UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

SÍNTESE DE 4-(FUR-2-IL)- E 4-(TIEN-2-IL)-PIRIMIDINAS A PARTIR DE BETA-ALCOXIVINIL TRIFLUORMETIL CETONAS

DISSERTAÇÃO DE MESTRADO

Lucas Pizzuti

Santa Maria, RS, Brasil 2005

SÍNTESE DE 4-(FUR-2-IL)- E 4-(TIEN-2-IL)-PIRIMIDINAS A PARTIR DE β-ALCOXIVINIL TRIFLUORMETIL CETONAS

por

Lucas Pizzuti

Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Química da Universidade Federal de Santa Maria (RS), como requisito parcial para obtenção do grau de **Mestre em Química**.

Orientador: Prof. Dr. Alex F. C. Flores

Santa Maria, RS, Brasil

2005

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Programa de Pós-Graduação em Química

A Comissão Examinadora, abaixo assinada, aprova a Dissertação de Mestrado

SÍNTESE DE 4-(FUR-2-IL)- E 4-(TIEN-2-IL)-PIRIMIDINAS A PARTIR DE BETA-ALCOXIVINIL TRIFLUORMETIL CETONAS

elaborada por Lucas Pizzuti

como requisito parcial para obtenção do grau de Mestre em Química

COMISSÃO EXAMINADORA:

Prof. Dr. Alex F. C. Flores (Presidente/Orientador - UFSM)

Prof. Dr. Marcos A. P. Martins (UFSM)

Prof. Dr. Hélio G. Bonacorso (UFSM)

Santa Maria, 1º de Agosto de 2005.

RESUMO

SÍNTESE DE 4-(FUR-2-IL)- E 4-(TIEN-2-IL)-PIRIMIDINAS A PARTIR DE β-ALCOXIVINIL TRIFLUORMETIL CETONAS

Autor: Lucas Pizzuti Orientador: Prof. Dr. Alex F. C. Flores

Este trabalho relata a síntese e isolamento de duas 4-(2-heteroaril)-6trifluormetilpirimidinonas e uma série de dez 4-(2-heteroaril)-6-trifluormetilpirimidinas (heteroaril = furil e tienil), a partir da ciclocondensação de 1,1,1-trifluor-4-metoxi-4-(2heteroaril)-3-buten-2-onas com uréia e amidinas (acetamidina, benzamidina, guanidina, 1*H*pirazolil-1-carboxamidina e 2-metil-2-tiopseudouréia).

A reação de 1,1,1-trifluor-4-metoxi-4-(2-heteroaril)-3-buten-2-onas com uréia ocorreu na presença de BF_3 Et₂O como catalisador, à 50°C por 20 horas. As reações dos mesmos substratos com amidinas ocorreu na presença de uma solução 1 M de NaOH à t.a.-50°C por 1 hora. Nestas condições, foram obtidas somente pirimidinas aromáticas com rendimentos entre 48-67%.

UNIVERSIDADE FEDERAL DE SANTA MARIA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA DISSERTAÇÃO DE MESTRADO EM QUÍMICA SANTA MARIA, AGOSTO, 2005.

ABSTRACT

SYNTHESIS OF 4-(FUR-2-YL)- AND 4-(THIEN-2-YL)-PYRIMIDINES FROM β-ALKOXYVINYL TRIFLUOROMETHYL KETONES

Author: Lucas Pizzuti

Academic Advisor: Prof. Dr. Alex F. C. Flores

The cyclocondensation of the 1,1,1-trifluoro-4-methoxy-4-(2-heteroaryl)-3-buten-2ones (heteroaryl = furyl and thienyl) with urea and amidines (acetamidine, benzamidine, guanidine, 1H-pyrazole-1-carboxamidine and 2-methyl-2-thiopseudourea) for synthesis of two 4-(2-heteroaryl)-6-trifluoromethylpyrimidinones and a series of ten 4-(2-heteroaryl)-6trifluoromethylpyrimidines is reported.

The reaction of the 1,1,1-trifluoro-4-methoxy-4-(2-heteroaryl)-3-buten-2-ones with urea was carried out in the presence of boron trifluoride etherate as a catalyst, at 50°C for 20 hours. The reactions of the same substracts with amidines were carried out in the presence of a 1 M solution of sodium hydroxide at r.t.-50°C for 1 hour. Under this conditions, only aromatic pyrimidines were obtained in 48-67%.

UNIVERSIDADE FEDERAL DE SANTA MARIA POST-GRADUATE PROGRAM IN CHEMISTRY MASTER DISSERTATION IN CHEMISTRY SANTA MARIA, AUGUST, 2005.

Meus agradecimentos à minha família pelo incentivo, e em especial aos meus pais pela presença, mesmo que à distância.

À minha namorada Jéssie H. Sudati, pelo amor, paciência e companheirismo.

Ao Prof. Dr. Alex F. C. Flores, pela confiança e valorosa orientação no decorrer do trabalho.

AGRADECIMENTOS

- Aos funcionários da Coordenação da Pós-graduação, Ademir Sartori e Valéria Velásquez, pelo auxílio nas questões burocráticas.
- Ao Prof. Dr. Marcos A. P. Martins, pela cessão do espaço físico e que, juntamente com os demais professores do NUQUIMHE, Nilo Zanatta e Helio G. Bonacorso, contribuíram direta ou indiretamente na realização deste trabalho.
- Aos amigos e colegas de laboratório, Sidnei Moura, Pablo Machado, Marcelo Rossatto, Rodrigo Mayer, Graciela Oliveira, Luciana Piovesan, Fernanda Rosa, Elisandra Scapim, Clarissa Frizzo, Gabriela Fiss, João Inácio Pereira, Emerson Guarda, Alexandre Costa, Paulo Beck e Rodrigo Peres.
- Ao aluno de iniciação científica, Frantiescoli Dimer, pela colaboração no trabalho experimental.
- Aos colegas dos outros laboratórios integrantes do NUQUIMHE, especialmente à Michele Costa que forneceu os dados referentes a dois compostos.
- À Maria Angélica, por ter me proporcionado a oportunidade de trabalhar no laboratório de Ressonância Magnética Nuclear.
- Ao amigo, Dr. Sergio Brondani, por ter me ensinado a trabalhar e enfrentar os problemas do dia-a-dia no laboratório.
- E, acima de tudo, a Deus, por ter me dado saúde.

ÍNDICE

1.	INTRODUÇÃO E OBJETIVOS	1
2.	REVISÃO BIBLIOGRÁFICA	4
	2.1. Síntese de pirimidinas e pirimidinonas a partir de 1,3-dieletrófilos polialogenados.	4
	2.1.1. Síntese de pirimidinas e pirimidinonas a partir de β -alcoxivinil trialometil	
	cetonas	10
	2.2. Compostos bi-heterocíclicos	12
	2.3. Aspectos estruturais de sistemas bi-heterocíclicos contendo furano ou tiofeno	15
3.	APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS	18
	3.1. Apresentação dos compostos	18
	3.1.1. Numeração dos compostos	18
	3.1.2. Nomenclatura dos compostos	19
	3.2. Obtenção dos precursores β -alcoxivinil trifluormetil cetonas 1 e 2	20
	3.3. Síntese das 4-heteroaril-6-trifluormetil-2(1 <i>H</i>)-pirimidinonas 3,4a	23
	3.3.1. Mecanismo proposto para a síntese das 4-heteroaril-6-trifluormetil-2(1H)-	
	pirimidinonas 3,4a	24
	3.4. Síntese das 4-heteroaril-6-trifluormetilpirimidinas 3,4b-f	21
	3.4.1. Mecanismo proposto para a síntese das 4-heteroaril-6-trifluormetilpirimidinas	
	3,4b-f	25
	3.5. Identificação dos compostos obtidos	28
	3.5.1. Espectrometria de massas	28
	3.5.2. Espectroscopia de RMN ¹ H e ¹³ C dos compostos 3,4a-f	30
	3.6. Estudo estrutural	38
	3.6.1. Cálculos semi-empíricos	38
	3.6.2. Difração de raios-X	40
4.	CONCLUSÕES	42
5.	PARTE EXPERIMENTAL	43
	5.1. Reagentes e solventes utilizados	43
	5.2. Aparelhos utilizados	44
	5.2.1. Espectroscopia de Ressonância Magnética Nuclear	44

	5.2.2. Espectroscopia de massas	44
	5.2.3. Difração de raios-X	45
	5.2.4. Análise elementar	45
	5.2.5. Ponto de fusão	45
	5.2.6. Cálculos computacionais	45
	5.3. Métodos experimentais	46
	5.3.1. Procedimento geral de síntese e acilação dos acetais	46
	5.3.2. Procedimento geral de síntese das pirimidinonas 3,4a	46
	5.3.3. Procedimento geral de síntese das pirimidinas 3,4a-f	47
6.	REFERÊNCIAS BIBLIOGRÁFICAS	52
	ANEXO I	58
	ANEXO II	86

LISTA DE TABELAS

TABELA 1	Nomenclatura dos compostos sintetizados	19
TABELA 2	Condições reacionais testadas para obtenção do composto 3a	21
TABELA 3	Condições reacionais otimizadas de obtenção dos compostos 3,4b-f	24
TABELA 4	Dados físicos e analíticos dos compostos sintetizados	27
TABELA 5	Dados de espectrometria de massas dos produtos sintetizados	30
TABELA 6	Porcentagem dos isômeros <i>s-cis</i> e <i>s-trans</i> dos compostos 3,4-a-f	39
TABELA 7	Dados da determinação da estrutura cristalina do composto 4d	41

LISTA DE FIGURAS

FIGURA 1	Exemplos de pirimidinas com atividade biológica comprovada	2
FIGURA 2	Conformação preferencial para os compostos 3,4a,d no vácuo	39
FIGURA 3	ORTEP obtido por difração de raios-X do composto 4d	40
FIGURA 4	Espectro de RMN ¹ H do composto 3a	59
FIGURA 5	Espectro de RMN ¹³ C desacoplado do composto 3a	60
FIGURA 6	Espectro de RMN ¹ H do composto 4a	61
FIGURA 7	Espectro de RMN ¹³ C desacoplado do composto 4a	62
FIGURA 8	Espectro de RMN ¹ H do composto 3b	63
FIGURA 9	Espectro de RMN ¹³ C desacoplado do composto 3b	64
FIGURA 10	Espectro de RMN ¹ H do composto 4b	65
FIGURA 11	Espectro de RMN ¹³ C desacoplado do composto 4b	66
FIGURA 12	Espectro de RMN <i>HMQC</i> do composto 3c	67
FIGURA 13	Espectro de RMN <i>HMBC</i> do composto 3c	68
FIGURA 14	Espectro de RMN ¹ H do composto 3c	69
FIGURA 15	Espectro de RMN ¹³ C desacoplado do composto 3c	70
FIGURA 16	Espectro de RMN ¹ H do composto 4c	71
FIGURA 17	Espectro de RMN ¹³ C desacoplado do composto 4c	72
FIGURA 18	Espectro de RMN ¹ H do composto 3d	
FIGURA 19	Espectro de RMN ¹³ C desacoplado do composto 3d	74
FIGURA 20	Espectro de RMN ¹ H do composto 4d	
FIGURA 21	Espectro de RMN ¹³ C desacoplado do composto 4d	76
FIGURA 22	Espectro de RMN <i>HMBC</i> do composto 3e	77
FIGURA 23	Espectro de RMN ¹ H do composto 3e	78
FIGURA 24	Espectro de RMN ¹³ C desacoplado do composto 3e	79
FIGURA 25	Espectro de RMN ¹ H do composto 4e	80
FIGURA 26	Espectro de RMN ¹³ C desacoplado do composto 4e	81
FIGURA 27	Espectro de RMN ¹ H do composto 3f	82
FIGURA 28	Espectro de RMN ¹³ C desacoplado do composto 3f	83
FIGURA 29	Espectro de RMN ¹ H do composto 4f	84

FIGURA 30	Espectro de RMN ¹³ C desacoplado do composto 4f	85
FIGURA 31	Espectro de massas do composto 3a	87
FIGURA 32	Espectro de massas do composto 4a	87
FIGURA 33	Espectro de massas do composto 3b	88
FIGURA 34	Espectro de massas do composto 4b	88
FIGURA 35	Espectro de massas do composto 3c	89
FIGURA 36	Espectro de massas do composto 4c	89
FIGURA 37	Espectro de massas do composto 3d	90
FIGURA 38	Espectro de massas do composto 4d	90
FIGURA 39	Espectro de massas do composto 3e	91
FIGURA 40	Espectro de massas do composto 4e	91
FIGURA 41	Espectro de massas do composto 3f	92
FIGURA 42	Espectro de massas do composto 4f	92

1. INTRODUÇÃO E OBJETIVOS

Desde a década de 80, os pesquisadores do Núcleo de Química de Heterociclos (NUQUIMHE) da Universidade Federal de Santa Maria (UFSM) vêm desenvolvendo rotas sintéticas, visando à obtenção de heterociclos estrategicamente substituídos que oferecem possibilidades de derivatizações para outros compostos, com aplicação comprovada ou a análogos estruturais de compostos com aplicação conhecida.

Assim, nosso trabalho tem sido direcionado à obtenção sistemática dos precursores β alcoxiviniltrialometilcetonas, através da acilação de acetais e enoléteres com acilantes polialogenados¹⁻⁷. Os enoléteres, ao sofrerem a substituição eletrofílica no carbono beta com agentes acilantes trialometilados, fornecem séries de β -alcoxiviniltrialometilcetonas ou 1,1,1trialo-4-alcoxi-3-alquen-2-onas^{1,2,4-6}. Estes blocos precursores 1,3-dieletrofílicos vêm sendo utilizados na obtenção de séries de heterociclos de 5-, 6- e 7- membros, a partir de reações de condensação com 1,2-, 1,3- e 1,4-dinucleófilos^{3,7-64}, além de outros compostos alifáticos⁶⁵⁻⁶⁷, os quais, na sua maioria, apresentam o grupo trialometil em sua estrutura.

Os compostos heterocíclicos possuem uma grande importância pela sua aplicabilidade nos mais diversos campos da química moderna e devido à enorme variedade e complexidade estrutural, que possibilita gerar uma vasta série de estruturas novas, com propriedades físicas e químicas diversas. Estes fatores justificam o incremento no número de heterociclos desenvolvidos nos últimos anos.

Dentre os sistemas heterocíclicos, destacam-se as pirimidinas e seus derivados que atraem o interesse de pesquisadores, devido a sua importância medicinal e biológica. Isso ocorre principalmente porque elas estão presentes em organismos vivos e muitas delas fazem parte de moléculas de ácidos nucléicos, como DNA e RNA, os quais são essenciais na biossíntese de proteínas. Esta bioatividade pode ser modificada ou desativada, dependendo do tipo e da posição dos substituintes. Compostos pirimidínicos têm sido usados na medicina como antibióticos, anti-neoplásicos, entre outras atividades⁶⁸.

Como exemplo, podemos citar o derivado pirimidínico 5-hidroximetil-2-metoxi-4aminopirimidina, isolado a partir do *Bacillus megatherium* que apresentou atividade antimicrobiana a um amplo espectro de fungos e bactérias e atividade anti-carcinogênica em ratos. O Veronal e o Luminal são importantes hipnóticos⁶⁹ e o Darapin é utilizado como agente antimicrobiano⁷⁰. Como exemplo de derivados pirimidínicos utilizados no tratamento do câncer, tem-se o antimetabólico 5-fluor-uracil^{71,72}. Pirimidinas sulfonamidas, por sua vez, têm sido usadas como bactericidas potentes⁶⁸, Figura 1.

Pirimidinas também estão sendo amplamente utilizadas na agricultura como inseticidas e fungicidas. Dentre vários exemplos, podemos citar o *Pyrimethanil* e o *Pirimicarb*⁶⁸, mostrados na Figura 1.

FIGURA 1: Exemplos de pirimidinas e pirimidinonas com atividade biológica comprovada.

Além disto, compostos heterocíclicos trifluormetilados têm recebido particular atenção devido, em grande parte, a propriedades inerentes à presença do flúor. Neste contexto, pirimidinas trifluormetil substituídas são relativamente raras, porém são substâncias promissoras para estudos de bioatividade, isso devido a sua forte habilidade antioxidante e também à substancial lipofilicidade, atribuída ao grupo trifluormetil⁷³.

Os bi-heterociclos são compostos interessantes com grande potencial de aplicação como materiais elétricos ou eletrônicos⁷⁴, como monômeros, para a síntese de polímeros condutores⁷⁵, com interessantes propriedades fotofísicas e fotoquímicas⁷⁶. A incorporação dos bi-heterociclos em estruturas macropolicíclicas leva a ligantes muito interessantes, para

formar criptatos fotoativos de interesse como novos materiais luminescentes⁷⁷. A formação de helicatos, hélices incorporando íons metálicos, como complexos supramoleculares versáteis⁷⁸, é outra potencialidade importante desta classe de compostos.

Em soma, os bi-heterociclos derivados do furano e do tiofeno fazem parte de uma importante classe de compostos com comprovada atividade farmacológica e agroquímica⁷⁹⁻⁸².

Assim, considerando as importantes potencialidades do sistema bi-heterocíclico 4-(fur-2-il)[tien-2-il]-pirimidina, devido a sua comprovada atividade biológica, possível aplicação na química de materiais e a importância do desenvolvimento de novos compostos heterocíclicos trifluormetilados, este trabalho tem por objetivos:

(a) Sintetizar 4-(fur-2-il)- e 4-(tien-2-il)-6-trifluormetilpirimidinas 2-substituídas 3,4a f, a partir de reações de ciclocondensação de β-alcoxivinil trifluormetil cetonas 1,2 com uréia e amidinas, Esquema 1.

 (b) Comprovar a estrutura dos compostos sintetizados, através de ressonância magnética nuclear, espectrometria de massas e difração de raios-X.
Esquema 1:

2. REVISÃO BIBLIOGRÁFICA

Esta revisão bibliográfica apresenta referências relacionadas especificamente ao trabalho desenvolvido nesta dissertação. Inicialmente, serão apresentadas metodologias encontradas na literatura para obtenção de compostos pirimidínicos similares ou idênticos aos desenvolvidos neste trabalho e, em seguida, serão enfatizadas rotas sintéticas de pirimidinas e pirimidinonas, a partir de β -alcoxivinil trialometil cetonas, bem como trabalhos que estudam aspectos estruturais de sistemas bi-heterocíclicos.

2.1. Síntese de pirimidinas e pirimidinonas a partir de 1,3-dieletrófilos polialogenados.

Devido à grande importância e aplicabilidade dos compostos pirimidínicos, sua síntese e reatividade são constantemente estudadas e é grande o número de trabalhos encontrados na literatura sobre o assunto. Por isso, esta revisão abordará somente rotas sintéticas de pirimidinas polialogenadas que envolvem reações de ciclização de blocos de átomos [3 + 3], ou seja, reações de 1,3-dieletrófilos polialoalquilsubstituídos (átomos C-C-C) com 1,3-dinucleófilos (átomos N-C-N), provenientes de amidinas ou derivados. Para uma revisão mais abrangente do assunto, recomenda-se a consulta de Katritzky e col.⁶⁸.

Viehe e col.⁸³, em 1993, desenvolveram a reação de benzamidina frente a 3trifluoracetil-lactamas **5a-b** e benzolactamas **6a-b** que forneceu como produtos majoritários os compostos **7** e **8**, Esquema 2. Os compostos **9a** e **10b** são subprodutos nesta reação e obtidos em pequenas quantidades.

Esquema 2:

i = benzamidina, 100-180°C; ii = benzamidina, tolueno, refluxo

Hu e col.⁸⁴, em 1996, estudaram a reação de α -polifluoralquil acetato de etila **11a-e**, α -polifluoralquil cetonas **12a,b** e α -polifluoralquil aldeído **12c** com benzamidina e acetamidina em presença de carbonato de sódio produzindo 2-fenil-6-fluoralquilpirimidinonas **13a-c**, 2-metil-6-fluoralquilpirimidinonas **14a-c**, 2-fenil-6-fluoralquilpirimidinas **15a-c** ou 2metil-6-fluoralquilpirimidinas **16a-c** em bons rendimentos, como mostra o Esquema 3. Esquema 3:

 $i = Na_2CO_3$, 1,4-dioxano, 60°C, 10 h.

11,12 R _F (CXY)	Produto (R _F)	Rendimento(%)
11a [Cl(CF ₂) ₃ CF ₂]	13a [Cl(CF ₂) ₃]	90
11a $[Cl(CF_2)_3CF_2]$	14a [Cl(CF ₂) ₃]	76
11b [Cl(CF ₂) ₅ CF ₂]	13b [Cl(CF ₂) ₅]	88
11b [Cl(CF ₂) ₅ CF ₂]	14b [Cl(CF ₂) ₅]	80
11c (CF_3CF_2)	13c (CF ₃)	86
11c (CF_3CF_2)	14c (CF ₃)	75
11d (CF ₃ CFBr)	13c (CF ₃)	83
11d (CF ₃ CFBr)	14c (CF ₃)	77
11e (CF ₃ CCl ₂)	13c (CF ₃)	82
11e (CF ₃ CCl ₂)	14c (CF ₃)	72
12a (CF ₃ CFBr)	15a (CF ₃ CFBr)	89
12a (CF ₃ CFBr)	16a (CF ₃ CFBr)	80
12b [Cl(CF ₂) ₃ CF ₂]	15b [Cl(CF ₂) ₃ CF ₂]	85
12b [Cl(CF ₂) ₃ CF ₂]	16b [Cl(CF ₂) ₃ CF ₂]	78
12c $[Cl(CF_2)_3CF_2]$	15c $[Cl(CF_2)_3CF_2]$	82
12c $[Cl(CF_2)_3CF_2]$	16c $[Cl(CF_2)_3CF_2]$	77

Em 1997, Huang e Yu⁸⁵, sintetizaram 6-polifluoralquil pirimidinas **18a-l** e arilaminas **19** através da reação de amidinas com β -polifluoralquil enaminonas **17a-f**, Esquema 4.

Esquema 4:

 $i = K_2 CO_3$, 1,4-dioxano, 80°C.

Composto	Ar	n	Х	R	Ŕ	Produto, Rendimento(%)
17a	4-CH ₃ OC ₆ H ₄	2	Cl	C_6H_5	C_6H_5	18a , 90
17b	4-CH ₃ OC ₆ H ₄	4	Cl	C_6H_5	C_6H_5	18b , 93
17c	4-CH ₃ OC ₆ H ₄	1	F	C_6H_5	C_6H_5	18c , 96
17a	$4-CH_3OC_6H_4$	2	Cl	C_6H_5	CH_3	18d , 96
17b	$4-CH_3OC_6H_4$	4	Cl	C_6H_5	CH_3	18e , 94
17c	4-CH ₃ OC ₆ H ₄	1	F	C_6H_5	CH_3	18f , 70
17d	$4-CH_3OC_6H_4$	2	Cl	2-Furil	C_6H_5	18g , 98
17e	4-CH ₃ OC ₆ H ₄	4	Cl	2-Furil	C_6H_5	18h , 98
17f	4-CH ₃ OC ₆ H ₄	1	F	2-Furil	C_6H_5	18i , 80
17d	4-CH ₃ OC ₆ H ₄	2	Cl	2-Furil	CH_3	18j , 70
17e	$4-CH_3OC_6H_4$	4	Cl	2-Furil	CH ₃	18k , 84
17f	$4-CH_3OC_6H_4$	1	F	2-Furil	CH ₃	181 , 71

Os mesmos autores⁸⁶, em 1998, sintetizaram 4-per(poli)fluoralquil pirimidinas **21a-i** e arilaminas **22**, Esquema 5. No caso do composto **20e**, o produto foi a 4-trifluormetil pirimidina **21e**, sendo que este não apresenta o grupo trimetilsilil. As reações procederam com bons rendimentos em 1,4-dioxano.

Esquema 5:

$i = K_2 CO_3,$	1,4-dioxano,	refluxo
-----------------	--------------	---------

Composto	Ar	R _F	\mathbf{R}^1	R^2	Produto, R ¹ , Rendimento(%)
20a	$4-CH_3C_6H_4$	C_2F_4Cl	C_6H_5	C_6H_5	21a , C ₆ H ₅ , 74
20b	$4-CH_3OC_6H_4$	C_4F_8Cl	C_6H_5	C_6H_5	21b , C ₆ H ₅ , 85
20c	$4-CH_3OC_6H_4$	C_4F_9	C_6H_5	C_6H_5	21c , C ₆ H ₅ , 89
20d	$4-CH_3OC_6H_4$	CF_3	C_6H_5	C_6H_5	21d , C ₆ H ₅ , 80
20e	$4-CH_3OC_6H_4$	CF_3	Si(CH ₃) ₃	C_6H_5	21e , H, 89
20a	$4-CH_3OC_6H_4$	C_2F_4Cl	C_6H_5	CH_3	21f , C ₆ H ₅ , 70
20b	$4-CH_3OC_6H_4$	C_4F_8Cl	C_6H_5	CH_3	21g , C ₆ H ₅ , 84
20c	$4-CH_3OC_6H_4$	C_4F_9	C_6H_5	CH_3	21h , C ₆ H ₅ , 82
20d	$4-CH_3OC_6H_4$	CF ₃	C ₆ H ₅	CH ₃	21i , C ₆ H ₅ , 71

Em 1999, Funabiki e col.⁸⁷ sintetizaram uma série de 4-trifluormetil-pirimidinas 2,6dissubstituídas **25** através da reação de trifluormetilcetonas α , β -insaturadas e β -substituídas **23** com amidinas, seguida pela desidratação e oxidação do aduto **24**, conforme o Esquema 6.

Esquema 6:

i = MeCN, refluxo, 3 h; $ii = 1. POCl_3$, piridina, silica-gel, MeCN, refluxo, 24 h; 2. MnO₂, MeCN, refluxo, 2,5 h.

R ¹	R^2	Rendimento(%)
C ₆ H ₅	C ₆ H ₅	86
$4-CH_3OC_6H_4$	C_6H_5	75
$4-CH_3C_6H_4$	C_6H_5	63
$4-ClC_6H_4$	C_6H_5	71
$4-CF_3C_6H_4$	C_6H_5	79
$4-NO_2C_6H_4$	C_6H_5	70
2-Tienil	C_6H_5	67
2-Furil	C_6H_5	69
<i>c</i> -Hexil	C_6H_5	75
C_6H_5	$4-CH_3OC_6H_4$	63
C_6H_5	$4-CH_3C_6H_4$	65
C_6H_5	$4-ClC_6H_4$	50
C_6H_5	$4-CF_3C_6H_4$	61
C_6H_5	CH ₃	9

Röschenthaler e col.⁸⁸, em 2000, desenvolveram a síntese de 5,6-oligometilenopirimidinas 4-polifluoralquil-substituídas **28** pela reação de 1,3-dicetonas **26** com uréia, tiouréia, guanidina, benzamidina, metilisotiouréia e guaniltiouréia em presença de $BF_3.OEt_2$ em isopropanol sob refluxo, como mostra o Esquema 7. Esquema 7:

 $i = Et_3N$, BF₃.OEt₂, *i*-PrOH, refluxo.

Binucleófilo	Produto	n	R^{F}	Х	Tempo(h)	Rendimento(%)
Guanidina	28a	2	CF ₃	NH ₂	9	92
Guanidina	28b	2	$(CF_2)_4H$	NH_2	7	57
Uréia	28c	2	CF_3	OH	21	64
Uréia	28d	2	CF_2CF_2H	OH	20	40
Uréia	28e	2	C_3F_7	OH	21	16
Tiouréia	28f	1	CF_3	SH	13	16
Tiouréia	28g	2	CF_3	SH	14	34
Tiouréia	28h	2	CF_2CF_2H	SH	14	17
Tiouréia	28i	2	C_3F_7	SH	14	2
Benzamidina	28j	2	CF_2CF_2H	C_6H_5	19	59
Metilisotiouréia	28k	2	CF_3	SCH ₃	11	46
Metilisotiouréia	281	2	CF_2CF_2H	SCH ₃	18	81
Metilisotiouréia	28m	2	C_2F_5	SCH ₃	10	72
Metilisotiouréia	28n	2	$(CF_2)_4H$	SCH ₃	10	85
Guaniltiouréia	280	1	CF_3	NHC(S)NH ₂	4	46
Guaniltiouréia	28p	1	CF_2CF_2H	NHC(S)NH ₂	6	16
Guaniltiouréia	28q	2	CF_3	NHC(S)NH ₂	4	82
Guaniltiouréia	28r	2	CF_2CF_2H	NHC(S)NH ₂	6	78
Guaniltiouréia	28 s	2	C_4F_9	NHC(S)NH ₂	10	41
Guaniltiouréia	28t	2	$C_{6}F_{13}$	NHC(S)NH ₂	6	62

Tice e Bryman⁸⁹, em 2001, desenvolveram a síntese regiocontrolada de 6trifluormetilpirimidin-4-ona, Esquema 8. Essa classe de compostos, especialmente com o grupo trifluormetil na posição 6 do anel da pirimidinona, apresenta uma elevada atividade herbicida. A reação do cloridrato de benzamidina com 2-trifluoracetibutanoato de etila **29** produz a pirimidinona **30** com 55% de rendimento.

Esquema 8:

i = NaOAc, xileno, refluxo, Dean Stark.

2.1.2. Síntese de pirimidinas e pirimidinonas a partir de β -alcoxivinil trialometil cetonas.

As β -alcoxivinil trialometil cetonas apresentam um grande potencial sintético uma vez que possuem propriedades químicas semelhantes aos sistemas 1,3-dicarbonílicos. A principal diferença está na reatividade distinta dos dois centros eletrofílicos, fato que determina reações mais regiosseletivas. São facilmente obtidas através da reação de acilação de acetais e enoléteres com cloreto de tricloroacetila e anidrido trifluoracético^{1-7,90-92}.

Os enoléteres podem ser gerados *in situ* a partir de acetais, que por sua vez são obtidos pela reação de cetonas com ortoformiato de metila e ácido *p*-toluenossulfônico em metanol. Estas condições reacionais foram, inicialmente, desenvolvidas por Wohl⁹³.

 β -alcoxivinil trialometil cetonas são precursores versáteis para obtenção de diversos sistemas contendo na sua estrutura o grupo trialometil. Verificando-se que a maior utilização das mesmas tem sido como precursores na síntese de compostos heterocíclicos. Neste contexto, destaca-se o pioneirismo do NUQUIMHE no desenvolvimento dos precursores β -alcoxivinil triclorometil cetonas e sua aplicação na obtenção de heterociclos⁷.

O NUQUIMHE desenvolveu várias rotas para a obtenção de compostos pirimidínicos a partir de β -alcoxivinil trialometil cetonas. A primeira síntese de pirimidinonas utilizando este bloco precursor foi desenvolvida por Zanatta e col.⁴⁶, em 1991, que realizaram a ciclocondensação com uréia em meio ácido, obtendo bons rendimentos, Esquema 9.

A partir de então, o NUQUIMHE estendeu as reações de ciclocondensação das β alcoxivinil trialometil cetonas para outros 1,3-dinucleófilos como 2-metil-2-tiopseudouréia⁴⁸, guanidina⁴⁹, acetamidina⁵⁰, benzamidina⁵⁰, entre outros^{51,52}, Esquema 9. Esquema 9:

$$X = F, Cl$$

Costa⁵³ em 2004, na sua dissertação de mestrado, utilizou pela primeira vez, no NUQUIMHE, o ácido de Lewis trifluoreto de boro eterato como catalisador da reação de ciclocondensação entre trifluoracetilmetoxicicloalquenos **31** e uréia ou tiouréia em meio

alcoólico, para obtenção de (tio)pirimidinonas **32** com rendimentos entre 10-65%, Esquema 10.

Esquema 10:

 $i = (NH_2)_2CZ$, BF₃.OEt₂, isopropanol, refluxo, 20 h.

2.2. Compostos bi-heterocíclicos.

As β-alcoxivinil trialometil cetonas já foram empregadas pelo NUQUIMHE como precursores para a síntese de compostos bi-heterociclos. Por isso, esta seção apresentará os trabalhos publicados pelo nosso grupo, visto que os compostos anteriormente sintetizados são análogos estruturais dos obtidos nesta dissertação.

Importantes resultados foram alcançados por Bonacorso e col.⁵⁴, em 2001, quando realizaram a síntese em passo único de uma série de 2-[3-alquil(aril)-5-trifluormetil-5-hidroxi-4,5-diidro-1*H*-pirazol-1-il]-4-trifluormetilpirimidinas e 2-[3-alquil(aril)-5-trifluormetil-1*H*-pirazol-1-il]-4-trifluormetilpirimidinas 6-alquil(aril) substituídas a partir de dois equivalentes do precursor 4-alquil(aril)-1,1,1-trifluor-4-metoxi-3-alquen-2-onas e bicarbonato de aminoguanidina em etanol, Esquema 11.

Esquema 11:

R = CH₃, *n*-Pr, *t*-Bu, C₆H₅, 4-CH₃C₆H₄, 4-ClC₆H₄, 4-BrC₆H₄, 4-CH₃OC₆H₄ $i = NH_2NHC(NH)NH_2.H_2CO_3$, etanol, refluxo, 4 h. $ii = H_2SO_4$ conc., CH_2Cl_2 , refluxo, 4 h.

Zanatta e col.55,56, em 2002, sintetizaram uma série de novas pirimidinonas pela reação de 4-alcoxi-1,1,1-tricloro-3-alquen-2-onas 34 com 4-triclorometil-2-guanidopirimidina 33. A reação ocorreu em acetonitrila sob refluxo e forneceu misturas de diidropirimidinonas 35 e pirimidinonas 36 em uma proporção de 3:1. Estas misturas foram tratadas com ácido sulfúrico, levando às pirimidinonas puras, Esquema 12.

Esquema 12:

R¹/R²/R = H/H/C₂H₅, CH₃/H/CH₃, H/CH₃/C₂H₅, H/-(CH₂)₂-, H/-(CH₂)₃-

i =acetonitrila, refluxo, 16 h.

 $ii = H_2SO_4$ conc., clorofórmio, t.a., 4 h.

Zanatta e col.⁵⁷, em 2003, desenvolveram a síntese de uma série de 4-triclorometil-2-[5-trifluor(cloro)metil-5-hidroxi-4,5-diidro-1*H*-pirazol-il]pirimidinas, a partir da reação de 4alcoxi-1,1,1-tricloro-3-alquen-2-onas com 6-trifluor[cloro]metil-2-hidrazino pirimidinas em metanol ou clorofórmio como solvente, Esquema 13. Este método permitiu a variação entre os grupos trifluor e triclorometil, tanto no pirazol como na pirimidina, fato que não foi possível em trabalho anteriormente citado⁵⁴, pois obtinha-se uma mistura complexa de compostos.

Esquema 13:

Em 2005, Bonacorso e col.⁵⁸, utilizaram o dinucleófilo 1-amidino-4-(2-hidroxietil)-3metil-3-pirazolin-5-ona **38** para sintetizar uma série de 2-[4-(2-hidroxietil)-5-metil-3-oxo-2,3diidro-1*H*-pirazol-2-il]-6(4)-trifluormetilpirimidinas 4-alquil, 4-aril e 4-heteroaril-substituídas **39**, pela ciclocondensação com 4-alcoxi-1,1,1-trifluor-3-alquen-2-onas **37** na presença de carbonato de potássio anidro e acetonitrila, Esquema 14. Esquema 14:

R = CH₃, C₂H₅ R¹ = H, CH₃, *i*-Pr, C₆H₅, 4-CH₃OC₆H₄, 2-furil, 2-ti enil i = 1. K₂CO₃, MeCN, refluxo, 4 h; 2. HCl, 5-10°C, 30 min.

2.3. Aspectos estruturais de sistemas bi-heterocíclicos contendo furano ou tiofeno.

Dois importantes trabalhos foram encontrados na literatura referentes a estudos conformacionais de bi-heterociclos contendo furano ou tiofeno ligado a um anel pirimidínico.

O primeiro estudo foi realizado por Strekowski e col.⁹⁴, em 1986, e utilizou DNA nativo para intercalar o bi-heterociclo entre os pares de bases da dupla hélice do DNA. A conformação da molécula (*s-cis* ou *s-trans*) no complexo foi estudada pelo efeito NOE para os prótons H_5 e $H_{3'}$, Esquema 15. A conformação de equilíbrio foi, então, obtida pela comparação da diferença do espectro NOE do bi-heterociclo livre em solução com aquele da molécula intercalada. O método mostrou uma conformação *s-trans* planar para a furilpirimidina **40** e *s-cis* planar para as tienilpirimidinas **41-43**, bem como um pequeno ângulo torsional na tienilpirimidina **44** que possui uma metila na posição 5 do anel pirimidínico.

Esquema 15:

41. $R_2 = I^{-}Me_3^{+}N(CH_2)_2S$, $R_5 = R_6 = H$ **42**. $R_2 = Me_2N(CH_2)_2S$, $R_5 = H$, $R_6 = Me$ **43**. $R_2 = MeS$, $R_5 = H$, $R_6 = NH(CH_2)_2NMe_2$ **44**. $R_2 = Me_2N(CH_2)_2S$, $R_5 = Me$, $R_6 = H$

O segundo trabalho foi desenvolvido por Mokrosz e col.⁹⁵, em 1996, quando analisaram a conformação da 4-(fur-2-il)-2-metilaminopirimidina usando técnicas de RMN ¹H, Esquema 16. Para tanto, foram obtidos espectros entre temperaturas de 40°C e -80°C. À medida que a temperatura decresce todos os sinais, com exceção do H5', são progressivamente separados em dois. Isto sugere que o composto existe à baixa temperatura como uma mistura equimolar de dois confôrmeros com a mesma orientação do sistema furilpirimidina e diferentes na orientação do substituinte metilamino. Os prótons aromáticos vizinhos ao grupo metilamino dos dois confôrmeros estão em diferentes ambientes químicos, por isso eles são divididos a baixa temperaturas. Como o deslocamento químico para o H5' é idêntico para os dois confôrmeros, isto sugere que o sistema 4-(fur-2-il)-pirimidina adota uma orientação *s-trans*. Esta orientação foi confirmada por cálculos semi-empíricos e dinâmica molecular. Eles chegaram à conclusão de que a molécula existe predominantemente na conformação *s-cis* em solução, Esquema 16.

Esquema 16:

3. APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

Neste capítulo serão apresentadas, inicialmente, a numeração e a nomenclatura dos compostos sintetizados neste trabalho. Em seguida, a etapa de síntese dos compostos, onde serão discutidos os tópicos relativos às condições reacionais, à purificação e à identificação dos mesmos. Os resultados serão apresentados na forma de tabelas e esquemas.

3.1. Apresentação dos compostos

3.1.1. Numeração dos compostos

O Esquema 17 mostra a numeração utilizada para denominar os compostos sintetizados bem como a estratégia de síntese. Esquema17:

3.1.2. Nomenclatura dos compostos

A nomenclatura dos compostos sintetizados segue as regras designadas pelo *Chemical Abstracts* e está descrita na Tabela 1.

Composto	Nomenclatura
$\begin{array}{c} & CF_3 \\ & 4 \\ & 4' \\ & 5' \\ & 5' \\ & 3a \end{array}$	6-(fur-2-il)-4-trifluormetil-2(1 <i>H</i>)-pirimidinona
$\begin{array}{c} CF_{3} \\ 4 \\ 4' \\ 5' \\ S \\ 4' \\ 5' \\ S \\ H \\ 4a \end{array}$	6-(tien-2-il)-4-trifluormetil-2(1 <i>H</i>)-pirimidinona
$\begin{array}{c} CF_{3} \\ 6 \\ N \\ 4' \\ 5' \\ S' \\ \mathbf{3b} \end{array}$	4-(fur-2-il)-2-metil-6-trifluormetilpirimidina
$\begin{array}{c} CF_{3} \\ & 6 \\ & & 6 \\ & & & 6 \\ & & & & 6 \\ & & & &$	2-metil-4-(tien-2-il)-6-trifluormetilpirimidina
$\begin{array}{c} CF_{3} \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ 5 \\ 5 \\ 3 \\ \mathbf{c} \end{array}$	2-fenil-4-(fur-2-il)-6-trifluormetilpirimidina
$\begin{array}{c} CF_3 \\ 6 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 6 \\ 8 \\ 8$	2-fenil-4-(tien-2-il)-6-trifluormetilpirimidina

Tabela 1: Nomenclatura dos compostos sintetizados.

3.2. Obtenção dos precursores β-alcoxivinil trifluormetil cetonas 1 e 2.

Os precursores 1,1,1-trifluor-4-metoxi-4-(fur-2-il)-3-buten-2-ona 1 e 1,1,1-trifluor-4metoxi-4-(tien-2-il)-3-buten-2-ona 2 foram obtidos através de reações de acilação de enoléteres, gerados *in situ* a partir de acetais, com anidrido trifluoracético⁶, conforme o Esquema 18.

Esquema18:

3.3. Síntese das 4-heteroaril-6-trifluormetil-2(1H)-pirimidinonas 3,4a.

Para a obtenção dos compostos 4-(fur-2-il)-6-trifluormetil-2(1*H*)-pirimidinona **3a** e 4-(tien-2-il)-6-trifluormetil-2(1*H*)-pirimidinona **4a** partiu-se de reações de ciclocondensação das β -alcoxivinil trifluormetil cetonas **1** e **2**, respectivamente, com uréia.

Foram testadas várias condições com o objetivo de otimizar o processo reacional para a síntese do composto 3a e, em seguida, estendidas para o composto 4a, Tabela 2. A primeira tentativa baseou-se nos trabalhos desenvolvidos por Zanatta e col.^{5,46,47}, onde a reação de ciclocondensação ocorreu em metanol e ácido clorídrico sob refluxo por 20 horas, porém o resultado não foi satisfatório. Buscou-se, então, a mudança do solvente, mas o rendimento foi igualmente muito baixo.

Substrato	Dinucleófilo	Catalisador	Solvente	Т	Tempo(h)	Produto	Rend.(%)
1	uréia	HCl	МеОН	refluxo	20	3 a	<10
1	uréia	HCl	<i>i</i> -PrOH	refluxo	20	3a	<10
1	uréia	BF ₃ •Et ₂ O	<i>i</i> -PrOH	refluxo	20	3 a	47
1	uréia	Ti(O <i>i</i> -Pr) ₄	<i>i</i> -PrOH	refluxo	20	_ ^a	-
1	uréia	BF ₃ •Et ₂ O	<i>i</i> -PrOH	50°C	20	3a	48
1	uréia	Ti(O <i>i</i> -Pr) ₄	<i>i</i> -PrOH	50°C	20	3 a	40

Tabela 2: Condições reacionais testadas para obtenção do composto 3a.

-^a Material polimerizado.

A melhor condição foi alcançada quando se utilizou o método empregado por Costa em trabalho citado anteriormente na revisão da literatura. A β -alcoxivinil trifluormetil cetona reagiu com uréia em isopropanol na presença do catalisador trifluoreto de boro eterato 48% mantendo-se a temperatura a 50°C por 20 horas, obtendo-se rendimentos satisfatórios de 48% para o composto **3a** e 52% para o composto **4a**, Esquema 16. Dados físicos e analíticos estão apresentados nas Tabelas 4 e 5 e dados espectroscópicos de RMN ¹H e ¹³C estão descritos na Seção 3.5.2.

Foi testado, também, a aplicação do ácido de Lewis isopropóxido de titânio(IV) como catalisador em isopropanol sob refluxo e a 50°C, porém, no primeiro caso obteve-se um material polimerizado não identificado.Os testes mostraram que o trifluoreto de boro eterato 48% foi mais eficiente que o isopropóxido de titânio(IV) como catalisador da reação de ciclocondensação quando utilizados na mesma temperatura.

3.3.1. Mecanismo proposto para a síntese das 6-heteroaril-4-trifluormetil-2(1H)pirimidinonas 3,4a.

O mecanismo proposto para a ciclocondensação das β -alcoxivinil trifluormetil cetonas com uréia, catalisada pelo trifluoreto de boro eterato, está ilustrado no Esquema 19.

As β -alcoxivinil trifluormetil cetonas apresentam dois centros eletrofílicos e a uréia apresenta dois centros nucleofílicos com a mesma reatividade. Quando o trifluoreto de boro eterato se complexa com os átomos de oxigênio da β -alcoxivinil trifluormetil cetona, o seu poder eletrofílico aumenta, pois a densidade eletrônica no carbono β diminui. A partir disso, ocorre o ataque nucleofílico de um nitrogênio da uréia ao carbono β , levando ao intermediário **Ia**. Em seguida o intermediário **Ia** elimina metanol gerando a enaminona intermediária **Ib**. Ocorre, então, o ataque nucleofílico do outro nitrogênio da uréia ao carbono carbonílico, com a formação do intermediário **IIb** que elimina água formando as pirimidinonas.
Esquema 19:

3.4. Síntese das 4-heteroaril-6-trifluormetilpirimidinas 3,4b-f.

Para a obtenção destes compostos partiu-se de reações de ciclocondensação das β alcoxivinil trifluormetil cetonas **1** e **2** com cloridrato de acetamidina, cloridrato de benzamidina, cloridrato de guanidina, cloridrato de 1*H*-pirazolil-1-carboxamidina e sulfato de 2-metil-2-tiopseudouréia.

Como mostrado anteriormente na revisão da literatura, os pesquisadores do NUQUIMHE têm desenvolvido com muito sucesso, metodologias para a síntese de pirimidinas. Baseado nos trabalho posteriores do NUQUIMHE⁴⁸⁻⁵⁰ foram obtidas as 4-heteroaril-6-trifluormetilpirimidinas 2-substituídas **3,4b-f** em rendimentos satisfatórios, Esquema 17. Os dados físicos e analíticos estão apresentados nas Tabelas 4 e 5 e dados espectroscópicos de RMN ¹H e ¹³C estão descritos na Seção 3.5.2.

Visto que todas as amidinas utilizadas encontravam-se na forma salina (cloridratos e sulfato, para a 2-metil-2-tiopseudouréia), foi necessária a utilização de uma base com o objetivo de ativá-las, liberando-as e aumentando a reatividade frente ao sistema 1,3-dieletrofílico.

Dois métodos foram testados, baseado na literatura anteriormente citada, na tentativa de otimização dos rendimentos da ciclização dos compostos 1 e 2 com as amidinas. O método A empregava solução aquosa 1 M de hidróxido de sódio e o método B empregava solução de metóxido de sódio ou etóxido de sódio em metanol ou etanol. Tal como nos trabalhos citados,

o método A foi o que mais se adequou aos substratos utilizados para obtenção dos compostos **3,4b-f**, com pequenas variações na temperatura e no tempo reacional.

Toda a série foi sintetizada partindo-se das β -alcoxivinil trifluormetil cetonas e amidinas, através do método A, utilizando uma pequena quantidade de metanol para dissolver o substrato na solução aquosa de hidróxido de sódio, visto que os compostos **1** e **2** são óleos.

Quando ciclizou-se com cloridrato de benzamidina e cloridrato de 1*H*-pirazolil-1carboxamidina a reação completou-se em 1 hora a temperatura ambiente. Com o cloridrato de acetamidina, cloridrato de guanidina e sulfato de 2-metil-2-tiopseudouréia a reação completou-se no mesmo tempo, no entanto, foi necessário aquecer a mistura reacional a 50°C, Tabela 3. Todos os compostos sintetizados se apresentaram na forma sólida.

Ao contrário do que aconteceu nos trabalhos citados anteriormente, quando se obteve tanto os compostos pirimidínicos aromatizados ou tetraidratado puros quanto mistura das duas formas, os compostos obtidos neste trabalho são todos aromáticos.

Os compostos **3b,c** e **4c** são conhecidos e sua síntese foi citada anteriormente na Revisão da Literatura, porém os trabalhos não trazem dados físicos nem estruturais^{71,75}.

Substrato	Amidina	Proporção	Tempo(h)	T(°C)	Produto	Rend.(%)
3b	Cloridrato de acetamidina	1:1	1	50	3 a	48
4 b	Cloridrato de acetamidina	1:1	1	50	3b	53
3c	Cloridrato de benzamidina	1:1	1	25	4 a	61
4c	Cloridrato de benzamidina	1:1	1	25	4b	67
3d	Cloridrato de guanidina	1:1	1	50	5a	50
4d	Cloridrato de guanidina	1:1	1	50	5b	51
3 e	Cloridrato de 1 <i>H</i> -pirazol-1-	1:1	1	25	6a	54
4e	Cloridrato de 1 <i>H</i> -pirazol-1- carboxamidina	1:1	1	25	6b	58
3f	Sulfato de 2-metil-2- tionseudouréia	1:1	1	50	7a	52
4f	Sulfato de 2-metil-2- tiopseudouréia	1:1	1	50	7b	53

Tabela 3: Condições reacionais otimizadas de obtenção dos compostos 3,4b-f.

3.4.1. Mecanismo proposto para a síntese das 4-heteroaril-6-trifluormetilpirimidinas 3,4b-f.

Dois caminhos mecanísticos podem ser empregados para explicar a reação de ciclocondensação das β -alcoxivinil trifluormetil cetonas com amidinas e estão esquematizados no Esquema 20.

Em ambos caminhos ocorre o ataque nucleofílico de um nitrogênio da amidina ao carbono β , levando ao intermediário **Ia**. A partir deste momento, a reação pode seguir de duas formas.

O Caminho 1 é semelhante ao mecanismo descrito na Seção 3.3.1, para a reação entre as β -alcoxivinil trifluormetil cetonas e uréia. A diferença é que as amidinas são suficientemente mais nucleofílicas que a uréia, e por isso, não necessitam do catalisador. O intermediário **Ia** elimina metanol gerando a enaminona intermediária **Ib**. Ocorre, então, o ataque nucleofílico do outro nitrogênio da amidina ao carbono carbonílico, com a formação do intermediário **IIa** que elimina água formando as pirimidinas.

No Caminho 2, ocorre o ataque nucleofílico do outro nitrogênio da amidina ao carbono carbonílico, com a formação do intermediário **IIb**, o qual, para as β -alcoxivinil trifluormetil cetonas 1 e 2 (R¹ = 2-furil e 2-tienil), elimina o grupo metóxido na forma de metanol, fornecendo o intermediário **IIa**, que finalmente elimina uma molécula de água gerando as pirimidinas.

O Caminho 2 é condizente com trabalhos anteriores do NUQUIMHE⁵⁰ onde foram isolados os intermediários **IIb**.

Esquema 20:

Caminho 1:

Caminho 2:

Composto	Fórmula Molecular	Análise(%)		Ponto de	Rendimento ^b (%)	
	(g/mol)	Calculada/Obtida		Fusão(°C)		
		С	Н	Ν		
3 a	$C_9H_5F_3N_2O_2$	46,97	2,19	12,17	282-284	48
	230,15	46,87	2,18	12,05		
4 a	$C_9H_5F_3N_2SO$	43,91	2,05	11,38	266-268	52
	246,21	43,59	2,02	11,23		
3b ^a	$C_{10}H_7F_3N_2O$	52,64	3,09	12,28	41-43	$48(71)^{a}$
	228,17	52,82	3,36	12,38		
4b	$C_{10}H_7F_3N_2S$	49,18	2,89	11,47	47-49	49
	244,24	48,68	2,91	10,41		
3c ^a	$C_{15}H_9F_3N_2O$	62,07	3,13	9,65	66-68	$60(69-80)^{a}$
	290,24	61,44	3,10	9,08		
4c ^a	$C_{15}H_9F_3N_2S$	58,82	2,96	9,15	104-106	63(67) ^a
	306,31	58,82	3,12	8,52		
3d	$C_9H_6F_3N_3O$	47,17	2,64	18,34	130-132	42
	229,16	48,26	3,20	16,19		
4.3	$C_9H_6F_3N_3S$	44,08	2,47	17,14	141-143	39
4u	245,23	44,78	2,65	15,59		
3e	$C_{12}H_7F_3N_4O$	51,44	2,52	19,99	108-110	54
	280,21	50,84	2,64	20,09		
4 e	$C_{12}H_7F_3N_4S$	48,65	2,38	18,91	116-118	58
	296,28	48,76	2,47	18,90		
3f	$C_{10}H_7F_3N_2OS\\$	46,15	2,71	10,76	40-42	52
	260,24	46,76	2,65	11,02		
4f	$C_{10}H_7F_3N_2S_2$	43,47	2,55	10,14	48-50	53
	276,30	43,34	2,61	10,56		

Tabela 4: Dados físicos e analíticos dos compostos sintetizados.

^a Compostos conhecidos^{85,87}.
 ^b Rendimento dos produtos purificados.

3.5. Identificação dos compostos obtidos.

3.5.1. Espectrometria de massas.

O Esquema 21 apresenta a proposta de fragmentação para o composto **3a** e o Esquema 22 para o composto **3e**. Os principais fragmentos ionizados encontrados no espectro de massas dos compostos **3,4a-f** estão relacionados na Tabela 5. Os espectros encontram-se no Anexo II.

Esquema 21.

Esquema 22.

Produto	<i>m/z</i> (%)
3a	230 (M ⁺ , 100), 211 (13), 202 (25), 118 (16), 90 (11), 69 (14)
4 a	246 (M ⁺ , 100), 227 (10), 218 (17), 134 (30), 69 (17)
3b	228 (M ⁺ , 96), 209 (27), 118 (100), 90 (48), 69 (39)
4b	244 (M ⁺ , 100), 225 (13), 134 (72), 69 (21)
3c	290 (M ⁺ , 96), 271 (16), 118 (100), 90 (52), 69 (17)
4c	306 (M ⁺ , 100), 287 (4), 134 (73), 69 (8)
3d	229 (M ⁺ , 100), 118 (35), 90 (24), 69 (18)
4d	245 (M ⁺ , 100), 226 (10), 204 (45), 134 (59), 69 (28)
3e	280 (M ⁺ , 100), 261 (8), 213 (75), 118 (8), 90 (8), 69 (7)
4 e	296 (M ⁺ , 100), 287 (8), 229 (82), 134 (15), 69 (9)
3f	260 (M ⁺ , 100), 241 (12), 214 (38), 118 (18), 90 (13), 69 (9)
4f	276 (M ⁺ , 100), 257 (14), 229 (60), 134 (45), 69 (16)

Tabela 5: Dados de espectrometria de massas dos produtos sintetizados.

3.5.2. Espectroscopia de RMN¹H e ¹³C dos compostos 3,4a-f.

Os espectros de RMN ¹H e ¹³C dos compostos **3,4a** foram obtidos em dimetilsulfóxido (DMSO- d_6) e dos compostos **3,4b-f** em clorofórmio deuterado (CDCl₃), em tubos de 5 mm, utilizando tetrametilsilano como referência interna. Os parâmetros de aquisição dos espectros estão descritas na Parte Experimental. Os dados de RMN ¹H e ¹³C dos compostos estão apresentados na Tabela 6, e os espectros estão listados no Anexo I.

No espectro de RMN ¹H do composto **3a** (Figura 4, Anexo I) podemos observar os sinais referentes ao furano: um dubleto de dubletos em 6,82 ppm do H4' com $J_{H4'-H3'} = 3,5$ Hz e $J_{H4'-H5'} = 1,7$ Hz; um dubleto em 7,67 ppm do H3' e um dubleto mais desblindado, por estar próximo ao átomo de oxigênio, em 8,07 ppm do H5'. O H5 do anel pirimidínico aparece como um simpleto em 7,48 ppm. Observa-se, ainda o sinal alargado do hidrogênio ligado ao nitrogênio em 12,93 ppm.

O espectro de RMN ¹³C desacoplado do composto **3a** (Figura 5, Anexo I) apresenta em 148,5 ppm, 115,8 ppm, 112,9 ppm e 147,6 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do furano. Em 163,1 ppm localiza-se o sinal do carbono carbonílico C2. Em 157,9 ppm observa-se um quarteto referente ao carbono C6 com constante de acoplamento com os átomos de flúor a duas ligações de distância ${}^{2}J_{C6-F} = 34,9$ Hz e em 100,5 ppm e 157,0 ppm aparecem os carbonos C5 e C4. O sinal do carbono do grupo CF₃ encontra-se como um quarteto com $J_{C-F} = 277,1$ Hz em 120,2 ppm.

No espectro de RMN ¹H do composto **4a** (Figura 6, Anexo I) observa-se os sinais referentes ao tiofeno: um dubleto de dubletos em 7,24 ppm do H4' com $J_{H4'-H3'} = 4,8$ Hz e $J_{H4'-H5'} = 3,4$ Hz; um dubleto em 7,89 ppm do H3' e um dubleto mais desblindado, por estar próximo ao átomo de enxofre, em 8,24 ppm do H5'. O H5 do anel pirimidínico aparece como um singleto em 7,95 ppm. Observa-se, ainda o sinal alargado do hidrogênio ligado ao nitrogênio em 12,95 ppm.

O espectro de RMN ¹³C desacoplado do composto **4a** (Figura 7, Anexo I) apresenta em 140,0 ppm, 131,0 ppm, 128,7 ppm e 132,7 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do tiofeno. Em 165,1 ppm localiza-se o sinal do carbono carbonílico C2. Em 156,7 ppm observa-se um quarteto referente ao carbono C6 com constante de acoplamento com os átomos de flúor a duas ligações de distância ${}^{2}J_{C6-F} = 34,7$ Hz e em 103,5 ppm e 163,5 ppm aparecem os carbonos C5 e C4. O sinal do carbono do grupo CF₃ encontra-se como um quarteto com $J_{C-F} = 273,6$ Hz em 120,6 ppm.

O composto **3b** apresenta no espectro de RMN ¹H (Figura 8, Anexo I) os sinais referentes ao furano: um dubleto de dubletos em 6,62 ppm do H4' com $J_{H4'-H3'} = 3,5$ Hz e $J_{H4'-H5'} = 1,8$ Hz; um dubleto em 7,38 ppm do H3' e um dubleto mais desblindado, por estar próximo ao átomo de oxigênio, em 7,65 ppm do H5'. Em 7,72 ppm aparece o simpleto do H5 pirimidínico e na região de campo alto, em 2,82 ppm, observa-se o simpleto referente a metila.

No espectro de RMN ¹³C desacoplado do composto **3b** (Figura 9, Anexo I) observa-se em 151,0 ppm, 113,9 ppm, 112,8 ppm e 145,9 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do furano. Em 169,4 ppm aparece o sinal do carbono pirimidínico C2, em 156,1 ppm o quarteto do carbono C6 que acopla com os átomos de flúor com ${}^{2}J_{C6-F} = 35,5$ Hz, em 107,5 ppm o carbono C5 e em 157,4 ppm o carbono C4. O quarteto com $J_{C-F} = 273,6$ Hz do carbono do grupo CF₃ localiza-se em 120,6 ppm. Observa-se, ainda, o sinal em campo alto referente ao carbono da metila em 26,0 ppm.

No espectro de RMN ¹H (Figura 10, Anexo I) do composto **4b** observa-se três duplos dubletos em 7,59 ppm, 7,18 ppm e 7,84 ppm referentes aos hidrogênios H3', H4' e H5' do tiofeno com acoplamentos $J_{\text{H3'-H4'}} = 5,0$ Hz, $J_{\text{H3'-H5'}} = 1,0$ Hz e $J_{\text{H4'-H5'}} = 3,8$ Hz. Em 7,65 ppm observa-se o simpleto do H5 pirimidínico e na região de campo alto, em 2,81 ppm, o simpleto referente a metila.

No espectro de RMN ¹³C desacoplado do composto **4b** (Figura 11, Anexo I) observase em 141,4 ppm, 128,8 ppm, 128,7 ppm e 131,5 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do tiofeno. Em 169,6 ppm aparece o sinal do carbono C2 do anel pirimidínico, em 156,0 ppm o quarteto do carbono C6 que acopla com os átomos de flúor com ${}^{2}J_{C6-F} = 35,4$ Hz, em 107,9 ppm o carbono C5 que também acopla com os átomos de flúor a três ligações de distância com ${}^{3}J_{C5-F} = 2,8$ Hz e em 161,2 ppm o carbono C4. O quarteto com $J_{C-F} = 273,5$ Hz do carbono do grupo CF₃ localiza-se em 120,7 ppm. Observase, ainda, o sinal em campo alto referente ao carbono da metila em 25,9 ppm.

Para a determinação da estrutura do composto 3c foram feitos os experimentos bidimensionais RMN *HMQC* (Figura 12, Anexo I), que fornece a correlação direta C-H (¹*J*) e RMN *HMBC* (Figura 13, Anexo I), que dá a correlação C-H a duas ou mais ligações. Isso possibilitou a atribuição correta dos deslocamentos de hidrogênios e carbonos deste composto e, a partir de então, estendeu-se aos demais.

O espectro de RMN ¹H (Figura 14, Anexo I) do composto **3c** apresenta os sinais referentes ao furano: um dubleto de dubletos em 7,57 ppm do H4' com $J_{H4'-H3'} = 3,3$ Hz e $J_{H4'-H5'} = 1,7$ Hz; um dubleto em 7,47 ppm do H3' e um dubleto mais desblindado, por estar próximo ao átomo de oxigênio, em 7,63 ppm do H5'. O simpleto do H5 pirimidínico aparece em 7,74 ppm e nas regiões de 7,46-7,51 ppm e 8,52-8,54 ppm observam-se dois multipletos referentes aos hidrogênios da fenila.

No espectro de RMN ¹³C desacoplado do composto **3c** (Figura 15, Anexo I) observase em 151,5 ppm, 113,8 ppm, 112,9 ppm e 145,9 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do furano. Em 165,3 ppm aparece o sinal do carbono pirimidínico C2, em 156,6 ppm o quarteto do carbono C6 que acopla com os átomos de flúor com ${}^{2}J_{C6-F} = 35,6$ Hz, em 107,9 ppm o carbono C5 que também acopla com os átomos de flúor a três ligações de distância com ${}^{3}J_{C5-F} = 2,7$ Hz e em 157,7 ppm o carbono C4. O quarteto com $J_{C-F} = 273,5$ Hz do carbono do grupo CF₃ localiza-se em 120,8 ppm. Os sinais dos carbonos fenílicos aparecem em 128,5 ppm, 128,6 ppm, 131,5 ppm e 136,3 ppm.

No espectro de RMN ¹H (Figura 16, Anexo I) do composto **4c** aparecem três duplos dubletos em 7,57 ppm, 7,17 ppm e 7,85 ppm referentes aos hidrogênios H3', H4' e H5' do tiofeno com acoplamentos $J_{\text{H3'-H4'}} = 5,0$ Hz, $J_{\text{H3'-H5'}} = 1,0$ Hz e $J_{\text{H4'-H5'}} = 3,8$ Hz. Em 7,74 ppm observa-se o simpleto do H5 pirimidínico e nas regiões de 7,48-7,51 ppm e 8,53-8,56 ppm dois multipletos referentes aos hidrogênios da fenila.

No espectro de RMN ¹³C desacoplado do composto **4c** (Figura 17, Anexo I) observase em 136,2 ppm, 128,6 ppm, 128,6 ppm e 131,5 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do tiofeno. O sinal do carbono pirimidínico C2 é encontrado em 165,3 ppm, em 156,4 ppm o quarteto do carbono C6 que acopla com os átomos de flúor com ${}^{2}J_{C6-F} = 35,5$ Hz, em 108,2 ppm o carbono C5 que também acopla com os átomos de flúor a três ligações de distância com ${}^{3}J_{C5-F} = 2,8$ Hz e em 161,2 ppm o carbono C4. O quarteto com $J_{C-F} = 273,6$ Hz do carbono do grupo CF₃ localiza-se em 120,8 ppm. Os sinais dos carbonos fenílicos aparecem em 128,6 ppm, 128,7 ppm, 131,6 ppm e 141,8 ppm.

Para o composto **3d** o espectro de RMN ¹H (Figura 18, Anexo I) mostra uma pequena constante de acoplamento entre os hidrogênios H3' e H5', o que não é comum para o furano. Desta forma, observam-se três dubletos de dubletos em 7,23 ppm, 6,58 ppm e 7,61 ppm com constantes de acoplamento $J_{\text{H3'-H4'}} = 3,5$ Hz, $J_{\text{H3'-H5'}} = 0,7$ Hz e $J_{\text{H4'-H5'}} = 1,7$ Hz, referentes aos hidrogênios H3', H4' e H5'. Ainda pode-se observar o H5 em 7,24 ppm e um sinal alargado dos hidrogênios do grupo amino em 5,61 ppm.

No espectro de RMN ¹³C desacoplado do composto **3d** (Figura 19, Anexo I) observase os sinais referentes aos carbonos do furano com deslocamentos muito semelhantes aos compostos contendo furano anteriormente citados. Em 163,3 ppm tem-se o sinal do carbono C2 ligado ao grupo amino, em 157,2 o quarteto característico do carbono C6 com ${}^{2}J_{C6-F} =$ 35,2 Hz, em 101,2 ppm o quarteto do carbono C5 com ${}^{3}J_{C5-F} = 2,9$ Hz e o carbono C4 em 158,7 ppm. O quarteto com $J_{C-F} = 273,4$ Hz do carbono do grupo CF₃ localiza-se em 120,6 ppm.

O espectro de RMN ¹H (Figura 20, Anexo I) do composto **4d** apresenta os três dubletos de dubletos característicos do tiofeno com deslocamentos e constantes de acoplamento muito semelhantes aos compostos **4b** e **4c**. Em 7,19 ppm observa-se simpleto do hidrogênio pirimidínico H5 e o sinal alargado dos hidrogênios do grupo amino em 5,57 ppm.

O espectro de RMN ¹³C desacoplado do composto **4d** (Figura 21, Anexo I) mostra os sinais em 141,5 ppm, 128,6 ppm, 128,4 ppm e 130,9 ppm referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do tiofeno. Com deslocamentos de 163,1 ppm aparece o carbono C2, em 157,0 ppm o carbono C6 com ${}^{2}J_{C6-F} = 35,0$ Hz, em 101,4 ppm com o carbono C5 com $J^{3}_{C5-F} = 2,9$ Hz e em 162,4 o carbono C4. O quarteto com $J_{C-F} = 273,5$ Hz do carbono do grupo CF₃ localiza-se em 120,6 ppm.

Para a atribuição dos deslocamentos do substituinte pirazolil do composto **3e** foi feito o experimento de RMN *HMBC* (Figura 22, Anexo I).

No espectro de RMN ¹H (Figura 23, Anexo I) do composto **3e** observa-se os sinais referentes ao furano: um dubleto de dubletos em 6,64 ppm do H4' com $J_{H4'-H3'} = 3,4$ Hz e $J_{H4'-H5'} = 1,3$ Hz; um dubleto em 7,57 ppm do H3' e um dubleto mais desblindado, por estar próximo ao átomo de oxigênio, em 7,69 ppm do H5'. O simpleto do H5 pirimidínico aparece em 7,76 ppm. Os sinais referentes aos hidrogênios H8', H9' e H10' do substituinte pirazolil são observados, respectivamente, em 7,89 ppm (dubleto), 6,53 ppm com $J_{H8'-H9'} = 1,1$ Hz, $J_{H9'-H10'} = 2,4$ Hz (dubleto de dubletos) e 8,65 ppm (dubleto).

O espectro de RMN ¹³C desacoplado do composto **3e** (Figura 24, Anexo I) apresenta os sinais em 150,5 ppm, 115,6 ppm, 113,2 ppm e 146,7 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do furano. O carbono pirimidínico C2 tem deslocamento de 159,4 ppm e o carbono C6 157,8 ppm com ${}^{2}J_{C6-F} = 36,5$ Hz. Em 107,6 ppm observa-se o carbono C5 e em 156,3 o carbono C4. Observam-se, ainda, os sinais dos carbonos C8', C9' e C10' do grupo pirazolil, respectivamente, em 144,8 ppm, 109,1 ppm e 129,8 ppm. O quarteto do carbono do grupo CF₃ localiza-se em 120,2 ppm com $J_{C-F} = 273,7$ Hz.

No espectro de RMN ¹H (Figura 25, Anexo I) do composto **4e** aparecem três duplos dubletos em 7,65 ppm, 7,21 ppm e 7,95 ppm referentes aos hidrogênios H3', H4' e H5' do tiofeno com acoplamentos $J_{\text{H3'-H4'}} = 5,0$ Hz, $J_{\text{H3'-H5'}} = 1,0$ Hz e $J_{\text{H4'-H5'}} = 3,8$ Hz. Em 7,68 ppm observa-se o simpleto do H5 pirimidínico. Os sinais dos hidrogênios do substituinte pirazolil apresentam deslocamentos e constantes de acoplamento muito semelhantes aos do composto anterior.

O espectro de RMN ¹³C desacoplado do composto **4e** (Figura 26, Anexo I) apresenta os sinais em 140,3 ppm, 130,2 ppm, 128,8 ppm e 132,5 ppm os sinais referentes, respectivamente, aos carbonos C2', C3', C4' e C5' do tiofeno. O sinal do carbono pirimidínico C2 é encontrado em 163,2 ppm, em 157,7 ppm o quarteto do carbono C6 que acopla com os átomos de flúor com ${}^{2}J_{C6-F} = 36,4$ Hz, em 108,0 ppm o carbono C5 e em 156,2

ppm o carbono C4. Observam-se, ainda, os sinais dos carbonos do grupo pirazolil com deslocamentos semelhantes aos do composto **3e**. O quarteto do carbono do grupo CF₃ localiza-se em 120,2 ppm com $J_{C-F} = 273,8$ Hz.

O composto **3f** apresenta no espectro de RMN ¹H (Figura 27, Anexo I) três dubleto de dubletos referentes aos hidrogênios do furano que acoplam entre eles. Em 7,51 ppm aparece o simpleto do H5 pirimidínico e na região de campo alto, em 2,61 ppm, observa-se o simpleto referente a metila ligada ao enxofre.

No espectro de RMN ¹³C desacoplado do composto **3f** (Figura 28, Anexo I) observa-se os carbonos C2', C3', C4' e C5' do furano, respectivamente, em 150,7 ppm, 114,2 ppm, 112,8 ppm e 146,1 ppm. Em 174,0 ppm aparece o sinal do carbono pirimidínico C2, em 156,0 ppm o quarteto do carbono C6 que acopla com os átomos de flúor com ${}^{2}J_{C6-F} = 35,8$ Hz, em 105,3 ppm o carbono C5 e em 157,1 ppm o carbono C4. O quarteto com $J_{C-F} = 273,6$ Hz do carbono do grupo CF₃ localiza-se em 120,4 ppm. Observa-se, ainda, o sinal em campo alto referente ao carbono da metila em 13,8 ppm.

O espectro de RMN ¹H (Figura 29, Anexo I) do composto **4f** apresenta os três dubletos de dubletos característicos do tiofeno em 7,56 ppm, 7,15 ppm e 7,80 ppm e constantes $J_{\text{H3}'-\text{H4}'}$ = 5,0 Hz, $J_{\text{H3}'-\text{H5}'}$ = 1,1 Hz e $J_{\text{H4}'-\text{H5}'}$ = 3,9 Hz. Em 7,43 ppm observa-se simpleto do hidrogênio pirimidínico H5 e o simpleto dos hidrogênios do grupo SCH₃ em 2,61 ppm.

O espectro de RMN ¹³C desacoplado do composto **4f** (Figura 30, Anexo I) mostra os sinais em 140,9 ppm, 129,1 ppm, 128,6 ppm e 131,7 ppm referentes, respectivamente, aos

carbonos C2', C3', C4' e C5' do tiofeno. Com deslocamentos de 174,2 ppm aparece o carbono C2, em 155,8 ppm o carbono C6 com ${}^{2}J_{C6-F} = 35,6$ Hz, em 105,7 ppm o carbono C5 e em 162,7 ppm o carbono C4. O quarteto com $J_{C-F} = 273,5$ Hz do carbono do grupo CF₃ localiza-se em 120,4 ppm e o carbono do grupo SCH₃ aparece em 14,1 ppm.

3.6. Estudo Estrutural

3.6.1. Cálculos semi-empíricos

Heteroarilpirimidinas alquilamino substituídas são ligantes dos neuroreceptores serotonina. Muitos deles são potentes antagonistas nos receptores 5-HT_{2A} *in vivo* e têm emergido como compostos modelos para definição das relações estéricas no interior de modelos do sítio ativo destes receptores⁹⁶.

Baseado nesta importante aplicação, determinou-se a conformação predominante para os compostos sintetizados através de cálculos de orbital molecular utilizando o método semiempírico Austin Model 1 (AM1) implementado no programa HyperChem 7.0⁹⁶. Os resultados são obtidos como se as moléculas estivessem no vácuo, considerando, desta forma, apenas aspectos intramoleculares.

Através da análise dos resultados, observou que as pirimidinonas **3,4a** apresentam-se numa conformação diferente das pirimidinas **3,4b-f**, Figura 2. Ou seja, as pirimidinonas com o substituinte 2-furil apresentam-se numa conformação *s-cis* essencialmente planar e com o substituinte 2-tienil na conformação *s-trans* com um ângulo torsional em torno de 31°.

As pirimidinas 2-furil substituídas apresentam-se numa conformação *s-trans* e as pirimidinas 2-tienil substituídas numa conformação *s-cis*. As pirimidinas 2-furil substituídas são planares, enquanto as 2-tienil substituídas apresentam ângulos torsionais variando entre 2° e 11°.

A Tabela 6 apresenta as porcentagens entre os confôrmeros *s-cis* e *s-trans* dos compostos **3,4-a-f** calculadas pela equação $\Delta G^\circ = -RT \ln K_{eq}$ onde R é a constante dos gases, T é a temperatura em Kelvin e K_{eq} é a constante de equilíbrio conformacional.

Figura 2: Conformação preferencial para os compostos 3,4a,d no vácuo.

Tabela 6: Porcentagem dos isômeros s-cis e s-trans dos compostos 3,4a-f.

Composto	Isômero <i>s-cis</i> (%)	Isômero <i>s-trans</i> (%)
3 a	92,6	7,4
4a	16,6	83,4
3 b	9,2	90,8
4b	85,8	14,2
3c	9,5	90,5
4c	85,8	14,2
3d	14,4	85,6
4d	82,9	17,1
3 e	7,1	92,9
4e	86,6	13,4
3f	11,0	89,0
4f	84,8	15,2

3.6.2. Difração de raios-X

O composto **4d** foi obtido na forma de cristal acicular e permitiu a análise através do método de difração de raios-X. Esta análise foi realizada a 293(2) K em um difratômetro Bruker Kappa Apex II CCD usando radiação monocromatizada por grafite MoK α ($\gamma = 0,71073$ Å). A estrutura foi resolvida por métodos diretos e os átomos adicionais foram localizados no mapa diferencial de Fourier e refinados em F^2 pelo programa SHELXL-97⁹⁷. A Figura 3 mostra que o composto **4d** encontra-se, no estado sólido, na conformação *s-cis*, no entanto, observa-se que a molécula apresenta um efeito de ordem-desordem em torno da ligação C4-C6. Os dados cristalográficos do composto **4d** estão mostrados na Tabela 7.

Figura 3: ORTEP obtido por difração de raios-X do composto 4d.

Analisando-se os resultados obtidos através dos cálculos de orbital molecular e os dados de raios-X para o composto **4d**, pode-se concluir que os dados dos dois métodos na determinação da conformação estrutural são congruentes, mesmo que o primeiro leve em consideração apenas fatores de interação intramolecular, visto que considera-se a molécula no vácuo.

Fórmula molecular	C ₉ H ₆ F ₃ N ₃ S
Peso molecular	245,23 g.mol ⁻¹
Sistema cristalino	monoclínico
Grupo espacial	P2(1)/c
Parâmetros de cela	$a = 5,0982(2) \text{ Å} \qquad \alpha = 90^{\circ}$
	b = 19,4858(7) Å β = 95,779(2)°
	$c = 10,1807(3)$ Å $\gamma = 90^{\circ}$
Volume da cela elementar	1006,24(6) Å ³
Densidade (calculada)	1,619 Mg/m ³
Coeficiente de absorção	0,339 mm ⁻¹
Dimensões do cristal	0,240 mm \times 0,090 mm \times 0,079 mm
Temperatura de coleta dos dados	273(2) K
F (000)	496
Número total de reflexões medidas	11012

Tabela 7: Dados da determinação da estrutura cristalina do composto 4d.

4. CONCLUSÕES

De acordo com os objetivos propostos para este trabalho e após análise dos resultados, foi possível concluir que:

Foi desenvolvida uma rota sintética simples, eficiente e em condições brandas para a obtenção de pirimidinonas **3,4a** e pirimidinas **3,4b-f** trifluormetil substituídas, a partir da reação de ciclocondensação de uréia e amidinas com 1,1,1-trifluor-4-metoxi-4-(fur-2-il)[(tien-2-il)]-3-buten-2-onas.

As reações de ciclocondensação dos substratos 1 e 2 com amidinas forneceram somente pirimidinas aromáticas. Não se observou a formação de derivados di ou tetraidratados.

Os produtos possuem alta estabilidade termodinâmica e podem ser armazenados durante longos períodos à atmosfera ambiente, sem modificações químicas e foram facilmente isolados, purificados e obtidos com rendimentos razoáveis de 48-67%.

Os resultados dos cálculos semi-empíricos de orbital molecular par o composto **4d** foram congruentes com os dados obtidos por difração de raios-X na predição da conformação da molécula.

5. PARTE EXPERIMENTAL

5.1. Reagentes e Solventes Utilizados

Os solventes foram purificados e secos antes de serem utilizados, através de técnicas encontradas na literatura⁹⁸. Solventes e reagentes utilizados neste trabalho estão relacionados abaixo:

- 2-Acetil-furano 99% comercial Acros
- 2-Acetil-tiofeno 98% comercial Acros
- Trimetil ortoformiato 99% comercial Acros
- Anidrido trifluoracético 99+% comercial Acros
- Uréia para análise comercial Merck
- Trifluoreto de boro eterato 48% comercial Aldrich
- Isopropóxido de titânio(IV) 98+% comercial Acros
- Cloridrato de acetamidina 98+% comercial Acros
- Cloridrato de benzamidina 99% comercial Acros
- Cloridrato de guanidina 98% comercial Acros
- Cloridrato de 1H-pirazol-1-carboxamidina 99% comercial Acros
- Sulfato de 2-metil-2-tiopseudouréia 98% comercial Aldrich
- Piridina Vetec
- Hidróxido de sódio P.A. Vetec
- Ácido clorídrico P.A. Biotec
- Carbonato de sódio anidro P.A. Belga
- Sulfato de magnésio P.A.-A.C.S. Synth
- Metanol P.A. Vetec
- Isopropanol P.A. Ecibra
- Clorofórmio P.A. Vetec
- Hexano P.A. Vetec

5.2. Aparelhos utilizados

5.2.1. Espectroscopia de Ressonância Magnética Nuclear

Os espectros de RMN ¹H, RMN ¹³C e técnicas bidimensionais foram obtidos em espectrômetros Bruker DPX-200 e Bruker DPX-400, utilizando tubos de 5 mm a temperatura de 300 K. Foram utilizados dimetilsulfóxido (DMSO-d₆) ou clorofórmio (CDCl₃) como solventes deuterados e tetrametilsilano (TMS) a 0,1% como referência interna.

As condições usadas no espectrômetro Bruker DPX-200 foram: SF 200,13 MHz para ¹H e 50,32 MHz para ¹³C; largura do pulso 9,9 μ s (90°) para ¹H e 19,5 μ s (90°) para ¹³C; tempo de aquisição 3,9 s para ¹H e 2,8 s para ¹³C; número de varreduras de 8-16 para ¹H e 2000-20000 para ¹³C dependendo do composto; número de pontos 65536 com resolução digital do FID 0,128875 Hz/ponto para ¹H e 0,179994 Hz/ponto para ¹³C; janela espectral 965 Hz para ¹H e 5000 Hz para ¹³C.

As condições usadas no espectrômetro Bruker DPX-400 foram: SF 400,13 MHz para ¹H e 100,62 MHz para ¹³C; largura do pulso 8,0 μ s (90°) para ¹H e 13,7 μ s (90°) para ¹³C; tempo de aquisição 6,5 s para ¹H e 7,6 s para ¹³C; número de varreduras de 8-16 para ¹H e 2000-20000 para ¹³C dependendo do composto; número de pontos 65536 com resolução digital do FID 0,677065 Hz/ponto para ¹H e 0,371260 Hz/ponto para ¹³C; janela espectral 965 Hz para ¹H e 5000 Hz para ¹³C.

5.2.2. Espectroscopia de massas

Os dados de massas e cromatografia gasosa foram obtidos num cromatógrafo HP 6890, acoplado a um espectômetro de massas HP 5973 (GC/MS), com injetor automático HP 6890. Coluna HP-5MS (Crosslinked 5% de Ph-Me-Siloxane) com 30 m de comprimento, 0,32 mm de diâmetro e 0,25 μ m de espessura do filme. Fluxo de gás hélio de 2 mL/min. e pressão de 5,0 psi. Temperatura do injetor 250°C, seringa de 10 μ L com injeção de 1 μ L. Temperatura inicial do forno de 70°C por 1 min. seguido de aquecimento de 12°C/min. até 280°C. Foi utilizado impacto de elétrons a 70 eV para fragmentação dos compostos, no espectrômetro de massas.

5.2.3. Difração de raios-X

A análise estrutural de raios-X do composto **5b** foi realizada a 293(2) K em um difratômetro Bruker Kappa Apex II CCD usando radiação monocromatizada por grafite MoK α ($\gamma = 0,71073$ Å). A estrutura foi resolvida por métodos diretos e os átomos adicionais foram localizados no mapa diferencial de Fourier e refinados em F^2 pelo programa SHELXL-97 (Sheldrick, 1997).

5.2.4. Análise elementar

Os dados de análise elementar CHN foram obtidos em um analisador Perkin-Elmer 2400, no Instituto de Química da USP, São Paulo.

5.2.5. Ponto de fusão

Os pontos de fusão dos compostos sintetizados foram determinados em capilar aberto, utilizando um aparelho Electrothermal Mel-Temp 3.0. Pontos de fusão não corrigidos.

5.2.6. Cálculos computacionais

Os cálculos de Orbital Molecular foram executados utilizando o método semiempírico Austin Model 1 (AM1), implementado no pacote HyperChem 6.0 (2000). As geometrias foram completamente otimizadas sem fixar nenhum parâmetro, trazendo, assim, todas as variáveis geométricas para os seus valores de equilíbrio. O protocolo de minimização de energia emprega o algorítimo Polak-Ribiere, um método de gradiente conjugado. A convergência para um mínimo local é arquivado quando o gradiente de energia é < 0,01 Kcal.mol⁻¹. Os cálculos foram executados em um Dell Precision 330 Pentium IV 1,4 GHz.

5.3. Métodos Experimentais

5.3.1. Procedimento geral de síntese e acilação dos acetais.

Os acetais foram sintetizados a partir do 2-acetilfurano e do 2-acetiltiofeno comerciais e, posteriormente, acilados com anidrido trifluoracético pelo procedimento já descrito na literatura⁶.

5.3.2. Procedimento geral de síntese das pirimidinonas 3,4a.

Em um balão de uma boca dissolveu-se a β -alcoxivinil trifluormetil cetona (3 mmol, 1 equiv.) em isopropanol seco (3 mL). Em seguida adicionou-se a uréia (6 mmol, 2 equiv.) e agitou-se até a dissolução completa, então, adicionou-se o catalisador trifluoreto de boro eterato (3 gotas) e manteve-se sob agitação e aquecimento de 50 °C por 20 horas. Passado o tempo reacional, resfriou-se a mistura em geladeira por 12 horas e observou-se a precipitação de um pó branco que foi filtrado, lavado com água para retirar o excesso de uréia e seco em dessecador à vácuo.

6-(fur-2-il)-4-trifluormetil-2(1*H***)-pirimidinona (3a)**: produto obtido na forma de um sólido branco. Rendimento: 48%. Ponto de fusão: 282-284°C. RMN ¹H (400 MHz, DMSO-*d*₆/TMS) δ : *Pirimidina*: 7,48 (s, 1H, H5); 12,93 (sa, 1H, NH); *Furano*: 7,67 (d, 1H, H3', *J*_{H3'-H4'} = 3,5 Hz); 6,82 (dd, 1H, H4', *J*_{H4'-H3'} = 3,5 Hz, *J*_{H4'-H5'} = 1,7 Hz); 8,07 (d, 1H, H5', *J*_{H5'-H4'} = 1,7 Hz). RMN ¹³C (400 MHz, DMSO-*d*₆/TMS) δ : *Pirimidina*: 163,1 (C2); 157,9 (q, C4, *J*_{C4-F} = 34,9); 100,6 (C5); 157,0 (C6); *Furano*: 148,5 (C2'); 115,8 (C3'); 112,9 (C4'); 147,6 (C5'); *Outros*: 120,2 (q, CF₃, ²*J*_{C-F} = 277,1). CG/MS (IE, 70eV): m/z (%) = 230 (M⁺, 100); 118 (16); 90 (11); 63 (18). Peso Molecular: 230,15. Fórmula Molecular = C₉H₃F₃N₂O₂. Análise Elementar: calc. C, 46,97; H, 2,19; N, 12,17; exp. C, 46,87; H, 2,18; N, 12,05.

6-(tien-2-il)-4-trifluormetil-2(1*H*)-pirimidinona (4a): produto obtido na forma de um sólido branco. Rendimento: 52%. Ponto de fusão: 266-268°C. RMN ¹H (400 MHz, DMSO- d_6 /TMS) δ: *Pirimidina*: 7,95 (s, 1H, H5); 12,95 (sa, 1H, NH); *Tiofeno*: 7,89 (d, 1H, H3', $J_{H3'-H4'} = 4,8$ Hz); 7,24 (dd, 1H, H4', $J_{H4'-H3'} = 4,8$ Hz, $J_{H4'-H5'} = 3,4$ Hz); 8,24 (d, 1H, H5', $J_{H5'-H4'} = 3,4$ Hz). RMN ¹³C (400 MHz, DMSO-*d*₆/TMS) δ : *Pirimidina*: 165,1 (C2); 156,6 (q, C4, ²*J*_{C4-F} = 34,7); 103,5 (C5); 163,5 (C6); *Tiofeno*: 140,0 (C2'); 131,0 (C3'); 128,7 (C4'); 132,7 (C5'); *Outros*: 120,6 (q, CF₃, *J*_{C-F} = 273,6). CG/MS (IE, 70eV): m/z (%) = 246 (M⁺, 100); 227 (10); 134 (30); 69 (17). Peso Molecular: 246,21. Fórmula Molecular = C₉H₅F₃N₂SO. Análise Elementar: calc. C, 43,91; H, 2,05; N, 11,38; exp. C, 43,59; H, 2,02; N, 11,23.

5.3.3. Procedimento geral de síntese das pirimidinas 3,4b-f.

Em um béquer dissolveu-se o sal da amidina (3 mmol, 1 equiv.) em uma solução 1 M de hidróxido de sódio (3 mL) e adicionou-se sobre a β-alcoxivinil trifluormetil cetona (3 mmol, 1 equiv.) previamente solubilizada em metanol (3 mL). Agitou-se a mistura reacional por 1 hora à 50°C para obtenção das pirimidinas **3,4b,d,f** e à temperatura ambiente para a obtenção das pirimidinas **3,4c,e**. Verificou-se a formação de precipitado.

Passado o tempo reacional, extraiu-se o metanol sob pressão reduzida. Então, dissolveu-se o material resultante em clorofórmio (30 mL) e lavou-se com água destilada (3×30 mL). Secou-se a fase orgânica com sulfato de magnésio anidro e evaporou-se o solvente sob pressão reduzida. Todos os compostos foram obtidos na forma sólida e recristalizados em hexano.

4-(fur-2-il)-2-metil-6-trifluormetilpirimidina (3b): produto obtido na forma de um sólido amarelo. Rendimento: 48%. Ponto de fusão: 41-43°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 7,72 (s, 1H, H5); *Furano*: 7,38 (d, 1H, H3', $J_{H3'-H4'}$ = 3,5 Hz); 6,62 (dd, 1H, H4', $J_{H4'-H3'}$ = 3,5 Hz, $J_{H4'-H5'}$ = 1,8 Hz); 7,65 (d, 1H, H5', $J_{H5'-H4'}$ = 1,8 Hz); *Outros*: 2,82 (s, 3H, CH₃). RMN ¹³C (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 169,4 (C2); 157,4 (C4); 107,5 (C5); 156,1 (q, C6, ² J_{C6-F} = 35,5 Hz); *Furano*: 151,0 (C2'); 113,9 (C3'); 112,8 (C4'); 145,9 (C5'); *Outros*: 120,6 (q, CF₃, J_{C-F} = 273,4 Hz); 26,0 (CH₃). CG/MS (IE, 70eV): m/z (%) = 228 (M⁺, 96); 209 (27); 118 (100); 90 (48); 63 (78). Peso Molecular: 228,17. Fórmula Molecular = C₁₀H₇F₃N₂O. Análise Elementar: calc. C, 52,64; H, 3,09; N, 12,28; exp. C, 52,82; H, 3,36; N, 12,38.

2-metil-4-(tien-2-il)-6-trifluormetilpirimidina (4b): produto obtido na forma de um sólido marrom. Rendimento: 53%. Ponto de fusão: 47-49°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ:

Pirimidina: 7,65 (s, 1H, H5); *Tiofeno*: 7,59 (dd, 1H, H3', $J_{H3'-H4'} = 5,0$ Hz, $J_{H3'-H5'} = 1,0$ Hz); 7,18 (dd, 1H, H4', $J_{H4'-H3'} = 5,0$ Hz, $J_{H4'-H5'} = 3,8$ Hz); 7,84 (dd, 1H, H5', $J_{H5'-H3'} = 1,0$ Hz, $J_{H5'-H4'} = 3,8$ Hz); *Outros*: 2,81 (s, 3H, CH₃). RMN ¹³C (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 169,6 (C2); 161,2 (C4); 107,9 (q, C5, ${}^{3}J_{C5-F} = 2,8$ Hz); 156,0 (q, C6, ${}^{2}J_{C6-F} = 35,4$ Hz); *Tiofeno*: 141,4 (C2'); 128,8 (C3'); 128,6 (C4'); 131,5 (C5'); *Outros*: 120,7 (q, CF₃, $J_{C-F} = 273,5$ Hz); 25,9 (CH₃). CG/MS (IE, 70eV): m/z (%) = 244 (M⁺, 100); 225 (13); 134 (72); 69 (21). Peso Molecular: 244,24. Fórmula Molecular = C₁₀H₇F₃N₂S. Análise Elementar: calc. C, 49,18; H, 2,89; N, 11,47; exp. C, 48,68; H, 2,91; N, 10,41.

2-fenil-4-(fur-2-il)-6-trifluormetilpirimidina (3c): produto obtido na forma de um sólido amarelo. Rendimento: 61%. Ponto de fusão: 66-68°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 7,74 (s, 1H, H5); *Furano*: 7,47 (d, 1H, H3', $J_{\text{H3'-H4'}} = 3,3$ Hz); 7,57 (dd, 1H, H4', $J_{\text{H4'-H3'}} = 3,3$ Hz, $J_{\text{H4'-H5'}} = 1,7$ Hz); 7,63 (d, 1H, H5', $J_{\text{H5'-H4'}} = 1,7$ Hz); *Outros*: 7,46-7,51 (m, 3H, Ph); 8,52-8,54 (m, 2H, Ph). RMN ¹³C (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 165,3 (C2); 157,7 (C4); 107,9 (q, C5, ${}^{3}J_{\text{C5-F}} = 2,7$ Hz); 156,6 (q, C6, ${}^{2}J_{\text{C6-F}} = 35,6$ Hz); *Furano*: 151,5 (C2'); 113,8 (C3'); 112,9 (C4'); 145,9 (C5'); *Outros*: 120,8 (q, CF₃, $J_{\text{C-F}} = 273,5$ Hz); 136,3; 128,6; 131,5 (Ph). CG/MS (IE, 70eV): m/z (%) = 290 (M⁺, 96); 271 (16); 118 (100); 90 (52); 63 (73). Peso Molecular: 290,24. Fórmula Molecular = C₁₅H₉F₃N₂O. Análise Elementar: calc. C, 62,07; H, 3,13; N, 9,65; exp. C, 61,44; H, 3,10; N, 9,08.

2-fenil-4-(tien-2-il)-6-trifluormetilpirimidina (4c): produto obtido na forma de um sólido amarelo. Rendimento: 67%. Ponto de fusão: 104-106°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 7,65 (s, 1H, H5); *Tiofeno*: 7,57 (dd, 1H, H3', $J_{H3'-H4'} = 5,0$ Hz, $J_{H3'-H5'} = 1,0$ Hz); 7,17 (dd, 1H, H4', $J_{H4'-H3'} = 5,0$ Hz, $J_{H4'-H5'} = 3,8$ Hz); 7,85 (dd, 1H, H5', $J_{H5'-H3'} = 1,0$ Hz, $J_{H5'-H4'} = 3,8$ Hz); *Outros*: 7,48-7,51 (m, 3H, Ph); 8,53-8,56 (m, 2H, Ph). RMN ¹³C (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 165,3 (C2); 161,2 (C4); 108,2 (q, C5, ${}^{3}J_{C5-F} = 2,8$ Hz); 156,4 (q, C6, ${}^{2}J_{C6-F} = 35,5$ Hz); *Tiofeno*: 136,2 (C2'); 128,6 (C3'); 128,6 (C4'); 131,5 (C5'); *Outros*: 120,8 (q, CF₃, $J_{C-F} = 273,6$ Hz); 141,8; 128,7; 128,6; 131,6 (Ph). CG/MS (IE, 70eV): m/z (%) = 306 (M⁺, 100); 287 (4); 134 (73); 69 (8). Peso Molecular: 306,31. Fórmula Molecular = C₁₅H₉F₃N₂S. Análise Elementar: calc. C, 58,82; H, 2,96; N, 9,15; exp. C, 58,82; H, 3,12; N, 8,52.

2-amino-4-(fur-2-il)-6-trifluormetilpirimidina (3d): produto obtido na forma de um sólido branco. Rendimento: 50%. Ponto de fusão: 130-132°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 7,24 (s, 1H, H5); *Furano*: 7,23 (dd, 1H, H3', *J*_{H3'-H4'} = 3,5 Hz, *J*_{H3'-H5'} = 0,7 Hz); 6,58 (dd, 1H, H4', *J*_{H4'-H3'} = 3,5 Hz, *J*_{H4'-H5'} = 1,7 Hz); 7,61 (dd, 1H, H5', *J*_{H5'-H3'} = 0,7 Hz, *J*_{H5'-H4'} = 1,7 Hz); *Outros*: 5,61 (sa, 2H, NH₂). RMN ¹³C (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 163,3 (C2); 158,7 (C4); 101,2 (q, C5, ³*J*_{C5-F} = 2,9 Hz); 157,2 (q, C6, ²*J*_{C6-F} = 35,2 Hz); *Furano*: 151,1 (C2'); 113,4 (C3'); 112,6 (C4'); 145,6 (C5'); *Outros*: 120,6 (q, CF₃, *J*_{C-F} = 273,4 Hz). CG/MS (IE, 70eV): m/z (%) = 229 (M⁺, 100); 118 (35); 90 (24); 63 (37). Peso Molecular: 229,16. Fórmula Molecular = C₉H₆F₃N₃O. Análise Elementar: calc. C, 47,17; H, 2,64; N, 18,34; exp. C, 48,26; H, 3,20; N, 16,19.

2-amino-4-(tien-2-il)-6-trifluormetilpirimidina (4d): produto obtido na forma de um sólido amarelo. Rendimento: 51%. Ponto de fusão: 141-143°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 7,19 (s, 1H, H5); *Tiofeno*: 7,54 (dd, 1H, H3', $J_{H3'-H4'} = 5,0$ Hz, $J_{H3'-H5'} = 1,0$ Hz); 7,15 (dd, 1H, H4', $J_{H4'-H3'} = 5,0$ Hz, $J_{H4'-H5'} = 3,8$ Hz); 7,77 (dd, 1H, H5', $J_{H5'-H3'} = 1,0$ Hz, $J_{H5'-H4'} = 3,8$ Hz); *Outros*: 5,57 (sa, 2H, NH₂). RMN ¹³C (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 163,1 (C2); 162,4 (C4); 101,4 (q, C5, ${}^{3}J_{C5-F} = 2,9$ Hz); 157,0 (q, C6, ${}^{2}J_{C6-F} = 35,0$ Hz); *Tiofeno*: 141,5 (C2'); 128,6 (C3'); 128,4 (C4'); 130,9 (C5'); *Outros*: 120,6 (q, CF₃, $J_{C-F} = 273,5$ Hz). CG/MS (IE, 70eV): m/z (%) = 245 (M⁺, 100); 226 (10); 204 (45); 134 (59); 69 (28). Peso Molecular: 245,23. Fórmula Molecular = C₉H₆F₃N₃S. Análise Elementar: calc. C, 44,08; H, 2,47; N, 17,14; exp. C, 44,78; H, 2,65; N, 15,59.

4-(fur-2-il)-2-(pirazol-1-il)-6-trifluormetilpirimidina (3e): produto obtido na forma de um sólido amarelo. Rendimento: 54%. Ponto de fusão: 108-110°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 7,76 (s, 1H, H5); *Furano*: 7,57 (d, 1H, H3', $J_{H3'-H4'} = 3,4$ Hz); 6,64 (dd, 1H, H4', $J_{H4'-H3'} = 3,4$ Hz, $J_{H4'-H5'} = 1,3$ Hz); 7,69 (d, 1H, H5', $J_{H5'-H4'} = 1,3$ Hz); *Pirazol*: 7,89 (d, 1H, H8', $J_{H8'-H9'} = 1,1$ Hz); 6,53 (dd, 1H, H9', $J_{H9'-H8'} = 1,1$ Hz, $J_{H9'-H10'} = 2,4$ Hz); 8,65 (d, 1H, H10', $J_{H10'-H9'} = 2,4$ Hz). RMN ¹³C (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 159,4 (C2); 156,3 (C4); 107,6 (C5); 157,8 (q, C6, ² $J_{C6-F} = 36,5$ Hz); *Furano*: 150,5 (C2'); 115,6 (C3'); 113,2 (C4'); 146,7 (C5'); *Pirazol*: 144,4 (C8'); 109,1 (C9'); 129,8 (C10'); *Outros*: 120,2 (q, CF₃, $J_{C-F} = 273,7$ Hz). CG/MS (IE, 70eV): m/z (%) = 280 (M⁺, 100); 261 (8); 213 (75); 118 (8); 90 (8); 63 (14). Peso Molecular: 280,21. Fórmula Molecular

= $C_{12}H_7F_3N_4O$. Análise Elementar: calc. C, 51,44; H, 2,52; N, 19,99; exp. C, 50,84; H, 2,64; N, 20,09.

2-(pirazol-1-il)-4-(tien-2-il)-6-trifluormetilpirimidina (4e): produto obtido na forma de um sólido amarelo. Rendimento: 58%. Ponto de fusão: 116-118°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 7,68 (s, 1H, H5); *Tiofeno*: 7,65 (dd, 1H, H3', $J_{H3'-H4'} = 5,0$ Hz, $J_{H3'-H5'} = 1,0$ Hz); 7,21 (dd, 1H, H4', $J_{H4'-H3'} = 5,0$ Hz, $J_{H4'-H5'} = 3,8$ Hz); 7,95 (dd, 1H, H5', $J_{H5'-H3'} = 1,0$ Hz, $J_{H5'-H4'} = 3,8$ Hz); *Pirazol*: 7,89 (d, 1H, H8', $J_{H8'-H9'} = 1,8$ Hz); 6,53 (dd, 1H, H9', $J_{H9'-H8'} = 1,8$ Hz, $J_{H9'-H10'} = 2,4$ Hz); 8,66 (d, 1H, H10', $J_{H10'-H9'} = 2,4$ Hz). RMN ¹³C (400 MHz, CDCl₃/TMS) δ: *Pirimidina*: 163,2 (C2); 156,2 (C4); 108,0 (C5); 157,7 (q, C6, ² $J_{C6-F} = 36,4$ Hz); *Tiofeno*: 140,3 (C2'); 130,2 (C3'); 128,8 (C4'); 132,5 (C5'); *Pirazol*: 144,5 (C8'); 109,1 (C9'); 129,8 (C10'); *Outros*: 120,2 (q, CF₃, $J_{C-F} = 273,8$ Hz). CG/MS (IE, 70eV): m/z (%) = 296 (M⁺, 100); 287 (8); 229 (82); 134 (15); 69 (9). Peso Molecular: 296,28. Fórmula Molecular = C₁₂H₇F₃N₄S. Análise Elementar: calc. C, 48,65; H, 2,38; N, 18,91; exp. C, 48,76; H, 2,47; N, 18,90.

4-(fur-2-il)-2-(metiltio)-6-trifluormetilpirimidina (3f): produto obtido na forma de um sólido marrom. Rendimento: 52%. Ponto de fusão: 40-42°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 7,51 (s, 1H, H5); *Furano*: 7,36 (dd, 1H, H3', *J*_{H3'-H4'} = 3,52 Hz, *J*_{H3'-H5'} = 0,71 Hz); 6,59 (dd, 1H, H4', *J*_{H4'-H3'} = 3,5 Hz, *J*_{H4'-H5'} = 1,7 Hz); 7,63 (dd, 1H, H5', *J*_{H5'-H3'} = 0,7 Hz, *J*_{H5'-H4'} = 1,7 Hz); *Outros*: 2,61 (s, 3H, SCH₃). RMN ¹³C (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 174,0 (C2); 157,1 (C4); 105,3 (C5); 156,0 (q, C6, *J*_{C6-F} = 35,8 Hz); *Furano*: 150,7 (C2'); 114,2 (C3'); 112,8 (C4'); 146,1 (C5'); *Outros*: 120,4 (q, CF₃, *J*_{C-F} = 273,6 Hz); 13,8 (SCH₃). CG/MS (IE, 70eV): m/z (%) = 260 (M⁺, 100); 241 (12); 214 (38); 118 (18); 90 (13); 63 (28). Peso Molecular: 260,24. Fórmula Molecular = C₁₀H₇F₃N₂OS. Análise Elementar: calc. C, 46,15; H, 2,71; N, 10,76; exp. C, 46,76; H, 2,65; N, 11,02.

2-(metiltio)-4-(tien-2-il)-6-trifluormetilpirimidina (4f): produto obtido na forma de um sólido marrom. Rendimento: 53%. Ponto de fusão: 48-50°C. RMN ¹H (400 MHz, CDCl₃/TMS) δ : *Pirimidina*: 7,43 (s, 1H, H5); *Tiofeno*: 7,56 (dd, 1H, H3', *J*_{H3'-H4'} = 5,0 Hz, *J*_{H3'-H5'} = 1,1 Hz); 7,15 (dd, 1H, H4', *J*_{H4'-H3'} = 5,0 Hz, *J*_{H4'-H5'} = 3,9 Hz); 7,80 (dd, 1H, H5', *J*_{H5'-H3'} = 1,1 Hz, *J*_{H5'-H4'} = 3,9 Hz); *Outros*: 2,61 (s, 3H, SCH₃). RMN ¹³C (400 MHz,

CDCl₃/TMS) δ : *Pirimidina*: 174,2 (C2); 162,7 (C4); 105,7 (C5); 155,8 (q, C6, J_{C6-F} = 35,6 Hz); *Tiofeno*: 140,9 (C2'); 129,1 (C3'); 128,6 (C4'); 131,7 (C5'); *Outros*: 120,4 (q, CF₃, J_{C-F} = 273,5 Hz); 14,1 (SCH₃). CG/MS (IE, 70eV): m/z (%) = 276 (M⁺, 100); 257 (14); 229 (60); 134 (45); 69 (16). Peso Molecular: 276,30. Fórmula Molecular = C₁₀H₇F₃N₂S₂. Análise Elementar: calc. C, 43,47; H, 2,55; N, 10,14; exp. C, 43,34; H, 2,61; N, 10,56.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- Martins, M. A. P.; Siqueira, G. M.; Flores, A. F. C.; Clar, G.; Zanatta, N. *Química Nova* 1994, 17(1), 24.
- Martins, M. A. P.; Flores, A. F. C.; Siqueira, G. M.; Freitag, R.; Zanatta, N. Química Nova 1994, 17(4), 298.
- 3. Colla, A.; Martins, M. A. P.; Clar, G.; Krimmer, S.; Fischer, P. Synthesis 1991, 483.
- Martins, M. A. P.; Bastos, G. P.; Bonacorso, H. G.; Zanatta, N.; Flores, A. F. C.; Siqueira, G. M. *Tetrahedron Lett.* **1999**, *40*, 4309.
- Bonacorso, H. G.; Martins, M. A. P.; Bittencourt, S. R. T.; Lourega, R. V.; Zanatta, N.; Flores, A. F. C. J. Fluorine Chem. 1999, 99, 177.
- Flores, A. F. C., Brondani, S.; Zanatta, N.; Rosa, A.; Martins, M. A. P. *Tetrahedron Lett.* 2002, 43, 8701.
- Martins, M. A. P.; Cunico, W.; Pereira, C. M. P.; Sinhorin, A. P.; Flores, A. F. C., Bonacorso, H. G.; Zanatta, N. Curr. Org. Synth. 2004, 1, 391.
- 8. Braibante, M. E. F.; Martins, M. A. P.; Clar, G. J. Heterocyclic Chem. 1993, 30, 1159.
- 9. Martins, M. A. P.; Freitag, R.; Flores, A. F. C.; Zanatta, N. Synthesis 1995, 12, 1491.
- Bonacorso, H. G.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P.; Naue, J. A. J. Fluorine Chem. 1998, 92, 23.
- Bonacorso, H. G.; Oliveira, M. R.; Wentz, A. P.; Wastowski, A. D.; Oliveira, A. B.; Hörner, M.; Zanatta, N.; Martins, M. A. P. *Tetrahedron* 1999, 55, 345.
- Martins, M. A. P.; Freitag, R. A.; Da Rosa, A.; Flores, A. F. C.; Zanatta, N.; Bonacorso, H. G. J. Heterocyclic Chem. 1999, 36(1), 217.
- Bonacorso, H. G.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. Synth. Commun.
 2000, 30, 1457.
- Martins, M. A. P.; Pereira, C. M. P.; Sinhorin, A. P.; Bastos, G. P.; Zimmermann, N. E. K.; Rosa, A.; Bonacorso, H. G.; Zanatta, N. Synth. Commun. 2002, 32, 419.
- Flores, A. F. C.; Martins, M. A. P.; Rosa, A.; Flores, D. C.; Zanatta, N.; Bonacorso, H. G. Synth. Commun. 2002, 32, 1585.
- Flores, A. F. C.; Zanatta, N.; Rosa, A.; Brondani, S.; Martins, M. A. P. *Tetrahedron Lett.* 2002, 43, 5005.

- 17. Martins, M. A. P.; Blanco, R. F.; Pereira, C. M. P.; Beck, P.; Brondani, S.; Cunico, W.; Zimmermann, N. E. K.; Bonacorso, H. G.; Zanatta, N. J. Fluorine Chem. 2002, 118, 69.
- Bonacorso, H. G.; Lewandowski, H.; Drekener, R. L.; Costa, M. B.; Pereira, C. M. P.; Wastowski, A. D.; Peppe, C.; Martins, M. A. P.; Zanatta, N. J. Fluorine Chem. 2003, 122, 159.
- Martins, M. A. P.; Bastos, G. P.; Sinhorin, A. P.; Zimmermann, N. E. K.; Rosa, A.;
 Brondani, S.; Emmerich, D.; Bonacorso, H. G.; Zanatta, N. J. Fluorine Chem. 2003, 123, 249.
- Martins, M. A. P.; Pereira, C. M. P.; Zimmermann, N. E. K.; Cunico, W.; Moura, S.; Beck, P.; Zanatta, N.; Bonacorso, H. G. J. Fluorine Chem. 2003, 123, 261.
- Martins, M. A. P.; Pereira, C. M. P.; Machado, P.; Moura, S.; Teixeira, M. V.; Bonacorso, H. G.; Zanatta, N. *Tetrahedron Lett.* 2003, 44, 6669.
- Martins, M. A. P.; Pereira, C. M. P.; Zimmermann, N. E. K.; Moura, S.; Sinhorin, A. P.; Cunico, W.; Zanatta, N.; Bonacorso, H. G.; Flores, A. C. F. *Synthesis* 2003, 2353.
- Martins, M. A. P.; Emmerich, D. J.; Pereira, C. M. P.; Cunico, W.; Rossato, M.; Zanatta, N.; Bonacorso, H. G. *Tetrahedron Lett.* 2004, 45, 4935.
- Martins, M.; Emmerich, D.; Beck, P.; Cunico, W.; Pereira, C.; Sinhorin, A. P.; Brondani, S.; Peres, R.; Teixeira, M.; Bonacorso, H. G.; Zanatta, N. Synth. Commun. 2004, 34, 1915.
- Martins, M. A. P.; Flores, A. F. C.; Freitag, R.; Zanatta, N. J. Heterocyclic Chem. 1995, 32, 731.
- Martins, M. A. P.; Zoch, A. N.; Flores, A. F. C.; Clar, G.; Zanatta, N.; Bonacorso, H. G. J. Heterocyclic Chem. 1995, 32, 739.
- Martins, M. A. P.; Flores, A. F. C.; Freitag, R.; Zanatta, N. J. Heterocyclic Chem. 1996, 33, 1223.
- Martins, M. A. P.; Siqueira, G. M.; Bastos, G. P.; Bonacorso, H. G.; Zanatta, N. J. Heterocyclic Chem. 1996, 33, 1619.
- Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Zanatta, N.; Bonacorso, H. G. J. Heterocyclic Chem. 1999, 36, 837.
- Martins, M. A. P.; Flores, A. F. C.; Bastos, G. P.; Sinhorin, A.; Bonacorso, H. G.; Zanatta, N. *Tetrahedron Lett.* 2000, *41*, 293.

- Martins, M. A. P.; Sinhorin, A. P.; Zimmermann, N. E. K.; Zanatta, N.; Bonacorso, H. G.; Bastos, G. P. Synthesis 2001, 13, 1959.
- Martins, M. A. P.; Neto, M.; Sinhorin, A. P.; Bastos, G. P.; Zimmermann, N. E. K.; Rosa, A.; Bonacorso, H. G.; Zanatta, N. Synth. Commun. 2002, 32, 425.
- Martins, M. A. P.; Beck, P.; Cunico, W.; Pereira, C. M. P.; Sinhorin, A. P.; Blanco, R. F.; Peres, R.; Bonacorso, H. G.; Zanatta, N. *Tetrahedron Lett.* 2002, 43, 7005.
- 34. Martins, M. A. P.; Pereira, C. M. P.; Zimmermann, N. E. K.; Moura, S.; Sinhorin, A. P.; Cunico, W.; Zanatta, N.; Bonacorso, H. G.; Flores, A. C. F. Synthesis 2003, 2353.
- Martins, M. A. P.; Bastos, G. P.; Sinhorin, A. P.; Zimmermann, N. E. K.; Rosa, A.;
 Brondani, S.; Emmerich, D.; Bonacorso, H. G.; Zanatta, N. J. Fluorine Chem. 2003, 123, 249.
- Martins, M. A. P.; Pereira, C. M. P.; Zimmermann, N. E. K.; Cunico, W.; Moura, S.; Beck, P.; Zanatta, N.; Bonacorso, H. G. J. Fluorine Chem. 2003, 123, 261.
- Martins, M. A. P.; Emmerich, D. J.; Pereira, C. M. P.; Cunico, W.; Rossato, M.; Zanatta, N.; Bonacorso, H. G. *Tetrahedron Lett.* 2004, 45, 4935.
- Martins, M. A. P.; Bastos, G. P.; Sinhorin, A. P.; Zimmermann, N. E. K.; Bonacorso, H. G.; Zanatta, N. *Synthesis* 2002, *15*, 2220.
- Bonacorso, H. G.; Wastowski, A. D.; Muniz, M. N.; Zanatta, N.; Martins, M. A. P. Synthesis 2002, 8, 1079.
- Bonacorso, H. G.; Muniz, M. N.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. *Heteroatom Chem.* 2003, 14, 132.
- Bonacorso, H. G.; Bittencourt, S. R. T.; Lourega, R. V.; Flores, A. F. C.; Zanatta, N.; Martins, M. A. P. Synthesis 2000, 10, 1431.
- 42. Zanatta, N.; Da Rosa, L. S.; Loro, E.; Bonacorso, H. G.; Martins, M. A. P. J. Fluorine *Chem.* **2001**, *107*, 149.
- Zanatta, N.; Rosa, L. S.; Cortelini, M. F. M.; Beux, S.; Santos, A. P. D.; Bonacorso, H. G.; Martins, M. A. P. Synthesis 2002, 2404.
- 44. Martins, M. A. P.; Pereira, C. M. P.; Zimmermann, N. E. K.; Cunico, W.; Moura, S.; Beck, P.; Zanatta, N.; Bonacorso, H. G. *J. Fluorine Chem.* **2003**, *123*, 261.
- 45. Zanatta, N.; Barrichello, R.; Bonacorso, H. G.; Martins, M. A. P. Synthesis 1999, (5), 765.
- Pacholski, I. L.; Blanco, I.; Zanatta, N.; Martins, M. A. P. J. Braz. Chem. Soc. 1991, 2, 118.

- 47. Bonacorso, H. G.; Lopes, I. S.; Wastowski, A. D.; Zanatta, N.; Martins, M. A. P. J. *Fluorine Chem.* **2003**, *120*, 29.
- 48. Madruga, C. C.; Clerici, E.; Martins, M. A. P.; Zanatta, N. J. Heterocyclic Chem. 1995, 32, 735.
- 49. Zanatta, N.; Cortelini, M. F. M.; Carpes, M. J. S.; Bonacorso, H. G.; Martins, M. A. P. J. *Heterocyclic Chem.* **1997**, *34*, 509.
- Zanatta, N.; Fagundes, M. B.; Ellensohn, R.; Marques, M.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocyclic Chem. 1998, 35, 451.
- Zanatta, N.; Madruga, C. C.; Marisco, P. C.; Flores, D. C.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocyclic Chem. 2000, 37, 1213.
- 52. Zanatta, N.; Blanco, I.; Pacholski, I. L.; Martins, M. A. P. Quím. Nova 1993, 16, 15.
- Costa, M. B. *Dissertação de Mestrado em Química*, Universidade Federal de Santa Maria, Brasil, 2004.
- 54. Bonacorso, H. G.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. Synthesis 2001, 10, 1505.
- Zanatta, N.; Lopes, E. C. S.; Fantinel, L.; Bonacorso, H. G.; Martins, M. A. P. J. Heterocyclic Chem. 2002, 39, 943.
- Zanatta, N.; Pacholski, I. L.; Faoro, D.; Bonacorso, H. G.; Martins, M. A. P. Synth. Commun. 2001, 31, 2855.
- Zanatta, N.; Flores, D. C.; Madruga, C. C.; Faoro, D.; Flores, A. F. C.; Bonacorso, H. G.; Martins, M. A. P. *Synthesis* 2003, 894.
- Bonacorso, H. G.; Martins, D. B.; Martins, M. A. P.; Zanatta, N.; Flores, A. F. C. Synthesis 2005, 809.
- Martins, M. A. P.; Teixeira, M. V. M.; Cunico, W.; Scapin, E.; Mayer, R.; Pereira, C. M. P.; Zanatta, N.; Bonacorso, H. G.; Peppe, C.; Yuan, Y. -F. *Tetrahedron Lett.* 2004, 45, 8991.
- Bonacorso, H. G.; Lourega, R. V.; Wastowski, A. D.; Flores, A. F. C.; Zanatta, N.; Martins, M. A. P. *Tetrahedron Lett.* 2002, 43, 9315.
- 61. Bonacorso, H. G.; Duarte, S. H. G.; Zanatta, N.; Martins, M. A. P. Synthesis 2002, 1037.
- Bonacorso, H. G.; Bittencourt, S. T.; Wastowski, A. D.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. *Tetrahedron Lett.* 1996, 37, 9155.
- Bonacorso, H. G.; Bittencourt, S. T.; Wastowski, A. D.; Wentz, A. P.; Zanatta, N.; Martins, M. A. P. J. Heterocyclic Chem. 1999, 36, 45.

- Bonacorso, H. G.; Marques, L. M. L.; Zanatta, N.; Martins, M. A. P. Synth. Commun. 2002, 32, 3225.
- Zanatta, N.; Rosa, L. S.; Loro, E.; Bonacorso, H. G.; Martins, M. A. P. J. Fluorine Chem.
 2001, 107, 149.
- Bonacorso, H. G.; Wentz, A. P.; Bittencourt, S. R. T.; Marques, L. M. L.; Zanatta, N.; Martins, M. A. P. Synth. Commun. 2002, 32, 335.
- Zanatta, N.; Squizani, A. M. C.; Fantinel, L.; Nachtigall, F. M.; Bonacorso, H. G.; Martins, M. A. P. Synthesis 2002, 2409.
- Katritzky and Rees. *Comprehensive Heterocyclic Chemistry*, Vol. 1-8, Pergamon Press, Oxford, 1st ed. 1984, 2nd ed. 1995.
- 69. Acheson, R. M. *An Introduction to the Chemistry of Heterocyclic Compounds*, Wiley-Interscience, N. Y., 3rd ed. **1976**.
- Brown, D. J. *Pyrimidines and Their Benzo Derivatives*, Compreensive Heterocyclic Chemistry, Vol. 3, Pergamon, Oxford, **1984**.
- 71. Kaneko, K.; Katayama, H.; Wakabayashi, T.; Kumanaka, S. Synthesis 1988, 152.
- 72. Lednicer, D.; Mitscher, L. A. The Organic Chemistry Drug Synthesis 1988, 2, 152.
- 73. Inouye, K.; Tezuka, K.; Takeda, W.; Sugai, S. J. Fluorine Chem. 1987, 35, 275.
- 74. a) Divekar, P. V.; Read, G.; Vinning, L. C. *Can. J. Chem.* 1967, *45*, 1215. b) Whitten, L. C. *Acc. Chem. Res.*, 1980, *13*, 83. c) Kambara, T.; Koshida, T.; Saito, N.; Kuwajima, I.; Kubata, K.; Yamamoto, T. *Chem. Lett.* 1992, 583.
- Yamamoto, T.; Maruyama, T.; Zhou, Z.; Ito, T.; Fukuda, T.; Yoneda, Y.; Begum, F.; Ikeda, T.; Sasaki, S.; Takezoe, H.; Fukuda, A.; Kuboda, K. *J. Am. Chem. Soc.* **1994**, *116*, 4832.
- 76. a) Alpha, B.; Anklam, E.; Deschenaux, R.; Lehn, J. M.; Pietrakiewicz, M. *Helv. Chim. Acta* 1988, 1042. b) Willians, R. M.; De Cola, L.; Hartl, F.; Lagref, J. J.; Plainex, J. M.; De Cian, A.; Hosseine, M. W. *Coord. Chem. Rev.* 2002, *230*, 253.
- 77. Lehn, J. M. Supramolecular Chemistry, 1st ed., VCH. Verlasgesellschaft, 1995.
- 78. Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. Rev. 1997, 97, 2005.
- Foces-Foces, C.; Trofimenko, S.; López, C.; Santa Maria, M. D.; Claramunt, R. M.; Elguero, J. J. Mol. Estructure 2000, 526, 59.
- 80. Sato, K.; Sugai, S.; Tomita, K. Agric. Biol. Chem. 1986, 50, 1831.
- 81. Jacobsen, N.; Kolind-Andersen, H.; Christensen, J. Can. J. Chem. 1984, 62, 1940.

- Singh, S. P.; Kumar, D.; Batra, H.; Naithani, R.; Rozas, I.; Elguero, J. *Can. J. Chem.* 2000, 78, 1109.
- 83. Viehe, H. G.; Bouillon, J. -P.; Ates, C.; Janousek, Z. Tetrahedron Lett. 1997, 34, 32, 5075.
- 84. Hu, C. -M.; Guan, H. -P., Hu, Q. -S. Synthesis 1996, 997.
- 85. Huang, W. -Y.; Yu, H. -B. J. Fluorine Chem. 1997, 84, 65.
- 86. Huang, W. -Y.; Yu, H. -B. J. Fluorine Chem. 1998, 87, 69.
- 87. Funabiki, K.; Nakamura, H.; Matsui, M.; Shibata, K. Synlett 1999, 6, 756.
- Röschenthaler, G. -V.; Pashkevich, K. I.; Sevenard, D. V.; Khomutov, O. G.; Koryakova,
 O. V.; Sattarova, V. V.; Kodess, M. I.; Stelten, J.; Loop, I.; Lork, E. Synthesis 2000, 12, 1738.
- 89. Tice, C. M.; Bryman, L. M. Tetrahedron 2001, 57, 2689.
- 90. Nenajdenko, V. G.; Sanin, A. V.; Balenkova, E. S. Molecules 1997, 2, 186.
- 91. Hojo, M.; Masuda, R.; Kokuryo, H.; Shioda, H.; Matsuo, S. Chem. Lett. 1976, 499.
- 92. Hojo, M.; Kamitori, Y.; Masuda, R. Tetrahedron Lett. 1976, 13, 1009.
- 93. Wohl, R. A. Synthesis 1974, 38.
- 94. Strekowski, L.; Tanious, F. A.; Chandrasekaran, S.; Watson, R. A.; Wilson, W. D. *Tetrahedron Lett.* **1986**, *27*, 6045.
- 95. Mokrosz, J. L.; Bojarski, A. J.; Harden, D. B.; Strekowski, L. J. Heterocyclic Chem. 1996, 33, 1207.
- 96. (a) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.; J. Am. Chem. Soc. 1990, 107, 3902. (b) *HyperChem* 6.03. Hypercube: Gainesville, F L, 1999.
- 97. Sheldrick, G. M. SHELXS-97 and SHELXL-97, Programs for Crystal Structure Solution and Refinement: Universität Göttingen, Germany, **1997**.
- 98. Perrin, D. D. & Armarego, L. F. Purification of Laboratory Chemicals, 2rd ed. 1980.

ANEXO I

Figura 6: Espectro de RMN ¹H do composto **4a**, obtido em DMSO-d₆.

Figura 7: Espectro de RMN ¹³C do composto **4a**, obtido em DMSO-d₆.

Figura 10: Espectro de RMN ¹H do composto **4b**, obtido em CDCl₃.

Figura 12: Espectro de RMN *HMQC* do composto **3c**, obtido em CDCl₃.

Figura 13: Espectro de RMN *HMBC* do composto **3c**, obtido em CDCl₃.

Figura 16: Espectro de RMN ¹H do composto **4c**, obtido em CDCl₃.

Figura 17: Espectro de RMN ¹³C do composto **4c**, obtido em CDCl₃.

Figura 20: Espectro de RMN ¹H do composto **4d**, obtido em CDCl₃.

Figura 21: Espectro de RMN ¹³C do composto **4d**, obtido em CDCl₃.

Figura 22: Espectro de RMN *HMBC* do composto **3e**, obtido em CDCl₃.

Figura 23: Espectro de RMN ¹H do composto **3e**, obtido em CDCl₃.

Figura 26: Espectro de RMN 13 C do composto 4e, obtido em CDCl₃.

Figura 27: Espectro de RMN ¹H do composto **3f**, obtido em CDCl₃.

ANEXO II

Figura 31: Espectro de massas do composto **3a**.

Figura 33: Espectro de massas do composto 4a.

Figura 32: Espectro de massas do composto 3b.

Figura 34: Espectro de massas do composto 4b.

Figura 35: Espectro de massas do composto 3c.

Figura 36: Espectro de massas do composto 4c.

Figura 37: Espectro de massas do composto 3d.

Figura 38: Espectro de massas do composto 4d.

Figura 39: Espectro de massas do composto 3e.

Figura 40: Espectro de massas do composto 4e.

Figura 41: Espectro de massas do composto 3f.

Figura 42: Espectro de massas do composto 4f.