

Centro de Ciências Naturais e Exatas Programa de Pós-Graduação em Química

AVALIAÇÃO DA SUPRAMOLECULARIDADE DE COMPLEXOS TRIAZENIDOS MONONUCLEARES E BINUCLEARES DE Ag(I)

Dissertação de Mestrado

Juliana de Oliveira Fank

Santa Maria, RS, Brasil

2009

AVALIAÇÃO DA SUPRAMOLECULARIDADE DE COMPLEXOS TRIAZENIDOS MONONUCLEARES E BINUCLEARES DE Ag(I)

por

Juliana de Oliveira Fank

Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Química, Área de Concentração em Química Inorgânica, da Universidade Federal de Santa Maria (UFSM,RS), como requisito parcial para obtenção do grau de **MESTRE EM QUÍMICA**.

Orientador: Prof. Dr. Manfredo Hörner

Santa Maria, RS, Brasil

2009

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Programa de Pós-Graduação em Química

A Comissão Examinadora, abaixo assinada, aprova a dissertação de Mestrado

AVALIAÇÃO DA SUPRAMOLECULARIDADE DE COMPLEXOS TRIAZENIDOS MONONUCLEARES E BINUCLEARES DE Ag(I)

elaborada por

Juliana de Oliveira Fank

como requisito parcial para obtenção do grau de Mestre em Química

Comissão Examinadora

Prof. Dr. Manfredo Hörner - UFSM

Prof. Dr. Marcos Antonio Villetti - UFSM

Prof. Dr. Leandro Bresolin - FURG

Santa Maria, 01 de julho de 2009.

Aos meus pais Nair e Luiz (In Memoriam) e minhas irmãs Aline e Bárbara obrigada pelo incentivo e apoio, esta conquista também é de vocês. Ao meu marido Elvis por acreditar no meu sonho e torná-lo possível. Você é muito especial para mim. Te amo.

Muito obrigada a todos vocês!

AGRADECIMENTOS

Primeiramente agradeço a Deus pela minha vida e por estar sempre ao meu lado em todos os momentos.

Ao Prof. Manfredo Hörner, muito obrigada pela oportunidade concedida, confiança, dedicação e orientação durante o mestrado.

Ao Prof. Herton e a Prof. Fátima pela participação no exame de qualificação e pela amizade.

Aos colegas Mariana, Vinícius e Estela pela amizade e contribuição para a realização deste trabalho.

Aos demais colegas de laboratório: Fernanda, Aline, Renato, Gustavo, Leandro, Felipe, Tanize e Guilherme.

Ao Prof. Leandro Bresolin e ao Prof. Marcos Antonio Villetti pela participação na banca da defesa.

A amiga Juliane pela amizade e convívio diário durante o mestrado.

Em especial a minha amiga Dani pela amizade, incentivo, convívio e ajuda em vários momentos durante o mestrado.

As amigas Fátima e Rosangela pela amizade e carinho. A CAPES.

RESUMO

Dissertação de Mestrado em Química Inorgânica Programa de Pós-Graduação em Química Universidade Federal de Santa Maria

Avaliação da Supramolecularidade de complexos triazenidos mononucleares e binucleares de Ag(I)

AUTORA: Juliana de Oliveira Fank ORIENTADOR: Prof. Dr. Manfredo Hörner

Este trabalho apresenta a síntese e a investigação da estrutura cristalina e molecular de cinco novos complexos mononucleares e binucleares de Ag(I) com ligantes triazenídicos monocatenados. Os complexos mononucleares foram sintetizados a partir dos complexos binucleares. Com a adição estequiométrica do ligante trifenilfosfina ocorre a cisão do complexo binuclear, eliminando o ligante triazenido da função ponte entre os dois átomos de prata, formando-se o complexo mononuclear de prata quelatizado pelo ligante triazenido. Foram avaliados quanto à ocorrência de interações intermoleculares através de ligações secundárias não-covalentes e ligações não-clássicas de hidrogênio. A investigação baseou-se na difração de raios-X em monocristal para analisar estruturalmente a formação de arranjos supramoleculares formados pelos complexos no estado sólido, resultando em arranjos supramoleculares unidimensionais, bidimensionais е até tridimensionais. complexos 5 Os $[Aq(C_6H_4FNNNC_6H_4NO_2)]_2,$ $[Aq(C_6H_4CINNNC_6H_4NO_2)]_2$ 7 6 $[Ag(C_6H_4NO_2NNNC_6H_4NO_2)P(C_6H_5)_3], 8 [Ag(C_6H_4CINNNC_6H_4NO_2)P(C_6H_5)_3]$ е 9 $[Ag(C_6H_4BrNNNC_6H_4NO_2)P(C_6H_5)_3]$ apresentam ligações secundárias não-covalentes Ag- η^2 -areno π resultante da interação η^2 -areno com caráter π de um anel fenila substituído na posição orto e um átomo Ag. Além destas ligações não-covalentes os complexos 5, 7, 8 e 9 formam arranjos supramoleculares através de ligações de hidrogênio não-clássicas C-H---O.

Palavras-chave: Complexos triazenidos, difração de raios-X, arranjo supramolecular.

ABSTRACT

Master Dissertation in Inorganic Chemistry Post-Graduate Program in Chemistry Universidade Federal de Santa Maria

Evaluation of supramolecularity of triazenide complexes mononuclear and binuclear of Ag(I)

AUTHOR: Juliana de Oliveira Fank ACADEMIC SUPERVISOR: Prof. Dr. Manfredo Hörner

This work presents the synthesis and the investigation of the crystalline and molecular structure of five new mononuclear or binuclear complexes of Ag(I) with monocatenated triazenido ligands. The mononuclear complexes were synthesized from the binucleares complexes. With the addition stoichiometric of the ligand triphenylphosphine occurs the split of the binuclear complex, removing the ligand triazenido of the function bridge between the two atoms of silver, forming the complex mononuclear the silver chelate by ligand triazenide. Were evaluated in relation the occurrence of intermolecular interactions though secondary non-covalent bonding and non-classic hydrogen bonds. The research was based on X-ray diffraction to analyse structurally the formation of supramolecular arrangements performed by complexes in the solid state, that could show in supramolecular arrangents unidimensional, bidimensional and tridimensional. The complexes 5 $[Ag(C_6H_4FNNNC_6H_4NO_2)]_2$, 6 $[Ag(C_6H_4CINNNC_6H_4NO_2)]_2$, 7 $[Ag(C_6H_4NO_2NNNC_6H_4NO_2)P(C_6H_5)_3], 8 [Ag(C_6H_4CINNNC_6H_4NO_2)P(C_6H_5)_3]$ and 9 $[Ag(C_6H_4BrNNNC_6H_4NO_2)P(C_6H_5)_3]$ present non-covalent secondary bonding Ag-²resultant from the interaction ²-arene with arene character of a phenyl ring substituted into ortho position and an Ag atom. Besides these non-covalent bonding the complexes 5, 7, 8 and 9 form supramolecular arrangements through the nonclassic hydrogen bonding C-H O.

Keywords. Triazenide complex, X-ray diffraction, supramolecular arrangement.

RESUMO	6
ABSTRACT	7
ÍNDICE DE FIGURAS	9
ÍNDICE DE TABELAS	12
ÍNDICE DE ANEXOS	13
ÍNDICE DE ESQUEMAS	14
ÍNDICE DE ABREVIATURAS E SIGLAS	15
CAPÍTULO 1: Introdução e Objetivos	16
CAPÍTULO 2: Revisão da Literatura	19
2.1 Triazenos	20
2.2 Aplicações dos compostos triazenos	21
2.3 Téctons	22
2.4 Ligações de hidrogênio	24
2.5 Complexos triazenidos envolvendo íons prata	25
CAPÍTULO 3: Parte Experimental	27
3.1 Materiais e métodos	28
3.2 Procedimento experimental	28
3.2.1 Síntese dos pré-ligantes 1, 2, 3 e 4	28
3.2.2 Síntese dos complexo 5 e 6	30
3.2.3 Síntese dos complexos 7, 8 e 9	32
3.3 Procedimento geral da coleta de dados de difração de raios-X	35
3.3.1 Estruturas cristalinas e moleculares do pré-ligante 2 e dos	
complexos 5 a 9	36
3.3.2 Determinação do grupo espacial	39
3.3.3 Solução da estrutura molecular	39
CAPÍTULO 4: Discussão dos Resultados	43
4.1 Espectroscopia na região do infravermelho	44
4.1.2 Espectros de infravermelho dos complexos triazenídicos 5 a	
9	44
4.2 Ressonância magnética nuclear de ¹ H dos pré-ligantes 1 a 3	44
4.3 Método envolvido na síntese dos pré-ligantes e dos complexos	45
4.3.1 Síntese dos complexos 5 e 6	45
4.3.2 Síntese dos complexos 7, 8 e 9	45
4.4 Discussão da estrutura cristalina do pré-ligante 2	46
4.5 Discussão das estruturas cristalinas dos complexos 5 e 6	49
4.6 Discussão das estruturas cristalinas dos complexos 7, 8 e 9	58
CAPÍTULO 5: Conclusões	69
CAPÍTULO 6: Referências Bibliográficas	71

ÍNDICE DE FIGURAS

Figura 1:	Representação estrutural de triazenos (a) simétricos e (b)	20
Figura 2.	Assimetricos.	20
Figura 2.	Representação estrutural do 1,3-2/3(Terminazeno) penzeno	20
Figura 5.	Representação estrutural dos principais modos de	04
	Coordenação dos triazenos.	21
Figura 4:	Representação estrutural dos medicamentos (a) Taxada a substituídados \mathbb{R} 17 18	~~
F ¹ F		22
Figura 5:	Estrutura do complexo $\{[Ag(HL)(H_2O)]SbF_6\}$ (HL =	
	$C_{36}H_{26}N_2O_2$). Para maior clareza, foram suprimidos todos os	~~
/	atomos de hidrogenio da molecula do complexo.	23
Figura 6:	Parametros geometricos para a ligação de hidrogenio.	24
Figura /:	Representação da ligação de hidrogênio bifurcada no (a)	~-
	doador e (b) no aceptor.	25
Figura 8:	Representação estrutural do pre-ligante 1.	29
Figura 9:	Representação estrutural do pre-ligante 2.	29
Figura 10:	Representação estrutural do pre-ligante 3.	29
Figura 11:	Representação estrutural do pre-ligante 4.	30
Figura 12:	Representação estrutural do complexo 5.	31
Figura 13:	Representação estrutural do complexo 6.	32
Figura 14:	Representação estrutural do complexo 7.	34
Figura 15:	Representação estrutural do complexo 8.	34
Figura 16:	Representação estrutural do complexo 9.	35
Figura 17:	Projeção da estrutura molecular do pré-ligante 2. Elipsóides	
	térmicos representados com um nível de probabilidade de	
	50%	46
Figura 18:	Projeção com detalhe da interação intermolecular do pré-	
	ligante 2 paralelo a direção cristalográfica [001], em função	
_	das ligações de hidrogênio. <i>Código de Simetria</i> (): $x, y, -1+z$.	48
Figura 19:	Projeção com detalhe das interações intramoleculares N13-	
	H13••• $O2$, C23-H23•••O1, C26-H16•••N12 do pré-ligante 2,	
	em função das ligações de hidrogênio.	48
Figura 20:	Projeção mostrando a planaridade do pre-ligante 2.	49
Figura 21:	Projeção da estrutura molecular do complexo 5. Elipsoides	
	térmicos representados com um nível de probabilidade de	
	50%. <i>Codigo de simetria</i> () 1- <i>x</i> ,- <i>y</i> , 1- <i>z</i>	50
Figura 22:	Projeção da estrutura molecular do complexo 6. Elipsoides	
	térmicos representados com um nível de probabilidade de	
	50%. Código de simetria () - x ,- y , 2- z	50
Figura 23:	Geometria de coordenação dos complexos 5 (a) e 6 (b).	51
Figura 24:	Arranjo parcial 2–D no plano cristalográfico (–211) do	
	complexo 5 resultante das ligações de hidrogênio não-	
	clássicas C24–H24…O2". <i>Código de simetria</i> (") –1+ <i>x</i> ,	
	1/2-y, $1/2+z$ Para maior clareza foi apresentado apenas o	
	átomo de hidrogênio envolvido na ligação de hidrogênio	_
	С–Н…О.	53
Figura 25:	Arranjo parcial 1–D Ag- η^2 -areno π complexo 5 paralelo a	
-	direção cristalográfica [100]. <i>Código de simetria</i> (''') $-x$, $-z$,	

	1- <i>z</i> . Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.	54
Figura 26:	Arranjo polimérico 3–D do complexo 5 . Para maior clareza na representação das interações Ag- η^2 -areno π , foi indicado apenas o anel ρ FC ₆ H ₅ ligado ao átomo N13 da cadeia	
	triazenídica.	54
Figura 27:	Arranjo parcial 1–D Ag- η^2 -areno π complexo 6 paralelo a direção cristalográfica [100]. <i>Código de simetria</i> ('') –1+ <i>x</i> , y, <i>z</i> . Para maior clareza, foram suprimidos todos os átomos de bidrogânio da molécula do complexo.	55
Figura 28:	Projeção do anel de oito membros, incluindo a ligação polarizada Ag…halogênio, (a) para o complexo 5 e (b) para o complexo 6	56
Figura 29:	Projeção separada do ligante $[C_6H_4FN_3C_6H_4(NO_2)]$ do complexo 5, ressaltando o grau de distorção da planaridade	50
Figura 30:	Projeção separada do ligante $[C_6H_4CIN_3C_6H_4(NO_2)]$ do complexo 6 , ressaltando o grau de distorção da planaridade	57
Figura 31:	total. Projeção da estrutura molecular do complexo 7 . Elipsóides térmicos representados com um nível de probabilidade de	57
Figure 22.	50%.	60
Figura 32:	térmicos representados com um nível de probabilidade de 50%.	60
Figura 33:	Projeção da estrutura molecular do complexo 9. Elipsóides térmicos representados com um nível de probabilidade de 50%	60
Figura 34:	Geometria de coordenação dos complexos 7, 8 e 9.	61
Figura 35:	Arranjo parcial 1–D Ag- η^2 -areno π complexo 8 paralelo a direção cristalográfica [100]. <i>Código de simetria</i> (') 1– <i>x</i> , – <i>y</i> , – <i>z</i> . Para maior clareza, foram suprimidos todos os átomos de	
Figura 36:	hidrogênio da molécula do complexo Arranjo parcial 1–D Ag- η^2 -areno π complexo 8 paralelo a direção cristalográfica [100]. <i>Código de simetria</i> (') 1– <i>x</i> , – <i>y</i> ,	63
Figura 37.	- <i>z</i> . Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo Arranio, parcial 1–D. Ag- n^2 -areno, π complexo. 9 paralelo a	63
riguia 57.	direção cristalográfica [100]. <i>Código de simetria</i> (') $1-x$, $1-y$, $1-z$. Para maior clareza, foram suprimidos todos os átomos	
Figura 38:	de hidrogênio da molécula do complexo Arranjo parcial 1-D do complexo 7 paralelo a direção cristalográfica [100], em função das interações intermoleculares C34-H34•••O21". <i>Código de simetria</i> (") $-x$,	64
Figura 39:	1-y, -z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo Arranjo parcial 1-D do complexo 8 paralelo a direção cristalográfica [100], em função das interações intermoleculares C34-H34•••O2''. <i>Código de simetria</i> ('') - <i>x</i> , -	65

Figura 40:	<i>y</i> , - <i>z</i> . Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo Arranjo parcial 1-D do complexo 9 paralelo a direção cristalográfica [100], em função das interações intermoleculares C35-H35•••O2''. <i>Código de simetria</i> ('') 1+ <i>x</i> ,	65
	<i>y</i> , <i>z</i> . Para maior clareza, foram suprimidos todos os atomos de hidrogênio da molécula do complexo.	65
Figura 41:	Projeção separada do ligante $[C_6H_4(NO_2)N_3C_6H_4(NO_2)]$ do complexo 7 .	66
Figura 42:	Projeção separada do ligante $[C_6H_4CIN_3C_6H_4(NO_2)]$ do complexo 8 .	67
Figura 43:	Projeção separada do ligante $[C_6H_4CIN_3C_6H_4(NO_2)]$ do complexo 9 .	67

ÍNDICE DE TABELAS

Tabela 1:	Estruturas dos complexos triazenidos envolvendo o íon Ag	26
Tabela 2:	Quantidades de reagentes e detalhes das sínteses dos	
	complexos 5 e 6	31
Tabela 3:	Quantidades de reagentes e detalhes das sínteses dos	
	complexos 7, 8 e 9.	33
Tabela 4:	Parâmetros básicos das estruturas cristalinas do pré-ligante	
	2 e dos complexos 5 e 6	37
Tabela 5:	Parâmetros básicos das estruturas cristalinas dos	
	complexos 7, 8 e 9.	38
Tabela 6:	Formulas moleculares para o pré-ligante 2 e dos complexos	
T . I I 7	/ a 9	40
Tabela /:	Equações de ponderação, valores de P e razão máxima	
		41
l abela 8:	Comprimentos e angulos de ligação selecionados para o	4.4
Tabala 0.	pre-ligante z e para os complexos 5 e 6.	41
l'abela 9:	Comprimentos e angulos de ligação selecionados para os	40
Tabala 10.	Complexos 7, 6 e 9.	42
Tabela 10.	Principais banuas de initavennemo dos complexos 5 a 9	44
Tabela 11.	Comprimentos o ângulos de ligação selecionados para o	40
	nré-ligante 2 Entre parênteses esta o desvio padrão	16
Tabola 13·	Parâmetros geométricos para as interações	40
	intramoleculares e intermoleculares $(\Delta / 0)$	48
Tabela 14·	Ângulos interplanares entre os principais fragmentos do pré-	70
	ligante 2	49
Tabela 15:	Principais ângulos (°) e distâncias () envolvidas na	10
	geometria de coordenação dos complexos 5 e 6.	51
Tabela 16:	Comparação entre distâncias () dos complexos 5 e 6 e a	
	literatura	52
Tabela 17:	Desvio médio da planaridade total dos anéis de oito	
	membros dos complexos 5 e 6.	56
Tabela 18:	Ângulos interplanares entre os principais fragmentos do	
	complexo 5.	57
Tabela 19:	Ângulos interplanares entre os principais fragmentos do	
	complexo 6 .	58
Tabela 20:	Angulos (°) e distâncias (A) envolvidos na geometria de	
	coordenação dos complexos 7, 8 e 9.	61
Tabela 21:	Distância (A) entre os átomos C15 e C16 e ângulos para o	
T I I 00	centro metálico Ag.	64
l abela 22:	Ligações de hidrogenio (A) observadas nos complexos 7 a	~ ~
Tabala 00	9. Desvio padrao entre parenteses.	66
i abela 23:	Angulos interplanares entre os principais tragmentos do	~~
Tabala 24	complexo 7. Desvio padrao entre parenteses.	66
rapeia 24:	Angulos interplanares entre os principais tragmentos do	67
Tabola 25	Ângulas interplanares entre es principais fragmentes de	07
	Angulos interplanares entre os principais fragmentos do	67
	Complexo 7. Desvio paulao entre parenteses	07

ÍNDICE DE ESQUEMAS

Esquema 1:	Equação geral de síntese dos complexos 5 e 6.	45	
Esquema 2:	Equação geral de síntese dos complexos 7 a 9	45	
Esquema 3:	Equação de obtenção do precursor na forma dos complexos binucleares.	58	
Esquema 4:	Equação de obtenção dos complexos mononucleares 59		

ÍNDICE DE ANEXOS

Espectro de RMN ¹ H do pré-ligante 1	76
Espectro de RMN ¹ H do pré-ligante 2	76
Espectro de RMN ¹ H do pré-ligante 3	77
Espectro de IV do complexo 7	77
Espectro de IV do complexo 8.	78
Espectro de IV do complexo 9.	78
	Espectro de RMN ¹ H do pré-ligante 1 Espectro de RMN ¹ H do pré-ligante 2 Espectro de RMN ¹ H do pré-ligante 3 Espectro de IV do complexo 7 Espectro de IV do complexo 8 Espectro de IV do complexo 9

ÍNDICE DE ABREVIATURA E SIGLAS

R	Índice de discordância		
Rw	Índice de discordância ponderado		
Ζ	Número de fórmulas elementares na cela elementar		
hkl	Índices de Müller		
abc	Eixos cristalográficos		
	Ângulos entre eixos cristalográficos		
Å	Ângstron (=10 ⁻¹⁰ m)		
MeOH	Metanol		
CH₃CN	Acetonitrila		
0	Graus		
PPH_3	Trifenilfosfina		
	Estiramento de ligação		
5	Estiramento de ligação simétrico		
as	Estiramento de ligação assimétrico		
I.V.	Infravermelho		
P.F.	Ponto de fusão		
r.m.s	Desvio médio de átomos em um plano		
NITriCo	Núcleo de Investigação de Triazenos e Complexos		
N.C.	Número de coordenação		
G.C.	Geometria de coordenação		
C.C.D.C.	Cambridge Crystallographic Data Centre		
1-D	Unidimensional		
2-D	Bidimensional		
3-D	Tridimensional		
S	Singleto		
m	Multipleto		
RMN H ¹	Espectroscopia de ressonância magnética nuclear de		
	hidrogênio		
d	Distância		
	Ângulo		
r	Raio		

CAPITULO 1: Introdução e Objetivos

Os compostos nitrogenados apresentam propriedades e aspectos estruturais muito interessantes na química de coordenação. Entre estes compostos nitrogenados destacam-se os triazenos, os quais podem atuar como ligantes. Esta classe de ligantes é de grande interesse devido ao grande potencial na química de coordenação e na formação de arranjos supramoleculares.

Nos últimos anos, numerosos compostos triazenídicos coordenados a íons metálicos foram estudados por apresentarem no estado sólido, interações que possibilitam a formação de arranjos supramoleculares 1-D, 2-D e 3-D, através de interações secundárias não-covalentes. Vários fatores podem promover estas interações secundárias não-covalentes, tais como, interações metal-metal, metal-areno , ligações de hidrogênio, interações eletrostáticas não Coulômbicas e interações - .¹

Os complexos triazenídicos² podem apresentar interações ou ligações metálicas do tipo d^{i0} - d^{i0} (M····M) com os íons metálicos Cu(I), Au(I) e Ag(I), envolvendo orbitais *s* ou *sp*. Estes complexos dinucleares de prata apresentam várias aplicações, tais como: propriedades de fotoluminescência,³ materiais luminescentes,⁴ atividade catalítica,² propriedade antifúngica contra a *Cândida Albicans*⁵ e atividade bactericida contra a tuberculose.⁶

Devido a versatilidade desta classe de ligantes triazenos, o grupo NITriCo (Núcleo de Investigação de Triazenos e Complexos, localizado na Universidade Federal de Santa Maria, endereço eletrônico <u>www.ufsm.br/nitrico/</u>) há mais de 20 anos vem destacando-se na síntese de complexos de coordenação envolvendo triazenos.

¹ HÖRNER, M.; IGLESIAS, B. A.; MARTINS, P.; VILLIS, P. C. M.; VISENTIN, L. C. *Z. Anorg. Allg. Chem.* 634, 1058, **2008**.

² PAYEHGHADR, M.; ROFOUEI, M. K.; MORSALI, A.; SHMSIPUR, M. *Inorgânica Chimica Acta* 360, 1792, **2007**.

³ CATALANO, V. J.; MALWITZ, M. A. *Inorg. Chem.* 42, 5483, **2003**.

⁴ RAY, L.; SHAIKH, M. M.; GHOSH, P. *Inorg. Chem.* 47, 230, 2008.

⁵ ABUSKHUNA, S.; BRIODY, J.; MCCANN, M.; DEVEREUX, M.; KAVANAGH, K.; FONTECHA, J. B.; MCKEE, V. *Polyhedron* 23, 1249, **2004**. ⁶ CUIN, A · MASSABNI, A C · LEITE, C O E · SATO D N · NEVER A · OZDOCANIEZ E

⁶ CUIN, A.; MASSABNI, A. C.; LEITE, C. Q. F.; SATO, D. N.; NEVES, A.; SZPOGANICZ, B.; SILVA, M. S.; BORTOLUZZI, A. J. *Journal of Inorganic Biochemistry* 101, 291, **2007**.

Objetivos

Devido ao contínuo interesse nessa área e, em vista da importância dessa classe de ligantes, no presente trabalho planejou-se desenvolver a síntese de complexos de Ag(I) binucleares e mononucleares envolvendo ligantes com os substituintes nitro (-NO₂), flúor (-F), cloro (-CI) e bromo (-Br). Portanto, como objetivos desta dissertação foram definidos os seguintes itens:

- Apresentar a síntese dos complexos binucleares de Ag com os préligantes 1-(2-fluorfenil)-3-(2-nitrofenil)triazeno 1 e 1-(2-clorofenil)-3-(2nitrofenil)triazeno 2 e dos complexos mononucleares com os ligantes 1-(2-clorofenil)-3-(2-nitrofenil)triazeno 2, 1-(2-bromofenil)-3-(2nitrofenil)triazeno 3 e 1,3-*bis*(2-nitrofenil)triazeno 4;
- Elucidar as estruturas cristalinas e moleculares do pré-ligante 2 e dos complexos 5, 6, 7, 8 e 9 através da difração de raios-X em monocristal e avaliar (investigar) a supramolecularidade no estado sólido através de interações intermoleculares secundárias;
- Vincular a estratégia da reação de obtenção dos complexos com sua nuclearidade;
- Caracterizar os compostos obtidos através da espectroscopia do infravermelho na região de 400 a 4000 cm⁻¹ e ressonância magnética nuclear (H¹);
- Avaliar a distância Ag•••Ag em complexos multinucleares em função dos tipos de substituintes e sua posição nos grupos arilas terminais na cadeia triazenídica.

CAPITULO 2: Revisão da Literatura

2.1 Triazenos

Triazenos são compostos orgânicos que pertencem a classe dos compostos nitrogenados, unidos seqüencialmente por três átomos de nitrogênio.⁷ São formados através do acoplamento de um sal de diazônio com uma amina livre levando a formação de espécies simétricas e assimétricas, (Figura 1).

Figura 1: Representação estrutural de triazenos (a) simétricos e (b) assimétricos.⁷

Além de sistemas monocatenados simétricos e assimétricos também são conhecidos sistemas biscatenados, constituídos por mais de uma cadeia de triazenos, ligados a grupamentos orgânicos alquila ou arila. Um exemplo de um triazeno biscatenado⁸ está representado na Figura 2.

Figura 2: Representação estrutural do 1,3-*bis*(feniltriazeno)benzeno.⁸

O nitrogênio da cadeia central apresenta uma maior acidez ao N-H quando comparado ao N-H de amidinas, conferindo ao triazeno um caráter menos eletro-doador, facilitando assim a coordenação com metais de transição.^{9, 10}

O estudo sobre a química de coordenação destes ligantes triazenos iniciou ha mais de 100 anos por Meldola¹¹ com o ligante 1,3-*bis*(fenil)triazeno. Desde então, uma variedade de complexos com modos de coordenação

⁷ MOORE, D. S.; ROBINSONS, S. D. Adv. Inorg. Chem. Radiochem. 30, 1, 1986.

⁸ HÖRNER, M.; PEDROSO, A. G.; BORDINHÃO, J.; BECK, J.; STRAHLE, J. *Z. Anorg. Chem.* 622, 1177, **1996**.

⁹ GANTZEL, P.; WALSH, P. *J. Inorg. Chem. 37*, 3450, **1998**.

¹⁰ WESTHUSIN, S.; GANTZEL, P.; WALSH, P. *J. Inorg. Chem. 37*, 5956, **1998**.

¹¹ MELDOLA, R.; STREATFIELD, F. *W. J. Chem.* Soc. 785, **1890**.

distintos têm sido publicados. Entre os principais modos de coordenação de complexos triazenidos estão, (a) monodentado terminal aniônica,¹² (b) monodentado terminal neutra,¹³ (c) quelante bidentado¹⁴ e (d) coordenação em ponte¹⁵ (Figura 3).^{16, 7}

Figura 3: Representação estrutural dos principais modos de coordenação dos triazenos.¹⁶

2.2 Aplicações de compostos triazenos

Além do grande interasse dos triazenos na química inorgânica, nos últimos anos tem sido relatado um grande número de aplicações destes ligantes triazenos nas mais diversas áreas da ciência, como por exemplo, na medicina, na química orgânica e na química analítica.

Uma das principais aplicações dos triazenos está relacionada a sua atividade antineoplásica, a Temozolomida[®] (Figura 4), por exemplo, o qual é utilizada no tratamento de leucemia aguda.¹⁷ Dacarbazina[®] (Figura 4), também é usada no tratamento de tumores, porém esta exige ativação hepática, enquanto que a Temozolomida[®] é ativa em pH fisiológico.¹⁸ Na química orgânica podem ser utilizados como grupos protetores de aminas secundárias na síntese de produtos naturais¹⁹ e na química analítica agindo como

¹² HÖRNER, M.; CASAGRANDE, I. C.; FENNER, H.; DANIELS, J.; BECK, J. *Acta Cryst. Section C* C59, 424, **2003**.

¹³ HÖRNER, M.; BECK, J.; STRAHLE, J. *Z. Anorg. Allg. Chem.* 622, 1177, **1996.**

 ¹⁴ HÖRNER, M.; CARRATU, V.; HERBST-IRMER, R.; MOSSNER, C. M.; STRAHLE, J. *Z. Anorg. Allg. Chem.* 628, 1, **2002.** ¹⁵ RODRIGUES, J. G.; PARRA-HAKE, M.; AGUIRRE, G.; ORTEGA, F.; WALSH, P. J.

 ¹⁶ RODRIGUES, J. G.; PARRA-HAKE, M.; AGUIRRE, G.; ORTEGA, F.; WALSH, P. J. *Polyhedron* 18, 3051, **1999.** ¹⁶ ESCOBAR, J. J.; ALVARADO, C. C.; MORENO, G. R.; MORALES, D. M.; WALSH, P. J.;

^{1°} ESCOBAR, J. J.; ALVARADO, C. C.; MORENO, G. R.; MORALES, D. M.; WALSH, P. J.; HAKE, M. P. *Inorganic Chemistry* 46, 6182, **2007**.

¹⁷ CAPORASO, P.; TURRIZIANI, M.; VENDITTI, A.; MARRCHESI, F.; BUCCISANO, F.; TIRINDELLI, M. C.; ALVINO, E.; GARBIN, A.; TORTORELLI, G.; TOPPO, L.; BONMASSAR, E.; D'ATRI, S.; AMADORI, S. *DNA Repair* 6, 1179, **2007**.

¹⁸ MARCHESI, F.; TURRIZIANI, M.; TORTORELLI, G.; AVVISATI, G.; TORINO, F.; De VECCHIS, L. *Review Pharmacological Research* 56, 275, **2007**.

¹⁹ LAZNY, R.; SIENKIEWICZ, M.; BRASE, S. *Tetrahedron* 57, 5825, **2001**.

reagentes complexantes de cátions metálicos. Zhao e colaboradores²⁰ determinaram traços de Ag(I) utilizando o composto triazeno *m*-nitrofenilazo-2-aminotiazol.

Figura 4: Representação estrutural dos medicamentos (a) Temolozomida[®] e (b) Dacarbazina[®].^{17, 18}

2.3 Téctons

Cristais moleculares são entidades compactas e periódicas. Sua estrutura é definida pela natureza de seus componentes e suas interações no estado sólido. Um único cristal pode ser descrito por translação da cela unitária em todas as direções do espaço. No entanto, considerando cristais como unidades supramoleculares, pode-se descrevê-los em termos de sua cadeia, analisando as interações intermoleculares e características geométricas. Cada análise está baseada num padrão de reconhecimento especifico na rede cristalina. Esta ótica de análise de cristais moleculares em termos do arranjo de suas cadeias envolve o conceito de téctons moleculares.²¹

Téctons podem ser definidos como unidades de construção moleculares ativas que contém em sua estrutura informações energéticas e geométricas relativas às cadeias projetadas. Estas cadeias moleculares são geradas por processos de auto-arranjo que acontecem entre téctons complementares através de interações não-covalentes secundárias, tais como: interações metal-areno , ligações de hidrogênio, interações eletrostáticas não Coulômbicas, interações magnéticas, interações inter-metálicas entre outras.²²

²⁰ ZHAO, Y.; CAO, Q.; HU, Z.; XU, Q. *Analytica Chimica Acta* 388, 45, **1999.**

²¹ BROCH, F. *Dissertação de Mestrado*, Universidade Federal de Santa Maria, **2008**.

 ²² (a) HÖRNER, M.; OLIVEIRA, G. M.; BEHM, M. B.; FENNER, H. *Z. Anorg. Allg. Chem.* 632, 615, 2006. (b) HAIDUC, I.; EDELMANN, F. T. *Supramolecular Organometallic Chemistry*, Wiley-VCH Verlag GmbH, D-69469 Weinheim, Germany, 1999. (c) SIMARD, S.; SU, D.;

Existem exemplos de estruturas tectônicas envolvendo o auto-arranjo de moléculas orgânicas e/ou complexos metálicos que apresentam diversos tipos de interações intermoleculares na sua rede cristalina. Em complexos metálicos incluindo ligantes triazenidos estas interações, do tipo metal-areno , foram observadas somente para o metal mercúrio.^{23,24,25,21}

Wang e colaboradores²⁶ descreveram a estrutura do complexo $\{[Ag(HL)(H_2O)]SbF_6\}$ (HL = $C_{36}H_{26}N_2O_2$) com interação Ag-areno . Na Figura 5 está representada a interação entre o íon de Ag e os átomos de carbono do anel fenila. A distância do íon Ag1 para C30 e C31 é de 2,806(5)Å e 2,716(5)Å, respectivamente e o ângulo C30···Ag···C31 = 29,14(15)°.

Figura 5: Estrutura do complexo { $[Ag(HL)(H_2O)]SbF_6$ } (HL = $C_{36}H_{26}N_2O_2$). Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.²⁶

Considerando-se que as unidades moleculares mínimas em arranjos supramoleculares podem ser designadas como téctons, como por exemplo, interações secundárias Ag-η²-areno , esta propriedade torna-se importante ser revisada na literatura.

WUEST, J. D. *J. Am. Chem. Soc.* 113, 4696, **1991**. (C) FYTE M. C. T.; STODDART J. F. *Acc. Chem. Res. 30*, 393, **1997**.

²³ GIGLIO, V. F. *Dissertação de Mestrado*, Universidade Federal de Santa Maria, **2006**.

²⁴ BEHN, M. B. *Dissertação de Mestrado*, Universidade Federal de Santa Maria, **2006**.

²⁵ VILLIS, P. C. M. *Tese de Doutorado*, Universidade Federal de Santa Maria, **2007**.

²⁶ WANG, P.; DONG, Y.; MA, J.; HUANG, R. *Crystal Growth & Design* 5,(2), 701, 2005.

2.4 Ligações de hidrogênio

As ligações de hidrogênio podem ocorrer na forma de ligações intramoleculares e intermoleculares, podendo envolver os substituintes do anel da cadeia triazenídica. Além de serem classificadas como inter e intramoleculares, as ligações de hidrogênio também podem ser classificadas como clássicas e não clássicas.

As ligações clássicas envolvem apenas elementos eletronegativos, como por exemplo, nitrogênio, oxigênio e halogênios como doador e receptor. Já as ligações não clássicas de hidrogênio apresentam como doador um carbono sp, sp² ou sp³ e o receptor um elemento eletronegativo.

Ligações de hidrogênio são consideradas atrações eletrostáticas fracas entre um par de elétrons isolado de um elemento químico eletronegativo e um átomo de hidrogênio ligado covalentemente e que tenha uma carga parcial positiva.²⁷

As ligações de hidrogênio são constituídas por um átomo doador do tipo D-H e um átomo receptor A, por exemplo, D-H•••A. Esta ligação pode ser descrita pelas distâncias (d), ângulos () e o raio (r) (Figura 6).²⁸

Figura 6: Parâmetros geométricos para a ligação de hidrogênio.²⁸

Como as ligações de hidrogênio permitem diversos modos de interação, um grupo X H pode estar ligado a mais de um receptor A ao mesmo tempo, A1 e A2, chamado de doador bifurcado (Figura 6a), ou ainda dois grupos doadores conectarem-se a um único receptor, designado de receptor bifurcado (Figura 7b).

²⁷ LEE, J. D. *Química Inorgânica não tão concisa*, Edgar Blucher Ltda, 5º edição, São Paulo, **1996**.

²⁸ DESIRAJU, G.R.; STEINER, T. *The Weak Hydrogen Bond* Ed. Oxford University Press, **2001**.

Figura 7: Representação da ligação de hidrogênio bifurcada no (a) doador e (b) no aceptor.²⁸

Serão analisadas nesta dissertação as ligações de hidrogênio nãoclássicas do tipo C-H•••O ou C-H•••X (X = F, Cl e Br) no pré-ligante e complexos relacionados e clássica N-H•••X(O) no pré-ligante.

2.5 Complexos triazenidos envolvendo íons prata

Neste tópico serão apresentados apenas os complexos triazenidos binucleares de prata semelhantes aos sintetizados neste trabalho, a fim de comparar as distâncias Ag•••Ag. Os complexos tiveram os átomos de hidrogênio omitidos para melhor visualização. Os complexos 7, 8 e 9 sintetizados nesta dissertação apresentam uma trifenilfosfina ligado a prata. Não foi encontrado na literatura complexos triazenidos de Ag contendo apenas uma trifenilfosfina, sendo estes, apresentados pela primeira vez nesta dissertação.

Ano	Estrutura	Geometria de Coordenação (G.C.), Número de Coordenação (N.C.), Distância Ag•••Ag e Ângulo de Ligação NNN
1986		[Ag(C ₆ H ₅ NNNC ₆ H ₅)] ₂ ²⁹ G. C.: Linear / N. C.: 2 Distâncias: Ag••••Ag: 2,668(1) Å Ag-N1: 2,155(3) Å Ag-N3': 2,144(4) Å Ângulo NNN: 117,8(4) ^o
1989		[Ag(CH ₃ OC ₆ H ₄ NNNC ₆ H ₄ OH ₃ C)] ₂ ³⁰ G. C.: Linear / N. C.: 2 Distâncias: Ag•••Ag: 2,698(1) Å Ag1-N1: 2,108(5) Å Ag1-N4: 2,126(5) Å Ângulo NNN:115,9(4)⁰
2003		[Ag(H ₃ C(O)OCC ₆ H ₄ NNNC ₆ H ₄ CO(O)CH ₃)] ₂ ³¹ G. C.: Linear / N. C.: 2 Distâncias: Ag•••Ag: 2,704(2) Å Ag-N3: 2,165(7) Å Ag-N1:2,203(7) Å Ângulo NNN: 117,8(7) ^o
2007		[Ag(CH ₃ O(NO ₂)C ₆ NNNC ₆ (NO ₂)OCH ₃)] ₂ ²⁵ G. C.: Linear / N. C.: 2 Distâncias: Ag•••Ag: 2,746(4) Å Ag1-N11: 2,157(2) Å Ag1-N13: 2,177(2) Å Ângulo NNN: 115,980(2) ^o

Tabela 1: Estruturas dos complexos triazenidos envolvendo o íon Ag.

 ²⁹ BECK, J.; STRÄHLE, J. *Z. Naturforsch, B: Chem. Sci.* 41b, 4, **1986**.
 ³⁰ HARTMANN, E.; SCHMID, R.; STRÄHLE, J.; *Z. Naturforsch., B: Chem. Sci.* 44b, 778, **1989**.
 ³¹ RIOS-MORENO, G.; AGUIRRE, G. *Polyhedron* 22(4), 563, **2003**.

CAPITULO 3: Parte Experimental

3.1 Materiais e métodos

Reagentes e solventes utilizados para a síntese dos ligantes e dos complexos

Os compostos utilizados foram adquiridos comercialmente através da *Merck*[®] e *Sigma-Aldrich*[®]. Para as sínteses do pré-ligante e dos complexos de prata foram utilizados solventes das marcas *Merck*[®], *Synth*[®] e *Vetec*[®]. Todos os reagentes utilizados não envolveram uma purificação prévia dado o grau próanálise (p.a.) pelo fabricante.

Equipamentos de caracterização dos compostos sintetizados:

- ü Ponto de Fusão: a caracterização do ponto de fusão foi realizado por um aparelho Mel-Temp II.
- ü Espectroscopia de Infravermelho: os espectros de absorção na região de 400 – 4000 cm⁻¹ foram realizados com pastilhas de brometo de potássio. O equipamento utilizado pertence a marca Bruker Tensor 27.
- ü Espectroscopia de Ressonância Magnética Nuclear: os espectros de RMN ¹H foram obtidos em espectrômetro Brucker DPX, que operam na freqüência de 200 MHz e 400 MHz.
- Análise Estrutural por Difração de Raios-X: a análise estrutural por difração de raios-X foi realizada em um difratômetro Bruker APEX II – CCD.

Obs: Todos os equipamentos utilizados na caracterização dos compostos pertencem a Universidade Federal de Santa Maria (UFSM).

3.2 Procedimento experimental

3.2.1 Síntese dos pré-ligantes 1, 2, 3 e 4

ü 1-(2-fluorfenil)-3-(2-nitrofenil)triazeno - 1

Figura 8: Representação estrutural do pré-ligante 1.

Procedeu-se a síntese de 1 conforme descrito na literatura.³²

Propriedades: Rendimento de obtenção do produto principal baseado na 2-nitroanilina, ponto de fusão e principais absorções no espectro de infravermelho foram idênticas à literatura.³² Adicionalmente, RMN ¹H (200 MHZ, CDCl₃, 293K) /ppm: 12,22 (s, 1H); 8,50-7,02 (m, 8H). (Ver Anexo 1)

ü 1-(2-clorofenil)-3-(2-nitrofenil)triazeno - 2

Procedeu-se a síntese de 2 conforme descrito na literatura.³²

Propriedades: Rendimento de obtenção do produto principal baseado na 2-nitroanilina, ponto de fusão e principais absorções no espectro de infravermelho foram idênticas à literatura.³² Adicionalmente, RMN ¹H (200 MHZ, CDCl₃, 293K) /ppm: 12,15 (s, 1H); 8,41-7,03 (m, 8H). (Ver Anexo 2)

ü 1-(2-bromofenil)-3-(2-nitrofenil)triazeno - 3

Figura 10: Representação estrutural do pré-ligante 3.

Procedeu-se a síntese de 3 conforme descrito na literatura.³²

³² LOCATELLI, A. *Dissertação de Mestrado;* Universidade Federal de Santa Maria, **2008.**

Propriedades: Rendimento de obtenção do produto principal baseado na 2-nitroanilina, ponto de fusão e principais absorções no espectro de infravermelho foram idênticas à literatura.³² Adicionalmente, RMN ¹H (200 MHZ, CDCl₃, 293K) /ppm: 12,05 (s, 1H); 8,51-6,79 (m, 8H). (Ver Anexo 3)

ü 1,3-bis(2-nitrofenil)triazeno - 4

Figura 11: Representação estrutural do pré-ligante 4.

Procedeu-se a síntese de 4 conforme descrito na literatura.³³

Propriedades: Rendimento de obtenção do produto principal baseado na 2-nitroanilina, ponto de fusão e principais absorções no espectro de infravermelho foram idênticas à literatura.³³

Obs: A revisão da literatura dos pré-ligantes **1** a **4** não consta nesta dissertação, pois já foram revisados nas dissertações de Locatelli³² e Silva.³³

Procedimento geral de síntese dos pré-ligantes 1 a 4:

Dissolveu-se a 2-nitroanilina em 30 mL de HCl concentrado e 20mL de água desionizada e resfriou-se até -5° C. Após uma solução de NaNO₂ em 5 mL de água desionizada foi adicionado lentamente. Após 30 minutos adicionou-se lentamente as aminas 2-fluoranilina, 2-cloroanilina e a 2-bromoanilina correspondentes aos pré-ligantes 1, 2 e 3, respectivamente. Neutraliza-se o meio de reação com uma solução de acetato de sódio. Foi isolado um precipitado amarelo e lavado com porções de água gelada. Os produtos foram secos em dessecador sob P₂O₅ e vácuo. Para o pré-ligante 4 simétrico, o HCl é substituído por CH₃COOH e após a adição da solução de NaNO₂ o meio de reação é neutralizado.

³³ SILVA, A. *Dissertação de Mestrado;* Universidade Federal de Santa Maria, **2007**.

3.2.2 Síntese dos complexos 5 e 6

Para as sínteses dos complexos **5** e **6** reagiu-se os pré-ligantes **1** e **2** com nitrato de prata (I) na proporção de 1:1 em uma mistura de MeOH/H₃CCN, conforme procedimento a seguir. Os valores dos reagentes utilizados e os detalhes das sínteses encontram-se na Tabela 2.

Dissolveu-se 0,03 g dos ligantes **1** e **2**, separadamente, em 20 mL de MeOH. Desprotonou-se os pré-ligantes com três gotas de solução de metóxido de potássio (1 g de KOH em 10 mL de MeOH). Posteriormente dissolveu-se AgNO₃ em 10,0 mL de CH₃CN. Adicionaram-se essas soluções aos pré-ligantes desprotonados, observando-se a alteração da cor do meio de reação. Filtrou-se a reação, o filtrado foi colocado em um béquer para a evaporação lenta à temperatura ambiente. Cristais coloridos aptos para a difração de Raios-X, foram obtidos após sete dias pela evaporação lenta do solvente da solução mãe.

Quantidade de pré-ligante	Quantidade de AgNO ₃	Cor do meio reacional	Cor dos cristais
$ \begin{array}{c c} \hline & & & \\ \hline & & \\ \hline \hline \hline \hline & & \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	0,019 g 0,115 mmol	Com a adição de AgNO ₃ o meio muda de vermelho para castanho claro.	Laranja
$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0,018 g 0,108 mmol	Com a adição de AgNO ₃ o meio muda de vermelho para castanho claro.	Laranja

Propriedades dos complexos 5 e 6:

Complexo 5

Ponto de fusão: 235ºC

Complexo 6

Figura 13: Representação estrutural do complexo 6.

Ponto de fusão: 248ºC

Obs: Os espectros de infravermelho dos complexos **5** e **6** não foram realizados.

3.2.3 Síntese dos complexos 7, 8 e 9

Para as sínteses dos complexos 7, 8 e 9 reagiu-se os pré-ligantes 2, 3 e 4 com nitrato de prata (I) e trifenilfosfina na proporção de 1:1:1 em MeOH/CH₃CN, conforme procedimento a seguir. Os valores dos reagentes utilizados e os detalhes das sínteses encontram-se na Tabela 3.

Os complexos 7, 8 e 9 foram obtidos da reação de 0,03 g dos ligantes 2, 3 e 4, separadamente, em 20 mL de MeOH e desprotonados com três gotas de solução de metóxido de potássio (1 g de KOH em 10 mL de MeOH). Posteriormente dissolveu-se AgNO₃ em 10,0 mL de CH₃CN. Adicionaram-se essas soluções aos pré-ligantes desprotonados, observando a alteração da cor do meio de reação. Após foi adicionado $P(C_6H_5)_3$ em 10 mL de MeOH. Filtrouse a reação, o filtrado foi colocado em um béquer para a evaporação lenta à temperatura ambiente. Cristais coloridos aptos para a difração de Raios-X, foram obtidos após sete dias pela evaporação lenta do solvente da solução mãe.

Quantidade de pré-ligante	Quantidade de AgNO3 e $P(C_6H_5)_3$	Cor do meio reacional	Cor dos cristais
$ \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	AgNO3 0,019 g 0,115 mmol P(C ₆ H ₅) ₃ 0,03 g 0,115 mmol	Com a adição de AgNO ₃ o meio muda de vermelho para castanho claro, com a adição da $P(C_6H_5)_3$ o meio muda para vermelho.	Vermelho
$ \begin{array}{c} \hline $	AgNO3 0,018 g 0,108 mmol P(C ₆ H ₅) ₃ 0,024 g 0,093 mmol	Com a adição de AgNO ₃ o meio muda de vermelho para castanho claro, com a adição da $P(C_6H_5)_3$ o meio muda para vermelho.	Vermelho
$ \begin{array}{c c} \hline & & & \\ \hline & & & \\ $	AgNO3 0,017 g 0,104 mmol P(C ₆ H ₅) ₃ 0,027 g 0,104 mmol	Com a adição de AgNO ₃ o meio muda de vermelho para castanho claro, com a adição da $P(C_6H_5)_3$ o meio muda para vermelho.	Vermelho

Tabela 3: Quantidades de reagentes e detalhes das sínteses dos complexos 7, 8 e 9.

Propriedades dos complexos 7, 8 e 9:

Complexo 7

Ponto de fusão: 164° C Rendimento experimental bruto: 80%Principais bandas observadas nas regiões de infravermelho as(N-N-N) = 1279 cm⁻¹; (C=C) = 1595 cm⁻¹; (C-N) = 848 cm⁻¹. (Anexo 4)

Complexo 8

Figura 15: Representação estrutural do complexo 8.

Ponto de fusão: 180°C Rendimento experimental bruto: 82% Principais bandas observadas nas regiões de infravermelho as(N-N-N) = 1274 cm⁻¹; (C=C) = 1594 cm⁻¹; (C-N) = 856 cm⁻¹. (Anexo 5)

Complexo 9

Figura 16: Representação estrutural do complexo 9.

Ponto de fusão: 168°C Rendimento experimental bruto: 85% Principais bandas observadas nas regiões de infravermelho as(N-N-N) = 1275 cm⁻¹; (C=C) = 1596 cm⁻¹; (C-N) = 857 cm⁻¹. (Anexo 6)

3.3 Procedimento geral da coleta de dados de difração de raios-X

Um monocristal das amostras **2**, **5**, **6**, **7**, **8** e **9** foram fixados, separadamente, em um fio de vidro e submetidos à coleta de dados de difração à temperatura ambiente (20–22° C) com um difratrômetro Bruker APEX II CCD, com detector de área e radiação Mo–K_{α} monocromatizada com monocromador de grafite.³⁴ A redução de dados e a correção de absorção foram executados com os programas *SAINT³⁴* e *SADABS*,³⁵ respectivamente. As estruturas foram resolvidas com Métodos Diretos³⁶ e refinadas utilizando fatores estruturais ao quadrado (ℓ^2) e matrizes completas, empregando–se parâmetros térmicos anisotrópicos para todos os átomos não–hidrogenóides.³⁷

³⁴ BRUKER (2004). *APEX2* (Version 1.0.22), *COSMO* (Version 1.48), *SAINT* (Version 7.06A). Bruker AXS Inc., Madison, Wisconsin, USA.

³⁵ SHELDRICK, G. M., SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, **1996**.

³⁶ BURLA, M. C. R.; CALIANDRO, M.; CAMALLI, B.; CARROZZINI, G. L.; CASCARANO, L.; DE CARO, C.; GIACOVAZZO, G.; POLIDORI, R.; SPAGNA, SIR2004 – *An Improved Tool for Crystal Structure Determination and Refinement, J. Appl. Cryst.*, *38*, 381, **2005**.

³⁷ SHELDRICK, G. M.; *SHELXL-97, Program for Crystal Structure Refinement*, University of Göttingen, Germany, **1997**.
obtidos geometricamente (C–H = 0,93 Å para os átomos C $_{S}\rho^{2}$) e refinados na forma achatada aos respectivos átomos de carbono e parâmetros térmicos isotrópicos, com valores $U_{so}(H)$ relacionados a $1,2 U_{eq}C_{S}\rho^{2}$. Tabelas com parâmetros cristalográficos e detalhes referentes às coletas de dados foram gerados com o programa $WinGX^{as}$ e as representações gráficas das estruturas e/ou de detalhes estruturais discutidos, foram geradas com o programa *DIAMOND*.³⁹

Os dados cristalográficos da estrutura do pré-ligante 2 e dos complexos 5, 6, 7, 8, e 9 serão depositados junto ao Cambridge Crystallographic Data Centre CCDC, sob os números ainda serem atribuídos respectivamente. obtidos. Detalhes podem ser sem custos, via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, UK; +44 Cambridge CB2 1EZ, fax: 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

3.3.1. Estruturas cristalinas e moleculares do pré-ligante 2 e dos complexos 5 a 9

Cristais vítreos, aptos a difração de raios-X, amarelo para o pré-ligante 2, laranjas para os complexos 5 e 6 e vermelhos para os complexos 7, 8, e 9, todos com hábito prismático foram obtidos a partir da evaporação lenta das soluções-mãe das reações, contendo uma mistura MeOH/CH₃CN para todos os complexos e apenas em MeOH para o pré-ligante 2. Os valores dos parâmetros de cela unitária foram determinados com base nas reflexões obtidas em quadrantes distintos da Esfera de Ewald e refinados pelo método dos mínimos quadrados. Dados adicionais quanto à coleta de dados e do refinamento das estruturas 2, 5 e 6 encontram-se na Tabela 4, e das estruturas 7, 8 e 9 encontram-se na Tabela 5.

³⁸ FARRUGIA, L.J. (**1999**). *J. Appl. Cryst.* **32**, 837-838; *WinGX* – An Integrated System of Windows Programs for Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data, Vers. 1.64.04.

³⁹ BRANDENBURG, K. *DIAMOND*. 2004-2005, Version 3.1. Crystal Impact GbR, Bonn, Germany.

Tabela 4: Parâmetros básicos das estruturas cristalinas do pré-ligante 2 e dos complexos 5 e6.

Parâmetros Básicos	Pré-ligante 2	Complexo 5	Complexo 6
Fórmula Molecular	C ₁₂ H ₉ CI N ₄ O ₂	$C_{24} H_{16} Ag_2 F_2 N_8 O_4$	$C_{24} H_{16} Ag_2 Cl_2 N_8 O_4$
Massa molecular (g)	276,68	706,16	767,09
Cor / Forma	Amarelo/ Prisma	Laranja / Prisma	Laranja / Prisma
Dimensões (mm)	0,29 x 0,09 x 0,09	0,06 x 0,06 x 0,089	0,136 x 0,169 x 0,361
Sistema Cristalino	Triclínico	Monoclínico	Monoclínico
Grupo Espacial	<i>P</i> (-1)	P21/C	P21/C
Parâmetros de Cela	<i>a</i> =7,056 Å	a= 8,642 Å	a= 8,65770(10) Å
Unitária	<i>b</i> = 7,593 Å	b= 10,820 Å	b= 10,6434(2) Å
	C = 12,107 A	c= 13,318 A	c = 14,1798(2) A
	$= 79,39^{\circ}$	= 97,39°	= 98,4320(10)*
	$= 73.27^{\circ}$		
Volume	610,2 Å ³	1234,97(10) Å ³	1292,51(3) Å ³
Z	2	4	1
Densidade (calculada)	$1.756 mg/m^{3}$	1.890 mg/m^3	0.986 mg/m ³
F(000)	284	692	376
Comprimento de onda	0.71073 Å / Mo-K	0.71073 Å / Mo-K	0.71073 Å / Mo-K
/ Radiação	-,	-,	-,
Coeficiente de	0.316 mm ⁻¹	1 615 mm ⁻¹	0.886 mm ⁻¹
absorção	0,31011111	1,045 1111	0,000 mm
Região angular de	1,71 a 25,50°	3,08 a 21,77°	3,05 a 25,00°
varredura angular 2			
Região dos indices	-8 h 8	-9 h 8	-10 h 9
	-9 K 9 -14 I 14	-11 K 11 -13 I 13	-12 K 12
Colução do Estruturo	-14 14	-13 1 13	
Solução da Estrutura		(SHELXS-86)	(SHELXS-86)
Refinamento da	SHELXL-97	SHELXL-97	SHELXL-97
Estrutura			
Métodos de	Mínimos-quadrados,	Mínimos-quadrados,	Mínimos-quadrados,
Refinamento	matriz completa	matriz completa	matriz completa
	incluindo F ²	incluindo F	incluindo F
Reflexões coletadas	14117	9050	12192
Reflexões	2272 [R(_n) = 0,0232]	1459 [R(_{it})= 0,0657]	2263 [R(_n)= 0,0151]
Independentes	1000	1050	0110
Reliexoes observadas	1890	1008	2110
Parâmetros	2212/0/110	1459707101	2203707177
Índice de	1,085	2,390	1,056
confiabilidade			
estatística F ²			
Completeza de	$= 25,50^{\circ}$	$= 21,77^{\circ}$	$= 25,0^{\circ}$
Varredura	99,8% P = 0.0486	99,0% P = 0.0366	99,3% P = 0.0315
T Indi Nindices [1/2 (1)]	$WR_{2} = 0.1565$	$wR_2 = 0.0858$	$wR_2 = 0.0659$
Índices finais de	$R_1 = 0.0593$	$R_1 = 0.0553$	$R_1 = 0.0345$
discordância	wR ₂ = 0,1725	wR ₂ = 0,0930	wR ₂ = 0,0674
(todas as reflexões)			
Densidade eletrônica	0,526 e -0,459 e.Å ⁻³	0.654 e -0.578 e.Å ⁻³	1,358 e -0,959 e.Å ⁻³
residual			

Parâmetros Básicos	Complexo 7	Complexo 8	Complexo 9
Fórmula Molecular	C ₃₀ H ₂₃ Ag N ₅ O ₄ P	C ₃₀ H ₂₃ Ag Cl N ₄ O ₂ P	C ₃₀ H ₂₃ Ag Br N ₄ O ₂ P
Massa molecular (g)	656,37	645,81	690,27
Cor / Forma	Vermelho/ Prisma	Vermelho/ Prisma	Vermelho / Prisma
Dimensões (mm)	0,129 x 0,099 x 0,094	0,13 x 0,10 x 0,09	0,46 x 0,09 x 0,07
Sistema Cristalino	Monoclínico	Monoclínico	Triclínico
Grupo Espacial	P2 ₁ /n	P2 ₁ /n	P(-1)
Parâmetros de Cela	a= 15,9885(2) Å	a= 15,694(9) A	A = 9,3203(3) Å
Unitaria	D= 10,4534(1) A	D = 10,568(6) A	b = 10,3035(3) A
	C = 10,2452(2) A = 113 4250(10)°	C = 17,940(10) A = 113 343(8)°	C = 14,9400(5) A = 101 8160(10)°
	- 110, 1200(10)	- 110,010(0)	$= 90,7380(10)^{\circ}.$
			= 90,9180(10)°
Volumo	#3		· · · · · · · · · · · · · · · · · · ·
	2798,07(5) A ³	2733(3) A ³	1404,75(8) A ³
<u></u>	4	2	2
Densidade (calculada)	1,558 mg/m ³	1,570 mg/m ³	1,632 mg/m ³
F(000)	1328	1304	688
Comprimento de onda /	0,71073 A /Mo-K	0,71073 A / Mo-K	0,71073 A / Mo-K
Radiação			
Coeficiente de	0,823 mm ⁻¹	0,930 mm ⁻¹	2,231 mm ⁻¹
absorção	0.40 - 00.00%	0.00 - 00.07%	0.00 - 00.00%
Regiao angular de	2,18 a 30,06°	2,22 a 29,97°	2,02 a 30,03°
Região dos índices	-21 h 22	-22 h 20	-13 h 7
	-14 k 14	-14 k 14	-14 k 14
	-25 25	-25 25	-20 I 21
Solução da Estrutura	Metodos Diretos	Metodos Diretos	Metodos Diretos
Refinamento da			
Estrutura	ONELXE-57	ONELXE-57	ONELXE-57
Métodos de	Mínimos-quadrados,	Mínimos-quadrados,	Mínimos-quadrados,
Refinamento	matriz completa	matriz completa	matriz completa
	incluindo F ²	incluindo F ²	incluindo F
Reflexões coletadas	56914	54334	13182
Reflexões	8197[R(_n)=0,0611]	7926[R(_n)=0,0616]	7895 [R(_n) = 0,0279]
Independentes	40.40	5040	4070
Reflexoes observadas	4243	5849 7026 / 0 / 190	40/6
Parâmetros	0197707370	/920/0/100	7695707352
Completeza de	= 30.06°	= 29 97°	= 30.03°
varredura	99,9%	99,9%	96,1%
Índice de confiabilidade	1,016	1,049	0,941
estatística F ²			
Final R _{indices} [I>2 (I)]	$R_1 = 0,0455$	$R_1 = 0,0381$	$R_1 = 0,0427$
	$WR_2 = 0,1104$	$WR_2 = 0,0776$	$WR_2 = 0,1061$
Índices finais de	R₁ = 0.1087	R ₁ = 0.0613	R₁ = 0,1053
discordância	wR ₂ = 0,1358	$wR_2 = 0,0853$	$wR_2 = 0,1458$
(todas as reflexões)			
Densidade eletrônica	1,075 e -0,585e.Å ⁻³	0,957 e -0,574e.Å ⁻³	0,597 e -0,564e.Å ⁻³
residual			
(max. e min.)			

 Tabela 5: Parâmetros básicos das estruturas cristalinas dos complexos 7, 8 e 9.

3.3.2. Determinação do grupo espacial

O pré-ligante 2 e o complexo 9 cristalizam no sistema triclínico e os complexos 5, 6, 7, e 8 cristalizam do sistema monoclínico. Obteve-se a solução da estrutura do ligante 2 e do complexo 9 com o grupo espacial P1 (n^{0} .2h te matibna I Tables for C rista Ibgraphy); os complexos 5 e 6 com o grupo espacial P2₁ /c(n^{0} .14- h te matibna I Tables for C rista Ibgraphy)e os complexos 7 e 8 com grupo espacial P2₁ /n(n^{0} .14- h te matibna I Tables for C rista Ibgraphy) A ausência de uma condição sistemática de reflexões integrais (hk I)determina o tipo de Bravais P para a rede cristalina.

3.3.3. Solução da estrutura molecular

A partir da fórmula geral e empírica $N_{AM} = V_{CE}/Z18$ pode-se prever o número de átomos não-hidrogenóides que compõe a estrutura molecular, considerando-se que todos os átomos situem-se em posições cristalográficas gerais no grupo espacial identificado.

Para o grupo espacial P1, com número de formas elementares (Z) igual a dois a previsão de átomos não-hidrogenóides para o pré-ligante **2** é de aproximadamente 17 átomos e para o complexo **9** é de aproximadamente 39 átomos. Estes números, que permitem um erro experimental próximo a +/-10%, levou a previsão da estrutura do pré-ligante **2** com a fórmula elementar empírica muito próxima a C₁₂N₄O₂Cl (17 átomos não-hidrogenóides) e do complexo **9** com a fórmula elementar empírica muito próxima a C₁₂N₄O₂Cl (17 átomos não-hidrogenóides) e do complexo **9** com a fórmula elementar empírica muito próxima a C₃₀N₄O₂PBrAg (39 átomos não-hidrogenóides).

Para o grupo espacial P2₁ /c, com número de formas elementares (Z) igual quatro e igual a um, a previsão dos átomos não-hidrogenóides para os complexos 5 e 6 são de 17 e 35, respectivamente. Estes valores levaram a previsão da estruturas $C_{12}N_4O_2FAg$ e $C_{24}N_8O_4Cl_2Ag_2$, respectivamente para os complexos 5 e 6.

Para o grupo espacial P2₁ h, com número de formas elementares (Z) igual a quatro e igual, para os complexos **7** e **8**, respectivamente, a um a previsão

dos átomos não-hidrogenóides para os complexos **7** e **8** de 38. Estes valores levaram a previsão da estrutura $C_{30}N_5O_4PAg$ e $C_{30}N_4O_2PCIAg$, respectivamente para os complexos **7** e **8**.

Estes modelos moleculares acima previstos se confirmaram após a solução inicial e o refinamento final das estruturas cristalinas e moleculares. As fórmulas moleculares resultantes para estes complexos estão listadas na Tabela 6 a seguir.

Pré-ligante /	Fórmula Molecular
Complexo	
2	$[C_6H_4CIN_3C_6H_4NO_2]$
5	$[Ag(C_6H_4FN_3C_6H_4NO_2]_2$
6	$[Ag(C_6H_4CIN_3C_6H_4NO_2]_2$
7	$[Ag(O_2NC_6H_4N_3C_6H_4NO_2(P(C_6H_5)_3)]$
8	$[Ag(ClC_6H_4N_3C_6H_4NO_2(P(C_6H_5)_3)]$
9	$[Ag(BrC_{6}H_{4}N_{3}C_{6}H_{4}NO_{2}(P(C_{6}H_{5})_{3})]$

Tabela 6: Fórmulas moleculares para o pré-ligante 2 e os complexos 5 a 9.

A solução inicial, incluindo as reflexões coletadas com exclusão das rejeitadas e os grupos espacial P1, P2₁/ce P2₁/hocorreu com Métodos Diretos. Os átomos não-hidrogenóides complementares do pré-ligante **2** e dos complexos **5**, **6**, **7**, **8** e **9** foram localizados nos mapas da distribuição eletrônica na cela unitária envolvendo-se a Síntese de Fourier diferenciais e refinados em cada etapa com parâmetros térmicos isotrópicos e anisotrópicos, incluindo as reflexões observadas.

A densidade eletrônica correspondente ao átomo de hidrogênio alocado na cadeia diazoamínica do pré-ligante **2**, foi encontrado experimentalmente no mapa da distribuição da densidade eletrônica (Síntese de Fourier Diferencial), e na posição refinada incluindo um parâmetro térmico isotrópico.

O refinamento final da estrutura molecular completa, incluindo os parâmetros térmicos isotrópicos para os átomos de H, anisotrópicos para todos os átomos não-hidrogenóides e a correção de intensidade dos dados de reflexão em função de processos de absorção pelo método semi-empírico SADABS.

O refinamento final incluiu as reflexões observadas, com o critério de intensidade [>2(()], a equação de ponderação, o valor de P e a razão

máxima deslocamento/desvio padrão estimado para o pré-ligante 2 e para os complexos 5, 6, 7, 8 e 9 encontram-se listados na Tabela 7.

Pré-ligante/ Complexo	Equação de Ponderação	Р	Desvio padrão máximo
2	$1/[\varsigma^2(E_{0}^2) + (0.1258 P)^2 + 0.08 P]$	$(E_{1}^{2} + 2E_{1}^{2})/3$	0
<u> </u>	1/[3(10) + (0,12001) + 0,001]	$(E^2 + 2E^2)/2$	0
<u> </u>	1/[S(F0) + (0,0522F) + 0,00F]	(FU + 2FC)/3	0
6	1/[s²(Fơ) + (0,0139 P)² + 4,22 P]	(Fở + 2 Fở)/3	0
7	1/[s²(Fo²) + (0,0631 P)² + 0,00 P]	(Fở + 2 Fở)/3	0
8	1/[s²(Fơ) + (0,0638 P)² + 28,30 P]	(Fở + 2 Fở)/3	0
9	1/[รீ(Fơ) + (0,0717 P) ² + 0,00 P]	(Fở + 2 Fở)/3	0

Tabela 7: Equações de ponderação, valores de P e razão máxima deslocamento/desvio padrão.

Os fatores de espalhamento atômicos foram assumidos com o programa SHELXL-97. O resumo referente a solução inicial e refinamentos para o préligante 2 e dos complexos 5, 6, 7, 8 e 9 encontram-se na Tabela 4.

Alguns comprimentos de ligação e ângulos de ligação selecionados para o pré-ligante 2 e para os complexos 5 e 6 encontram-se na Tabela 8, para os complexos 7, 8 e 9 na Tabela 9.

Tabela 8: Comprimentos e ângulos de ligação selecionados para o pré-ligante 2 e para oscomplexos 5 e 6.

Pré-ligante 2		Complexe	o 5	Complexo	6
Comprimentos de ligação (Å)					
CI-C(12)	1,752(2)	Ag(1)Ag(1')	2,6831(10)	Ag(1)…Ag(1')	2,70(6)
N(12)-N(11)	1,249(3)	Ag(1)-N(11)	2,146(5)	Ag(1)-N(11)	2,16(3)
N(12)-N(13)	1,337(3)	Ag(1)-N(13)	2,168(5)	Ag(1)-N(13)	2,19(3)
N(13)-C(21)	1,387(3)	Ag(1)…F	2,63(3)	Ag(1)…Cl	2,76(10)
N(11)-C(11)	1,428(3)				
C(22)-N(1)	1,457(3)				
O(2)-N(1)	1,164(3)				
N(1)-O(1)	1,225(3)				
		Angulos de lig	jação (⁰)		
N(11)-N(12)-N(13)	112,46(19)	N(13)-N(12)-N(11')	115,6(5)	N(13)-N(12)-N(11')	116,9(3)
N(12)-N(13)-C(21)	119,1(2)	N(12')-N(13)Ag(1)	125,9(4)	N(12')-N(11)Ag(1)	131,2(6)
N(12)-N(11)-C(11)	113,37(19)	C(11)-N(11)Ag(1)	116,1(4)	C(11)-N(11)-Ag(1)	115,7(2)
		N(12')-N(13)-Ag(1)	130,5(4)	N(12)-N(13)-Ag(1)	124,3(2)
		C(21)-N(13)-Ag(1)	122,1(4)	C(21)-N(13)-Ag(1)	123,9(2)
		N(13)-Ag(1)-Ag(1')	84,85(13)	N(13)-Ag(1)-Ag(1')	85,87(7)
		N(11)-Ag(1)-Ag(1')	84,97(14)	N(11)-Ag(1)-Ag(1')	80,78(7)

					-
Complexo I		Complex	Complexo 8		xo 9
	C	Comprimentos de l	igação (Å)		
Ag-P	2,3821(8)	Ag-P	2,3811(10)	Ag-P	2,3665(10)
Ag-N(11)	2,341(2)	Ag-N(11)	2,363(2)	Ag-N(11)	2,346(3)
Ag-N(13)	2,406(2)	Ag-N(13)	2,369(2)	Ag-N(13)	2,332(3)
N(11)-N(12)	1,304(3)	N(11)-N(12)	1,303(3)	N(11)-N(12)	1,304(4)
N(11)-C(11)	1,398(4)	N(11)-C(11)	1,408(3)	N(11)-C(11)	1,394(5)
N(13)-N(12)	1,304(3)	N(13)-N(12)	1,318(3)	N(13)-N(12)	1,309(4)
N(13)-C(21)	1,398(4)	N(13)-C(21)	1,399(3)	N(13)-C(21)	1,404(5)
		Angulos de liga	ção (º)		
N(11)-N(12)-N(13)	109,7(2)	N(11)-N(12)-N(13)	109,72(18)	N(11)-N(12)-N(13)	109,1(3)
N(11)-Ag-P	155,45(7)	N(11)-Ag-P	151,42(5)	N(11)-Ag-P	146,37(8)
N(13)-Ag-P	148,45(6)	N(13)-Ag-P	150,08(5)	N(13)-Ag-P	158,89(8)
N(11)-Ag-N(13)	53,35(8)	N(11)-Ag-N(13)	53,86(6)	N(11)-Ag-N(13)	54,14(11)
N(12)-N(11)-C(11)	113,1(2)	N(12)-N(11)-C(11)	113,61(19)	N(12)-N(11)-C(11)	114,5(3)
N(12)-N(11)-Ag	100,08(17)	N(12)-N(11)-Ag	98,57(13)	N(12)-N(11)-Ag	98,1(2)
C(11)-N(11)-Ag	146,68(19)	C(11)-N(11)-Ag	147,70(15)	C(11)-N(11)-Ag	147,3(2)
N(12)-N(13)-C(21)	112,8(2)	N(12)-N(13)-C(21)	113,47(2)	N(12)-N(13)-C(21)	114,3(3)
N(12)-N(13)-Ag	96,89(17)	N(12)-N(13)-Ag	97,85(17)	N(12)-N(13)-Ag	98,6(2)
C(21)-N(13)-Ag	150,3(2)	C(21)-N(13)-Ag	150,3(2)	C(21)-N(13)-Ag	146,9(3)

Tabela 9: Comprimentos e ângulos de ligação selecionados para os complexos 7, 8 e 9.

CAPITULO 4: Discussão dos Resultados

4.1 Espectroscopia na região do infravermelho

4.1.1 Espectros de infravermelho dos complexos triazenídicos 7 a 9

Uma das principais características do espectro de absorção na região do infravermelho de complexos triazenídicos é a absorção correspondente é o aparecimento do estiramento de ligação N₃, pois mostra a deslocalização dos elétrons na cadeia de nitrogênio. Comparando-se os espectros dos pré-ligantes e de seus respectivos complexos observa-se o desaparecimento da banda referente ao estiramento de ligação N-H. Isto evidencia a desprotonação do ligante e a formação do complexo.

Encontram-se listadas as freqüências correspondentes às principais bandas de absorção para os complexos **7** a **9** na Tabela10.

Complexo	7	8	9
_{as} (N-N-N)	1279	1274	1275
s(C=C)	1595	1594	1596
(C–N)	848	856	857

Tabela 10: Principais bandas (cm⁻¹) de infravermelho para os complexos 7 a 9.

Os espectros de absorção na região do infravermelho dos complexos 7 a 9 encontram-se nos Anexos 4, 5 e 6, respectivamente.

4.2 Ressonância magnética nuclear de ¹H dos pré-ligantes 1 a 3

O espectro de RMN ¹H mostra os deslocamentos químicos característicos para essa classe de pré-ligantes triazenos. Verifica-se a presença de multipletes na região entre 7-8 ppm, indicando a presença dos hidrogênios ligados a anéis aromáticos. Deslocamentos próximos a 10 ppm referem-se ao próton ligado a cadeia diazoamínica do triazeno.⁴⁰ Na Tabela a seguir

⁴⁰ SILVERSTEIN, R. M. Iden tificação Espectrom étrica de Compostos Orgânicos 5ª edição, Guanabara Koogan, Rio de Janeiro, **1994**.

encontram-se os dados RMN ¹H dos pré-ligantes **1** a **3**. Os espectros dos préligantes **1** a **3** encontram-se nos Anexos 1, 3 e 3, respectivamente.

	Pré-ligantes / Deslocamentos			
Grupos	1	2	3	
C _{Ar} -H	7,02 – 8,50 (m, 8H)	7,03 – 8,41(m, 8H)	6,79 – 8,51(m, 8H)	
N-H	12,22 (s, 1H)	12,15 (s, 1H)	12,05 (s, 1H)	

 Tabela 11: Dados de RMN ¹H dos pré-ligantes 1 a 3.

4.3 Método envolvido na síntese dos complexos

4.3.1 Síntese dos complexos 5 e 6

Esquema 1: Equação geral de síntese dos complexos 5 e 6.

4.3.2 Síntese dos complexos 7 a 9

Esquema 2: Equação geral de síntese dos complexos 7 a 9.

4.4 Discussão da estrutura do pré-ligante 2

A estrutura cristalina e molecular da molécula **2** envolve um sistema cristalino triclínico e o grupo espacial P1.

Este pré-ligante consiste em uma molécula orgânica com o grupo funcional diazoamínico -N=N-N(H)- caracterizando o triazeno. A geometria envolvendo a dupla ligação N=N foi confirmada como trans após a determinação estrutural. O anel C11-C16 ligado ao nitrogênio terminal N11 apresenta um átomo de cloro em orto e o anel C21-C26 ligado ao nitrogênio N13 apresenta um grupo nitro, também em posição orto

A Figura 17 representa a projeção da estrutura molecular do pré-ligante **2** com a numeração dos principais átomos, incluindo parâmetros térmicos anisotrópicos.

Figura 17: Projeção da estrutura molecular do pré-ligante **2.** Elipsóides térmicos representados com um nível de probabilidade de 50%.

Na Tabela 12 encontram-se listados os principais comprimentos e ângulos de ligação para o pré-ligante **2**.

 Tabela 12: Comprimentos e ângulos de ligação selecionados para o pré-ligante 2. Entre parênteses esta o desvio padrão.

Comprimento de Ligação		Ângulos de Ligação	
Ligações	(Å)	Ligações	(°)
CI-C(12)	1,752(2)	N(11)-N(12)-N(13)	112,46(19)
N(12)-N(11)	1,249(3)	N(12)-N(13)-C(21)	119,1(2)
N(12)-N(13)	1,337(3)	N(12)-N(11)-C(11)	113,37(19)
N(13)-C(21)	1,387(3)	O(2)-N(1)-O(1)	123,0(2)
N(11)-C(11)	1,428(3)		
C(22)-N(1)	1,457(3)		
N(1)-O(2)	1,164(3)		
N(1)-O(1)	1,225(3)		

O comprimento da ligação N12-N13 [1,337(3) Å] é menor que o valor característico para uma ligação simples N-N (1,44 Å), enquanto que o comprimento da ligação N11-N12 [1,249(3) Å] está de acordo com o comprimento típico para uma dupla ligação N=N (1,24 Å). Já as ligações N11-C11 [1,428(3) Å] e N13-C21 [1,387(3) Å] são mais curtas que as esperadas para uma ligação simples N-C_{aril} (1,452 Å para aminas secundárias). Todos estes valores citados anteriormente indicam ligações com caráter parcial de ligações duplas, implicando uma deslocalização dos elétrons na cadeia triazenídica N11-N12=N13, na direção do substituinte 2-nitrofenil-2-clorofenil (Figura 17).

Analisando as distâncias de ligação N=N [1,249(3) Å] e N-N [1,337(3) Å] e o ângulo de ligação N=N-N [112,46(19)^o] do pré-ligante **2** observa-se que o mesmo apresenta valores coerentes com os já descritos na literatura. Hörner⁴¹ e colaboradores sintetizaram o ligante 1-(4-bromofenil)-3-(4-nitrofenil)triazeno, observando as distâncias de ligação para N=N de 1,257(8), N-N de 1,326(10) (Å) e o ângulo de ligação N=N-N é de 110,9(7)^o.

No estado sólido a estrutura cristalina de **2** apresenta moléculas associadas através de interações intermoleculares via ligações de hidrogênio não clássicas formando um arranjo supramolecular unidimensional infinito ao longo da direção cristalográfica [001].

Analisando o átomo O1 do substituinte $\sigma O_2 NC_6 H_5$, verifica-se, segundo os critérios utilizados pelo programa P h ton, a existência de interações intermoleculares do tipo D H•••A, ou seja C H•••O, sendo que as moléculas do triazeno encontram-se relacionadas por translação através destas ligações. O átomo doador refere-se ao átomo C15 do substituinte $\sigma CIC_6 H_5$ enquanto que o receptor refere-se ao átomo O1 do substituinte $\sigma O_2 NC_6 H_5$ (Figura 18). Os parâmetros geométricos para as interações encontram-se listados na Tabela 13.

⁴¹ HÖRNER, M.; VISENTIN, L. do C.; BEHN, M. B.; MACHADO, F. C.; BORTOLUZZI, A. J. Anal.Sci:X Ray Struct. Anal.23, 247, **2007.**

Figura 18: Projeção com detalhe da interação intermolecular do pré-ligante 2 paralelo a direção cristalográfica [001], em função das ligações de hidrogênio. Código de Simetria(): x, y, -1+z

O pré-ligante 2 também possui interações intramoleculares por ligações de hidrogênio clássicas N13-H13•••O2 e não clássicas C23-H23•••O1 e C26-H26•••N12 (Figura 19). Os parâmetros geométricos para estas interações estão listados na Tabela 13.

Figura 19: Projeção com detalhe das interações intramoleculares N13-H13•••O2, C23-H23•••O1, C26-H16•••N12 do pré-ligante **2**, em função das ligações de hidrogênio.

Intermoleculares						
D-H••• A D-H H••• A D••• A < D-H•••						
C15-H15•••O1	0,93	2,54	3,455(4)	167		
Intramoleculares						
N13-H13•••O2	0,80(4)	2,16(4)	2,653(3)	120(3)		
C23-H23•••O1	0,93	2,31	2,635(4)	100		
C26-H26•••N12	0,93	2,42	2,744(3)	100		

Tabela 13: Parâmetros geométricos para as interações intramoleculares e intermoleculares (Å / °).

(D = átomo doador, A = átomo aceptor) Código de Sin e tria() x y -1+ z

A estrutura molecular do pré-ligante 2, demonstra uma molécula plana (Figura 20). Esta planaridade resulta das ligações de hidrogênio intramoleculares. A ligação de hidrogênio clássica N13-H13•••O2 é responsável pela planaridade do grupo oO_2N em relação ao anel C21-C26, as ligações de hidrogênio não clássicas C23-H23•••O1 e C26-H16•••N12 são responsáveis pela planaridade do grupo $oO_2NC_6H_5$ em relação a cadeia triazenídica. O desvio médio da planaridade (r.m.s.) e os ângulos interplanares para os planos envolvidos no pré-ligante **2** encontram-se listadas na Tabela 14.

Fragmento	r.m.s. (Å)	Ângulo Interplanar (°)
C11-C16/C21-C26	0,0023/0,0034	2,09(2)
C21-C26/N11N12N13H13	0,0034/0,0069	2,53(3)
C21-C16/O1N1O2	0,0034/0,0000	2,30(6)
C11-C16/ N11N12N13H13	0,0023/0,0069	1,93(4)

Figura 20: Projeção mostrando a planaridade do pré-ligante 2.

4.5 Discussão das estruturas cristalinas dos complexos 5 e 6

As estruturas cristalinas dos complexos **5** $[Ag(C_6H_4FN_3C_6H_4NO_2]_2$ (Figura 21) e **6** $[Ag(C_6H_4CIN_3C_6H_4NO_2]_2$ (Figura 22) são constituídas de um complexo binuclear de Ag, no qual o íon metálico apresenta um número de coordenação igual a dois.

Figura 21: Projeção da estrutura molecular do complexo 5. Elipsóides térmicos representados com um nível de probabilidade de 50%. Código de sinetria() 1- x- y 1- z

Figura 22: Projeção da estrutura molecular do complexo 6. Elipsóides térmicos representados com um nível de probabilidade de 50%. Código de simetria() – x, - y, 2- z

Nestes complexos a geometria de coordenação dos átomos de Ag são lineares devido aos ângulos próximos a 180°. Os átomos e ângulos de ligação envolvidos na geometria de coordenação do metal para o complexo **5** são N11-Ag1-N13 165,63(18)°, resultando em uma distorção da linearidade ideal de aproximadamente 15°. Para o complexo **6** são N13-Ag1-N11 165,86(11)°,

resultando em um desvio da linearidade ideal de aproximadamente 15º (Figura 23).

Figura 23: Geometria de coordenação dos complexos 5 (a) e 6 (b).

Os valores encontrados para as distâncias Ag-N e o ângulo de ligação NNN destes complexos estão próximos aos valores encontrados na literatura. A média para os complexos **5** e **6** do comprimento de ligação Ag-N é de 2,16 e 2,18 Å, respectivamente. O ângulo de ligação NNN nos dois complexos é de 116,4°, na média dos dois complexos. Para o complexo sintetizado por Villis²⁵ [Ag(CH₃O(NO₂)C₆NNNC₆(NO₂)OCH₃)]₂ a distância Ag-N é de 2,157(2) e 2,177(2) Å, respectivamente, e o ângulo NNN equivale a 115,980(2)°.

Estes complexos apresentam interações metálicas com distâncias de 2,68(10) Å e 2,70(6) Å, respectivamente. Também apresentam interações polarizadas oriundas dos halogênios flúor (-F) e cloro (-Cl) que se encontram nas esferas de coordenação dos átomos de Ag (Figura 23). Devido a estas interações polarizadas admite-se que a geometria de coordenação dos átomos de Ag expande-se de linear para tetraédrica distorcida. A expansão da geometria do centro metálico é observada através dos comprimentos e ângulos de ligações listados na Tabela 15.

Tabela 15: Principais ângulos (°) e distâncias () envolvidas na geometria de coordenação dos íons Ag⁺ nos complexos **5** e **6**.

Complexe	5 5	Complexo 6		
Ag(1)-N(11)	2,146(5)	Ag(1)-N(11)	2,16(3)	
Ag(1)-N(13)	2,168(5)	Ag(1)-N(13)	2,19(3)	
Ag(1)…F(1)	2,63(3)	Ag(1)…Cl	2,76(10)	
Ag(1)Ag(1)	2,6831(10)	Ag(1)Ag(1)	2,70(6)	
N(11)-Ag(1)-N(13)	165,6(18)	N(11)-Ag(1)-N(13)	165,86(11)	

Código de simetria ()1-x-y, 1-z5 e ()-x, -y, 2-z6.

Os átomos metálicos do complexo **5** encontram-se coordenados em ponte por dois ânions 1-(2-fluorfenil)-3-(2-nitrofenil)triazenido através dos átomos N11-N12-N13 e N13-N12'-N11', formando-se um anel de oito membros Ag₂(N₃)₂. Cód go de sin e tria ()1- x- y, 1- z

Os átomos metálicos do complexo **6** também encontram-se coordenados em ponte por dois anions 1-(2-clorofenil)-3-(2-nitrofenil)triazenido através dos átomos N11-N12'-N13' e N13-N12-N11', formando-se um anel de oito membros $Ag_2(N_3)_2$. Cód go de sin e tria() – x - y, 2- z

As distâncias entre Ag1...Ag1 encontradas nos complexos **5** e **6** estão de acordo com os valores encontrados na literatura, conforme Tabela 16 a seguir.

Complexos de Ag(I) encontrados na literatura	Distância Ag…Ag	Ref.
$[Ag(C_6H_5N_3C_6H_5)]_2$	2,668(1)	29
$[Ag(CH_3OC_6H_4N_3C_6H_4OH_3C)]_2$	2,698(1)	30
$[Ag(H_3C(O)OCC_6H_4N_3C_6H_4CO]$	2,704(2)	31
$[Ag(CH_3O(NO_2)C_6N_3C_6(NO_2)OCH_3)]_2$	2,746(4)	25
[Ag(C ₆ H ₄ FN ₃ C ₆ H ₄ NO ₂] ₂	2,6831(10)	Complexo 5
$[Ag(C_6H_4CIN_3C_6H_4NO_2]_2$	2,708(6)	Complexo 6

Tabela 16:Comparação entre distâncias () dos complexos 5 e 6 com os complexosencontrados na literatura.

A estrutura cristalina do complexo **5** se caracteriza por um arranjo tridimensional (3-D) (Figura 26) das unidades do complexo dímero centrossimétrico através das ligações de hidrogênio não-clássicas C-H…O (Figura 24) e através das interações Ag- η^2 -areno π (Figura 25).

As ligações de hidrogênio não-clássicas envolvem o grupo orto C-H do substituinte oFC_6H_5 e o grupo nitro do substituinte $oO_2NC_6H_5$: [C24...O2" 3,165(9) Å; H24...O2" = 2,51 Å; C24–H24...O2" = 128°], código de simetria (") –1+ x, 1/2– y, 1/2+ z As unidades do complexo dímero centrossimétrico relacionadas através de um eixo axial de rotação-translação 2₁ paralelo a direção cristalográfica [010] são conectadas entre si através das ligações de hidrogênio não-clássicas C–H...O, resultando um arranjo parcial bidimensional (2–D) correspondente ao plano cristalográfico (–211), (Figura 24).

Figura 24: Arranjo parcial 2–D no plano cristalográfico (–211) do complexo 5 resultante das ligações de hidrogênio não-clássicas C24–H24…O2". Cód go de sinetria(") –1+ x 1/2– y1/2+ z Para maior clareza foi apresentado apenas o átomo de hidrogênio envolvido na ligação de hidrogênio C–H…O.

As interações secundárias não-covalentes e centrossimétricas do complexo **5** Ag- η^2 -areno π resultam da interação η^2 -areno com caráter π de um anel fenila substituído na posição ortopor um átomo de F e um átomo Ag. Este anel σ FC₆H₅ se orienta de forma paralela ao anel centrossimétrico de oito membros Ag₂N₆. Este padrão da interação Ag- η^2 -areno π se repete na direção cristalográfica [100] por translação das unidades do complexo dímero centrossimétrico resultando um arranjo parcial na forma de uma cadeia unidimensional (1-D) paralela ao eixo cristalográfico *a* (Figura 25). Dois átomos de carbono do substituinte σ FC₆H₅ apresentam significante distância mais curta ao átomo Ag: [Ag1...C23^{*'''*} = 3,193(6) Å; Ag1...C24^{*'''*} = 3,230(7) Å], cód go de sin e tria(^{*'''*}) – x – y, 1– z A distância da interação π do metal ao ponto médio da ligação C23^{*'''*}-C24^{*'''*} é 3,16 Å, enquanto que a distância do metal ao ponto central do anel C21–C26 é 2,953(7)Å. Os ângulos C–Ag–C da interação Ag- η^2 -areno π são C23^{*'''*}...C24^{*''''*} = 24,6(4)°; Ag1...C23^{*''''*} = 79,2(4)° e Ag1...C24^{*''''*} = 76,2(4)°, respectivamente.

Figura 25: Arranjo parcial 1–D Ag- η^2 -areno π complexo **5** paralelo a direção cristalográfica [100]. Código de simetria (''') – x – z 1– z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

A Figura 26 mostra a associação polimérica tridimensional (3–D) do complexo 5 através da combinação destes arranjos parciais.

Figura 26: Arranjo polimérico 3–D do complexo **5**. Para maior clareza na representação das interações Ag- η^2 -areno π , foi indicado apenas o anel σ FC₆H₅ ligado ao átomo N13 da cadeia triazenídica.

O complexo **6** também apresenta interações Ag- η^2 -areno π formando um arranjo unidimensional (1-D).

As ligações secundárias não-covalentes e centrossimétricas do complexo **6** Ag- η^2 -areno π resultam da interação η^2 -areno com caráter π de um anel fenila substituído na posição ortopor um átomo de CI e um átomo Ag. Este anel o CIC₆H₅ se orienta de forma paralela ao anel centrossimétrico de oito membros Ag₂N₆. Este padrão da interação Ag- η^2 -areno π se repete na direção cristalográfica [100] por translação das unidades do complexo dímero centrossimétrico resultando um arranjo parcial na forma de uma cadeia unidimensional (1-D) paralela ao eixo cristalográfico *a* (Figura 27). Dois átomos de carbono do substituinte oCIC₆H₅ apresentam significante distância mais curta ao átomo Ag: [Ag1...C23''' = 3,214(4) Å; Ag1...C24''' = 3,190(4) Å], código de sin e tria (''') -1+ x y, z A distância da interação π do metal ao ponto médio da ligação C23–C24 é 3,315 Å, enquanto que a distância do metal ao ponto central do anel C21–C26 é 3,48(7) Å. Os ângulos C–Ag–C da interação Ag- η^2 -areno π são C23'''...Ag1...C24''' = 24,86(7)°; Ag1...C23''' = 78,55(3)° e Ag1...C23'''' = 76,58(2)°, respectivamente.

Figura 27: Arranjo parcial 1–D Ag- η^2 -areno π complexo **6** paralelo a direção cristalográfica [100]. Código de sin e tria (") –1+ x y, z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

Os valores encontrados para as distâncias Ag···C23 e Ag···C24 e o ângulo C23 ···Ag···C24 dos complexos **5** e **6** estão próximos aos valores encontrados na literatura²⁶, Ag···C30 = 2,806(5) Å, Ag···C31 = 2,716(5) Å e C30···Ag···C31 = 29,14(15)°. As estruturas cristalinas dos complexos **5** e **6** são semelhantes, os dois complexos apresentam interações secundárias Ag-²-areno , formando um arranjo molecular 1-D, porém diferenciam-se pelas ligações de hidrogênio apresentadas somente pelo complexo **5**, que resultam em um arranjo molecular 3-D.

O desvio médio da planaridade total dos anéis de oito membros dos complexos **5** e **6** estão na Tabela 17. Analisado a Tabela 17 e a Figura 28 podemos observar que a distorção da planaridade dos anéis de oito membros cresce com o aumento da eletronegatividade dos halogênios flúor e cloro ligados de forma polarizada ao átomo de prata.

 Tabela 17: Desvio médio da planaridade total dos anéis de oito membros dos complexos 5 e 6.

Complexos	Fragmento (anel de oito membros	Desvio médio da		
	Ag2 N6)	planaridade global (r.m.s.)		
5	N11N12N13 Ag1 N11 N12 N13Ag1	0,0520		
6	N11 N12 N13Ag1N11N12N13 Ag1	0,0417		

Nos complexos **5** e **6** os comprimentos de ligação Ag1-N11 e Ag1-N13, diferenciam-se dos comprimentos de ligação Ag1...F e Ag1...Ag1 para o complexo **5** e Ag1...Cl e Ag1...Ag1 para o complexo **6**, sendo mais curtas, determinando a geometria de coordenação dos átomos de Ag pelos ligantes triazenidos. Isto explica a inserção do íon metálico (Ag1 e Ag1) em um ambiente linear constituído por dois átomos de N (N11 e N13) e um átomo de F para o complexo **5** e dois átomos de N (N13 e N11) e um átomo de Cl para o complexo **6** (Figura 28).

Figura 28: Projeção do anel de oito membros, incluindo a ligação polarizada Ag…halogênio, (a) para o complexo 5 código de sin etria() 1- x- y, 1- ze (b) para o complexo 6 código de sin etria () - x- y, 2- z

Os complexos **5** e **6**, Figura 28 (a) e (b), apresentam anéis de oito membros Ag_2N_6 , formados pelos átomos [Ag1-N11-N12-N13'-Ag1'-N11'-N12'-N13], código de simetria ()1- x, - y, 1- z e [Ag1'-N11'-N12-N13-Ag1-N11-N12'-N13'], código de simetria ()- x, - y, 2- z, respectivamente.

Analisando um dos ligantes triazenidos dos complexos $[C_6H_4FN_3C_6H_4(NO_2)]$ 5 (Figura 29) e $[C_6H_4CIN_3C_6H_4(NO_2)]$ 6 (Figura 30) separados do ambiente de coordenação do átomo de Ag, nota-se um significativo desvio da planaridade global dos anéis fenilas terminais.

Figura 29: Projeção separada do ligante $[C_6H_4FN_3C_6H_4(NO_2)]$ do complexo 5, ressaltando o grau de distorção da planaridade total.

Considerando-se a Figura 28, observa-se os seguintes valores para o desvio médio da planaridade total para os anéis do complexo 5:

Fragmento	r.m.s. (Å)	Ângulo (°) entre os fragmentos
C11-C16/C21-C26	0,0142/0,0045	33,44(3)
C11-C16/N11-N12-N13'	0,0142/0	30,28(5)
C21-C26/N11-N12-N13'	0,0045/0	7,15(4)
C11-C12-N1/N11-N12-N13'	0/0	35,31(6)
C21-C22-F1'/N11-N12-N13'	0/0	8,0(8)
O1-N1-O2/N11-N12-N13'	0/0	53,11(7)
C11-C12-N1/C21-C22-F1'	0/0	38,57(7)

Tabela 18: Ângulos interplanares entre os principais fragmentos do complexo 5.

Figura 30: Projeção separada do ligante $[C_6H_4CIN_3C_6H_4(NO_2)]$ do complexo 6, ressaltando o grau de distorção da planaridade total.

Considerando-se a Figura 29, observa-se os seguintes valores para o desvio médio da planaridade total para os anéis do complexo **6**:

Fragmento	r.m.s. (Å)	Ângulo (°) entre os fragmentos
C11'-C16'/C21-C26	0,0081/0.0020	42,49(2)
C11'-C16'/N11'-N12-N13	0,0081/0	36,53 (3)
C21-C26/N11'-N12-N13	0,0020/0	10,86 (4)
C11'-C12'-N1'/N11'-N12-N13	0/0	39,10 (3)
C21-C22-CI/N11'-N12-N13	0/0	11,67 (5)
O1'-N1'-O2'/N11'-N12-N13	0/0	50,77 (5)
C11'-C12'-N1'/C21-C22-CI	0/0	45,41 (3)

Tabela 19: Ângulos interplanares entre os principais fragmentos do complexo 6.

4.6 Discussão das estruturas cristalinas dos complexos 7, 8 e 9

Os complexos apresentados a seguir são inéditos na classe incluindo ligantes triazenidos. Os complexos seguintes apresentam um ligante trifenilfosfina coordenado ao metal. Outros complexos de prata incluindo dois ligantes trifenilfosfina foram encontrados na literatura⁴², com o diferencial que estes foram obtidos partindo-se do precursor [Ag(PPh₃)₄]NO₃.

Nesta dissertação partiu-se do complexo binuclear e estrategicamente foi utilizado apenas a trifenilfosfina na proporção de 1:1 para a coordenação de um ligante trifenilfosfina.

A primeira etapa da reação (Equação 3) consiste na obtenção do precursor na forma do complexo binuclear de Ag⁺:

Equação 3: Equação de obtenção do precursor na forma dos complexos binucleares.

⁴² IGLESIAS, B. A. D issertação de Mestrado, Universidade Federal de Santa Maria, **2008**.

Na segunda etapa da reação (Equação 4) ocorre a adição estequiométrica da trifenilfosfina relativo ao complexo binuclear (1:1). Ocorre a cisão do complexo binuclear, eliminando o ligante triazenido da função ponte entre os dois átomos de prata, formando-se o complexo mononuclear de prata quelatizado pelo ligante triazenido. A esfera de coordenação do átomo de prata se completa com um ligante monodentado trifenilfosfina resultando uma geometria de coordenação trigonal no centro metálico.

Equação 4: Equação de obtenção dos complexos mononucleares.

As estruturas cristalinas dos complexos **7** $[Ag(C_6H_4NO_2N_3C_6H_4NO_2)$ $(P(C_5H_6)_3)]$ (Figura 31), **8** $[Ag(C_6H_4CIN_3C_6H_4NO_2)(P(C_5H_6)_3)]$ (Figura 32) e **9** $[Ag(C_6H_4BrN_3C_6H_4NO_2(P(C_5H_6)_3)]$ (Figura 33) são constituídas de um sistema mononuclear de Ag, no qual o íon metálico apresenta um número de coordenação igual a três e uma geometria de coordenação trigonal plana. O átomo de prata desloca-se do centro geométrico constituído pelos átomos N11, N13 e P por 0,001 Å, na média dos três complexos.

Figura 31: Projeção da estrutura molecular do complexo 7. Elipsóides térmicos representados com um nível de probabilidade de 50%.

Figura 32: Projeção da estrutura molecular do complexo 8. Elipsóides térmicos representados com um nível de probabilidade de 50%.

Figura 33: Projeção da estrutura molecular do complexo 9. Elipsóides térmicos representados com um nível de probabilidade de 50%.

Basicamente a geometria de coordenação dos átomos de Ag para estes complexos é trigonal plana (Figura 34), devido ao efeito estérico imposto pelo ligante trifenilfosfina. Os átomos, ângulos e distâncias envolvidos na geometria de coordenação para estes complexos estão listados na Tabela 20 a seguir.

Figura 34: Geometria de coordenação dos complexos 7, 8 e 9.

Tabela 20: Ângulos (°) e distâncias (Å) envolvidos na geometria de coordenação dos complexos 7, 8 e 9.

Complexo					
	7	8	9		
	Ângul	0 (°)			
N11-Ag-P	155,45(7)	151,42(5)	146,37(8)		
N11-Ag-N13	53,35(8)	53,86(6)	54,14(11)		
N13-Ag-P	148,45(6)	150,08(5)	158,89(8)		
N12-N13-Ag	96,89(17)	97,85(13)	98,6(2)		
N12-N11-Ag	100,08(17)	98,57(13)	98,1(2)		
	Distânc	cia (Å)			
N11-Ag	2,341(2)	2,363(2)	2,346(3)		
N13-Ag	2,406(2)	2,369(2)	2,332(3)		
Ag-P	2,3821(8)	2,3811(10)	2,3665(10)		

Khalaji⁴³ e colaboradores sintetizaram o complexo $[Ag(bpy)(PPh_3)]PF_6$ a distância encontrada para a ligação Ag1-P1 é de 2,3382(9) e os ângulos de ligação P1–Ag1–N1 é de 149,66(9)° e P1–Ag1–N2 é de 134,34(8)°. Estes valores estão próximos aos valores encontrados para os complexos sintetizados nesta dissertação (Tabela 20).

A média do comprimento da ligação N11-N12 [1,303 Å] dos complexos **7**, **8** e **9** é menor que o valor característico para uma ligação simples N-N [1,44 Å], enquanto que a média do comprimento da ligação N12-N13 [1,310 Å] destes complexos, é maior que o comprimento de ligação típico para uma ligação dupla N=N [1,24 Å]. Observando-se ainda os valores da distância de ligação entre os átomos N11-C11 e N13-C21 têm-se 1,40 Å para ambas ligações, na

⁴³ KHALAJI, A. D.; AMIRNASR, M.; AOKI, K. Analytica ISciences22, 87-88, 2006.

média dos três complexos, sendo mais curtas do que as ligações esperadas para N-C_{aril} [1,452 Å para aminas secundárias NHR₂ com R envolvendo carbono com hibridização sp²]. Estes valores, juntamente com os valores N-N observados caracterizam ligações com caráter parcial de duplas, evidenciando uma deslocalização dos elétrons na cadeia triazenídica desprotonada na direção dos substituintes onitrofenil, oclorofenil e obromofenil dos complexos **7**, **8** e **9**, respectivamente.

O átomo de prata nos três complexos está coordenado ao fragmento triazenídico pelos átomos de nitrogênio N11 e N13, a média da ligação Ag-N11 e Ag-N13 é de 2,35 Å e 2,36 Å, respectivamente, formando um anel de quatro membros. O ângulo entre os átomos N11-Ag-N13 é de [53,78°] na média dos três complexos. O ângulo da cadeia triazenídica N11-N12-N13 [109,50°] na média dos três complexos é característico para esta classe de ligantes, diferenciando-se pouco de outros complexos triazenídicos.

Destaca-se que estas estruturas apresentam interações secundárias nãocovalentes Ag- η^2 -areno π resultante da interação η^2 -areno com caráter π de um anel fenila substituído na posição orto por um grupo NO₂ para o complexo **7** (Figura 35), um átomo de CI para o complexo **8** (Figura 36) e um átomo de Br para o complexo **9** (Figura 37). Estes anéis oO₂NC₆H₅, oCIC₆H₅ e oBrC₆H₅ se orientam de forma paralela ao plano principal destes complexos. Dois átomos de carbono dos substituintes oO₂NC₆H₅, oCIC₆H₅ e oBrC₆H₅ apresentam significante distância mais curta ao átomo Ag (Tabela 21). A distância da interação π do metal ao ponto médio da ligação C15–C16 é de 3,477 **7**, 3,195 **8** e 3,318 Å **9**. A distância do metal ao ponto central da ligação C11–C16 é de 3,10(2), 3,003(2) e 3,04(3) Å, respectivamente. Os ângulos C–Ag–C da interação Ag- η^2 -areno π C15'...Ag...C16', Ag...C15'...C16' e Aq...C15'...C16' estão listados na Tabela 22.

Figura 35. Arranjo parcial 1–D Ag- η^2 -areno π complexo **7** paralelo a direção cristalográfica [100]. Código de sin etria(') 1- x, 1- y, - z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

Figura 36. Arranjo parcial 1–D Ag- η^2 -areno π complexo **8** paralelo a direção cristalográfica [100]. Código de simetria(') 1– x, – y, – z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

Figura 37. Arranjo 1–D Ag- η^2 -areno π complexo **9** paralelo a direção cristalográfica [100]. Código de simetria(') 1– x, 1– y, 1– z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

	7	8	9
C15′…Ag	3,125(3)	2,943(3)	3,179(4)
C16′Ag	3,290(3)	2,319(3)	3,186(4)
C15'AgC16'	24,64(6)	26,04(7)	25,16(8)
AgC15'C16'	70,93(3)	77,45(2)	59,54(4)
AgC16'C15'	84,42(4)	76,51(3)	77,63(5)

Tabela 21: Distância (Å) entre os átomos C15 e C16 e ângulos para o centro metálico Ag.

Código de sim e tria 7 (′) 1 - x, 1 - y, - z, 8 (′) 1 - x, - y, - ze 9 (′) 1 - x, 1 - y, 1 - z

Os valores encontrados para as distâncias Ag…C15 e Ag…C16 e o ângulo C15...Ag…C16 dos complexos **7**, **8** e **9** estão próximos aos valores encontrados na literatura²⁶, Ag…C30 = 2,806(5) Å, Ag…C31 = 2,716(5) Å e C30...Ag…C31 = 29,14(15)°.

As moléculas destes complexos estão associadas através de um arranjo supramolecular unidimensional (1-D) das unidades dos complexos através de interações Ag- η^2 -areno π e ligações de hidrogênio não-clássicas C-H…O (Figuras 38, 39 e 40).

As ligações de hidrogênio não clássicas envolvem os grupos nitro dos substituintes $oO_2NC_6H_5$ e o grupo C-H dos substituintes da P(C₆H₅)₃. As distâncias e ângulos para estas ligações estão na Tabela 22.

Figura 38: Arranjo parcial 1-D do complexo **7** paralelo a direção cristalográfica [100], em função das interações intermoleculares C34-H34•••O21". Código de sin etria (") – x, 1- y, - z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

Figura 39: Arranjo parcial 1-D do complexo **8** paralelo a direção cristalográfica [100], em função das interações intermoleculares C34-H34•••O2". Código de simetria (") – x, -y, - z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

Figura 40: Arranjo parcial 1-D do complexo **9** paralelo a direção cristalográfica [100], em função das interações intermoleculares C35-H35•••O2". Código de simetria (") 1+ x, y, z Para maior clareza, foram suprimidos todos os átomos de hidrogênio da molécula do complexo.

Tabela 22:	Ligações	de l	hidrogênio	(Å)	observadas	nos	complexos	7 a	a 9 .	Desvio	padrão	entre
parênteses.												

Complexos	D-H••• A	D-H	H••• A	D••• A	< D-H••• A	
7	C34-H34•••O21	0,93	2,64	3,305	129	
8	C34-H34•••O2	0,93	2,47	3,141(4)	129	
9	C35-H35•••O2	0,93	2,52	3,218(7)	132	

(D = átomo doador, A = átomo aceptor)

Código de simetria:7 ('') - x, 1 - y, - z, 8 ('') - x, - y, - ze 9 ('') 1 + x, y, z

Analisando os ligantes triazenidos dos complexos 7, 8 e 9 separados do ambiente de coordenação do átomo de Ag, nota-se um pequeno desvio da planaridade dos anéis fenilas terminais. As Figuras a seguir mostram a projeção dos triazenidos isolados do ambiente de coordenação do átomo de Ag.

Figura 41: Projeção separada do ligante $[C_6H_4(NO_2)N_3C_6H_4(NO_2)]$ do complexo 7.

Considerando-se a Figura 41, observa-se:

Tabela 23: Ângulos interplanares entre os principais fragmentos do complexo **7**. Desvio padrão entre parênteses.

Fragmento	r.m.s. (Å)	Ângulo (°) entre os fragmentos
C11-C16/C21-C26	0,0099/0,0075	4,36(2)
C11-C16/N11-N12-N13	0,0099/0	9,33(3)
C21-C26/N11-N12-N13	0,0075/0	5,79(3)
C11-C12-N1/N11-N12-N13	0/0	12,58(4)
C21-C22-N2/N11-N12-N13	0/0	6,77(99)
O1-N1-O2/N11-N12-N13	0/0	44,12(4)
O1'-N2-O2'/N11-N12-N13	0/0	49,04(3)
01-N1-O2/O1'-N2-O2'	0/0	87,01(3)

Figura 42: Projeção separada do ligante $[C_6H_4CIN_3C_6H_4(NO_2)]$ do complexo 8.

Considerando-se a Figura 42, observa-se:

Tabela 24: Ângulos interplanares entre os principais fragmentos do complexo 8. Desvio padrão entre parênteses.

Fragmento	r.m.s. (Å)	Ângulo (°) entre os fragmentos
C11-C16/C21-C26	0,0087/0,0109	3,60(2)
C11-C16/N11-N12-N13	0,0087/0	7,76(3)
C21-C26/N11-N12-N13	0,0109/0	4,65(3)
C11-C12-CI/N11-N12-N13	0/0	9,56(3)
C21-C22-N1/N11-N12-N13	0/0	5,10(4)
O1-N1-O2/N11-N12-N13	0/0	47,44(2)
C11-C12-CI/C21-C22-N1	0/0	5,07(5)
C11-C16	N11 N12 N13	

Figura 43: Projeção separada do ligante $[C_6H_4BrN_3C_6H_4(NO_2)]$ do complexo 9.

Considerando-se a Figura 43, observa-se:

 Tabela 25: Ângulos interplanares entre os principais fragmentos do complexo 9. Desvio padrão entre parênteses.

Fragmento	r.m.s. (Å)	Ângulo (°) entre os fragmentos
C11-C16/C21-C26	0,0045/0,0057	9,05(3)
C11-C16/N11-N12-N13	0,0045/0	7,10(3)
C21-C26/N11-N12-N13	0,0057/0	13,08(3)
C11-C12-Br/N11-N12-N13	0/0	6,58(5)
C21-C22-N1/N11-N12-N13	0/0	14,82(6)
O1-N1-O2/N11-N12-N13	0/0	32,19(4)
C11-C12-Br/C21-C22-N1	0/0	11,15(7)

A ressonância eletrônica que normalmente se observa nos ligantes triazenidos incluindo a cadeia diazoamínica desprotonada e os grupos fenila ou

arila terminais, no caso especifico do complexo **7** exclui os substituintes nitro. Esta conclusão é valida em função do significativo desvio da co-planaridade destes nitro-grupos para com os anéis fenila dos quais se ligam, vide Tabela 23. O mesmo pode ser observado para os complexos **8** e **9**, vide Tabelas 24 e 25, respectivamente.

CAPITULO 5: Conclusões

Considerando-se os objetivos propostos para o presente trabalho e analisando-se os resultados obtidos, é possível fazer algumas considerações frente aos complexos sintetizados.

Os complexos mononucleares 7, 8 e 9 e os binucleares 5 e 6 sintetizados nesta dissertação são inéditos, tendo suas sínteses e estruturas cristalinas descritas pela primeira vez.

A caracterização estrutural e molecular destes compostos foi realizada através da difração de raios-X, onde evidenciou-se que o pré-ligante **2** apresenta ligações de hidrogênio não clássicas do tipo C-H···O, resultando em uma cadeia unidimensional (1-D).

Os complexos **5** a **9** apresentam ligações secundárias não-covalentes Ag- η^2 -areno π resultante da interação η^2 -areno com caráter π . Além destas ligações secundárias, as moléculas do complexo **5**, **7**, **8** e **9** apresentam ligações de hidrogênio não clássicas do tipo C-H···O, resultando em cadeias 1-D (complexos **5** a **9**), 2-D e 3-D (complexo **5**).

A partir da obtenção dos complexos binucleares de Ag(I) foram sintetizados os complexos mononucleares, rompendo a interação Ag...Ag com a adição de trifenilfosfina ao meio de reação.

As distâncias Ag···Ag encontradas para os complexos **5** e **6** foram de 2,680(5) e 2,708(6) Å respectivamente, estando de acordo com os valores encontrados na literatura. A diferença observada se deve provavelmente a força da interação secundária halogênio···Ag.

CAPITULO 6: Referências Bibliográficas
1. HÖRNER, M.; IGLESIAS, B. A.; MARTINS, P.; VILLIS, P. C. M.; VISENTIN,

L. C. Z. Anorg. Alg. Chem. 634, 1058, 2008.

2. PAYEHGHADR, M.; ROFOUEI, M. K.; MORSALI, A.; SHMSIPUR, M. horgân ica Chim ica Acta 360, 1792, **2007**.

3. CATALANO, V. J.; MALWITZ, M. A. horg.Chem .42, 5483, 2003.

4. RAY, L.; SHAIKH, M. M.; GHOSH, P. Inorg. Chem .47, 230, 2008.

5. ABUSKHUNA, S.; BRIODY, J.; MCCANN, M.; DEVEREUX, M.; KAVANAGH, K.; FONTECHA, J. B.; MCKEE, V. Polyhedron23, 1249, **2004**.

6. CUIN, A.; MASSABNI, A. C.; LEITE, C. Q. F.; SATO, D. N.; NEVES, A.; SZPOGANICZ, B.; SILVA, M. S.; BORTOLUZZI, A. J. Journal of Inorganic Bibchem is try 101, 291, **2007**.

7. MOORE, D. S.; ROBINSONS, S. D. Adv. horg. Chem. Radiochem. 30, 1, 1986.

8. HÖRNER, M.; PEDROSO, A. G.; BORDINHÃO, J.; BECK, J.; STRAHLE, J. Z.Anorg.Chem .622, 1177, **1996**.

9. GANTZEL, P.; WALSH, P. J. horg. Chem . 37, 3450, 1998.

10. WESTHUSIN, S.; GANTZEL, P.; WALSH, P. J. horg. Chem. 37, 5956, 1998.

11. MELDOLA, R.; STREATFIELD, F. W .J .Chem .Soc. 785, 1890.

12. HÖRNER, M.; CASAGRANDE, I. C.; FENNER, H.; DANIELS, J.; BECK, J. Acta Cryst. Section C C59, 424, **2003**.

13. HÖRNER, M.; BECK, J.; STRAHLE, J. Z. Anorg. Alb. Chem. 622, 1177, 1996.

14. HÖRNER, M.; CARRATU, V.; HERBST-IRMER, R.; MOSSNER, C. M.; STRAHLE, J. Z. Anorg. Alg. Chem. 628, 1, **2002**.

15. RODRIGUES, J. G.; PARRA-HAKE, M.; AGUIRRE, G.; ORTEGA, F.; WALSH, P. J. Polyhedron 18, 3051, **1999**.

16. ESCOBAR, J. J.; ALVARADO, C. C.; MORENO, G. R.; MORALES, D. M.; WALSH, P. J.; HAKE, M. P. Inorgan ic Chem is try46, 6182, **2007**.

17. CAPORASO, P.; TURRIZIANI, M.; VENDITTI, A.; MARRCHESI, F.; BUCCISANO, F.; TIRINDELLI, M. C.; ALVINO, E.; GARBIN, A.; TORTORELLI, G.; TOPPO, L.; BONMASSAR, E.; D'ATRI, S.; AMADORI, S. DNA Repair6, 1179, **2007**. 18. MARCHESI, F.; TURRIZIANI, M.; TORTORELLI, G.; AVVISATI, G.; TORINO, F.; De VECCHIS, L. Review Phamacobgical Research 56, 275, 2007.

19. LAZNY, R.; SIENKIEWICZ, M.; BRASE, S. Tetrahedron57, 5825, 2001.

20. ZHAO, Y.; CAO, Q.; HU, Z.; XU, Q. Analytica Chim ica Acta 388, 45, 1999.

21. BROCH, F. Dissertação de Mestrado, Universidade Federal de Santa Maria, **2008**.

22. (a) HÖRNER, M.; OLIVEIRA, G. M.; BEHM, M. B.; FENNER, H. Z. Anorg. A lg.Chem .632, 615, **2006**. (b) HAIDUC, I.; EDELMANN, F. T. Supramolecular Organometallic Chemistry, Wiley-VCH Verlag GmbH, D-69469 Weinheim, Germany, **1999**. (c) SIMARD, S.; SU, D.; WUEST, J. D. J.Am.Chem.Soc.113, 4696, **1991**. (C) FYTE M. C. T.; STODDART J. F. Acc.Chem.Res. 30, 393, **1997**.

23. GIGLIO, V. F. Dissertação de Mestrado, Universidade Federal de Santa Maria, **2006**.

24. BEHN, M. B. Dissertação de Mestrado Universidade Federal de Santa Maria, **2006**.

25. VILLIS, P. C. M. Tese de Doutorado, Universidade Federal de Santa Maria, **2007**.

26. WANG, P.; DONG, Y.; MA, J.; HUANG, R. CrystalG row th & Design 5,(2), 701, **2005**.

27. LEE, J. D. Química Inorgânica não tão concisa, Edgar Blucher Ltda, 5º edição, São Paulo, **1996**.

28. DESIRAJU, G.R.; STEINER, T. The Weak Hydrogen Bond Ed. Oxford University Press, **2001**.

29. BECK, J.; STRÄHLE, J. Z. Naturforsch, B:Chem. Sc.i41b, 4, 1986.

30. HARTMANN, E.; SCHMID, R.; STRÄHLE, J.; Z.Naturforsch., B:Chem.Sci. 44b, 778, **1989.**

31. RIOS-MORENO, G.; AGUIRRE, G. Polyhedron22(4), 563, 2003.

32. LOCATELLI, A. Dissertação de Mestrado; Universidade Federal de Santa Maria, **2008**.

33. SILVA, A. Dissertação de Mestrado; Universidade Federal de Santa Maria, **2007.**

34. BRUKER (2004). APEX2 (Version 1.0.22), COSMO (Version 1.48), SANT (Version 7.06A). Bruker AXS Inc., Madison, Wisconsin, USA.

35. SHELDRICK, G. M., SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, **1996**.

36. BURLA, M. C. R.; CALIANDRO, M.; CAMALLI, B.; CARROZZINI, G. L.: CASCARANO, L.; DE CARO, C.; GIACOVAZZO, G.; POLIDORI, R.; SPAGNA, SIR2004 – An improved Tool for Crystal Structure Determination and Refinement J.Appl.Cryst, 38 381, **2005**.

37. SHELDRICK, G. M.; SHELXL-97, Program for Crystal Structure Refinement University of Göttingen, Germany, **1997**.

38. FARRUGIA, L.J. (**1999**). J.App I.C ryst.**32**, 837-838; W inGX – An Integrated System of Windows Programs for Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data, Vers. 1.64.04.

39. BRANDENBURG, K. D AMOND. 2004-2005, Version 3.1. Crystal Impact GbR, Bonn, Germany.

40. SILVERSTEIN, R. M. Iden tificação Espectrom é trica de Compostos O rgân icos 5ª edição, Guanabara Koogan, Rio de Janeiro, **1994**.

41. HÖRNER, M.; VISENTIN, L. do C.; BEHN, M. B.; MACHADO, F. C.; BORTOLLUZZI, A. J. Ana I. Sci: X-Ray Struct. Ana I.23, 247, **2007**.

42. IGLESIAS, B. A. Dissertação de Mestrado, Universidade Federal de Santa Maria, **2008**.

43. KHALAJI, A. D.; AMIRNASR, M.; AOKI, K. AnalyticalSciences22, 87-88, 2006.

<u>ANEXOS</u>

Anexo 1: Espectro de IV do complexo 7.

Anexo 2: Espectro de IV do complexo 8.

Anexo 3: Espectro de IV do complexo 9.

Anexo 5: Espectro de RMN ¹H do pré-ligante 2.

Anexo 6: Espectro de RMN ¹H do pré-ligante 3.