0,04	0	0,04	0,19	498,28
V9	0	3	0,11	0	0,14	0,37	336,60
V11	0	5	0,88	0	1,46	1,21	136,98
R1	0	6	0,92	0	1,50	1,23	133,88
R2	0	13	2,61	2	6,74	2,60	99,43
R3	0	30	7,12	6	24,52	4,95	69,58
R4	4	49	22,38	21	98,68	9,93	44,39
R5.1	0	16	2,98	2	7,17	2,68	89,84
R5.3	0	3	0,55	0	0,65	0,81	148,35
R5.5	0	4	0,18	0	0,28	0,53	299,78
R6	0	1	0,03	0	0,03	0,18	547,67
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Definides no enevo P	•		,		,	.,	.,

Definidos no anexo B

Na amostragem de *Pseudoplusia includens* e *Spodoptera eridania* (Tabelas 3, 4, 5 e 6), os coeficientes de variação foram mais elevados em relação ao verificado para *A. gemmatalis*. Esse valor do coeficiente de variação oscilou entre 80,85 e 1240,97%. Isso se deve a menor presença dessas espécies na área amostrada.

O coeficiente de variação (Tabela 7), apresentou valores elevados no início e no final do ciclo da cultura (V7 e R6) e valores menores nas avaliações realizadas com maior população de lagartas. No momento em que a densidade populacional de insetos-praga aumenta há tendência de homogeneização dentro da lavoura. Assim diminui a variabilidade entre os pontos amostrais dentro da área, o que resulta em diminuição do coeficiente de variação. Em relação aos métodos de amostragem utilizados esse comportamento foi muito similar. Os panos-de-batida mais eficientes, com uma capacidade de coleta mais elevada resultaram em coeficiente de variação menores.

Nos 154 pontos amostrais, a média da densidade populacional de lagartas oscilou entre 0,00 e 49,86 lagartas m⁻². De maneira geral, a média de lagartas (pequenas, grandes e total) coletadas teve baixa incidência nos estádios fenológicos V7 a R1 (≤6,19 lagartas m⁻²) (Tabela 7). A partir de R2 a densidade populacional foi crescente, até atingir o pico populacional em R4 (49,86 lagartas m⁻²). Em R5.1 houve decréscimo da densidade populacional até o estádio R6, e a partir desse momento não encontrou-se mais lagartas. Verificou-se uma baixa população de lagartas no início do ciclo da cultura de soja, seguida de uma explosão populacional no período reprodutivo e, por fim, uma diminuição significativa da população de lagartas.

O período de maior infestação de lagartas ocorreu no estádio reprodutivo da cultura, sendo que nessa fase a cultura tolera um menor percentual de desfolha (15% de desfolha) (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). Nesse momento houve a necessidade de intervenção via controle químico, para que não comprometesse as avaliações subsequentes e também por ter atingido o nível de controle desses insetos.

Houve variabilidade entre os métodos de amostragem (pano-de-batida, pano-de-batida largo e pano-de-batida vertical) sendo que o maior valor médio coletado por cada método foi (20,31, 43,62 e 49,86 lagartas m⁻²) respectivamente (Tabela 7). Essa variabilidade é decorrente das diferenças de amostragem de cada método. Através dos resultados observados verificou-se diferenças significativas da eficiência de amostragem dos métodos.

Tabela 3 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas pequenas da espécie *Pseudoplusia includens* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾ —				Pano-de-bati	da		
Estadio	min	max	m	med	s ²	S	CV(%)
V7	0	2	0,04	0	0,05	0,23	578,27
V9	0	3	0,27	0	0,35	0,59	223,32
V11	0	3	0,30	0	0,37	0,61	203,01
R1	0	15	0,55	0	1,96	1,40	256,80
R2	0	7	0,68	0	1,28	1,13	165,75
R3	0	12	2,06	1	5,09	2,26	109,30
R4	0	8	0,92	0	2,93	1,71	186,87
R5.1	0	4	0,59	0	0,86	0,93	156,73
R5.3	0	6	0,60	0	0,99	0,99	166,32
R5.5	0	3	0,17	0	0,27	0,52	308,89
R6	0	1	0,04	0	0,04	0,19	498,28
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	Õ	Ö	0,00	Õ	0,00	0,00	0,00
				Pano-de-batida	largo		
Estádio —	min	max	m	med	s ²	S	CV(%)
V7	0	1	0,05	0	0,05	0,22	428,59
V9	0	3	0,25	0	0,32	0,56	228,46
V11	0	5	0,55	0	0,81	0,90	165,17
R1	0	6	0,57	0	0,87	0,93	163,60
R2	0	6	1,20	1	1,89	1,37	114,36
R3	0	23	4,77	4	18,93	4,35	91,27
R4	0	12	1,57	1	5,02	2,24	142,55
R5.1	0	7	1,31	1	1,89	1,37	104,79
R5.3	0	10	0,88	0	1,63	1,27	145,43
R5.5	0	11	0,82	0	3,10	1,76	215,33
R6	0	2	0,11	0	0,14	0,37	336,60
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Estádio —			Pa	ano-de-batida w	ertical		
	min	max	m	med	s ²	S	CV(%)
V7	0	2	0,09	0	0,11	0,33	363,71
V9	0	3	0,28	0	0,37	0,61	218,58
V11	0	3	0,44	0	0,67	0,82	184,89
R1	0	4	0,67	0	0,75	0,86	129,12
R2	0	12	1,95	1	5,40	2,32	119,24
R3	0	17	4,92	4	15,84	3,98	80,85
R4	0	10	1,55	1	3,01	1,73	112,22
R5.1	0	7	1,51	1	2,55	1,60	105,59
R5.3	0	17	1,26	0	4,83	2,20	174,53
R5.5	0	4	0,42	0	0,69	0,83	196,80
R6	0	7	0,29	0	0,72	0,85	296,00
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Definides no enevo P							-

¹Definidos no anexo B

Tabela 4 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas grandes da espécie *Pseudoplusia includens* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

E-441:-(1)	Pano-de-batida								
Estádio ⁽¹⁾	min	max	m	med	s^2	S	CV(%)		
V7	0	1	0,01	0	0,01	0,08	1240,97		
V9	0	1	0,06	0	0,06	0,24	402,70		
V11	0	4	0,22	0	0,38	0,62	280,06		
R1	0	3	0,20	0	0,32	0,56	280,44		
R2	0	4	0,43	0	0,56	0,75	174,65		
R3	Õ	6	0,66	0	1,01	1,01	153,35		
R4	0	6	0,91	0	1,61	1,27	139,69		
R5.1	Õ	4	0,38	0	0,55	0,74	193,86		
R5.3	0	5	0,61	0	0,85	0,92	151,38		
R5.5	0	2	0,15	0	0,17	0,41	273,70		
R6	Ö	1	0,03	Ö	0,03	0,16	614,37		
R7.1	ő	0	0,00	Ö	0,00	0,00	0,00		
R7.3	Ő	Ö	0,00	Ö	0,00	0,00	0,00		
R8.2	Ő	ő	0,00	ő	0,00	0,00	0,00		
	0			ano-de-batida la		0,00	0,00		
Estádio —	min	max	m	med	$\frac{\text{argo}}{\text{s}^2}$	S	CV(%)		
V7	0	1	0,04	0	0,04	0,19	498,28		
V9	0	2	0,05	0	0,06	0,25	481,80		
V11	0	2	0,07	0	0,09	0,30	426,72		
R1	0	2	0,08	0	0,09	0,29	375,01		
R2	Õ	3	0,44	0	0,46	0,68	153,16		
R3	0	10	1,86	1	3,88	1,97	105,74		
R4	0	26	2,28	1	9,86	3,14	137,79		
R5.1	0	6	1,08	1	1,62	1,27	117,38		
R5.3	Õ	5	1,08	1	1,30	1,14	105,82		
R5.5	Õ	3	0,25	0	0,29	0,54	218,86		
R6	Õ	3	0,10	0	0,15	0,39	402,70		
R7.1	Õ	0	0,00	0	0,00	0,00	0,00		
R7.3	Ö	Ö	0,00	Ö	0,00	0,00	0,00		
R8.2	ő	Õ	0,00	Ö	0,00	0,00	0,00		
				no-de-batida ve		0,00	0,00		
Estádio —	min	max	m	med	s ²	S	CV(%)		
V7	0	1	0,01	0	0,01	0,08	1240,97		
V9	Õ	2	0,07	0	0,08	0,28	395,56		
V11	0	2	0,14	0	0,13	0,36	266,04		
R1	Õ	$\frac{1}{2}$	0,15	0	0,18	0,42	284,20		
R2	Ö	- 6	0,58	Ö	1,10	1,05	181,08		
R3	Ö	18	2,40	1	9,95	3,16	131,32		
R4	ŏ	25	2,44	2	8,03	2,83	116,34		
R5.1	Ő	7	1,34	1	1,87	1,37	101,85		
R5.3	0	7	1,12	1	1,87	1,37	122,39		
R5.5	0	3	0,38	0	0,50	0,71	184,44		
R6	0	1	0,36	0	0,06	0,71	402,70		
R7.1	0	0	0,00	0	0,00	0,24	0,00		
R7.3	0	0	0,00	0	0,00	0,00	0,00		
R8.2	0	0	0,00	0	0,00	0,00	0,00		
Definidos no anexo B	U	U	0,00	U	0,00	0,00	0,00		

¹Definidos no anexo B

Tabela 5 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas pequenas da espécie *Spodoptera eridania* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾ —				Pano-de-batic	da		
Estaulo	min	max	m	med	s^2	S	CV(%)
V7	0	4	0,08	0	0,16	0,40	468,22
V9	0	2	0,10	0	0,11	0,33	314,52
V11	0	2	0,10	0	0,13	0,36	366,89
R1	0	2	0,06	0	0,09	0,30	454,91
R2	0	7	0,25	0	0,57	0,75	297,97
R3	0	2	0,16	0	0,20	0,44	285,36
R4	0	3	0,25	0	0,33	0,58	233,11
R5.1	0	2	0,08	0	0,09	0,29	375,01
R5.3	0	1	0,03	0	0,03	0,18	547,67
R5.5	0	1	0,01	0	0,01	0,08	1240,97
R6	0	1	0,04	0	0,04	0,19	498,28
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Estádio —			Pa	ano-de-batida l	largo		·
Estadio	min	max	m	med	s ²	S	CV(%)
V7	0	3	0,08	0	0,12	0,34	405,22
V9	0	2	0,15	0	0,14	0,38	251,37
V11	0	3	0,10	0	0,15	0,39	402,70
R1	0	7	0,32	0	1,09	1,05	328,75
R2	0	10	0,53	0	1,73	1,31	249,93
R3	0	15	0,76	0	3,23	1,80	236,54
R4	0	7	0,45	0	0,92	0,96	213,56
R5.1	0	2	0,07	0	0,09	0,30	426,72
R5.3	0	3	0,10	0	0,13	0,36	366,89
R5.5	0	2	0,08	0	0,09	0,30	357,09
R6	0	2	0,03	0	0,04	0,21	651,12
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Estádio —			Par	no-de-batida ve	ertical		
	min	max	m	med	s ²	S	CV(%)
V7	0	2	0,06	0	0,09	0,30	454,91
V9	0	4	0,36	0	0,52	0,72	198,40
V11	0	3	0,19	0	0,25	0,50	263,04
R1	0	5	0,27	0	0,62	0,79	288,23
R2	0	11	0,94	0	3,08	1,76	187,71
R3	0	10	0,79	0	2,37	1,54	195,75
R4	0	7	0,38	0	0,96	0,98	259,51
R5.1	0	2	0,18	0	0,18	0,42	230,66
R5.3	0		0,09	0	0,11	0,33	363,71
R5.5	0	2 2 2	0,13	0	0,15	0,39	301,15
R6	0	2	0,06	0	0,08	0,29	488,58
R7.1	0	0	0,00	0	0,00	0,00	0,00
R7.3	0	0	0,00	0	0,00	0,00	0,00
R8.2	0	0	0,00	0	0,00	0,00	0,00
Definides no enevo P		•		•			

Definidos no anexo B

Tabela 6 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de lagartas grandes da espécie *Spodoptera eridania* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾ —	Pano-de-batida							
Estadio	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	1	0,02	0	0,02	0,14	711,77	
V11	0	1	0,02	0	0,02	0,14	711,77	
R1	0	1	0,01	0	0,01	0,11	874,62	
R2	0	4	0,14	0	0,23	0,48	334,12	
R3	0	4	0,23	0	0,40	0,63	277,93	
R4	0	4	0,42	0	0,76	0,87	205,91	
R5.1	0	1	0,05	0	0,05	0,22	428,59	
R5.3	0	3	0,06	0	0,11	0,34	518,60	
R5.5	0	1	0,01	0	0,01	0,08	1240,97	
R6	0	0	0,00	0	0,00	0,00	0,00	
R7.1	0	Õ	0,00	0	0,00	0,00	0,00	
R7.3	0	Ō	0,00	0	0,00	0,00	0,00	
R8.2	Ö	Õ	0,00	Ö	0,00	0,00	0,00	
				no-de-batida l				
Estádio —	min	max	m	med	s ²	S	CV(%)	
V7	0	1	0,01	0	0,01	0,08	1240,97	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	3	0,09	0	0,12	0,35	384,84	
R1	0	3	0,03	0	0,06	0,25	979,15	
R2	0	4	0,14	0	0,23	0,48	334,12	
R3	0	7	0,47	0	0,97	0,98	210,60	
R4	0	12	0,75	0	2,18	1,48	197,60	
R5.1	0	1	0,09	0	0,08	0,29	317,26	
R5.3	0	2	0,05	0	0,08	0,28	529,69	
R5.5	0	1	0,03	0	0,03	0,16	614,37	
R6	0	1	0,02	0	0,02	0,14	711,77	
R7.1	0	0	0,00	0	0,00	0,00	0,00	
R7.3	0	0	0,00	0	0,00	0,00	0,00	
R8.2	0	0	0,00	0	0,00	0,00	0,00	
Estádio —				o-de-batida ve	ertical		•	
Estaulo	min	max	m	med	s ²	S	CV(%)	
V7	0	1	0,01	0	0,01	0,08	1240,97	
V9	0	1	0,01	0	0,01	0,08	1240,97	
V11	0	3	0,07	0	0,11	0,33	455,75	
R1	0	1	0,02	0	0,02	0,14	711,77	
R2	0	2	0,10	0	0,11	0,33	314,52	
R3	0	9	0,49	0	1,43	1,20	242,15	
R4	0	9 5	0,71	0	1,12	1,06	148,19	
R5.1	0	3	0,21	0	0,27	0,52	244,30	
R5.3	0	2	0,06	0	0,07	0,27	419,45	
R5.5	0	2	0,03	0	0,06	0,24	740,24	
R6	0	1	0,01	0	0,01	0,11	874,62	
R7.1	0	0	0,00	0	0,00	0,00	0,00	
R7.3	Ö	Ŏ	0,00	Ö	0,00	0,00	0,00	
R8.2	Ö	ŏ	0,00	Ö	0,00	0,00	0,00	
Definides no enevo P			-,		- ,	- ,	-,,	

Definidos no anexo B

Tabela 7 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número total de lagartas das espécies *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

- (1) (1)	Pano-de-batida									
Estádio ⁽¹⁾ —	min	max	m	med	s ²	S	CV(%)			
V7	0	4	0,42	0	0,51	0,71	171,15			
V9	ŏ	5	0,77	Ö	1,00	1,00	130,76			
V11	Ö	8	1,91	1	2,91	1,70	89,30			
R1	ő	18	2,56	2	5,66	2,38	92,75			
R2	Ö	12	4,64	4	9,30	3,05	65,79			
R3	3	34	13,83	13	25,96	5,09	36,84			
R4	4	47	20,31	18,5	73,08	8,55	42,10			
R5.1	0	19	3,40	3	7,72	2,78	81,65			
R5.3	0	9	1,84	1	3,60	1,90	102,83			
R5.5	0	7	0,86	0	1,57	1,25	146,38			
R6	0	$\overset{\prime}{2}$		0		0,40				
			0,16		0,16		248,71			
R7.1	0	0	0,00	0	0,00	0,00	0,00			
R7.3	0	0	0,00	0	0,00	0,00	0,00			
R8.2	0	0	0,00	0	0,00	0,00	0,00			
Estádio —				ano-de-batida	largo 2		CVI(CI)			
X 1/2	min	max	<u>m</u>	med	s ²	<u>s</u>	CV(%)			
V7	0	3	0,53	0	0,60	0,78	147,75			
V9	0	5	0,89	1	1,13	1,06	119,57			
V11	0	15	2,18	2	5,06	2,25	103,15			
R1	0	15	4,85	4	9,89	3,15	64,84			
R2	1	32	9,40	7	45,13	6,72	71,50			
R3	11	70	34,12	32,5	157,99	12,57	36,84			
R4	10	108	43,62	42	306,21	17,50	40,12			
R5.1	0	23	7,79	7	22,82	4,78	61,36			
R5.3	0	15	3,28	3	6,96	2,64	80,46			
R5.5	0	13	2,17	2	5,98	2,45	112,79			
R6	0	5	0,42	0	0,66	0,81	193,03			
R7.1	0	0	0,00	0	0,00	0,00	0,00			
R7.3	0	0	0,00	0	0,00	0,00	0,00			
R8.2	0	0	0,00	0	0,00	0,00	0,00			
				no-de-batida v			•			
Estádio —	min	max	m	med	s^2	S	CV(%)			
V7	0	4	0,31	0	0,40	0,63	206,31			
V9	Ö	9	1,02	1	1,78	1,34	131,01			
V11	0	14	3,65	3	10,32	3,21	88,03			
R1	Ō	19	6,19	6	15,27	3,91	63,08			
R2	1	34	12,34	10	54,20	7,36	59,67			
R3	13	73	36,53	35	150,07	12,25	33,54			
R4	19	123	49,86	47	375,40	19,38	38,86			
R5.1	0	29	9,06	8	28,13	5,30	58,55			
R5.3	0	18	3,86	3	13,96	3,74	96,71			
R5.5	0	9	2,03	1	4,82	2,20	108,40			
		7								
R6	0		0,62	0	1,44	1,20	194,56			
R7.1	0	0	0,00	0	0,00	0,00	0,00			
R7.3	0	0	0,00	0	0,00	0,00	0,00			
R8.2 Definidos no anexo R	0	0	0,00	0	0,00	0,00	0,00			

¹Definidos no anexo B

Houve variação no número de pontos necessários para a estimação da média do número de lagartas de acordo com a espécie (grandes e pequenas) e o estádio de desenvolvimento da cultura. A espécie *A. gemmatalis* de tamanho pequenas necessita um menor número de pontos para estimar a sua população, em relação às espécies *P. includens* e *S. eridania*, independentemente do método de amostragem e do estágio fenológico da cultura (Tabelas 8 e 9). Nos estádios iniciais (V9 e V11) e final (R6) foi a espécie que necessitou um maior tamanho de amostra, determinado pela menor população de lagartas, e portanto é uma espécie/tamanho de maior dificuldade de quantificação na área (Tabelas 8 e 9).

Para as lagartas grandes, de *A. gemmatalis* exigiu menor tamanho de amostra em relação as demais espécies. Porém, como verificado com as lagartas pequenas nos estádios iniciais o tamanho de amostra foi elevado. Após o estádio V11 o tamanho de amostra diminuiu consideravelmente, atingindo os menores valores no estádio R4. Para *P. includens* verificou-se tamanho de amostra elevado nos estádios iniciais (V7, V9, V11 e R1) com valores acima de 650 pontos (erro de estimação de 20%) (Tabelas 8, 10 e 12). Apenas a partir de R2 verificou-se um decréscimo acentuado no tamanho de amostra, mantendo essa tendência até R5.1, no qual foi encontrado os menores valores de tamanho de amostra para essa espécie. Já *S. eridania*, em relação as demais espécies, exigiu tamanho de amostra elevado nos estádios (V9, V11, R1 e R2) sendo que após decresceu até chegar ao menor valor em R4 com 215 pontos (erro de estimação de 20%) (Tabela 12). Após o tamanho de amostra voltou a ficar elevado até o final das avaliações no ciclo da cultura.

O tamanho de amostra foi maior em V7, V9 e V11, baixando para aproximadamente 15 pontos amostrais (erro de estimação de 20%) no estágio reprodutivo da cultura. Entretanto, a partir de R5.3 o tamanho de amostra se elevou, ocasionado pela diminuição da densidade populacional de lagartas. Lúcio et al. (2009) estudando tamanho de amostra de ácaros em erva-mate, verificaram grande variação do número de amostras em decorrência da época de avaliação e nível de precisão considerado e também o grau de infestação da praga. Como esperado, as maiores infestações acarretaram tamanhos de amostras mais estáveis.

A baixa densidade populacional de lagartas da fase inicial, permitiu que o tamanho de amostra seja diminuído pelo maior erro de estimação da média tolerado. A densidade média de lagartas ficou abaixo de 6,19 lagartas m⁻², independente do método de amostragem (Tabela 7), ficando bem abaixo do nível de controle. Essa situação permitiu um erro de estimação maior (erro de estimação de 50%) e indicando que 10 pontos são suficientes para estimar a população de lagartas (valor médio do estádio R1 das tabelas 8, 10 e 12). Após o estádio R5.3, a densidade populacional de lagartas foi abaixo de 3,86 lagartas m⁻² (Tabela 7), e nesse caso o

tamanho de amostra foi de aproximadamente 15 pontos, para o mesmo erro de estimação (valor médio do estádio R5.3 das tabelas 9, 11 e 13).

Quando a população de lagartas está abaixo do nível de controle, não há necessidade de realizar vários pontos dentro da área para chegar a essa conclusão. Portanto, o tamanho de amostra pode ser menor. Na prática essa atitude, permite racionalizar o tempo e recurso de mão-de-obra para realizar a amostragem na lavoura. Porém com o aumento da densidade populacional de lagartas, ou seja, proximidade do nível de controle, é necessário uma precisão mais elevada, pois errar na estimativa nesse momento, pode acarretar em perdas de rendimento da cultura.

A determinação do tamanho ou número de pontos amostrais é necessária quando se elabora um plano de amostragem para o monitoramento de insetos-praga. A precisão está diretamente relacionada ao número de pontos amostrais. Cabe ao pesquisador e/ou produtor definir a precisão desejada para a quantificação da densidade populacional de lagartas na lavoura. Sendo que deve-se buscar tamanhos de amostras que permitam elevada precisão, com economia de tempo e recursos (SILVA, et al., 1998).

O tamanho de amostra maior para as lagartas grandes em relação as pequenas foi obtido para o pano-de-batida. Esse método necessitou de aproximadamente 43 pontos (erro de estimação de 20%) para quantificar o total de lagartas na fase inicial da cultura, com uma média de 4,64 lagartas m⁻². Quando a densidade populacional se elevou o tamanho de amostra diminuiu para 18 pontos (erro de estimação de 20%), com uma média de 20,31 lagartas m⁻² (Tabela 7). Após, com o decréscimo da população de lagartas, o tamanho de amostra se elevou novamente, chegando ao valor de 104 pontos, para o mesmo erro de estimação (Tabelas 8 e 9).

Tabela 8 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de lagartas pequenas e grandes de *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania* e total de lagartas, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida, nos estádios V7 a R4. Santa Maria, RS, 2011.

E-44 1 (1)	Erro de	Antico	ırsia	Pseudo	plusia	Spodoptera	eridania	Lagarta
Estádio ⁽¹⁾	estimação	Pequena	Grande	Pequena	Grande	Pequena	Grande	Total
	10%	1795	11707	13052	60106	8557	_	1144
	20%	449	2927	3263	15027	2140	-	286
V7	30%	200	1301	1451	6679	951	-	128
	40%	113	732	816	3757	535	-	72
	50%	72	469	523	2405	343	-	46
	Erro (%)	34,14	87,19	92,06	197,56	74,54	_	27,25
	10%	3276	3238	1947	6330	3861	19774	668
***	20%	819	810	487	1583	966	4944	167
V9	30%	364	360	217	704	429	2198	75
	40%	205	203	122	396	242	1236	42
	50%	132	130	78	254	155	791	27
	Erro (%)	46,12	45,85	35,55	64,11	50,07	113,31	20,82
	10%	631	1382	1609	3062	5254	19774	312
	20%	158	346	403	766	1314	4944	78
V11	30%	71	154	179	341	584	2198	35
	40%	40	87	101	192	329	1236	20
	50%	26	56	65	123	211	791	13
	Erro (%)	20,23	29,95	32,32	44,58	58,41	113,31	14,22
	10%	720	1000	2574	3070	8077	29857	336
5.4	20%	180	250	644	768	2020	7465	84
R1	30%	80	112	286	342	898	3318	38
	40%	45	63	161	192	505	1867	21
	50%	29	40	103	123	324	1195	14
	Erro (%)	21,62	25,47	40,88	44,65	72,42	139,24	14,77
	10%	619	372	1073	1191	3466	4358	169
D .0	20%	155	93	269	298	867	1090	43
R2	30%	69	42	120	133	386	485	19
	40%	39	24	68	75	217	273	11
	50%	25	15	43	48	139	175	7
	Erro (%)	20,04	15,53	26,39	27,80	47,44	53,19	10,47
	10%	133	361	467	918	3179	3015	53
D2	20%	34	91	117	230	795	754	14
R3	30%	15	41	52	102	354	335	6
	40%	9	23	30	58	199	189	4
	50%	6	15	19	37	128	121	3
	Erro (%)	9,26	15,31	17,40	24,41	45,43	44,25	5,86
	10% 20%	164	107	1363	762	2121	1655	70
R4	20% 30%	41	27	341	191	531	414	18
K4		19	12	152	85	236	184	8
	40% 50%	11	7	86	48	133	104	5
		7	5	55 20.75	31	85	67	3
-	Erro (%)	10,31	8,33	29,75	22,24	37,11	32,78	6,70

Tabela 9 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de lagartas pequenas e grandes de *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania* e total de lagartas, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	idio ⁽¹⁾ Erro de Anticarsia Pseudoplusia Spodoptera		eridania	Lagarta				
Estadio	estimação	Pequena	Grande	Pequena	Grande	Pequena	Grande	Total
	10%	673	572	959	1467	5489	7170	261
	20%	169	143	240	367	1373	1793	66
R5.1	30%	75	64	107	163	610	797	29
	40%	43	36	60	92	344	449	17
	50%	27	23	39	59	220	287	11
	Erro (%)	20,89	19,26	24,95	30,86	59,70	68,23	13,00
	10%	2153	1806	1080	895	11707	10497	413
	20%	539	452	270	224	2927	2625	104
R5.3	30%	240	201	120	100	1301	1167	46
	40%	135	113	68	56	732	657	26
	50%	87	73	44	36	469	420	17
	Erro (%)	37,38	34,24	26,48	24,10	87,19	82,56	16,37
	10%	1159	19774	3724	2924	60106	60106	837
	20%	290	4944	931	731	15027	15027	210
R5.5	30%	129	2198	414	325	6679	6679	93
	40%	73	1236	233	183	3757	3757	53
	50%	47	791	149	117	2405	2405	34
	Erro (%)	27,43	113,31	49,17	43,57	197,56	197,56	23,30
	10%	7823	-	9691	14732	9691	_	2415
	20%	1956	-	2423	3683	2423	-	604
R6	30%	870	-	1077	1637	1077	-	269
	40%	489	-	606	921	606	-	151
	50%	313	-	388	590	388	-	97
	Erro (%)	71,27	-	79,32	97,81	79,32	-	39,59
	10%	-	-	_	-	-	-	-
	20%	-	-	-	-	-	-	-
R7.1	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
	Erro (%)	-	-	-	-	-	-	-
	10%	-	-	-	-	-	_	-
	20%	-	-	-	-	-	-	-
R7.3	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
	Erro (%)	-		-	-	-	-	_
	10%	_	-	-	-	-	-	-
	20%	-	-	-	-	-	-	-
R8.2	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
	Erro (%)	-	-	-	-	-	-	_
Definides	an amaria D							

O pano-de-batida largo (Tabelas 10 e 11) resultou em tamanho de amostra mais elevado quando se considerou lagartas grandes em relação às pequenas. Esse método apresentou um tamanho de amostra, necessário para quantificar o total de lagartas, de aproximadamente 50 pontos (erro de estimação de 20%) na fase inicial da cultura, para uma média de 9,40 lagartas m⁻². Para densidade populacional maior, o tamanho de amostra diminuiu para 16 pontos (erro de estimação de 20%), para uma média de 43,62 lagartas m⁻². Após, com o decréscimo da população de lagartas, o tamanho de amostra novamente se elevou, chegando ao valor de 64 pontos (erro de estimação de 20%).

O tamanho de amostra para o pano-de-batida vertical (Tabelas 12 e 13), por sua vez, apresentou resultados similares aos demais métodos de amostragem. Para esse método o tamanho de amostra necessário para quantificar o total de lagartas foi de aproximadamente 35 pontos (erro de estimação de 20%) na fase inicial da cultura, com uma média de 12,34 lagartas m⁻². Quando a densidade populacional se elevou o tamanho de amostra caiu para 15 pontos (erro de estimação de 20%), com uma média de 49,86 lagartas m⁻². Após com o decréscimo da população de lagartas, o tamanho de amostra se elevou novamente, chegando ao valor de 92 pontos (erro de estimação de 20%).

A variação do tamanho de amostra em relação aos diferentes métodos de amostragem é ocasionada pela capacidade de coleta diferenciada dos métodos; por aspectos de arquitetura das plantas, pela diferença nos insetos-praga coletados e pelas características de cada método de amostragem sugerem essas diferenças de capacidade de coleta. Porém não se refletindo totalmente no tamanho de amostra de cada método, sendo similar para os métodos testados.

Para estimar a média da densidade populacional de lagartas em uma área de 6,1 ha de soja, com precisão de 10% é necessário amostrar 60.106 pontos (Tabela 8). Esse tamanho de amostra é impraticável, e menores tamanhos de amostras foram determinados com base em semiamplitudes do intervalo de confiança iguais a 20, 30, 40 e 50% da média. O número de unidades amostrais é dependente do grau de precisão requerido, o qual, varia com o objetivo da pesquisa: dinâmica populacional, prejuízos às culturas, níveis de dano econômico e controle de pragas (SILVA; COSTA, 1998). Para avaliar a dinâmica populacional é aceito um erro de 10% da média, enquanto que para os demais objetivos de levantamentos o erro aceitável pode ser de 25% (CHURCH; STRICKLAND, 1954).

O erro máximo aceitável, é discutível ficando para o usuário da informação optar pela precisão desejada, de acordo com a disponibilidade de tempo e de mão-de-obra. Em trabalho realizado por Cargnelutti Filho et al. (2011) os autores mencionam que no dimensionamento de amostra para a estimação da população de corós, o número de amostra foi muito elevado e

de difícil execução, quando se busca uma alta precisão. Tamanho de amostra elevado tende a aumentar o tempo e os custos da amostragem e amostras muito pequenas podem resultar em menor precisão, o que também e indesejável (SILVA, et al., 1998).

Tabela 10 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de lagartas pequenas e grandes de *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania* e total de lagartas, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida largo, nos estádios V7 a R4. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de	Antica		Pseudoj		Spodoptera		Lagarta
Estadio	estimação	Pequena	Grande	Pequena	Grande	Pequena	Grande	Total
	10%	1731	5489	7170	9691	6409	60106	852
	20%	433	1373	1793	2423	1603	15027	213
V7	30%	193	610	797	1077	713	6679	95
	40%	109	344	449	606	401	3757	54
	50%	70	220	287	388	257	2405	35
	Erro (%)	33,52	59,70	68,23	79,32	64,51	197,56	23,52
	10%	1380	2858	2038	9061	2467	-	559
¥.70	20%	345	715	510	2266	617	-	140
V9	30%	154	318	227	1007	275	-	63
	40%	87	179	128	567	155	-	35
	50%	56	115	82	363	99	-	23
	Erro (%)	29,93	43,07	36,37	76,70	40,02	_	19,04
	10%	1309	1120	1065	7107	6330	5781	416
****	20%	328	280	267	1777	1583	1446	104
V11	30%	146	125	119	790	704	643	47
	40%	82	70	67	445	396	362	26
	50%	53	45	43	285	254	232	17
	Erro (%)	29,15	26,96	26,29	67,93	64,11	61,27	16,42
	10%	301	576	1045	5489	4219	37419	165
D.1	20%	76	144	262	1373	1055	9355	42
R1	30%	34	64	117	610	469	4158	19
	40%	19	36	66	344	264	2339	11
	50%	13	24	42	220	169	1497	7
	Erro (%)	13,96	19,33	26,04	59,70	52,34	155,88	10,32
	10%	298	548	511	916	2438	4358	200
D2	20%	75	137	128	229	610	1090	50
R2	30% 40%	34	61	57	102	271	485	23
	40% 50%	19	35	32	58	153	273	13
		12	22	21	37	98	175	8
	Erro (%) 10%	13,91	18,86	18,21	24,38	39,79	53,19	
	20%	148	259	326	437	2184	1732	53
R3	30%	37	65	82	110	546	433	14
K3	40%	17	29	37	49	243	193	6
	50%	10	17	21	28	137	109	4
	Erro (%)	6 9,79	11 12,96	14	18	88	70	3
	10%		12,96	14,53 794	16,83 741	37,66 1781	33,53 1524	5,86
	20%	143 36	113 29	794 199	186	1781 446	381	63 16
R4	30%	30 16	13	89	83	440 198	170	7
INΤ	40%	16 9	8	89 50	83 47	198	96	4
	50%	6	8 5	30	30	72	96 61	3
	Erro (%)	9,61	8,53	22,69	21,94	34,00	31,46	_
¹ Definides r	` /	9,01	0,33	22,09	21,94	34,00	31,40	0,39

Tabela 11 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de lagartas pequenas e grandes de *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania* e total de lagartas, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida largo, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de			eridania	Lagarta			
Estadio	estimação	Pequena	Grande	Pequena	Grande	Pequena	Grande	Total
	10%	432	337	429	538	7107	3929	147
	20%	108	85	108	135	1777	983	37
R5.1	30%	48	38	48	60	790	437	17
	40%	27	22	27	34	445	246	10
	50%	18	14	18	22	285	158	6
	Erro (%)	16,75	14,77	16,68	18,69	67,93	50,51	9,77
	10%	1924	730	826	438	5254	10951	253
	20%	481	183	207	110	1314	2738	64
R5.3	30%	214	82	92	49	584	1217	29
	40%	121	46	52	28	329	685	16
	50%	77	30	34	18	211	439	11
	Erro (%)	35,34	21,77	23,15	16,85	58,41	84,33	12,81
	10%	726	5209	1810	1870	4977	14732	497
	20%	182	1303	453	468	1245	3683	125
R5.5	30%	81	579	202	208	553	1637	56
	40%	46	326	114	117	312	921	32
	50%	30	209	73	75	200	590	20
	Erro (%)	21,71	58,16	34,28	34,84	56,85	97,81	17,96
	10%	3843	11707	4422	6330	16547	19774	1455
	20%	961	2927	1106	1583	4137	4944	364
R6	30%	427	1301	492	704	1839	2198	162
	40%	241	732	277	396	1035	1236	91
	50%	154	469	177	254	662	791	59
***************************************	Erro (%)	49,95	87,19	53,59	64,11	103,66	113,31	30,73
	10%	-	-	-	-	-	-	-
5-4	20%	-	-	-	-	-	-	-
R7.1	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
	Erro (%)	-	-	-	_	-	-	-
	10%	-	-	-	-	-	-	-
D7.0	20%	-	-	-	-	-	-	-
R7.3	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
	Erro (%)	-	-	-	-	-	_	_
	10%	-	-	-	-	-	-	-
D.C. 2	20%	-	-	-	-	-	-	-
R8.2	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
1 Definides r	Erro (%)	-	-	-	-	-	-	

Tabela 12 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de lagartas pequenas e grandes de *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania* e total de lagartas, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida vertical, nos estádios V7 a R4. Santa Maria, RS, 2011.

Estádio ⁽¹⁾			ırsia	Pseudop		Spodoptera		Lagarta
Estadio	estimação	Pequena	Grande	Pequena	Grande	Pequena	Grande	Total
	10%	4179	9691	5164	60106	8077	60106	1662
	20%	1045	2423	1291	15027	2020	15027	416
V7	30%	465	1077	574	6679	898	6679	185
	40%	262	606	323	3757	505	3757	104
	50%	168	388	207	2405	324	2405	67
	Erro (%)	52,09	79,32	57,90	197,56	72,42	197,56	32,84
	10%	3133	4422	1865	6107	1537	60106	670
170	20%	784	1106	467	1527	385	15027	168
V9	30%	349	492	208	679	171	6679	75
	40%	196	277	117	382	97	3757	42
	50%	126	177	75	245	62	2405	27
	Erro (%)	45,10	53,59		62,97	31,58	197,56	20,86
	10%	393	733	1335	2763	2701	8107	303
3 711	20%	99	184	334	691	676	2027	76
V11	30%	44	82	149	307	301	901	34
	40% 50%	25	46	84	173	169	507	19
		16	30	54	111	109	325	13
	Erro (%) 10%	15,96	21,81	29,43	42,35	41,87	72,56	14,01
	20%	241	700	651	3153	3243	19774	156
R1	30%	61	175	163	789 251	811	4944	39
KI	30% 40%	27	78	73	351	361	2198	18
	50%	16	44	41	198	203	1236	10
	Erro (%)	10	28	27	127	130	791	7
	10%	12,50	21,31	20,56	45,24	45,89	113,31	10,04
	20%	226	386	555 139	1280	1376 344	3861	139
R2	30%	57 26	97 42		320 143		966	35
K2	40%	26 15	43 25	62 35	80	153 86	429 242	16 9
	50%	10	23 16	23	52	56	155	6
	Erro (%)	12,09	15,83	18,98	28,83	29,88	50,07	9,50
	10%	154	189	256	674	1496	2289	9,50 44
	20%	39	48	230 64	169	374	573	11
R3	30%	18	21	29	75	167	255	5
110	40%	10	12	16	43	94	144	3
	50%	7	8	11	27	60	92	2
	Erro (%)	9,98	11,08	12,87	20,91	31,16	38,55	5,34
	10%	95 85	77	492	529	2629	858	<u>5,57</u> 59
	20%	22	20	123	133	658	215	15
R4	30%	10	9	55	59	293	96	7
	40%	6	5	31	34	165	54	4
	50%	4	4	20	22	105	35	3
	Erro (%)	7,42	7,07	17,86	18,52	41,31	23,59	6,19
Definides r	` /	/, τΔ	7,07	17,00	10,52	71,01	23,37	0,17

Tabela 13 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de lagartas pequenas e grandes de *Anticarsia gemmatalis*, *Pseudoplusia includens* e *Spodoptera eridania* e total de lagartas, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida vertical, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

E-441: (1)	requent of the order of the ord		eridania	Lagarta				
Estádio ⁽¹⁾			Grande			Pequena	Grande	Total
	10%	327	315	436	405	2077	2330	134
	20%	82	79	109	102	520	583	34
R5.1	30%	37	35	49	45	231	259	15
	40%	21	20	28	26	130	146	9
	50%	14	13	18	17	84	94	6
	Erro (%)	14,57	14,30	16,81	16,21	36,72	38,89	9,32
	10%	1339	859	1189	585	5164	6867	366
	20%	335	215	298	147	1291	1717	92
R5.3	30%	149	96	133	65	574	763	41
	40%	84	54	75	37	323	430	23
	50%	54	35	48	24	207	275	15
	Erro (%)	29,48	23,62	27,79	19,48	57,90	66,78	15,40
	10%	811	3508	1512	1328	3540	21387	459
	20%	203	877	378	332	885	5347	115
R5.5	30%	91	390	168	148	394	2377	51
	40%	51	220	95	83	222	1337	29
	50%	33	141	61	54	142	856	19
	Erro (%)	22,95	47,72	31,33	29,36	47,94	117,84	17,26
	10%	4977	11707	3420	6330	9317	29857	1478
	20%	1245	2927	855	1583	2330	7465	370
R6	30%	553	1301	380	704	1036	3318	165
	40%	312	732	214	396	583	1867	93
	50%	200	469	137	254	373	1195	60
	Erro (%)	56,85	87,19	47,12	64,11	77,78	139,24	30,97
	10%	-	-	-	-	-	-	-
	20%	-	-	-	-	-	-	-
R7.1	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
	Erro (%)	_	_	-	_	_	-	_
	10%	-	-	-	-	-	-	-
D7.0	20%	-	-	-	-	-	-	-
R7.3	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
	Erro (%)	_	_	_	-	_	-	-
	10%	-	-	-	-	-	-	-
D.C. 2	20%	-	-	-	-	-	-	-
R8.2	30%	-	-	-	-	-	-	-
	40%	-	-	-	-	-	-	-
	50%	-	-	-	-	-	-	-
1	Erro (%)	-	-	-	-	-	-	-

¹Definidos no anexo B

O tamanho de amostra é proporcional a variabilidade dos dados populacionais, e inversamente proporcional ao erro permitido, pois se aceito um erro maior, o tamanho de amostra é menor (CARGNELUTTI FILHO et al., 2009). Assim, como pode ser verificado nas tabelas os valores de tamanho de amostra são variáveis de acordo com o grau de confiança desejada na estimativa da população (COSTA, et al., 1988). O erro permitido pode ser fixado a *priori* pelo pesquisador (CARGNELUTTI FILHO et al., 2009).

Na tomada de decisão do manejo de lagartas desfolhadoras da soja, como se considera o total de lagartas e não as espécies em separado, pode se adotar o tamanho de amostra, obtido a partir do total de lagartas presentes em uma área, média da espécie de maior ocorrência na área. Possivelmente o tamanho de amostra foi influenciado pela densidade populacional de lagartas presentes na área. *S. eridania* ocorreu de forma muito discreta e acarretou em valores de tamanho de amostra elevados. Quando se considera o tamanho de amostra das espécies de lagartas desfolhadoras (*A. gemmatalis*, *P. includens* e *S. eridania*) sem considerar tamanho, o que se verifica é tamanho de amostras variando de 416 pontos (erro de estimação de 20%) no início do período de avaliação (V7) até valores de 15 pontos (erro de estimação de 20%) em R4, no pico populacional de lagartas da soja.

Considerando o contexto geral, pode-se recomendar um valor único de tamanho de amostra, que abrange todas as situações encontradas nesse trabalho. Nesse caso 15 pontos amostrais (erro de estimação de 20%) são suficientes para quantificar a densidade populacional de lagartas em qualquer tamanho de área (valor médio dos estádios R3 e R4 e das tabelas 8, 10 e 12). Esse valor é mais elevado ao que é encontrado nas Indicações Técnicas para a Cultura da Soja no Rio Grande do Sul e em Santa Catarina que recomenda fazer 6 amostras para áreas de até 10 ha, 8 amostras para áreas de 11 a 30 ha e 10 amostras para áreas de 30 a 100 ha, para áreas superiores a 100 ha, recomenda-se subdividir em talhões de 100 ha (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). Observa-se a necessidade de realizar mais pontos amostrais, do que se encontra na literatura. A realização de um número menor de pontos amostrais pode subestimar a real densidade populacional de lagartas, podendo ocasionar em prejuízos a pessoa que utiliza essa informação.

Considerando o total de lagartas coletadas (pequenas e grandes) e sem levar em conta as espécies e métodos de amostragem, verificou-se valores elevados no tamanho de amostra nas fases iniciais e após decréscimo e após uma nova elevação no tamanho de amostra.

5.4 Conclusões

O tamanho de amostra para estimar a população de lagartas da soja é dependente do estádio fenológico, da espécie, do tamanho da lagarta e da precisão desejada, e independente do método de amostragem.

Nas fases mais críticas (densidade populacional elevada) da cultura, são necessários 15 pontos amostrais (erro de estimação de 20%) para quantificar a densidade populacional de lagartas em lavoura de soja.

5.5 Referências

BARBETTA, P. A. et al. **Estatística para cursos de engenharia e informática**. São Paulo: Atlas, 2004. 410 p.

BUSSAB, W. O.; MORETTIN, P. A. **Estatística básica**. 5.ed. São Paulo: Saraiva, 2004. 526 p.

CARGNELUTTI FILHO, A. et al. Dimensionamento de amostra na estimação da população de corós em áreas de campo nativo e de cultivo no Estado do Rio Grande do Sul. **Ciência Rural**, Santa Maria, v. 41, n. 8, p. 1300-1306, 2011.

CARGNELUTTI FILHO, A. et al. Tamanho de amostra de caracteres de genótipos de soja. **Ciência Rural**, Santa Maria, v. 39, n. 4, p. 983-991, 2009.

COSTA, E. C. et al. Plano de amostragem sequencial para percevejos em soja. **Anais da Sociedade Entomológica do Brasil**, Londrina, v. 17, n. supl., p. 51-59, 1988.

CHURCH, B. M.; STRICKLAND, A. H. Sampling cabbage aphid populations on brussels sprouts. **Plant Pathology**, Malden, v. 3, n. 3, p. 76-80, 1954.

EMBRAPA. Centro Nacional de Pesquisa de Solos. **Sistema Brasileiro de Classificação de Solos**. Rio de Janeiro: Embrapa Solos, 1999. 412 p.

FONSECA, J. S.; MARTINS, G. A. Curso de estatística. 5.ed. São Paulo: Atlas, 1995. 317 p.

GOMES, F. P. Curso de estatística experimental. 13.ed. São Paulo: Nobel 1990. 468 p.

LÚCIO, A. D. C. et al. Distribuição espacial e tamanho de amostra para o ácaro-do-bronzeado da erva-mate. **Revista Árvore**, Viçosa, v. 33, n. 1, p. 143-150, 2009.

REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 38., 2010, Cruz Alta. **Indicações técnicas para a cultura da soja no Rio Grande do Sul e em Santa Catarina 2010/2011 e 2011/2012**. Cruz Alta: Fundacep Fecotrigo, 2010. 168 p.

RITCHIE, S. W. et al. **How a soybean plant develops**. Ames: Iowa State University of Science And Technology Cooperative Extension Service. Special Report, 53, mar. 1982.

SILVA, J. da et al. Amostragem e tamanho da amostra na estimação de caracteres da espiga do milho. **Pesquisa Agropecuária Brasileira**, Brasília, v. 33, n. 12, p. 1983-1988, 1998.

SILVA, M. T. B.; COSTA, E. C. Tamanho e Número de Unidades de Amostra de Solo para Amostragem de Larvas de *Diloboderus abderus* (Sturm) (Coleoptera: Melolonthidae) em Plantio Direto. **Anais da Sociedade Entomológica do Brasil**, Londrina, v. 27, n. 2, p. 193-197, 1998.

SPIEGEL, R. A. et al. **Probabilidade e estatística**. 2.ed. Porto Alegre: Bookman, 2004. 398 p.

STORCK, L. et al. Avaliação da precisão experimental em ensaios de competição de cultivares de soja. **Ciência Agrotecnologia**, Lavras, v. 34, n. 3, p. 572-578, 2010.

USDA - UNITED STATES DEPARTMENT OF AGRICULTURE. Disponível em: http://www.fas.usda.gov/psdonline/psdQuery.aspx. Acesso em: 14 dez. 2011.

6 CAPÍTULO III

TAMANHO DE AMOSTRA PARA A ESTIMAÇÃO DA MÉDIA DE PERCEVEJOS NA CULTURA DE SOJA

RESUMO

O objetivo desse trabalho foi determinar o tamanho amostral (número de pontos amostrados) para a estimativa do número de percevejos coletados por três métodos de amostragem na cultura de soja. Para isso em área de 6,1 ha de soja, foi demarcado um gride de 154 pontos amostrais, espaçados de 20 × 20 m. Em cada um desses 154 pontos foram coletados percevejos (ninfas, adultos e total), por meio dos métodos de amostragem pano-debatida, pano-de-batida largo e pano-de-batida vertical, em 14 estádios fenológicos da cultura de soja. Foram calculadas medidas de tendência central e de variabilidade. Após foi calculado o tamanho de amostra (número de pontos amostrais) para a estimação do número de percevejos em cada coleta e em cada método de amostragem utilizado. O tamanho de amostra para estimar a população de percevejos é dependente do estádio fenológico, da espécie, da fase do percevejo, do método de amostragem utilizado e da precisão desejada. O tamanho de amostra difere entre os métodos de amostragem. Para a estimação da média do número de percevejos, 52 pontos amostrais (erro de estimação de 20%) são suficientes para o pano-debatida. Para o pano-de-batida largo e pano-de-batida vertical são necessários 27 pontos amostrais (erro de estimação de 20%) em uma lavoura de soja, independente da sua área.

Palavras-chave: Amostragem. Dimensionamento de amostra. Precisão experimental.

6 CHAPTER III

SAMPLE SIZE FOR ESTIMATING THE AVERAGE STINK BUGS IN SOYBEAN

ABSTRACT

This study aimed to determine sample size (number of sampling points) to estimate the number of stink bugs collected by three sampling methods in a soybean crop. To do so in an area of 6.1 ha of soybeans a grid of 154 sampling points spaced 20 × 20 m from each other was marked. In each of these 154 points stink bugs (nymphs, adults and total) were collected by means of beating cloth, wide beating cloth and vertical beat sheet sampling on 14 different soybeans growth stages. Measurements of central tendency and variability were calculated. Afterwards sample size (number of sampling points) was calculated to estimate the number of stink bugs in each sample collection and sampling method used. The sample size is dependent on the developmental stage, species, stage of the stink bug, the sampling method used and the desired accuracy. The sample size differs between the sampling methods. To estimate the average number of stink bugs, 52 sampling points (estimation error of 20%) are sufficient for the beating cloth. For the wide beating cloth and vertical beat sheet of 27 sampling points are necessary (estimation error of 20%) in a soybean crop.

Key words: Sampling. Sample dimensioning. Experimental precision.

6.1 Introdução

Dentre as limitações para o aumento da produtividade da cultura de soja estão os insetos-praga que sob condições favoráveis, podem ganhar importância e causar grandes perdas de rendimento e qualidade de grãos de soja.

Os percevejos são considerados um dos grupos de insetos-praga de maior importância na cultura de soja (PANIZZI; SLANSKY, 1985; CORRÊA-FERREIRA et al., 2009). São pragas de ampla distribuição nas lavouras do Brasil (CORRÊA-FERREIRA; PANIZZI, 1999; CORRÊA-FERREIRA et al., 2009), e se alimentarem dos grãos, reduzindo o seu peso e a sua qualidade, fazendo com que fiquem atrofiados e de menor qualidade (CORRÊA-FERREIRA; PANIZZI, 1999; BONATO, 2000).

Nas últimas safras, os percevejos têm se destacado pelo aumento das populações, constantes reinfestações e dificuldade no controle de algumas espécies, sendo necessário aprimorar estratégias de manejo. A amostragem das populações de percevejos se torna fundamental. Para realizar uma quantificação segura da população de percevejos, é necessário saber quantos pontos amostrais quantificam com precisão essa população, através de diferentes métodos de amostragem.

O objetivo desse trabalho foi determinar o tamanho amostral (número de pontos amostrais) para a estimativa do número de percevejos coletadas por três métodos de amostragem na cultura de soja.

6.2 Material e métodos

O experimento foi conduzido em área de 6,1 ha de soja, localizada no Departamento de Defesa Fitossanitária da Universidade Federal de Santa Maria, no Município de Santa Maria, Estado do Rio Grande do Sul. O solo do local pertence à unidade de mapeamento São Pedro, classificado como ARGISSOLO VERMELHO Distrófico arênico pelo Sistema Brasileiro de Classificação de Solos (EMBRAPA, 1999). As coordenadas geográficas do local são: latitude, 29°42'24"S; longitude, 53°48'42"W; e altitude, 95 m.

A cultivar de soja BMX Potência RR, foi semeada no dia 29 de outubro de 2010, em linhas espaçadas a 0,5 m, com densidade de 25 plantas m⁻². As sementes foram previamente

tratadas com o inseticida imidacloprido + tiodicarbe (150 + 450 g L⁻¹), na dose de 300 mL por 100 kg⁻¹, e com a mistura comercial dos fungicidas carbendazim + thiram (150 + 350 g L⁻¹), na dose de 200 mL por 100 kg⁻¹ de sementes e homogeneizadas utilizando um tambor rotativo com eixo excêntrico.

A adubação de base foi de 300 kg ha⁻¹ de NPK da fórmula 02-25-25. O controle de plantas daninhas e doenças foram realizados de acordo com as recomendações da pesquisa para a cultura (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). No caso de inseticida foi realizado uma aplicação de metomil (107 g i.a. ha⁻¹) para o controle de lagartas no dia 03 de fevereiro de 2011. Para percevejos não foi realizado controle.

Sobre a cultura foi demarcado um gride de 154 pontos amostrais (Anexo A), espaçados de 20 × 20 m. Em cada um desses 154 pontos foram coletados percevejos, por meio dos métodos de amostragem pano-de-batida, pano-de-batida largo e pano-de-batida vertical, em 14 estádios fenológicos da cultura de soja (V7, V9, V11, R1, R2, R3, R4, R5.1, R5.3, R5.5, R6, R7.1, R7.3 e R8.2), utilizando a escala proposta por Ritchie et al. (1982) (Anexo B). Os três métodos de amostragem e a forma de coleta foram os seguintes:

Pano-de-batida: constituído de dois bastões de madeira ligados entre si por um tecido branco, com comprimento de 1 m e largura ajustável ao espaçamento entre linhas. Para a coleta dos insetos-praga o pano foi desenrolado sobre o solo, entre as fileiras de soja. Posteriormente, as plantas das duas fileiras (área = 1 m²) foram sacudidas, vigorosamente, a fim de derrubar os insetos-praga sobre o pano.

Pano-de-batida largo: constituído de dois bastões de madeira ligados entre si por um tecido branco, com comprimento de 1 m e largura de 1,4 m. Para as coletas, uma extremidade do pano foi colocada entre as fileiras de soja, sendo ajustada à base das plantas de uma linha e a outra estendida sobre as plantas da linha adjacente. As plantas de uma fileira (área = 0.5 m^2) foram sacudidas, vigorosamente, a fim de derrubar os insetos-praga sobre o pano. Esse procedimento foi realizado em dois metros de linha de soja, a fim de amostrar 1 m² de área.

Pano-de-batida vertical: constituído de um bastão de madeira, na extremidade superior, e um tubo de policloreto de polivinila (100 mm), cortado ao meio longitudinalmente, na extremidade inferior, ligados entre si por um tecido branco, com comprimento de 1 m e com altura ajustável a estatura das plantas de soja. O tubo de policloreto de polivinila serviu de calha coletora dos insetos-praga. Para a coleta dos insetos, o pano foi colocado verticalmente na entre linha da cultura, e as plantas de apenas uma fileira eram sacudidas contra a superfície do pano. Esse procedimento foi realizado em dois metros de linha de soja, a fim de amostrar 1 m² de área.

Em cada uma das 6.468 coletas, de 1 m² de área, formadas pela combinação de 3 métodos de amostragem × 154 pontos × 14 estádios fenológicos foi contado o número de ninfas e adultos de percevejos da espécie *Dichelops furcatus, Piezodorus guildinii, Edessa meditabunda, Nezara viridula, Euschistus heros* e *Acrosternum hilare*.

Em relação aos dados de número de percevejos, em cada coleta e método, foram calculadas as medidas de tendência central (mínimo, máximo, média e mediana) e de variabilidade (variância, desvio padrão e coeficiente de variação).

Foi calculado o tamanho de amostra (número de pontos amostrais) para a estimação do número de percevejos em cada coleta, espécie avaliada e método de amostragem. Nesses cálculos, foram consideradas as semiamplitudes do intervalo de confiança (erro de estimação) iguais a 10, 20, 30, 40 e 50% da média, com grau de confiança (1- α) de 95%. A expressão utilizada foi $n = \frac{t_{\alpha/2}^2 \text{ s}^2}{\text{e}^2}$ (FONSECA; MARTINS, 1995; BARBETTA et al., 2004; BUSSAB; MORETTIN, 2004; SPIEGEL et al., 2004), na qual e é a semiamplitude do intervalo de confiança (fixado em 10, 20, 30, 40 e 50% da média); $t_{\alpha/2}$ - valor da distribuição t de Student cuja área à direita é igual a $\alpha/2$, isto é, é o valor de t, tal que: $P(t>t_{\alpha/2})=\alpha/2$, com (n-1) graus de liberdade, com $\alpha=5\%$ de probabilidade de erro; n - número de amostra de cada método de amostragem e s^2 é a variância amostral.

6.3 Resultados e discussão

A média da densidade populacional de percevejos oscilou entre 0,04 e 19,44 percevejos m⁻². A média de percevejos (ninfas, adultos e total) coletados teve baixa incidência nos estádios fenológicos V7 a R4 (≤0,86 percevejos m⁻²). A partir de R4 a densidade populacional foi crescente, até atingir o pico em R7.3 (19,44 percevejos m⁻²). Em R8.2 houve decréscimo da densidade populacional, ocasionada pela dispersão dos percevejos e pela cultura não ser mais um alimento preferencial aos percevejos. Próximo à colheita da soja os percevejos iniciam a dispersão para plantas hospedeiras e para os nichos de diapausa, no qual permanecem até o próximo cultivo de soja (PANIZZI; NIVA, 1994; AGÜERO, 2010).

O período de maior infestação de percevejos ocorreu no estádio reprodutivo da cultura, sendo que nessa fase a cultura é sensível ao seu ataque. Os percevejos colonizam a cultura de soja na fase vegetativa, mas o dano é ocasionado quando os percevejos se

alimentam da cultura a partir de R3. Segundo Corrêa-Ferreira et al. (2009) o período crítico para o ataque de percevejos é de R3 a R6, exigindo nesse período maior atenção e monitoramento das populações que estão presentes na lavoura.

O coeficiente de variação oscilou entre 43,53 e 1240,97%. Os maiores valores foram observados nos estádios iniciais e com diminuição gradativa através do avanço do ciclo da cultura. Para *Dichelops furcatus* (ninfas e adultos) o coeficiente de variação oscilou em função da variação da densidade populacional (Tabelas 1 e 2). Quando observada menor densidade populacional de percevejos, o coeficiente de variação chegou a valores de 1240,97%. Esses valores elevados são inversamente proporcionais à média da densidade populacional observada. Quando a densidade populacional de percevejos foi elevada (R7.3 e R8.2), o coeficiente de variação foi menor 123,66% (Tabela 1). Isso ocorre, provavelmente, porque com o aumento da densidade populacional, a distribuição espacial dos percevejos na área tende a uniformizar-se e com isso ocorre diminuição da variabilidade, e, por consequência, o tamanho de amostra também diminui. Esse mesmo comportamento foi verificado por Lúcio et al. (2009) quando estudaram tamanho de amostra de ácaros em ervamate, no qual verificaram que o aumento da infestação de ácaros promoveu redução do número de amostras necessárias para estimar a população da praga.

Tabela 1- Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie *Dichelops furcatus* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

E-444:-(1)				Pano-de-batio	da		
Estádio ⁽¹⁾	min	max	m	med	s ²	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	1	0,01	0	0,01	0,11	874,62
V11	0	1	0,01	0	0,01	0,08	1240,97
R1	0	2	0,02	0	0,03	0,18	922,54
R2	0	2	0,01	0	0,03	0,16	1240,97
R3	0	2	0,05	0	0,06	0,24	524,06
R4	0	1	0,03	0	0,03	0,16	614,37
R5.1	0	1	0,03	0	0,03	0,18	547,67
R5.3	0	1	0,01	0	0,01	0,11	874,62
R5.5	0	1	0,04	0	0,04	0,19	498,28
R6	0	3	0,17	0	0,26	0,51	301,37
R7.1	0	4	0,38	0	0,63	0,79	210,49
R7.3	0	4	0,46	0	0,67	0,82	177,33
R8.2	0	4	0,16	0	0,25	0,50	320,87
•		•		no-de-batida l			220,07
Estádio	min	max	m	med	s ²	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	1	0,01	0	0,01	0,11	874,62
V11	0	1	0,03	0	0,03	0,16	614,37
R1	0	1	0,01	0	0,01	0,11	874,62
R2	0	1	0,03	0	0,03	0,18	547,67
R3	0	3	0,14	0	0,21	0,46	324,39
R4	0	3 2	0,08	0	0,09	0,30	357,09
R5.1	0	2	0,08	0	0,10	0,32	381,91
R5.3	0	1	0,07	0	0,07	0,26	361,73
R5.5	0	1	0,06	0	0,06	0,24	402,70
R6	0	3	0,18	0	0,27	0,52	284,40
R7.1	0	5	0,84	0	1,31	1,14	135,53
R7.3	0	7	1,06	0	2,36	1,53	145,02
R8.2	0	5	0,75	0	1,49	1,22	162,28
\ <u>-</u>			Par	o-de-batida v		•	
Estádio	min	max	m	med	s^2	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	1	0,01	0	0,01	0,11	874,62
R1	0	1	0,04	0	0,04	0,19	498,28
R2	0	2	0,09	0	0,10	0,31	341,28
R3	0	2	0,13	0	0,14	0,37	287,99
R4	0	2	0,08	0	0,11	0,33	428,59
R5.1	0	1	0,04	0	0,04	0,19	498,28
R5.3	0	2	0,07	0	0,08	0,28	395,56
R5.5	Ö	$\frac{1}{2}$	0,07	Ö	0,08	0,28	395,56
R6	Ŏ	4	0,37	Ö	0,59	0,77	207,10
R7.1	Ö	5	0,80	0	1,30	1,14	142,70
R7.3	Ő	7	1,06	1	1,73	1,32	123,66
R8.2	ő	6	0,42	0	1,55	1,25	295,22
Definidos no anexo l		<u> </u>	J, 12	<u> </u>	1,55	1,20	

Definidos no anexo B

Tabela 2 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie *Dichelops furcatus* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio min max m med s² s CV(%) V7 0 1 0.04 0 0.04 0.19 498,28 V9 0 1 0.01 0 0.01 0.08 1240,97 V11 0 1 0.01 0 0.01 0.08 1240,97 V11 0 1 0.01 0 0.01 0.08 1240,97 V12 V13 V14 V14	Fa45d: a(1)				Pano-de-batio	da			
V7 0 1 0.04 0 0.04 0.19 498.28 V9 0 1 0.04 0 0.04 0.19 498.28 R1 0 1 0.04 0 0.04 0.19 498.28 R1 0 1 0.01 0 0.01 0.08 1240.97 R3 0 1 0.06 0 0.06 0.24 402.70 R4 0 2 0.05 0 0.06 0.24 524.06 R5.1 0 2 0.07 0 0.08 0.28 395.56 R5.3 0 2 0.07 0 0.09 0.30 426.72 R5.5 0 1 0.07 0 0.09 0.30 426.72 R5.5 0 1 0.07 0 0.09 0.30 426.72 R5.1 0 2 0.01 0 0.11 0.33 363.71<	Estádio ⁽¹⁾	min	max	m		s ²	S	CV(%)	
V9 0 1 0,01 0 0,01 0,08 1240,97 R1 0 1 0,01 0 0,01 0,08 1240,97 R2 0 1 0,01 0 0,01 0,08 1240,97 R3 0 1 0,06 0 0,06 0,24 402,70 R4 0 2 0,05 0 0,06 0,24 524,06 R5.1 0 2 0,07 0 0,08 0,28 395,56 R5.3 0 2 0,07 0 0,09 0,34 26,72 R5.5 0 1 0,07 0 0,09 0,34 26,173 R6 0 2 0,11 0 0,11 0,33 363,71 R7.1 0 2 0,11 0 0,11 0,33 303,05 R7.3 0 4 0,27 0 0,37 0,61 222,91	V7	0		0,04		0,04	0,19	498,28	
VII	V9	0	1		0				
RI	V11	0	1	0,04	0	0,04			
R2	R1	0	1		0				
R3 0 1 0.06 0 0.06 0.24 402,70 R5.1 0 2 0.07 0 0.08 0.28 395,56 R5.3 0 2 0.07 0 0.09 0.30 426,72 R5.5 0 1 0.07 0 0.07 0.26 361,73 R6 0 2 0.09 0 0.11 0.33 363,71 R7.1 0 2 0.11 0 0.11 0.33 303,05 R8.2 0 3 0.13 0 0.21 0.45 348,84 Estádio min max m med s² s CV(%) V9 0 2 0.05 0 0.06 0.25 481,80 V9 0 2 0.06 0 0.08 0.29 486,88 V11 0 1 0.03 0 0.03 0.16 614,37<									
R4									
RS.1 0 2 0.07 0 0.08 0.28 395.56 RS.3 0 2 0.07 0 0.09 0.30 426.72 RS.5 0 1 0.07 0 0.07 0.26 361,73 R6 0 2 0.09 0 0.11 0.33 363,71 R7.3 0 4 0.27 0 0.37 0.61 222,91 R8.2 0 3 0.13 0 0.21 0.45 348.84 Estádio min max med s² s CV(%) V7 0 2 0.05 0 0.06 0.25 481.80 V9 0 2 0.05 0 0.06 0.25 481.80 V9 0 2 0.05 0 0.06 0.25 481.80 V11 0 1 0.03 0 0.03 0.16 614.37									
R53 0 2 0,07 0 0,09 0,30 426,72 R55 0 1 0,07 0 0,07 0,26 361,73 R6 0 2 0,09 0 0,11 0,33 363,71 R7.3 0 4 0,27 0 0,37 0,61 222,91 R82 0 3 0,13 0 0,21 0,45 348,84 Estádio min max med s² s CV(%) V7 0 2 0,05 0 0,06 0,25 481,80 V9 0 2 0,05 0 0,06 0,25 481,80 V9 0 2 0,06 0 0,08 0,29 488,58 V11 0 1 0,03 0 0,03 0,16 614,37 R1 0 2 0,16 0 0,22 0,46 285,83			$\frac{-}{2}$						
R55			$\frac{-}{2}$						
R6 0 2 0,09 0 0,11 0,33 363,71 R7.1 0 2 0,11 0 0,11 0,33 300,55 R8.2 0 3 0,13 0 0,21 0,45 348,84 Estádio min max Pano-de-batida largo V7 0 2 0,05 0 0,06 0,25 481,80 V9 0 2 0,06 0 0,08 0,29 488,58 V9 0 2 0,06 0 0,08 0,29 488,58 V11 0 1 0,03 0 0,03 0,16 614,37 R1 0 2 0,16 0 0,22 0,46 285,83 R2 0 2 0,09 0 0.11 0,33 363,71 R3 0 2 0,08 0 0,09 0,30 357,0									
R7.1			2						
R7.3 R8.2 0 4 0,27 0 0,37 0,61 222,91 Estádio Pano-de-batida largo min max m med s² s CV(%) V7 0 2 0,05 0 0,06 0,25 481,80 V9 0 2 0,06 0 0,08 0,29 488,58 V11 0 1 0,03 0 0,03 0,16 614,37 R1 0 2 0,16 0 0,22 0,46 285,83 R2 0 2 0,09 0 0,11 0,33 363,71 R3 0 2 0,08 0 0,09 0,30 357,09 R4 0 1 0,08 0 0,09 0,33 357,09 R4 0 1 0,08 0 0,09 0,48 236,78 <t< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td></t<>			2						
R8.2 0 3 0,13 0 0,45 348,84 Estádio Pano-de-batida largo V7 0 2 0 CV(%) V9 0 2 0 <th cols<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Estádio Pano-de-batida largo V7 0 2 0.05 0 0.06 0.25 481.80 V9 0 2 0.06 0 0.08 0.29 488.58 V11 0 1 0.03 0 0.03 0,16 614.37 RI 0 2 0,16 0 0.22 0,46 285.83 R2 0 2 0,09 0 0,11 0.33 363.71 R3 0 2 0,08 0 0,09 0,30 357.09 R4 0 1 0,08 0 0,09 0,30 357.09 R4 0 1 0,08 0 0,09 0,30 357.09 R4 0 1 0,08 0 0,07 0,27 345,12 R5.1 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Min		0					0,43	340,04	
V7 0 2 0,05 0 0,06 0,25 481,80 V9 0 2 0,06 0 0,08 0,29 488,58 V11 0 1 0,03 0 0,03 0,16 614,37 R1 0 2 0,16 0 0,22 0,46 285,83 R2 0 2 0,09 0 0,11 0,33 363,71 R3 0 2 0,08 0 0,09 0,30 357,09 R4 0 1 0,08 0 0,07 0,27 345,12 R5.1 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,20 0 0,23 0,48 236,78 R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0 0,10 0,31 284,81	Estádio -	min	max			s ²	S	CV(%)	
V9 0 2 0,06 0 0,08 0,29 488,58 V11 0 1 0,03 0 0,03 0,16 614,37 R1 0 2 0,16 0 0,22 0,46 285,83 R2 0 2 0,09 0 0,11 0,33 363,71 R3 0 2 0,08 0 0,09 0,30 357,09 R4 0 1 0,08 0 0,07 0,27 345,12 R5.1 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,20 0 0,23 0,48 236,78 R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0 0,10 0,31 284,81	V7								
V11 0 1 0,03 0 0,03 0,16 614,37 R1 0 2 0,16 0 0,22 0,46 285,83 R2 0 2 0,09 0 0,11 0,33 363,71 R3 0 2 0,08 0 0,09 0,30 357,09 R4 0 1 0,08 0 0,07 0,27 345,12 R5.1 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,20 0 0,23 0,48 236,78 R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0 0,10 0,31 284,81 R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R1 0 2 0,16 0 0,22 0,46 285,83 R2 0 0 2 0,09 0 0,11 0,33 363,71 R3 0 2 0,08 0 0,09 0,30 357,09 R4 0 1 0,08 0 0,07 0,27 345,12 R5.1 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,20 0 0,23 0,48 236,78 R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0,11 0 0,10 0,31 284,81 R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 R8.2 0 5 0,71 0 1,03 1,02 143,51 Panel Estádio									
R3				*					
R3			$\frac{1}{2}$						
R4 0 1 0,08 0 0,07 0,27 345,12 R5.1 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,20 0 0,23 0,48 236,78 R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0 0,10 0,31 284,81 R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 R8.2 0 5 0,71 0 1,03 1,02 143,51 Pano-de-batida vertical Estádio min max m med s² s CV(%) V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2			$\frac{2}{2}$						
R5.1 0 2 0,19 0 0,22 0,47 242,54 R5.3 0 2 0,20 0 0,23 0,48 236,78 R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0 0,10 0,31 284,81 R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 R8.2 0 5 0,71 0 1,03 1,02 143,51 Estádio Pano-de-batida vertical Estádio min max med s² s CV(%) V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2 0,08 0 0,09 0,29 375,01 V11 0			1						
R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0 0,10 0,31 284,81 R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 R8.2 0 5 0,71 0 1,03 1,02 143,51 Estádio min max med se se covidad vertical V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2 0,08 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
R5.5 0 2 0,10 0 0,11 0,33 314,52 R6 0 1 0,11 0 0,10 0,31 284,81 R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 R8.2 0 5 0,71 0 1,03 1,02 143,51 Estádio min max med se se covidad vertical V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2 0,08 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td></td<>			2						
R6 0 1 0,11 0 0,10 0,31 284,81 R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 R8.2 0 5 0,71 0 1,03 1,02 143,51 Pano-de-batida vertical Pano-de-batida vertical <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R7.1 0 4 0,22 0 0,37 0,61 275,23 R7.3 0 7 0,68 0 1,32 1,15 170,05 R8.2 0 5 0,71 0 1,03 1,02 143,51 Pano-de-batida vertical min max med s² s CV(%) V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2 0,08 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,29 375,01 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13									
R7.3 0 7 0,68 0 1,32 1,15 170,05 Estádio Pano-de-batida vertical Estádio Pano-de-batida vertical Pano-de-batida vertical Transparenta de la colspan="8">Pano-de-batida vertical Pano-de-batida vertical Transparenta de la colspan="8">Pano-de-batida vertical Pano-de-batida vertical									
Estádio Deno-de-batida vertical Estádio Pano-de-batida vertical min max m med s² s CV(%) V7 0 1 0,01 0 0,02 0,08 0 0,09 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 0 <									
Estádio Pano-de-batida vertical min max m med s² s CV(%) V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2 0,08 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19									
Infility min max m med s² s CV(%) V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2 0,08 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>1,02</td> <td>143,31</td>		0					1,02	143,31	
V7 0 1 0,01 0 0,01 0,08 1240,97 V9 0 2 0,08 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80	Estádio -	min	may			crucar c ²	c	CV(%)	
V9 0 2 0,08 0 0,09 0,29 375,01 V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40	V7								
V11 0 2 0,06 0 0,09 0,30 454,91 R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R1 0 1 0,04 0 0,04 0,19 498,28 R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 R8.2 0 5 0,72 0 1,29 1,13 157,43			2						
R2 0 3 0,05 0 0,08 0,29 633,38 R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 R8.2 0 5 0,72 0 1,29 1,13 157,43									
R3 0 2 0,12 0 0,12 0,35 283,03 R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 R8.2 0 5 0,72 0 1,29 1,13 157,43									
R4 0 3 0,17 0 0,22 0,47 277,61 R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 R8.2 0 5 0,72 0 1,29 1,13 157,43									
R5.1 0 2 0,13 0 0,14 0,37 287,99 R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 R8.2 0 5 0,72 0 1,29 1,13 157,43			2				0,33		
R5.3 0 4 0,18 0 0,24 0,49 270,14 R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 R8.2 0 5 0,72 0 1,29 1,13 157,43			<i>3</i>						
R5.5 0 3 0,19 0 0,25 0,50 256,35 R6 0 2 0,05 0 0,06 0,25 481,80 R7.1 0 3 0,24 0 0,31 0,56 233,40 R7.3 0 5 0,70 0 1,23 1,11 158,17 R8.2 0 5 0,72 0 1,29 1,13 157,43			<u> </u>						
R8.2 0 5 0,72 0 1,29 1,13 157,43									
R8.2 0 5 0,72 0 1,29 1,13 157,43			3						
R8.2 0 5 0,72 0 1,29 1,13 157,43			2						
R8.2 0 5 0,72 0 1,29 1,13 157,43			3						
			5						
			5	0,72	0	1,29	1,13	157,43	

Definidos no anexo B

A espécie *P. guildinii* predominou na área, chegando a uma média de 10,31 percevejos m⁻². Em trabalho realizado por Kuss-Roggia (2009) na safra agrícola 2006/07, as espécies de percevejos predominantes na área foram, *P. guildinii* seguida de *D. furcatus*. Para *P. guildinii* (ninfas e adultos) quando observado baixa densidade populacional, o coeficiente de variação chegou a valores de 1240,97%, já na maior densidade populacional o coeficiente de variação foi de 56,91% (Tabelas 3 e 4). Esse valor de coeficiente de variação menor em relação ao das demais espécies de percevejos, pode ser explicada pelo valor médio mais elevado dessa espécie em relação as demais.

As espécies *Edessa meditabunda*, *Nezara viridula*, *Euschistus heros* e *Acrosternum hilare* (ninfas e adultos) (Tabelas 5, 6, 7, 8, 9, 10, 11 e 12), apresentaram, valores elevados de coeficiente de variação, resultado principalmente da sua presença reduzida na área amostrada.

O maior valor médio coletado por cada método variou e foi (6,08, 19,44 e 19,34 percevejos m⁻²), respectivamente (Tabela 13). Essa variabilidade decorreu das capacidades de amostragem de cada método. Verificou-se menor eficiência de amostragem do pano-debatida, em relação aos demais métodos de amostragem. Portanto, pode-se inferir que o pano-de-batida é menos adequado para coleta de percevejos, que os demais testados.

O coeficiente de variação (Tabela 13), apresenta valores elevados até R5.5 e valores menores nas avaliações realizadas com maior população de percevejos. Isso pode ser explicado pela homogeneização da ocorrência de percevejos, com o aumento da média e diminuição da variabilidade entre os pontos amostrais. O coeficiente de variação em relação aos métodos de amostragem apresentou pequenas diferenças entre o pano-de-batida e os outros métodos de amostragem.

Tabela 3 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie *Piezodorus guildinii* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádia(1)				Pano-de-bat	tida		
Estádio ⁽¹⁾	min	max	m	med	s ²	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	1	0,01	0	0,01	0,08	1240,97
V11	0	0	0,00	0	0,00	0,00	0,00
R1	0	1	0,02	0	0,02	0,14	711,77
R2	0	4	0,08	0	0,16	0,40	519,43
R3	0	1	0,02	0	0,02	0,14	711,77
R4	0	2	0,15	0	0,17	0,41	273,70
R5.1	0	2	0,06	0	0,07	0,27	419,45
R5.3	0	2	0,10	0	0,12	0,35	333,22
R5.5	0	2 2 2 2	0,13	0	0,17	0,41	313,75
R6	0	7	0,68	0	1,75	1,32	195,89
R7.1	0	19	2,02	1	6,75	2,60	128,66
R7.3	0	12	2,71	2	6,52	2,55	94,07
R8.2	Ö	17	2,77	$\frac{1}{2}$	7,60	2,76	99,44
	<u> </u>	1,		ano-de-batida		2,70	22,11
Estádio	min	max	m	med	$\frac{s^2}{s^2}$	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	1	0,01	0	0,01	0,08	1240,97
R1	0	2	0,05	0	0,08	0,28	529,69
R2	0	2 2	0,08	0	0,09	0,30	357,09
R3	0	2	0,19	0	0,22	0,47	242,54
R4	0	6	0,23	0	0,55	0,74	316,18
R5.1	0		0,18	0	0,18	0,43	245,16
R5.3	0	2 2	0,09	0	0,11	0,33	363,71
R5.5	0	4	0,28	0	0,48	0,69	247,37
R6	0	16	1,90	1	7,50	2,74	143,94
R7.1	0	38	7,14	6	39,69	6,30	88,20
R7.3	0	31	10,0	9	40,57	6,37	63,53
R8.2	0	19	7,75	7	22,56	4,75	61,31
Estádio				no-de-batida	vertical	·	
Estadio	min	max	m	med	s ²	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	1	0,02	0	0,02	0,14	711,77
V11	0	1	0,01	0	0,01	0,08	1240,97
R1	0	5	0,08	0	0,24	0,49	631,65
R2	0	2	0,08	0	0,10	0,31	402,70
R3	0	5	0,22	0	0,41	0,64	289,48
R4	0	3	0,19	0	0,23	0,48	255,93
R5.1	0	5	0,26	0	0,44	0,66	255,93
R5.3	0	2	0,11	0	0,12	0,35	320,26
R5.5	0	11	0,32	0	1,11	1,05	330,71
R6	0	13	2,26	1	7,67	2,77	122,56
R7.1	0	33	7,11	6	37,47	6,12	86,09
R7.3	0	35	10,3	10	39,35	6,27	60,84
R8.2	1	36	8,01	8	20,76	4,56	56,91
Definides no enevo	D		•				

Tabela 4 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie *Piezodorus guildinii* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

E-444:-(1)				Pano-de-bati	ida		
Estádio ⁽¹⁾	min	max	m	med	s^2	S	CV(%)
V7	0	1	0,01	0	0,01	0,08	1240,97
V9	0	1	0,03	0	0,03	0,18	547,67
V11	0	1	0,01	0	0,01	0,11	874,62
R1	0	1	0,01	0	0,01	0,11	874,62
R2	0	1	0,04	0	0,04	0,19	498,28
R3	Ö	3	0,05	Ö	0,08	0,29	633,38
R4	Õ	1	0,09	Ö	0,08	0,29	317,26
R5.1	Ŏ	2	0,06	Ö	0,07	0,27	419,45
R5.3	ő	3	0,10	Ö	0,15	0,39	402,70
R5.5	ő	3 2 3	0,10	Ö	0,10	0,32	327,19
R6	0	3	0,10	ő	0,16	0,40	325,37
R7.1	0	3	0,36	ő	0,10	0,66	182,84
R7.3	0	4	1,03	1	1,08	1,04	100,53
R8.2	0	15	1,88	1	4,33	2,08	110,33
	U	13		no-de-batida		2,00	110,43
Estádio -	min	max	m	med	s ²	S	CV(%)
V7	0	1	0,05	0	0,04	0,21	459,75
v9	ő	2	0,05	ŏ	0,06	0,25	481,80
V11	ő	1	0,01	Ö	0,01	0,08	1240,97
R1	0	1	0,07	ő	0,07	0,26	361,73
R2	0	3	0,07	ő	0,16	0,41	367,08
R3	0	2	0,11	0	0,10	0,33	314,52
R4	0	3	0,10	0	0,11	0,33	367,08
R5.1	0	10	0,11	0	0,76	0,41	447,27
R5.3	0	4	0,19	0	0,76	0,60	237,02
R5.5	0	3	0,23	0	0,30	0,55	206,14
R6	0	4	0,27	0	0,30	0,55	200,14
		7					
R7.1	0		1,27	1	2,59	1,61	126,49
R7.3	0	14	4,29	3	11,63	3,41	79,57
R8.2	1	16	4,53	3,5	9,94	3,15	69,55
Estádio	•			<u>io-de-batida v</u>	<u>vertical</u>		CVI(CI)
177	min	max	<u>m</u>	med	$\frac{s^2}{0.02}$	S 0.10	CV(%)
V7	0	2	0,02	0	0,03	0,18	922,54
V9	0	1	0,02	0	0,02	0,14	711,77
V11	0	1	0,01	0	0,01	0,11	874,62
R1	0	2	0,06	0	0,07	0,26	447,70
R2	0	2	0,13	0	0,17	0,41	313,75
R3	0	3	0,15	0	0,19	0,44	294,33
R4	0	2	0,10	0	0,11	0,33	314,52
R5.1	0	3 2	0,19	0	0,23	0,48	255,93
R5.3	0	2	0,22	0	0,29	0,54	244,26
R5.5	0	3	0,29	0	0,39	0,63	214,04
R6	0	4	0,31	0	0,43	0,65	209,18
R7.1	0	9	1,08	1	2,11	1,45	134,81
R7.3	0	19	3,59	3	10,33	3,21	89,53
R8.2	0	13	3,80	3	7,53	2,74	72,26
Definidos no anexo l	D						

Definidos no anexo B

Tabela 5 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie *Edessa meditabunda* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾				Pano-de-batio	da		
Estadio	min	max	m	med	s^2	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	0	0,00	0	0,00	0,00	0,00
R1	0	0	0,00	0	0,00	0,00	0,00
R2	0	2	0,02	0	0,03	0,18	922,54
R3	0	1	0,01	0	0,01	0,11	874,62
R4	0	1	0,03	0	0,03	0,16	614,37
R5.1	0	2	0,03	0	0,04	0,20	755,78
R5.3	0	1	0,04	0	0,04	0,19	498,28
R5.5	0	3	0,08	0	0,14	0,37	476,18
R6	0	1	0,03	0	0,03	0,18	547,67
R7.1	Ö	2	0,06	Ö	0,07	0,26	447,70
R7.3	Ö	3	0,12	Ö	0,17	0,41	351,98
R8.2	ő	3	0,19	Ö	0,25	0,50	263,04
•				no-de-batida		0,50	203,01
Estádio -	min	max	m	med	s ²	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	1	0,01	0	0,01	0,08	1240,97
R1	0	0	0,00	0	0,00	0,00	0,00
R2	0	1	0,01	0	0,01	0,11	874,62
R3	0	1	0,03	0	0,03	0,16	614,37
R4	0	2	0,05	0	0,06	0,24	524,06
R5.1	0	3	0,06	0	0,11	0,34	518,60
R5.3	0	1	0,06	0	0,06	0,25	380,71
R5.5	0	2	0,11	0	0,16	0,41	367,08
R6	0	3	0,14	0	0,18	0,43	314,48
R7.1	0	4	0,18	0	0,26	0,51	292,61
R7.3	0	5	0,37	0	0,73	0,86	231,06
R8.2	0	3	0,21	0	0,26	0,51	244,06
Estádio -			Par	no-de-batida v	ertical	•	
Estadio	min	max	m	med	s^2	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	0	0,00	0	0,00	0,00	0,00
R1	0	0	0,00	0	0,00	0,00	0,00
R2	0	0	0,00	0	0,00	0,00	0,00
R3	0	3	0,04	0	0,08	0,28	711,77
R4	0	4	0,11	0	0,26	0,51	458,08
R5.1	0	2	0,11	0	0,15	0,39	352,17
R5.3	0	1	0,05	0	0,04	0,21	459,75
R5.5	0		0,16	0	0,16	0,40	255,51
R6	Ŏ	2 5	0,15	Ö	0,31	0,56	373,33
R7.1	Õ	5	0,24	Ö	0,51	0,71	297,39
R7.3	ő	13	0,41	ő	1,55	1,25	304,38
R8.2	ő	4	0,22	ő	0,36	0,60	270,31
Definides no enevo l		•	~,		٠,٥٠	٠,٠٠	,

Definidos no anexo B

Tabela 6 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie *Edessa meditabunda* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

E-441:-(1)	Pano-de-batida							
Estádio ⁽¹⁾	min	max	m	med	s ²	S	CV(%)	
V7	0	1	0,01	0	0,01	0,08	1240,97	
V9	0	1	0,01	0	0,01	0,08	1240,97	
V11	0	1	0,01	0	0,01	0,08	1240,97	
R1	0	1	0,01	0	0,01	0,08	1240,97	
R2	0	1	0,01	0	0,01	0,08	1240,97	
R3	0	1	0,01	0	0,01	0,08	1240,97	
R4	0	1	0,02	0	0,02	0,14	711,77	
R5.1	0	1	0,02	0	0,02	0,14	711,77	
R5.3	0	1	0,05	0	0,05	0,22	428,59	
R5.5	0	1	0,01	0	0,01	0,11	874,62	
R6	0	1	0,02	0	0,02	0,14	711,77	
R7.1	0	1	0,04	0	0,04	0,19	498,28	
R7.3	0	1	0,05	0	0,04	0,21	459,75	
R8.2	0	0	0,00	0	0,00	0,00	0,00	
				no-de-batida l				
Estádio	min	max	m	med	s^2	S	CV(%)	
V7	0	1	0,01	0	0,01	0,11	874,62	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	1	0,01	0	0,01	0,08	1240,97	
R1	0	1	0,01	0	0,01	0,11	874,62	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	1	0,03	0	0,03	0,16	614,37	
R4	0	2 2 3	0,04	0	0,05	0,23	578,27	
R5.1	0	2	0,08	0	0,10	0,32	381,91	
R5.3	0	3	0,12	0	0,15	0,38	311,90	
R5.5	0	2	0,10	0	0,13	0,36	350,92	
R6	0	1	0,06	0	0,06	0,25	380,71	
R7.1	0	2	0,14	0	0,16	0,40	291,27	
R7.3	0	2	0,12	0	0,14	0,38	323,66	
R8.2	0	2	0,07	0	0,08	0,28	395,56	
Estádio			Pan	o-de-batida ve	ertical			
-	min	max	m	med	s ²	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	1	0,01	0	0,01	0,11	874,62	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	1	0,01	0	0,01	0,11	874,62	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	1	0,02	0	0,02	0,14	711,77	
R4	0	1	0,03	0	0,03	0,18	547,67	
R5.1	0	3	0,07	0	0,12	0,35	483,05	
R5.3	0	1	0,07	0	0,07	0,26	361,73	
R5.5	0	3	0,08	0	0,14	0,38	448,21	
R6	0	3 2 2	0,14	0	0,19	0,43	304,00	
R7.1	0	2	0,11	0	0,14	0,37	336,60	
R7.3	0	2	0,18	0	0,22	0,47	269,93	
R8.2	0	2	0,19	0	0,19	0,44	233,33	
Definidos no anexo	D							

Tabela 7 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie *Nezara viridula* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾ –	Pano-de-batida							
	min	max	m	med	s^2	S	CV(%)	
V7	0	1	0,01	0	0,01	0,08	1240,97	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	1	0,01	0	0,01	0,08	1240,97	
R2	0	1	0,01	0	0,01	0,08	1240,97	
R3	0	2	0,01	0	0,03	0,16	1240,97	
R4	0	0	0,00	0	0,00	0,00	0,00	
R5.1	0	2	0,04	0	0,05	0,23	578,27	
R5.3	0	1	0,02	0	0,02	0,14	711,77	
R5.5	0	3	0,04	0	0,08	0,28	711,77	
R6	0	1	0,04	0	0,04	0,19	498,28	
R7.1	Õ	8	0,19	0	0,74	0,86	457,46	
R7.3	0	11	0,33	0	1,56	1,25	376,70	
R8.2	Õ	7	0,40	Ö	1,58	1,26	311,76	
		,		no-de-batida		1,20	211,70	
Estádio –	min	max	m	med	s ²	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	ŏ	Ŏ	0,00	ŏ	0,00	0,00	0,00	
V11	Ő	0	0,00	0	0,00	0,00	0,00	
R1	ő	3	0,03	ő	0,06	0,25	979,15	
R2	ő	1	0,03	ŏ	0,03	0,18	547,67	
R3	ő	4	0,12	ő	0,21	0,46	390,64	
R4	0	2	0,06	ő	0,07	0,10	419,45	
R5.1	0	7	0,14	ő	0,44	0,66	462,73	
R5.3	0	4	0,05	0	0,13	0,36	688,72	
R5.5	0	2	0,05	0	0,13	0,30	454,91	
R6	0	10	0,00	0	1,04	1,02	402,70	
R7.1	0	8	0,29	0	0,97	0,98	336,41	
R7.3	0		0,29	0				
	0	6 15		0	1,13	1,06	233,38	
R8.2	U	13	0,38		2,20	1,48	387,03	
Estádio –	•			o-de-batida v			CVI(CI)	
X 77	min	max	<u>m</u>	med	$\frac{s^2}{s^2}$	<u>S</u>	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	4	0,03	0	0,10	0,32	1240,97	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	1	0,07	0	0,07	0,26	361,73	
R3	0	1	0,06	0	0,06	0,25	380,71	
R4	0	2	0,04	0	0,05	0,23	578,27	
R5.1	0	3	0,09	0	0,15	0,39	423,96	
R5.3	0	1	0,05	0	0,04	0,21	459,75	
R5.5	0	3	0,12	0	0,17	0,41	351,98	
R6	0	3	0,14	0	0,21	0,46	324,39	
R7.1	0	16	0,50	0	3,73	1,93	386,20	
R7.3	0	15	0,55	0	3,23	1,80	325,58	
R8.2	0	7	0,31	0	0,79	0,89	290,97	
Definidos no anexo E								

Tabela 8 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie *Nezara viridula* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Eaté d: a(1)	Pano-de-batida							
Estádio ⁽¹⁾	min	max	m	med	s ²	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	1	0,01	0	0,01	0,08	1240,97	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	0	0,00	0	0,00	0,00	0,00	
R4	0	0	0,00	0	0,00	0,00	0,00	
R5.1	0	0	0,00	0	0,00	0,00	0,00	
R5.3	0	1	0,01	0	0,01	0,11	874,62	
R5.5	0	1	0,01	0	0,01	0,11	874,62	
R6	0	1	0,02	0	0,02	0,14	711,77	
R7.1	0	1	0,01	0	0,01	0,08	1240,97	
R7.3	0	4	0,10	0	0,21	0,46	442,50	
R8.2	0	1	0,03	0	0,03	0,16	614,37	
		-		no-de-batida				
Estádio	min	max	m	med	s^2	S	CV(%)	
V7	0	2	0,01	0	0,03	0,16	1240,97	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	1	0,01	0	0,01	0,11	874,62	
R2	0	1	0,01	0	0,01	0,11	874,62	
R3	0	2	0,02	0	0,03	0,18	922,54	
R4	0	1	0,02	0	0,02	0,14	711,77	
R5.1	0	1	0,01	0	0,01	0,11	874,62	
R5.3	0	1	0,02	0	0,02	0,14	711,77	
R5.5	0	1	0,05	0	0,04	0,21	459,75	
R6	0	1	0,06	0	0,06	0,25	380,71	
R7.1	0	2	0,15	0	0,17	0,41	273,70	
R7.3	0	1	0,10	0	0,09	0,30	305,41	
R8.2	0	3	0,10	0	0,15	0,39	402,70	
Estádio			Pan	o-de-batida v	ertical			
-	min	max	m	med	s ²	S	CV(%)	
V7	0	1	0,01	0	0,01	0,11	874,62	
V9	0	1	0,01	0	0,01	0,11	874,62	
V11	0	1	0,01	0	0,01	0,08	1240,97	
R1	0	1	0,01	0	0,01	0,11	874,62	
R2	0	1	0,01	0	0,01	0,11	874,62	
R3	0	3	0,03	0	0,07	0,27	819,73	
R4	0	2	0,02	0	0,03	0,18	922,54	
R5.1	0	1	0,02	0	0,02	0,14	711,77	
R5.3	0	1	0,02	0	0,02	0,14	711,77	
R5.5	0	1	0,05	0	0,05	0,22	428,59	
R6	0	3	0,12	0	0,17	0,41	351,98	
R7.1	0	3	0,14	0	0,18	0,42	293,28	
R7.3	0	6	0,18	0	0,39	0,63	357,97	
R8.2	0	2	0,06	0	0,07	0,27	419,45	
Definidos no anexo	D							

Tabela 9 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie *Euschistus heros* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Pano-de-batida						
Estadio	min	max	m	med	s^2	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	0	0,00	0	0,00	0,00	0,00
R1	0	0	0,00	0	0,00	0,00	0,00
R2	0	0	0,00	0	0,00	0,00	0,00
R3	0	1	0,01	0	0,01	0,08	1240,97
R4	0	2	0,01	0	0,03	0,16	1240,97
R5.1	0	1	0,01	0	0,01	0,08	1240,97
R5.3	0	1	0,01	0	0,01	0,08	1240,97
R5.5	0	0	0,00	0	0,00	0,00	0,00
R6	0	1	0,01	0	0,01	0,11	874,62
R7.1	0	1	0,01	0	0,01	0,11	874,62
R7.3	0	2	0,03	0	0,04	0,20	755,78
R8.2	0	1	0,04	0	0,04	0,19	498,28
	<u> </u>			no-de-batida l		0,12	.>0,=0
Estádio	min	max	m	med	s ²	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	0	0,00	0	0,00	0,00	0,00
R1	0	0	0,00	0	0,00	0,00	0,00
R2	0	0	0,00	0	0,00	0,00	0,00
R3	0	0	0,00	0	0,00	0,00	0,00
R4	0	0	0,00	0	0,00	0,00	0,00
R5.1	0	0	0,00	0	0,00	0,00	0,00
R5.3	0	1	0,01	0	0,01	0,08	1240,97
R5.5	0	1	0,01	0	0,01	0,11	874,62
R6	0	2	0,07	0	0,09	0,30	426,72
R7.1	0	6	0,07	0	0,26	0,51	717,75
R7.3	0	2	0,05	0	0,06	0,25	481,80
R8.2	0	1	0,03	0	0,03	0,18	547,67
Estádio			Par	o-de-batida v	ertical		
Estadio	min	max	m	med	s^2	S	CV(%)
V7	0	0	0,00	0	0,00	0,00	0,00
V9	0	0	0,00	0	0,00	0,00	0,00
V11	0	0	0,00	0	0,00	0,00	0,00
R1	0	0	0,00	0	0,00	0,00	0,00
R2	0	1	0,01	0	0,01	0,08	1240,97
R3	0	0	0,00	0	0,00	0,00	0,00
R4	0	1	0,01	0	0,01	0,11	874,62
R5.1	0	2	0,03	0	0,04	0,20	755,78
R5.3	0	1	0,01	0	0,01	0,11	874,62
R5.5	0	2	0,01	0	0,03	0,16	1240,97
R6	0	4	0,19	0	0,45	0,67	342,61
R7.1	0	3	0,07	0	0,12	0,35	483,05
R7.3	Ö	1	0,05	Ö	0,04	0,21	459,75
R8.2	Ö	4	0,08	Ö	0,18	0,43	505,89
D C 11	D	· · · · · · · · · · · · · · · · · · ·	-,	<u>~</u>	-,	-,	,

¹Definidos no anexo B

Tabela 10 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie *Euschistus heros* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Eaté d: a(1)	Pano-de-batida							
Estádio ⁽¹⁾	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	2	0,01	0	0,03	0,16	1240,97	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	1	0,01	0	0,01	0,08	1240,97	
R3	0	0	0,00	0	0,00	0,00	0,00	
R4	0	1	0,01	0	0,01	0,08	1240,97	
R5.1	0	0	0,00	0	0,00	0,00	0,00	
R5.3	0	1	0,01	0	0,01	0,08	1240,97	
R5.5	0	2	0,01	0	0,03	0,16	1240,97	
R6	0	1	0,01	0	0,01	0,08	1240,97	
R7.1	0	1	0,02	0	0,02	0,14	711,77	
R7.3	0	2	0,04	0	0,05	0,23	578,27	
R8.2	0	1	0,01	0	0,01	0,11	874,62	
		-		no-de-batida		-,	,	
Estádio	min	max	m	med	s ²	S	CV(%)	
V7	0	1	0,01	0	0,01	0,08	1240,97	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	0	0,00	0	0,00	0,00	0,00	
R4	0	0	0,00	0	0,00	0,00	0,00	
R5.1	0	1	0,02	0	0,02	0,14	711,77	
R5.3	0	1	0,01	0	0,01	0,08	1240,97	
R5.5	0	1	0,02	0	0,02	0,14	711,77	
R6	0	1	0,05	0	0,05	0,22	428,59	
R7.1	0	2	0,04	0	0,05	0,23	578,27	
R7.3	0	1	0,08	0	0,07	0,27	345,12	
R8.2	0	4	0,05	0	0,14	0,38	723,03	
Estádio			Par	o-de-batida v	ertical			
Estadio	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	1	0,01	0	0,01	0,08	1240,97	
R3	0	2	0,02	0	0,03	0,18	922,54	
R4	0	1	0,01	0	0,01	0,11	874,62	
R5.1	0	1	0,01	0	0,01	0,11	874,62	
R5.3	0	1	0,01	0	0,01	0,08	1240,97	
R5.5	0	1	0,01	0	0,01	0,11	874,62	
R6	0	1	0,04	0	0,04	0,19	498,28	
R7.1	0	1	0,05	0	0,05	0,22	428,59	
R7.3	0	2	0,14	0	0,15	0,39	270,56	
R8.2	0	3	0,21	0	0,30	0,55	255,68	
Definidos no anexo			,		,			

Tabela 11 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de ninfas de percevejos da espécie *Acrosternum hilare* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾				Pano-de-bati	ida			
Estadio	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	0	0,00	0	0,00	0,00	0,00	
R4	0	1	0,04	0	0,04	0,19	498,28	
R5.1	0	1	0,01	0	0,01	0,11	874,62	
R5.3	0	1	0,06	0	0,06	0,24	402,70	
R5.5	0	8	0,16	0	0,62	0,79	485,25	
R6	0	9	0,22	0	0,85	0,92	418,30	
R7.1	0	8	0,31	0	0,76	0,87	286,11	
R7.3	0	7	0,81	0	2,11	1,45	179,15	
R8.2	Ö	6	0,45	Ö	0,93	0,96	212,08	
				no-de-batida		0,50	212,00	
Estádio	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	5	0,05	0	0,19	0,44	846,48	
R3	0	2	0,04	0	0,05	0,23	578,27	
R4	0	1	0,05	0	0,05	0,22	428,59	
R5.1	0	3	0,19	0	0,22	0,47	248,63	
R5.3	0	2	0,10	0	0,12	0,35	333,22	
R5.5	0	43	0,50	0	12,26	3,50	700,42	
R6	0	3	0,21	0	0,30	0,55	255,68	
R7.1	0	12	0,83	0	2,47	1,57	189,01	
R7.3	0	45	2,13	1	16,58	4,07	191,20	
R8.2	0	27	0,84	0	9,19	3,03	359,14	
Estádio			Pano-de-batida vertical					
Estaulo	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	2	0,02	0	0,03	0,18	922,54	
R3	0	2	0,07	0	0,08	0,28	395,56	
R4	0	2	0,10	0	0,15	0,39	402,70	
R5.1	0	3	0,17	0	0,22	0,47	277,61	
R5.3	0	5	0,18	0	0,33	0,58	317,26	
R5.5	0	38	0,52	0	9,70	3,11	599,61	
R6	0	28	0,80	0	9,80	3,13	391,86	
R7.1	0	14	1,06	0	4,41	2,10	198,37	
R7.3	0	43	2,08	1	19,72	4,44	213,07	
R8.2	0	9	1,01	0	2,86	1,69	167,02	
D C '1	D				•	•	•	

Tabela 12 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número de adultos de percevejos da espécie *Acrosternum hilare* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Pano-de-batida							
Estaulo	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	0	0,00	0	0,00	0,00	0,00	
R4	0	1	0,01	0	0,01	0,08	1240,97	
R5.1	0	1	0,02	0	0,02	0,14	711,77	
R5.3	0	1	0,04	0	0,04	0,19	498,28	
R5.5	0	0	0,00	0	0,00	0,00	0,00	
R6	0	1	0,01	0	0,01	0,08	1240,97	
R7.1	0	3	0,06	0	0,13	0,37	625,94	
R7.3	0	1	0,04	0	0,04	0,19	498,28	
R8.2	0	1	0,02	0	0,02	0,14	711,77	
		-		no-de-batida l		0,11	, , , , , ,	
Estádio	min	max	m	med	s ²	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	0	0,00	0	0,00	0,00	0,00	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	1	0,01	0	0,01	0,08	1240,97	
R4	0	2	0,03	0	0,05	0,23	874,62	
R5.1	0	2 2	0,03	0	0,04	0,20	755,78	
R5.3	0	2	0,08	0	0,10	0,32	381,91	
R5.5	0	1	0,05	0	0,05	0,22	428,59	
R6	0	1	0,03	0	0,03	0,16	614,37	
R7.1	0	2	0,03	0	0,04	0,21	651,12	
R7.3	0	2	0,09	0	0,11	0,33	363,71	
R8.2	0	2	0,03	0	0,04	0,21	651,12	
				o-de-batida v		- 1		
Estádio	min	max	m	med	s^2	S	CV(%)	
V7	0	0	0,00	0	0,00	0,00	0,00	
V9	0	1	0,01	0	0,01	0,11	874,62	
V11	0	0	0,00	0	0,00	0,00	0,00	
R1	0	0	0,00	0	0,00	0,00	0,00	
R2	0	0	0,00	0	0,00	0,00	0,00	
R3	0	0	0,00	0	0,00	0,00	0,00	
R4	0	0	0,00	Ō	0,00	0,00	0,00	
R5.1	Õ	1	0,05	Ö	0,04	0,21	459,75	
R5.3	Õ	2	0,07	Ö	0,08	0,28	395,56	
R5.5	ő	$\frac{2}{2}$	0,05	ő	0,06	0,25	481,80	
R6	0	1	0,03	ő	0,03	0,16	614,37	
R7.1	Ö	3	0,08	ő	0,13	0,36	427,25	
R7.3	0	3	0,09	0	0,17	0,30	459,75	
R8.2	0	1	0,03	0	0,17	0,16	614,37	
Definidos no anexo		1	0,03	0	0,03	0,10	017,37	

Tabela 13 - Mínimo (min), máximo (max), média (m), mediana (med), variância (s²), desviopadrão (s) e coeficiente de variação (CV), da estimação da média do número total de percevejos das espécies *Dichelops furcatus, Piezodorus guildinii, Edessa meditabunda, Nezara viridula, Euschistus heros* e *Acrosternum hilare* na cultura de soja, com base em 154 pontos de 1m² de área. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Pano-de-batida							
	min	max	m	med	s^2	S	CV(%)	
V7	0	1	0,06	0	0,06	0,24	402,70	
V9	0	2	0,08	0	0,09	0,30	357,09	
V11	0	1	0,06	0	0,06	0,25	380,71	
R1	0	2	0,07	0	0,09	0,30	426,72	
R2	0	4	0,18	0	0,26	0,51	292,61	
R3	0	3	0,21	0	0,28	0,53	256,17	
R4	0	4	0,42	0	0,51	0,71	168,69	
R5.1	0	4	0,36	0	0,51	0,71	199,10	
R5.3	0	7	0,52	0	1,02	1,01	194,65	
R5.5	0	8	0,66	0	1,18	1,09	165,73	
R6	0	9	1,42	1	2,96	1,72	121,61	
R7.1	0	21	3,56	3	8,29	2,88	80,90	
R7.3	0	21	5,99	5	15,26	3,91	65,18	
R8.2	0	29	6,08	5	18,88	4,34	71,40	
Estádio		-		no-de-batida	largo	,-	· , · ,	
Estaulo	min	max	m	med	s ²	S	CV(%)	
V7	0	3	0,13	0	0,17	0,41	313,75	
V9	0	3	0,12	0	0,17	0,42	338,31	
V11	0	2 3	0,08	0	0,10	0,31	402,70	
R1	0		0,35	0	0,46	0,68	194,36	
R2	0	6	0,43	0	0,70	0,84	195,78	
R3	0	7	0,76	0	1,39	1,18	154,98	
R4	0	7	0,75	0	1,40	1,18	157,24	
R5.1	0	10	1,19	1	2,36	1,54	129,36	
R5.3	0	6	1,08	1	1,78	1,34	123,94	
R5.5	0	43	1,62	1	13,28	3,64	225,41	
R6	0	21	3,39	2	11,10	3,33	98,30	
R7.1	1	47	11,2	10	49,53	7,04	62,79	
R7.3	5	56	19,4	18,5	79,88	8,94	45,99	
R8.2	3	41	15,4	14	51,35	7,17	46,35	
				no-de-batida v		7,17	10,22	
Estádio	min	max	m	med	s ²	S	CV(%)	
V7	0	2	0,04	0	0,06	0,25	648,47	
V9	0	2	0,16	0	0,16	0,40	255,51	
V11	0	4	0,13	0	0,22	0,47	359,78	
R1	0	5	0,24	0	0,39	0,63	260,88	
R2	0	5	0,46	0	0,83	0,91	197,04	
R3	0	7	0,87	0	1,45	1,20	138,25	
R4	0	6	0,86	0	1,54	1,24	143,85	
R5.1	Ö	9	1,16	1	2,24	1,50	128,80	
R5.3	0	6	1,04	1	1,50	1,23	117,95	
R5.5	0	40	1,88	1	12,78	3,58	189,87	
R6	0	28	4,60	4	17,42	4,17	90,65	
R7.1	1	35	11,4	10	54,92	7,41	64,51	
R7.3	2	56	19,3	10	70,92	8,42	43,53	
R7.3 R8.2	5	51		19 14		6,42 6,68		
R8.2 Definidos no anexo		31	15,0	14	44,56	0,08	44,31	
Jerningos no anexo	עי							

O tamanho de amostra para a estimação da média do número de percevejos, varia de acordo com a espécie de percevejo, estádio de desenvolvimento da cultura e método de amostragem utilizado. Para ninfas de percevejos ocorreu o mesmo.

Para a fase ninfal de todas as espécies de percevejos o tamanho de amostra foi maior em relação aos adultos, sendo superior a 1000 pontos amostrais (erro de estimação de 20%). Esse tamanho de amostra elevado foi observado até o estádio R5.5, e pode ser explicado pela baixa densidade populacional de ninfas observadas nesse período. A partir do estádio R6 foram obtidos os menores tamanhos de amostra para *Dichelops furcatus* e *Piezodorus guildinii* (Tabelas 14, 15, 18, 19, 22 e 23).

Para percevejos adultos o tamanho de amostra foi muito similar ao encontrado com as ninfas. Apesar da densidade populacional de adultos ser elevada, em comparação as ninfas, o tamanho de amostra foi alto até o estádio R6. A partir do estádio R7.1 quando a densidade populacional elevou, o tamanho de amostra reduziu. Porém quando se discute os dados por espécie, encontra-se tamanhos de amostra elevados pela baixa ocorrência de determinadas espécies de percevejos (Tabelas 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 e 25).

Para *Edessa meditabunda*, *Nezara viridula*, *Euschistus heros*, e *Acrosternum hilare*, o tamanho de amostra foi elevado em todo o período de avaliação, sem diferenças entre ninfas e adultos. Esse resultado pode ser justificado pela pequena presença das espécies na área experimental. A baixa densidade populacional gerou tamanhos de amostra elevados, que na prática não seriam utilizados para a amostragem desses insetos-praga (Tabelas 16, 17, 20, 21, 24 e 25).

O tamanho de amostra para a espécie *D. furcatus* foi elevado até o estádio R6, e a partir do estádio R7.1 ocorreu um decréscimo do tamanho de amostra, sendo de 180 pontos amostrais para ninfas (erro de estimação de 20%) (Tabela 19). Para adultos o tamanho de amostra foi de 535 pontos amostrais (erro de estimação de 20%) (valor médio dos estádios R7.1, R7.3 e R8.2 das tabelas 15, 19 e 23). O tamanho de amostra foi elevado, isso pode ser explicado pela densidade populacional de *D. furcatus* ser baixa, ocorrendo um total médio de 1,4 percevejos por ponto amostral. A diferença do tamanho de amostra entre ninfas e adultos pode ser explicada pelo menor coeficiente de variação das populações de ninfas em relação aos adultos. Isso pode ser explicado pela variabilidade dos insetos-praga na área. As ninfas de percevejos não apresentam grande mobilidade na área, apenas um pequeno deslocamento dentro da própria planta ou no máximo para plantas vizinhas. Segundo Corrêa-Ferreira e Panizzi (1999) as ninfas recém eclodidas permanecem sobre os ovos e mudam para o segundo instar, quando iniciam o processo alimentar, mas é a partir do terceiro instar que são mais

ativas e iniciam a dispersão. Comparados aos adultos as ninfas apresentam um hábito gregário e deslocam-se pouco (CORRÊA-FERREIRA, et al., 2009).

Para a espécie *P. guildinii* o tamanho de amostra foi elevado até o estádio R5.5 e a partir de R6 ocorreu um decréscimo do tamanho de amostra. O tamanho de amostra médio para a população de ninfas foi de 71 pontos amostrais (erro de estimação de 20%). Para adultos de *P. guildinii* o tamanho de amostra foi de 125 pontos amostrais (erro de estimação de 20%) (valor médio dos estádios R7.1, R7.3 e R8.2 das tabelas 15, 19 e 23). Esses valores foram similares ao encontrado para *D. furcatus*, porém menores. Isso pode ser explicado pela maior densidade populacional na área, onde foi encontrada uma média de 6,42 ninfas e 2,42 adultos de *P. guildinii*, o que explica a diferença de 54 pontos amostrais de tamanho de amostra para a quantificação de ninfas e adultos de *P. guildinii*.

Em relação ao total de percevejos verificou-se elevados tamanhos de amostra nas fases iniciais da cultura. Após o estádio R3 verificou-se tamanhos de amostra menores, motivados pelo aumento da densidade populacional de percevejos na área, e, consequente, diminuição da variabilidade (Tabelas 16, 17, 20, 21, 24 e 25).

O tamanho de amostra relacionado aos métodos de amostragem apresentou diferenças significativas. Para o método do pano-de-batida ocorreram valores elevados para ninfas e adultos. Os maiores tamanhos de amostra foram encontrados com baixa densidade populacional de percevejos. Observou-se que o tamanho de amostra tendeu a ser mais elevado para estimar adultos do que para ninfas de percevejos. O pano-de-batida tende a coletar mais ninfas do que adultos. Esse valor mais elevado aumenta o coeficiente de variação e por consequência o maior tamanho de amostra. O tamanho de amostra médio para percevejos ninfas e adultos foi de 115 e 182 pontos amostrais, respectivamente (erro de estimação de 20%) (Tabelas 14, 15, 16 e 17).

Tabela 14 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida, nos estádios V7 a R4. Santa Maria, RS, 2011.

E-441:-(1)	Erro de	Dichelops	furcatus	Piezodorus	guildinii	Edessa m	editabunda
Estádio ⁽¹⁾	estimação	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto
	10%	-	9691	_	60106	_	60106
	20%	-	2423	-	15027	-	15027
V7	30%	-	1077	-	6679	-	6679
	40%	-	606	-	3757	-	3757
	50%	-	388	-	2405	-	2405
	Erro (%)	-	79,32	_	197,56	_	197,56
	10%	29857	60106	60106	11707	_	60106
	20%	7465	15027	15027	2927	-	15027
V9	30%	3318	6679	6679	1301	-	6679
	40%	1867	3757	3757	732	-	3757
	50%	1195	2405	2405	469	-	2405
	Erro (%)	139,24	197,56	197,56	87,19	-	197,56
	10%	60106	9691	-	29857	-	60106
	20%	15027	2423	-	7465	-	15027
V11	30%	6679	1077	-	3318	-	6679
	40%	3757	606	-	1867	-	3757
	50%	2405	388	-	1195	-	2405
	Erro (%)	197,56	79,32	-	139,24	-	197,56
	10%	33218	60106	19774	29857	-	60106
	20%	8305	15027	4944	7465	-	15027
R1	30%	3691	6679	2198	3318	-	6679
	40%	2077	3757	1236	1867	-	3757
	50%	1329	2405	791	1195	-	2405
	Erro (%)	146,87	197,56	113,31	139,24	_	197,56
	10%	60106	60106	10531	9691	33218	60106
	20%	15027	15027	2633	2423	8305	15027
R2	30%	6679	6679	1171	1077	3691	6679
	40%	3757	3757	659	606	2077	3757
	50%	2405	2405	422	388	1329	2405
	Erro (%)	197,56	197,56	82,69	79,32	146,87	197,56
	10%	10720	6330	19774	15658	29857	60106
D.O	20%	2680	1583	4944	3915	7465	15027
R3	30%	1192	704	2198	1740	3318	6679
	40%	670	396	1236	979	1867	3757
	50%	429	254	791	627	1195	2405
	Erro (%)	83,43	64,11	113,31	100,83	139,24	197,56
	10%	14732	10720	2924	3929	14732	19774
D 4	20%	3683	2680	731	983	3683	4944
R4	30%	1637	1192	325	437	1637	2198
	40%	921	670	183	246	921	1236
	50%	590	429	117	158	590	791
	Erro (%)	97,81	83,43	43,57	50,51	97,81	113,31

Tabela 15 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de	Dichelops	furcatus	Piezodoru	s guildinii	Edessa medi	tabunda
Estadio	estimação -	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto
	10%	11707	6107	6867	6867	22295	19774
	20%	2927	1527	1717	1717	5574	4944
R5.1	30%	1301	679	763	763	2478	2198
	40%	732	382	430	430	1394	1236
	50%	469	245	275	275	892	791
	Erro (%)	87,19	62,97	66,78	66,78	120,32	113,31
	10%	29857	7107	4334	6330	9691	7170
	20%	7465	1777	1084	1583	2423	1793
R5.3	30%	3318	790	482	704	1077	797
	40%	1867	445	271	396	606	449
	50%	1195	285	174	254	388	287
	Erro (%)	139,24	67,93	53,05	64,11	79,32	68,23
	10%	9691	5108	3843	4179	8850	29857
	20%	2423	1277	961	1045	2213	7465
R5.5	30%	1077	568	427	465	984	3318
	40%	606	320	241	262	554	1867
	50%	388	205	154	168	354	1195
	Erro (%)	79,32	57,59	49,95	52,09	75,81	139,24
	10%	3545	5164	1498	4132	11707	19774
	20%	887	1291	375	1033	2927	4944
R6	30%	394	574	167	460	1301	2198
	40%	222	323	94	259	732	1236
	50%	142	207	60	166	469	791
	Erro (%)	47,98	57,90	31,19	51,80	87,19	113,31
	10%	1730	3585	647	1305	7823	9691
	20%	433	897	162	327	1956	2423
R7.1	30%	193	399	72	145	870	1077
	40%	109	225	41	82	489	606
	50%	70	144	26	53	313	388
	Erro (%)	33,51	48,25	20,48	29,11	71,27	79,32
	10%	1228	1940	346	395	4836	8250
D. 7. 0	20%	307	485	87	99	1209	2063
R7.3	30%	137	216	39	44	538	917
	40%	77	122	22	25	303	516
	50%	50	78	14	16	194	330
	Erro (%)	28,23	35,49	14,98	16,00	56,03	73,19
	10%	4019	4750	386	477	2701	-
De 2	20%	1005	1188	97	120	676	-
R8.2	30%	447	528	43	53	301	-
	40%	252	297	25	30	169	-
	50%	161	190	16	20	109	-
	Erro (%)	51,08	55,53	15,83	17,58	41,87	

Tabela 16 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida, nos estádios V7 a R4. Santa Maria, RS, 2011.

F-444: -(1)	Erro de	Nezara v	riridula	Euschisti	is heros	Acrostern	um hilare	Percevejos
Estádio ⁽¹⁾	estimação	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto	Total
	10%	60106	_	_	_	_	-	6330
	20%	15027	_	_	_	_	-	1583
V7	30%	6679	_	_	_	_	_	704
	40%	3757	_	_	_	_	_	396
	50%	2405	_	_	_	_	_	254
	Erro (%)	197,56	_	_	_	_	_	64,11
	10%	-	60106	-	60106	-	-	4977
	20%	_	15027	_	15027	_	_	1245
V9	30%	_	6679	_	6679	_	_	553
	40%	_	3757	_	3757	_	_	312
	50%	_	2405	_	2405	_	-	200
	Erro (%)	_	197,56	_	197,56	_	_	56,85
	10%	-	_	-	_	-	-	5657
	20%	_	_	_	_	_	-	1415
V11	30%	_	_	_	_	_	_	629
	40%	-	_	_	_	_	_	354
	50%	-	_	_	_	_	_	227
	Erro (%)	_	_	_	_	_	-	60,61
	10%	60106	_	_	_	_	_	7107
	20%	15027	_	-	-	-	-	1777
R1	30%	6679	_	-	-	-	-	790
	40%	3757	_	_	_	_	-	445
	50%	2405	_	_	-	-	_	285
	Erro (%)	197,56	-	-	-	_	-	67,93
	10%	60106	-	-	60106	-	-	3342
	20%	15027	-	-	15027	_	-	836
R2	30%	6679	-	-	6679	_	-	372
	40%	3757	-	-	3757	_	-	209
	50%	2405	-	-	2405	_	-	134
	Erro (%)	197,56	-	-	197,56	-	-	46,58
	10%	60106	-	60106	-	-	-	2562
	20%	15027	-	15027	-	-	-	641
R3	30%	6679	-	6679	-	-	-	285
	40%	3757	-	3757	-	-	-	161
	50%	2405	-	2405	-	-	-	103
	Erro (%)	197,56	-	197,56	-	-	-	40,78
	10%	-	-	60106	60106	9691	60106	1111
	20%	-	-	15027	15027	2423	15027	278
R4	30%	-	-	6679	6679	1077	6679	124
	40%	-	-	3757	3757	606	3757	70
	50%	-	-	2405	2405	388	2405	45
D C : 1	Erro (%)		-	197,56	197,56	79,32	197,56	26,86

Tabela 17 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de			Euschisti	us heros	Acrosternu	m hilare	Percevejos
Estadio	estimação -	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto	Total
	10%	13052	-	60106	-	29857	19774	1548
	20%	3263	-	15027	-	7465	4944	387
R5.1	30%	1451	-	6679	-	3318	2198	172
	40%	816	-	3757	-	1867	1236	97
	50%	523	-	2405	-	1195	791	62
	Erro (%)	92,06	-	197,56	_	139,24	113,31	31,70
	10%	19774	29857	60106	60106	6330	9691	1479
	20%	4944	7465	15027	15027	1583	2423	370
R5.3	30%	2198	3318	6679	6679	704	1077	165
	40%	1236	1867	3757	3757	396	606	93
	50%	791	1195	2405	2405	254	388	60
	Erro (%)	113,31	139,24	197,56_	197,56	64,11	79,32	
	10%	19774	29857	-	60106	9191	-	1073
	20%	4944	7465	-	15027	2298	-	269
R5.5	30%	2198	3318	-	6679	1022	-	120
	40%	1236	1867	-	3757	575	-	68
	50%	791	1195	-	2405	368	-	43
	Erro (%)	113,31	139,24	_	197,56	77,25	-	26,38
	10%	9691	19774	29857	60106	6830	60106	578
D.(20%	2423	4944	7465	15027	1708	15027	145
R6	30%	1077	2198	3318	6679	759	6679	65
	40%	606	1236	1867	3757	427	3757	37
	50%	388	791	1195	2405	274	2405	24
	Erro (%)	79,32	113,31	139,24	197,56	66,59	197,56	
	10%	8168	60106	29857	19774	3195	15292	256
5.5.4	20%	2042	15027	7465	4944	799	3823	64
R7.1	30%	908	6679	3318	2198	355	1700	29
	40%	511	3757	1867	1236	200	956	16
	50%	327	2405	1195	791	128	612	11
	Erro (%)	72,83	197,56	139,24_	113,31	45,55	99,65	
	10%	5539	7643	22295	13052	1253	9691	166
D7.2	20%	1385	1911	5574	3263	314	2423	42
R7.3	30%	616	850	2478	1451	140	1077	19
	40%	347	478	1394	816	79	606	11
	50%	222	306	892	523	51	388	7
	Erro (%)	59,97	70,44	120,32	92,06	28,52	79,32	
	10%	3794	14732	9691	29857	1756	19774	199
D0 2	20%	949	3683	2423	7465	439	4944	50
R8.2	30%	422	1637	1077	3318	196	2198	23
	40%	238	921	606	1867	110	1236	13
	50%	152	590	388	1195	71	791	8
<u></u>	Erro (%)	49,63	97,81	79,32	139,24	33,76	113,31	11,37

O uso dos métodos de amostragem: pano-de-batida largo (Tabelas 18, 19, 20 e 21) e o pano-de-batida vertical (Tabelas 22, 23, 24 e 25) para estimar a densidade populacional de percevejos, resultaram em tamanhos de amostra semelhantes entre si. O tamanho de amostra foi elevado até o estádio R5.1, com um decréscimo até o final das avaliações. A partir de R6 observou-se tamanhos de amostra inferiores a 100 pontos amostrais, sendo que esse valor foi decrescendo até R8.2 onde se encontrou tamanho de amostra de 20 pontos amostrais (erro de estimação de 20%).

O pano-de-batida necessita um maior tamanho de amostra em relação aos outros dois panos, que são similares entre si. Nesse caso assume-se um tamanho de amostra indicado para o pano-de-batida e outro para o pano-de-batida largo e o pano-de-batida vertical.

Quando a densidade populacional foi baixa, não é possível realizar inferências sobre essa população. Além de que a densidade populacional está distante do nível de controle estabelecido para os insetos-praga, pode-se permitir um erro de estimação da média maior. Quando a densidade populacional se eleva e fica próximo ao nível de controle, é necessário uma maior acurácia no levantamento da densidade populacional, assim é aceito tolerar um erro de estimação menor. Na prática pode-se usar um tamanho de amostra para ambos os casos. Por exemplo, para o total de percevejos utilizando o pano-de-batida largo, o tamanho de amostra é de 21 pontos amostrais com um erro de estimação de 20% da média que é 19,44 percevejos m⁻². Se for considerada a mesma situação, porém com densidade populacional baixa, com média de 3,39 percevejos m⁻² pode-se utilizar os mesmos 21 pontos amostrais, mas nesse caso permitindo um erro de estimação da média de 40%.

Para a estimação da média do número de percevejos, 52 pontos amostrais (erro de estimação de 20%) são suficientes para o pano-de-batida (valor médio dos estádios R7.1, R7.3 e R8.2 da tabela 17). Já para o pano-de-batida largo e pano-de-batida vertical são necessários 27 pontos amostrais (erro de estimação de 20%) em uma lavoura de soja (valor médio dos estádios R7.1, R7.3 e R8.2 das tabelas 21 e 25). Na escolha do método de amostragem para a coleta de percevejos, é importante considerar que o pano-de-batida largo e o pano-de-batida vertical, apresentam maior capacidade de coleta e necessitam menos pontos amostrais, para uma mesma precisão, em relação ao pano-de-batida, o que os torna mais adequados.

No caso de percevejos, encontrou-se dois tamanhos de amostra, dependendo do método de amostragem utilizado. Independentemente do método utilizado, o valor é mais elevado que o encontrado nas Indicações Técnicas para a Cultura da Soja no Rio Grande do Sul e em Santa Catarina que recomenda fazer 6 amostras para áreas de até 10 ha, 8 amostras para áreas de 11 a 30 ha e 10 amostras para áreas de 30 a 100 ha, para áreas superiores a 100

ha, recomenda-se subdividir em talhões de 100 ha (REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 2010). Verifica-se que para percevejos, por ser uma praga móvel o tamanho de amostra é bem mais elevado em relação a outros insetos-praga. Deve-se ressaltar que a utilização dos métodos de amostragem pano-de-batida largo e pano-de-batida vertical são necessários 27 pontos amostrais, sendo 25 pontos a menos em relação ao pano-de-batida. Esse menor tamanho de amostra deve ser considerado quando o pesquisador e/ou produtor escolher o método de amostragem, além da redução de tempo e mão-de-obra para a realização da amostragem.

Tabela 18 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida largo, nos estádios V7 a R4. Santa Maria, RS, 2011.

E-441: (1)	Erro de	Dichelops	furcatus	Piezodorus	guildinii	Edessa me	editabunda
Estádio ⁽¹⁾	estimação -	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto
-	10%	_	9061	_	8250	_	29857
	20%	_	2266	_	2063	_	7465
V7	30%	_	1007	_	917	_	3318
	40%	_	567	_	516	_	1867
	50%	_	363	_	330	_	1195
	Erro (%)	_	76,70	_	73,19	_	139,24
	10%	29857	9317	-	9061	-	_
	20%	7465	2330	_	2266	-	_
V9	30%	3318	1036	_	1007	-	_
	40%	1867	583	_	567	_	_
	50%	1195	373	_	363	-	_
	Erro (%)	139,24	77,78	_	76,70	-	_
	10%	14732	14732	60106	60106	60106	60106
	20%	3683	3683	15027	15027	15027	15027
V11	30%	1637	1637	6679	6679	6679	6679
	40%	921	921	3757	3757	3757	3757
	50%	590	590	2405	2405	2405	2405
	Erro (%)	97,81	97,81	197,56	197,56	197,56	197,56
	10%	29857	3189	10951	5108	-	29857
	20%	7465	798	2738	1277	-	7465
R1	30%	3318	355	1217	568	-	3318
	40%	1867	200	685	320	-	1867
	50%	1195	128	439	205	-	1195
	Erro (%)	139,24	45,50	84,33	57,59	_	139,24
	10%	11707	5164	4977	5260	29857	-
	20%	2927	1291	1245	1315	7465	-
R2	30%	1301	574	553	585	3318	-
	40%	732	323	312	329	1867	-
	50%	469	207	200	211	1195	_
	Erro (%)	87,19	57,90	56,85	58,44	139,24	_
	10%	4108	4977	2296	3861	14732	14732
D.A	20%	1027	1245	574	966	3683	3683
R3	30%	457	553	256	429	1637	1637
	40%	257	312	144	242	921	921
	50%	165	200	92	155	590	590
	Erro (%)	51,64	56,85	38,61	50,07	97,81	97,81
	10%	4977	4649	3902	5260	10720	13052
D 4	20%	1245	1163	976	1315	2680	3263
R4	30%	553	517	434	585	1192	1451
	40%	312	291	244	329	670	816
	50%	200	186	157	211	429	523
	Erro (%)	56,85	54,94	50,34	58,44	83,43	92,06

Tabela 19 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida largo, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	o ⁽¹⁾ Erro de estimação Dichelops furcatus Ninfa Adulto			Piezodoru	s guildinii	Edessa meditabunda		
Estaulo	estimação -	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto	
	10%	5693	2296	2346	7809	10497	5693	
	20%	1424	574	587	1953	2625	1424	
R5.1	30%	633	256	261	868	1167	633	
	40%	356	144	147	489	657	356	
	50%	228	92	94	313	420	228	
	Erro (%)	60,80	38,61	39,03	71,21	82,56	60,80	
	10%	5108	2189	5164	2193	5657	3797	
	20%	1277	548	1291	549	1415	950	
R5.3	30%	568	244	574	244	629	422	
	40%	320	137	323	138	354	238	
	50%	205	88	207	88	227	152	
	Erro (%)	57,59	37,70	57,90	37,73	60,61	49,65	
	10%	6330	3861	2389	1659	5260	4807	
	20%	1583	966	598	415	1315	1202	
R5.5	30%	704	429	266	185	585	535	
	40%	396	242	150	104	329	301	
	50%	254	155	96	67	211	193	
	Erro (%)	64,11	50,07	39,38	32,82	58,44	55,87	
	10%	3157	3166	809	1708	3860	5657	
	20%	790	792	203	427	965	1415	
R6	30%	351	352	90	190	429	629	
	40%	198	198	51	107	242	354	
	50%	127	127	33	69	155	227	
	Erro (%)	45,28	45,34	22,92	33,30	50,06	60,61	
	10%	717	2957	304	625	3342	3312	
	20%	180	740	76	157	836	828	
R7.1	30%	80	329	34	70	372	368	
	40%	45	185	19	40	209	207	
	50%	29	119	13	25	134	133	
	Erro (%)	21,58	43,82	14,04	20,14	46,58	46,37	
	10%	821	1129	158	248	2084	4089	
D. 7. 0	20%	206	283	40	62	521	1023	
R7.3	30%	92	126	18	28	232	455	
	40%	52	71	10	16	131	256	
	50%	33	46	7	10	84	164	
	Erro (%)	23,09	27,07	10,11	12,67	36,78	51,53	
	10%	1028	804	147	189	2325	6107	
D0 0	20%	257	201	37	48	582	1527	
R8.2	30%	115	90	17	21	259	679	
	40%	65	51	10	12	146	382	
	50%	42	33	6	8	93	245	
	Erro (%)	25,84	22,85	9,76	11,07	38,85	62,97	

Tabela 20 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida largo, nos estádios V7 a R4. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de	Nezara	viridula	Euschist	tus heros	Acroste	ernum	Percevejos
Estaulo	estimação	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto	Total
	10%	-	60106	-	60106	-	-	3843
	20%	-	15027	-	15027	-	-	961
V7	30%	-	6679	-	6679	-	-	427
	40%	-	3757	-	3757	-	-	241
	50%	-	2405	-	2405	-	-	154
	Erro (%)	_	197,56	_	197,56	_	_	49,95
	10%	-	-	-	-	-	-	4468
* *0	20%	-	-	-	-	-	-	1117
V9	30%	-	-	-	-	-	-	497
	40%	-	-	-	-	-	-	280
	50%	-	-	-	-	-	-	179
	Erro (%)	_	_	_	_	_	-	53,86
	10%	-	-	-	_	-	-	6330
	20%	-	-	-	-	-	-	1583
V11	30%	-	-	-	-	-	-	704
	40%	-	-	-	-	-	-	396
	50%	-	-	-	_	-	-	254
	Erro (%)	_	_	_	_	_	-	64,11
	10%	37419	29857	-	_	-	-	1475
	20%	9355	7465	-	-	-	-	369
R1	30%	4158	3318	-	-	-	-	164
	40%	2339	1867	-	-	-	-	93
	50%	1497	1195	-	-	-	-	59
	Erro (%)	155,88	139,24	-	_	_	-	30,94
	10%	11707	29857	-	_	27966	-	1496
5.0	20%	2927	7465	-	-	6992	-	374
R2	30%	1301	3318	-	-	3108	-	167
	40%	732	1867	-	-	1748	-	94
	50%	469	1195	-	-	1119	-	60
	Erro (%)	87,19	139,24	-	-	134,76	-	31,17
	10%	5956	33218	-	-	13052	60106	938
D.O.	20%	1489	8305	-	-	3263	15027	235
R3	30%	662	3691	-	-	1451	6679	105
	40%	373	2077	-	-	816	3757	59
	50%	239	1329	-	-	523	2405	38
	Erro (%)	62,19	146,87	_	_	92,06	197,56	
	10%	6867	19774	-	-	7170	29857	965
D 4	20%	1717	4944	-	-	1793	7465	242
R4	30%	763	2198	-	-	797	3318	108
	40%	430	1236	-	-	449	1867	61
	50%	275	791	-	-	287	1195	39
Definides n	Erro (%)	66,78	113,31	-	-	68,23	139,24	25,03

Tabela 21 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida largo, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de			Euschisti	us heros	Acrosternu	m hilare	Percevejos
Estadio	estimação -	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto	Total
	10%	8357	29857	-	19774	2413	22295	654
	20%	2090	7465	-	4944	604	5574	164
R5.1	30%	929	3318	-	2198	269	2478	73
	40%	523	1867	-	1236	151	1394	41
	50%	335	1195	-	791	97	892	27
	Erro (%)	73,67	139,24		113,31	39,58	120,32	20,59
	10%	18513	19774	60106	60106	4334	5693	600
	20%	4629	4944	15027	15027	1084	1424	150
R5.3	30%	2057	2198	6679	6679	482	633	67
	40%	1158	1236	3757	3757	271	356	38
	50%	741	791	2405	2405	174	228	24
	Erro (%)	109,64	113,31	197,56_	197,56	53,05	60,80	
	10%	8077	8250	29857	19774	19148	7170	1984
	20%	2020	2063	7465	4944	4787	1793	496
R5.5	30%	898	917	3318	2198	2128	797	221
	40%	505	516	1867	1236	1197	449	124
	50%	324	330	1195	791	766	287	80
	Erro (%)	72,42	73,19	139,24_	113,31	111,51	68,23	
	10%	6330	5657	7107	7170	2552	14732	378
D.6	20%	1583	1415	1777	1793	638	3683	95
R6	30%	704	629	790	797	284	1637	42
	40%	396	354	445	449	160	921	24
	50%	254	227	285	287	103	590	16
	Erro (%)	64,11	60,61	67,93_	68,23	40,70	97,81	15,65
	10%	4418	2924	20107	13052	1395	16547	154
5-4	20%	1105	731	5027	3263	349	4137	39
R7.1	30%	491	325	2235	1451	155	1839	18
	40%	277	183	1257	816	88	1035	10
	50%	177	117	805	523	56	662	7
	Erro (%)	53,56	43,57	114,26	92,06	30,09	103,66	
	10%	2126	3641	9061	4649	1427	5164	83
D7.0	20%	532	911	2266	1163	357	1291	21
R7.3	30%	237	405	1007	517	159	574	10
	40%	133	228	567	291	90	323	6
	50%	86	146	363	186	58	207	4
	Erro (%)	37,15	48,62	76,70_	54,94	30,44	57,90	
	10%	5847	6330	11707	20404	5035	16547	84
D0 2	20%	1462	1583	2927	5101	1259	4137	21
R8.2	30%	650	704	1301	2268	560	1839	10
	40%	366	396	732	1276	315	1035	6
	50%	234	254	469	817	202	662	4
	Erro (%)	61,61	64,11	87,19	115,10	57,17	103,66	7,38

Tabela 22 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida vertical, nos estádios V7 a R4. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de	Dichelop	s furcatus	Piezodoru	s guildinii	Edessa m	editabunda
Estadio	estimação	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto
	10%	_	60106	_	33218	_	_
	20%	-	15027	-	8305	_	_
V7	30%	-	6679	-	3691	_	_
	40%	_	3757	_	2077	_	_
	50%	-	2405	-	1329	_	_
	Erro (%)	-	197,56	-	146,87	_	_
	10%	-	5489	19774	19774	_	29857
	20%	-	1373	4944	4944	-	7465
V9	30%	-	610	2198	2198	-	3318
	40%	-	344	1236	1236	_	1867
	50%	-	220	791	791	-	1195
	Erro (%)	-	59,70	113,31	113,31	-	139,24
	10%	29857	8077	60106	29857	-	_
	20%	7465	2020	15027	7465	-	-
V11	30%	3318	898	6679	3318	-	-
	40%	1867	505	3757	1867	-	-
	50%	1195	324	2405	1195	-	-
	Erro (%)	139,24	72,42	197,56	139,24	-	_
	10%	9691	9691	15573	7823	-	29857
	20%	2423	2423	3894	1956	_	7465
R1	30%	1077	1077	1731	870	-	3318
	40%	606	606	974	489	-	1867
	50%	388	388	623	313	-	1195
	Erro (%)	79,32	79,32	100,56	71,27	_	139,24
	10%	4546	15658	6330	3843	-	-
	20%	1137	3915	1583	961	-	-
R2	30%	506	1740	704	427	-	-
	40%	285	979	396	241	-	-
	50%	182	627	254	154	-	-
	Erro (%)	54,33	100,83	64,11	49,95	_	-
	10%	3238	3127	3271	3382	19774	19774
D2	20%	810	782	818	846	4944	4944
R3	30%	360	348	364	376	2198	2198
	40%	203	196	205	212	1236	1236
	50%	130	126	131	136	791	791
	Erro (%)	45,85	45,06	46,08	46,86	113,31	113,31
	10%	7170	3008 752	2557	3861	8190	11707
D 4	20%	1793	752	640	966	2048	2927
R4	30%	797	335	285	429	910	1301
	40%	449	188	160	242	512	732
	50%	287	121	103	155	328	469
1	Erro (%)	68,23	44,20	40,74	50,07	72,93	87,19

Tabela 23 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida vertical, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de	Dichelops	furcatus	Piezodorus	s guildinii	Edessa medi	tabunda
Estadio	estimação -	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto
	10%	9691	3238	2557	2557	4841	9107
	20%	2423	810	640	640	1211	2277
R5.1	30%	1077	360	285	285	538	1012
	40%	606	203	160	160	303	570
	50%	388	130	103	103	194	365
	Erro (%)	79,32	45,85	40,74	40,74	56,06	76,90
	10%	6107	2849	4004	2329	8250	5108
	20%	1527	713	1001	583	2063	1277
R5.3	30%	679	317	445	259	917	568
	40%	382	179	251	146	516	320
	50%	245	114	161	94	330	205
	Erro (%)	62,97	43,01	50,99	38,88	73,19	57,59
	10%	6107	2565	4269	1789	2549	7841
	20%	1527	642	1068	448	638	1961
R5.5	30%	679	285	475	199	284	872
	40%	382	161	267	112	160	491
	50%	245	103	171	72	102	314
	Erro (%)	62,97	40,81	52,65	34,07	40,68	71,35
	10%	1675	9061	587	1708	5440	3608
	20%	419	2266	147	427	1360	902
R6	30%	187	1007	66	190	605	401
	40%	105	567	37	107	340	226
	50%	67	363	24	69	218	145
	Erro (%)	32,97	76,70	19,51	33,30	59,43	48,40
	10%	795	2127	290	710	3452	4422
	20%	199	532	73	178	863	1106
R7.1	30%	89	237	33	79	384	492
	40%	50	133	19	45	216	277
	50%	32	86	12	29	139	177
	Erro (%)	22,72	37,16	13,71	21,46	47,34	53,59
	10%	597	977	145	313	3616	2844
D. 7. 0	20%	150	245	37	79	904	711
R7.3	30%	67	109	17	35	402	316
	40%	38	62	10	20	226	178
	50%	24	40	6	13	145	114
	Erro (%)	19,69	25,18	9,68	14,25	48,46	42,97
	10%	3402	968	127	204	2852	2125
D.0.2	20%	851	242	32	51	713	532
R8.2	30%	378	108	15	23	317	237
	40%	213	61	8	13	179	133
	50%	137	39	6	9	115	85
Definides n	Erro (%)	47,00	25,06	9,06	11,50	43,03	37,15

Tabela 24 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida vertical, nos estádios V7 a R4. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de	Nezara	viridula	Euschistu		Acrosterni		Percevejos
Estadio	estimação	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto	Total
	10%	-	29857	-	-	-	-	16413
	20%	-	7465	-	-	-	-	4104
V7	30%	-	3318	-	-	-	-	1824
	40%	-	1867	-	-	-	-	1026
	50%	-	1195	-	-	-	-	657
	Erro (%)		139,24	_	_	-	_	103,23
	10%	-	29857	-	-	-	29857	2549
***	20%	-	7465	-	-	-	7465	638
V9	30%	-	3318	-	-	-	3318	284
	40%	-	1867	-	-	-	1867	160
	50%	-	1195	-	-	-	1195	102
***************************************	Erro (%)	_	139,24	_	_	_	139,24	•
	10%	60106	60106	-	-	-	-	5053
****	20%	15027	15027	-	-	-	-	1264
V11	30%	6679	6679	-	-	-	-	562
	40%	3757	3757	-	-	-	-	316
	50%	2405	2405	-	-	-	-	203
	Erro (%)	197,56	197,56	_	_	_	_	57,28
	10%	-	29857	-	-	-	-	2657
D.1	20%	-	7465	-	-	-	-	665
R1	30%	-	3318	-	-	-	-	296
	40%	-	1867	-	-	-	-	167
	50%	-	1195	-	-	-	-	107
	Erro (%)	-	139,24	_	_	_	_	41,53
	10%	5108	29857	60106	60106	33218	-	1516
D.A	20%	1277	7465	15027	15027	8305	-	379
R2	30%	568	3318	6679	6679	3691	-	169
	40%	320	1867	3757	3757	2077	-	95
	50%	205	1195	2405	2405	1329	-	61
	Erro (%)	57,59	139,24	197,56	197,56	146,87	_	31,37
	10%	5657	26227	-	33218	6107	-	746
D2	20%	1415	6557	-	8305	1527	-	187
R3	30%	629	2915	-	3691	679	-	83
	40%	354	1640	-	2077	382	-	47
	50%	227	1050	-	1329	245	-	30
	Erro (%)	60,61	130,50	-	146,87	62,97	_	22,01
	10%	13052	33218	29857	29857	6330	-	808
R4	20%	3263	8305	7465	7465	1583	-	202
K4	30%	1451	3691	3318	3318	704	-	90
	40%	816	2077	1867	1867	396	-	51
	50%	523	1329	1195	1195	254	-	33
	Erro (%)	92,06	146,87	139,24	139,24	64,11	-	22,90

Tabela 25 - Tamanho de amostra (número de pontos amostrais) para a estimação da média do número de percevejos, para os erros de estimação iguais a 10, 20,..., 50% da estimativa da média, e semiamplitude do intervalo de confiança (Erro%), com base nos 154 pontos de 1 m² de área, coletados pelo método pano-de-batida vertical, nos estádios R5.1 a R8.2. Santa Maria, RS, 2011.

Estádio ⁽¹⁾	Erro de	Nezara v	ridula	Euschisti	us heros	Acrosternu	m hilare	Percevejos
Estadio	estimação -	Ninfa	Adulto	Ninfa	Adulto	Ninfa	Adulto	Total
	10%	7016	19774	22295	29857	3008	8250	648
	20%	1754	4944	5574	7465	752	2063	162
R5.1	30%	780	2198	2478	3318	335	917	72
	40%	439	1236	1394	1867	188	516	41
	50%	281	791	892	1195	121	330	26
	Erro (%)	67,49	113,31	120,32	139,24	44,20	73,19	
	10%	8250	19774	29857	60106	3929	6107	543
	20%	2063	4944	7465	15027	983	1527	136
R5.3	30%	917	2198	3318	6679	437	679	61
	40%	516	1236	1867	3757	246	382	34
	50%	330	791	1195	2405	158	245	22
	Erro (%)	73,19	113,31	139,24	197,56	50,51	62,97	18,78
	10%	4836	7170	60106	29857	14033	9061	1407
	20%	1209	1793	15027	7465	3509	2266	352
R5.5	30%	538	797	6679	3318	1560	1007	157
	40%	303	449	3757	1867	878	567	88
	50%	194	287	2405	1195	562	363	57
	Erro (%)	56,03	68,23	197,56	139,24	95,46	76,70	
	10%	4108	4836	4582	9691	5994	14732	321
	20%	1027	1209	1146	2423	1499	3683	81
R6	30%	457	538	510	1077	666	1637	36
	40%	257	303	287	606	375	921	21
	50%	165	194	184	388	240	590	13
	Erro (%)	51,64	56,03	54,54	79,32	62,38	97,81	14,43
	10%	5822	3358	9107	7170	1536	7125	163
5-4	20%	1456	840	2277	1793	384	1782	41
R7.1	30%	647	374	1012	797	171	792	19
	40%	364	210	570	449	96	446	11
	50%	233	135	365	287	62	285	7
	Erro (%)	61,48	46,69	76,90	68,23	31,58	68,02	
	10%	4138	5002	8250	2858	1772	8250	74
D7.2	20%	1035	1251	2063	715	443	2063	19
R7.3	30%	460	556	917	318	197	917	9 5
	40%	259	313	516	179	111	516	5
	50%	166	201	330	115	71	330	3
	Erro (%)	51,83	56,99	73,19	43,07	33,92	73,19	
	10%	3305	6867	9989	2552	1089	14732	77
D0 2	20%	827	1717	2498	638	273	3683	20
R8.2	30%	368	763	1110	284	121	1637	9
	40%	207	430	625	160	69	921	5
	50%	133	275	400	103	44	590	4
	Erro (%)	46,32	66,78	80,54	40,70	26,59	97,81	7,05

6.4 Conclusões

O tamanho de amostra para estimar a população de percevejos da soja é dependente do estádio fenológico, da espécie, da fase do percevejo, do método de amostragem utilizado e da precisão desejada.

O tamanho de amostra difere para os métodos de amostragem. Para a estimação da média do número de percevejos, 52 pontos amostrais (erro de estimação de 20%) são suficientes para o pano-de-batida. Para o pano-de-batida largo e pano-de-batida vertical são necessários 27 pontos amostrais (erro de estimação de 20%) em uma lavoura de soja.

6.5 Referências

AGÜERO, M. A. F. Ocorrência, distribuição espaço-temporal e flutuação da população de percevejos pentatomídeos em sucessões culturais sob pivô central e áreas adjacentes. 2010. 85 f. Dissertação (Mestrado em Agronomia)-Universidade Federal de Santa Maria, Santa Maria, 2010.

BARBETTA, P. A. et al. **Estatística para cursos de engenharia e informática**. São Paulo: Atlas, 2004. 410 p.

BONATO, R. B. Estresses em soja. Passo Fundo: EMBRAPA-CNPT, 2000. 254 p.

BUSSAB, W. O.; MORETTIN, P. A. **Estatística básica**. 5.ed. São Paulo: Saraiva, 2004. 526 p.

CONAB - **Companhia Nacional de Abastecimento**. 2011 Disponível em http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_11_09_15_03_02_boletim_2o_levantamento_safra_2011_12.pdf>. Acesso em: 28 nov. 2011.

CORRÊA-FERREIRA, B. S. et al. **Percevejos e a qualidade da semente de soja - série sementes.** Londrina: EMBRAPA-CNPSo, 2009. 16 p. (Circular Técnica, 67).

CORRÊA-FERREIRA, B. S.; PANIZZI, A. R. **Percevejos da soja e seu manejo.** Londrina: EMBRAPA-CNPSo, 1999. 45 p. (Circular Técnica, 24).

EMBRAPA. Centro Nacional de Pesquisa de Solos. **Sistema Brasileiro de Classificação de Solos**. Rio de Janeiro: Embrapa Solos, 1999. 412 p.

FONSECA, J. S.; MARTINS, G. A. Curso de estatística. 5.ed. São Paulo: Atlas, 1995. 317 p.

KUSS-ROGGIA, R. C. R. Distribuição espacial e temporal de percevejos da soja e comportamento de *Piezodorus guildinii* (Westwood, 1837) (Hemiptera: Pentatomidae) na soja (*Glycine max* (L.) Merrill) ao longo do dia. 2009. 130 f. Tese (Doutorado em Agronomia)- Universidade Federal de Santa Maria, Santa Maria, 2009.

LÚCIO, A. D. C. et al. Distribuição espacial e tamanho de amostra para o ácaro-do-bronzeado da erva-mate. **Revista Árvore**, Viçosa, v. 33, n. 1, p. 143-150, 2009.

PANIZZI, A. R.; NIVA, C. C. Overwintering strategy of the brown stink bug in northern Paraná. **Pesquisa Agropecuária Brasileira**, Brasília, v. 29, n. 3, p. 509-511, 1994.

PANIZZI, A. R.; SLANSKY, F. Review of phytophagous pentatomids (Hemiptera: Pentatomidae) associated with soybean in the Americas. **Florida Entomologist**, Florida, v. 68, n. 1, p. 184-214. 1985.

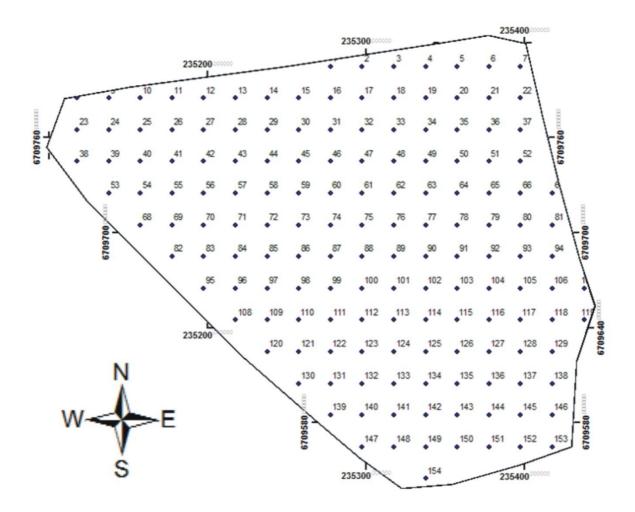
REUNIÃO DE PESQUISA DE SOJA DA REGIÃO SUL, 38., 2010, Cruz Alta. Indicações técnicas para a cultura da soja no Rio Grande do Sul e em Santa Catarina 2010/2011 e 2011/2012. Cruz Alta: Fundacep Fecotrigo, 2010. 168 p.

RITCHIE, S. W. et al. **How a soybean plant develops**. Ames: Iowa State University of Science And Technology Cooperative Extension Service. Special Report, 53, mar. 1982.

SILVA, M. S. **Avaliação do efeito da irrigação e da adubação de manutenção na soja em solo de fertilidade corrigida**. 1984. 84 f. Dissertação (Mestrado em Agronomia)-Universidade Federal do Rio Grande do Sul, Porto Alegre, 1984.

SPIEGEL, R. A. et al. **Probabilidade e estatística**. 2.ed. Porto Alegre: Bookman, 2004. 398 p.

7 CONCLUSÃO GERAL


Os métodos de amostragem demonstraram diferenças na capacidade de coleta de percevejos e lagartas. Verificou-se que para lagartas o pano-de-batida vertical foi o método que mais coletou seguido pelo pano-de-batida largo e pelo pano-de-batida. Essas diferenças, na capacidade de coleta, são advindas da forma que cada método de amostragem utiliza. Para percevejos, verificou-se que o pano-de-batida vertical e o pano-de-batida largo foram muito similares na capacidade de coleta, e novamente o pano-de-batida apresentou ineficiência.

Em relação aos capítulos II e III que abordaram o tamanho de amostra, verificou-se comportamentos distintos entre os insetos-praga avaliados. Foi possível verificar que o tamanho de amostra é dependente do estádio fenológico, do tipo de inseto (lagartas e percevejos), do tamanho do inseto e da precisão desejada. O tamanho de amostra é diretamente proporcional a variabilidade dos insetos-praga na área, assim ocorreu menor tamanho de amostra para lagartas em relação aos percevejos. Esse maior número de pontos amostrais é explicado pela maior mobilidade dos percevejos adultos em relação as lagartas.

Assim, são necessários 15 pontos amostrais para quantificar a densidade populacional de lagartas em lavouras de soja, independentemente do método de amostragem utilizado. Para percevejos são necessários 52 pontos amostrais para o pano-de-batida. Para o pano-de-batida largo e pano-de-batida vertical são necessários 27 pontos amostrais.

Anexo A - Mapa da área de estudo com a malha de amostragem utilizada.

Anexo B - Descrição dos estádios de desenvolvimento da soja.

I Fase Vegetativa

- VC Da emergência a cotilédones abertos.
- V1 Primeiro nó; folhas unifolioladas abertas.
- V2 Segundo nó; primeiro trifólio aberto.
- V3 Terceiro nó, segundo trifólio aberto.
- Vn Enésimo (último) nó com trifólio aberto, antes da floração.

II Fase Reprodutiva (observação na haste principal)

- R1 Início da floração até 50% das plantas com uma flor.
- R2 Floração plena. Maioria dos racemos com flores abertas.
- R3 Final da floração. Vagens com até 1,5 cm de comprimento.
- R4 Maioria das vagens no terço superior com 2-4 cm, sem grãos perceptíveis.
- R5.1 Grãos perceptíveis ao tato a 10% de granação.
- R5.2 Maioria das vagens com granação de 10 a 25%.
- R5.3 Maioria das vagens entre 25 e 50% de granação.
- R5.4 Maioria das vagens entre 50 e 75% de granação.
- R5.5 Maioria das vagens entre 75 e 100% de granação.
- R6 Vagens com granação de 100% e folhas verdes.
- R7.1 Início a 50% de amarelecimento de folhas e vagens.
- R7.2 Entre 51 e 75% de folhas e vagens amarelas.
- R7.3 Mais de 76% de folhas e vagens amarelas.
- R8.1 Início a 50% de desfolha.
- R8.2 Mais de 50% de desfolha pré-colheita.
- R9 Ponto de maturação de colheita.

Fonte: Ritchie, S.W. et al. **How a soybean plant develops**. Ames: Iowa State University of Science And Technology Cooperative Extension Service. Special Report, 53, mar. 1994. (Adaptado por J. T. Yorinori (1996)).