
FEDERAL UNIVERSITY OF SANTA MARIA
TECHNOLOGY CENTER

GRADUATE PROGRAM IN COMPUTER SCIENCE

Michael Guilherme Jordan

BOOSTING SIMD BENEFITS THROUGH A RUN-TIME
AND ENERGY EFFICIENT DLP DETECTION

Santa Maria, RS
2019

Michael Guilherme Jordan

BOOSTING SIMD BENEFITS THROUGH A RUN-TIME AND ENERGY EFFICIENT
DLP DETECTION

Dissertation presented to the Graduate Program
in Computer Science (PPGCC) from the Fede-
ral University of Santa Maria (UFSM, RS) as
requirement to obtain the degree of Master of
Computer Science.

Advisor: Prof. Dr. Mateus Beck Rutzig

Santa Maria, RS

2019

Jordan, Michael Guilherme

Boosting SIMD Benefits through a Run-time and Energy Efficient
DLP Detection / por Michael Guilherme Jordan. – 2019.

92 f.: il.; 30 cm.

Advisor: Mateus Beck Rutzig
Dissertation - Federal University of Santa Maria, Technology Cen-

ter, Graduate Program in Computer Science , RS, 2019.

1. DLP. 2. SIMD. 3. Vectorization. 4. ARM NEON. I. Rut-
zig, Mateus Beck. II.Boosting SIMD Benefits through a Run-time and
Energy Efficient DLP Detection.

c© 2019
All rights reserved to Michael Guilherme Jordan. Reproduction of parts or whole of this work
can only be done by citing the source. E-mail: michael.jordan@ecomp.ufsm.br

Michael Guilherme Jordan

BOOSTING SIMD BENEFITS THROUGH A RUN-TIME AND ENERGY EFFICIENT
DLP DETECTION

Dissertation presented to the Graduate Program
in Computer Science (PPGCC) from the Fede-
ral University of Santa Maria (UFSM, RS) as
requirement to obtain the degree of Master of
Computer Science.

Approved in February 22, 2019:

Mateus Beck Rutzig, Dr. (UFSM)
(Presidente/Orientador)

Antonio Carlos Schneider Beck Filho, Dr. (UFRGS)

Carlos Henrique Barriquello, Dr. (UFSM)

Santa Maria, RS

2019

ACKNOWLEDGMENT

After an intensive period of two years, today is the day: writing this note of thanks is the
finishing touch on my dissertation. It has been a period of intense learning for me, not only in
the scientific level, but also on a personal level. I would like to reflect on the people who have
supported and helped me so much throughout this period.

I would first like to thank my advisor, Prof. Mateus Beck Rutzig, Ph.D., for your valuable
guidance, pacience, friendship, excellent cooperation and for all the opportunities I was given
to conduct my research and further my dissertation.

I would also like to thank my parents, José Inácio Jordan and Silvia Inês Hoffmann
Jordan, and my girlfriend, Tamires Dolores Santos Pereira, for their wise counsel and all the
emotional support. You are always there for me.

In addition, i would like to thank my colleagues and friends, from GMICRO Research
Group at UFSM, Tiago Knorst and Julio Vicenzi, for their wonderful collaboration. You sup-
ported me greatly.

Finally, i would like to thank my friends: Rafael Fão de Moura, Denise Lange Albrecht,
Iaçanã I. Weber, Michel Duarte, Juliana Brondani, Giovani Soares, Luana Palma, Deivis Stri-
eder, the RPG Group, the Football Group, among others. Thanks for all the fun times and the
support given to each other by deliberating over our problems and findings.

Thank you very much, everyone!
Michael G. Jordan
Santa Maria, RS, January 29, 2019.

ABSTRACT

BOOSTING SIMD BENEFITS THROUGH A RUN-TIME AND ENERGY EFFICIENT
DLP DETECTION

AUTHOR: MICHAEL GUILHERME JORDAN
ADVISOR: MATEUS BECK RUTZIG

Multimedia applications have been widely present in embedded devices. Due to their
intrinsic nature, such application domain is benefited from Data Level Parallelism (DLP). In or-
der to improve performance-energy tradeoff, current processors enable DLP by coupling SIMD
(Single Instruction Multiple Data) engines, such as Intel AVX, ARM NEON and IBM Altivec.
Special libraries and compilers are used to support DLP execution on such engines. However,
timing overhead on hand coding is inevitable since most software developers are not skilled
to extract DLP using unfamiliar libraries. Considering the auto-vectorization through compi-
ler, although improving software productivity, it breaks software compatibility. Besides, both
methods are limited to static code analysis, which compromises performance gains.

In this dissertation, we propose a runtime DLP detection named as Dynamic SIMD
Assembler (DSA), which transparently identifies vectorizable code regions to execute in the
ARM NEON engine. Due to its dynamic fashion, DSA keeps software compatibility and avoids
timing overhead on software developing process. Results show that DSA outperforms ARM
NEON auto-vectorization compiler by 32% since it applies the partial vectorization of loops and
covers wider vectorizable regions, such as Dynamic Range, Sentinel and Conditional Loops. In
addition, DSA outperforms hand-vectorized code using ARM library by 26% reducing 45% of
energy consumption with no penalties over software development time.

Keywords: DLP. SIMD. Vectorization. ARM NEON.

RESUMO

AUMENTANDO OS BENEFÍCIOS SIMD POR MEIO DE UMA DETECÇÃO DE DLP
EM TEMPO DE EXECUÇÃO E ENERGETICAMENTE EFICIENTE

AUTOR: MICHAEL GUILHERME JORDAN
ORIENTADOR: MATEUS BECK RUTZIG

Aplicações multimídia estão amplamente presentes em dispositivos embarcados. Dev-
ido à sua natureza intrínseca, este nicho de aplicação é beneficiado pelo Paralelismo a Nível de
Dados (DLP). Para melhorar a relação performance-energia, os processadores atuais habilitam
o DLP pelo acoplamento de engines SIMD (Single Instruction Multiple Data), como Intel AVX,
ARM NEON and IBM Altivec. Bibliotecas e compiladores especiais são usados para suportar
a execução de DLP nesses mecanismos. No entanto, a sobrecarga de tempo aplicada a vetoriza-
ção através de programação manual é inevitável, uma vez que a maioria dos desenvolvedores
de software não tem habilidade para extrair o DLP usando bibliotecas desconhecidas. Con-
siderando a auto-vetorização através do uso de compilador, apesar de melhorar a produtividade
de software, tal método quebra compatibilidade de software. Além disso, ambos os métodos
estão limitados à análise de código estático, o que compromete os ganhos de desempenho.

Nesta dissertação, propomos uma detecção de DLP em tempo de execução chamada
Dynamic SIMD Assembler (DSA), que identifica de forma transparente as regiões de código
que podem ser vetorizadas para serem executadas no mecanismo ARM NEON. Devido à sua
forma dinâmica, a DSA mantém compatibilidade de software e evita a sobrecarga de tempo
no processo de desenvolvimento de software. Os resultados mostram que a DSA supera a
auto-vetorização através do uso do compilador ARM NEON em 32%, pois aplica a vetorização
parcial de loops e abrange mais regiões vetorizáveis, como Loops de Tamanho Dinâmico, Loops
Sentinela e Loops Condicionais. Além disso, a DSA supera a programação manual através do
uso da biblioteca ARM em 26% reduzindo 45% do consumo de energia sem penalidades em
relação ao tempo de desenvolvimento do software.

Palavras-chave: DLP. SIMD. Vetorização. ARM NEON.

LIST OF FIGURES

CONCEPTUAL ANALYSIS
Figure 1 – Scalar Registers vs Vector Registers . 19
Figure 2 – VMIPS Overview . 20
Figure 3 – ARM A8 Processor Schematic . 21
Figure 4 – ARM NEON Engine . 22
Figure 5 – Hand-code Programming Overview . 24
Figure 6 – Auto-vectorization Compiler Overview. 25
Figure 7 – Just-in-time and Traditional Compiler Comparison . 27
Figure 8 – Cross-iteration dependency example . 28
DYNAMIC SIMD ASSEMBLER
Figure 9 – System Overview . 33
Figure 10 – System Functionality Overview . 34
Figure 11 – Loop Examples . 35
Figure 12 – DSA Execution Flow . 36
Figure 13 – Cross-iteration Dependency Prediction . 39
Figure 14 – Partial Vectorization Analysis . 39
Figure 15 – Count Loop Example . 41
Figure 16 – Function Loop Example . 41
Figure 17 – Outer Loop Example . 42
Figure 18 – DSA Conditional Loop State Machine. 44
Figure 19 – Conditional Loop Vectorization Analysis . 46
Figure 20 – Conditional Code Loop Analysis Mapping and Data Storage 47
Figure 21 – Conditional Code Loop Execution Mapping and Data Storage 48
Figure 22 – Conditional Code Loop Array Map Logic . 49
Figure 23 – Sentinel Loop Cross-iteration Analysis and Execution. 52
Figure 24 – Dynamic Range Loop Cross-iteration Analysis . 53
Figure 25 – SIMD Instruction Generation Steps . 54
Figure 26 – Leftovers . 56
Figure 27 – Single Elements Method . 56
Figure 28 – Overlapping Method . 57
Figure 29 – Larger Arrays Method . 58
METHODOLOGY
Figure 30 – DSA Simulation Model . 60
Figure 31 – O3CPU - DSA Implementation . 61
Figure 32 – DSA Energy Analysis . 62
ARTICLE 1
Figure 1 – System Overview . 67
Figure 2 – System Functionality Overview . 67
Figure 3 – State Machine of DSA . 67
Figure 4 – DSA Execution . 68
Figure 5 – Loop Detection Stage Behavior . 68
Figure 6 – Data Collection Stage Behavior . 69
Figure 7 – Data Collection Stage . 69
Figure 8 – Dependency Analysis Stage . 69
Figure 9 – Example of a Cross-iteration Dependency Prediction Process 70

Figure 10 – Store ID/Execution Stage Behavior . 70
Figure 11 – ARM NEON Parallelism . 70
Figure 12 – NEON Auto-Vectorization vs. DSA Vectorization Performance 71
ARTICLE 2
Figure 1 – System Overview . 74
Figure 2 – System Functionality Overview . 74
Figure 3 – State Machine of DSA . 75
Figure 4 – DSA Execution . 75
Figure 5 – ARM NEON Parallelism . 75
Figure 6 – Example of a Cross-iteration Dependency Prediction Process 76
Figure 7 – Vectorizable, Dynamic Range, Conditional Code and Function Loops 76
Figure 8 – Conditional Loop DSA State Machine . 76
Figure 9 – Conditional Code Coverage Stage . 77
Figure 10 – Conditional Code Loop Vectorization Analysis . 77
Figure 11 – Conditional Code Loop Analysis Mapping and Data Storage 77
Figure 12 – Conditional Code Loop SIMD Execution . 78
Figure 13 – DRL Type A, DRL Type B . 78
Figure 14 – DRLA Cross-iteration Analysis . 78
Figure 15 – DRLB Cross-iteration Analysis and Execution . 79
Figure 16 – ARM NEON Compiler AutoVec. vs. ARM NEON Original DSA vs. ARM

NEON Extended DSA Performance . 80
ARTICLE 3
Figure 1 – System Overview . 83
Figure 2 – Execution Flow . 83
Figure 3 – Example of Loops . 83
Figure 4 – DSA Analysis and Execution Process . 84
Figure 5 – Example of a Cross-iteration Dependency Prediction Process 85
Figure 6 – DSA Partial Vectorization Technique . 85
Figure 7 – Percentage of Loop Types in the Selected Applications . 86
Figure 8 – Performance Improvements over ARM Original Execution 87
Figure 9 – Energy Savings over ARM Original Execution . 87

LIST OF TABLES

INTRODUCTION
Table 1 – Factors that Limit or Prevent the Automatic Loop Vectorization 14
Table 2 – Vectorization Techniques Comparison . 28
RELATED WORK
Table 3 – Related Works and Proposed Technique Characteristics . 31
METHODOLOGY
Table 4 – Systems Setup . 62
ARTICLE 1
Table 1 – Related Works and Proposed Technique Characteristics . 67
Table 2 – Systems Setups . 70
Table 3 – Area overhead of DSA . 71
ARTICLE 2
Table 1 – Related Works and Proposed Technique Characteristics . 74
Table 2 – Systems Setups . 79
Table 3 – DSA Latency . 80
ARTICLE 3
Table 1 – System Setups . 86
Table 2 – DSA Detection Latency . 86
Table 3 – DSA Energy Consumption . 86

LIST OF ABBREVIATIONS AND ACRONYMS

ALU Arithmetic Logic Unit

CGRA Coarse Grain Reconfigurable Architecture

CID Cross-iteration Dependency

CIDP Cross-iteration Dependency Prediction

CUDA Compute Unified Device Architecture

CPU Central Processing Unit

DLP Data Level Parallelism

DRAM Dynamic Random Access Memory

DSA Dynamic SIMD Assembler

FU Functional Unit

FP Floating Point

GPP General Purpose Processor

GPU Graphic Processing Units

HDL Hardware Description Language

ID Identification

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

JIT Just-in-time

LLVM Low Level Virtual Machine

LPA Loop-Oriented Pointer Analysis

LRU Least Recently Used

McPAT Multicore Power, Area, and Timing

MMX Multimedia Extensions

NCID No Cross-Iteration Dependency

ROB Reorder Buffer

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SM State Machine

SoC System-on-Chip

SRP Samsung Reconfigurable Processor

SSE Streaming SIMD Extensions

SW Software

TLP Thread Level Parallelism

VC Verification Cache

VHDL VHSIC Hardware Description Language

SUMMARY

1 INTRODUCTION . 14
2 CONCEPTUAL ANALYSIS . 17
2.1 ILP, TLP AND DLP EXPLOITATION. 17
2.2 SIMD ARCHITECTURES . 18
2.2.1 Vector Architectures . 18
2.2.2 SIMD Instruction Set Extensions . 20
2.2.3 Graphic Processing Units . 23
2.3 CODE VECTORIZATION . 23
2.3.1 Hand-code Programming Vectorization . 24
2.3.2 Auto-vectorization Compiler . 24
2.3.3 Just-in-time Vectorization Compilers . 26
2.3.4 Critical Analysis . 27
2.4 CROSS-ITERATION DEPENDENCIES . 28
3 RELATED WORKS . 29
3.1 AUTO-VECTORIZATION COMPILER AND VECTOR LIBRARY APPRO-

ACHES . 29
3.2 ISA/HARDWARE MODIFICATION APPROACHES . 30
3.3 JUST-IN-TIME APPROACHES . 31
4 DYNAMIC SIMD ASSEMBLER . 33
4.1 SYSTEM OVERVIEW . 33
4.2 DSA COVERAGE . 34
4.3 DSA OVERVIEW . 35
4.4 CROSS-ITERATION DEPENDENCY VERIFICATION . 38
4.5 PARTIAL VECTORIZATION. 39
4.6 DSA - ANALYSIS AND EXECUTION . 40
4.6.1 Count Loops . 40
4.6.2 Function Loops . 41
4.6.3 Inner/Outer Loops . 42
4.6.4 Conditional Loops . 43
4.6.4.1 Conditional Loops Vectorization . 45
4.6.4.2 Conditional Loop SIMD Execution . 47
4.6.4.3 Conditional Loop DSA Limitations . 48
4.6.5 Sentinel Loops Vectorization . 50
4.6.6 Dynamic Range Loop Vectorization . 52
4.7 GENERATING SIMD INSTRUCTIONS . 53
4.8 DEALING WITH LEFTOVERS . 55
4.8.1 Single Elements . 56
4.8.2 Overlapping . 57
4.8.3 Larger Arrays . 57
5 METHODOLOGY . 59
5.1 O3CPU PROCESSOR/DSA IMPLEMENTATION . 60
5.2 DSA AND O3CPU ENERGY RESULTS . 61
5.3 SYSTEMS SETUP . 62
6 ARTICLE 1 - IMPROVING SOFTWARE PRODUCTIVITY AND PER-

FORMANCE THROUGH A TRANSPARENT SIMD EXECUTION 64

7 ARTICLE 2 - RUNTIME VECTORIZATION OF CONDITIONAL CODE
AND DYNAMIC RANGE LOOPS TO ARM NEON ENGINE 71

8 ARTICLE 3 - BOOSTING SIMD BENEFITS THROUGH A RUN-TIME
AND ENERGY EFFICIENT DLP DETECTION . 80

9 DISCUSSION . 87
10 CONCLUSION AND FUTURE WORK . 89

14

1 INTRODUCTION

The benefits of the classical transistor shrink may cease in 2021 (COURTLAND, 2016),

along with it, the increasing number of multimedia applications has been demanding for more

and more performance. In order to provide such performance requirements considering the te-

chnological limitation, most architectural solutions attempt to exploit some inherent parallelism

available in such applications.

In this scenario, the exploitation of Data Level Parallelism (DLP) has gained increa-

sing relevance since multimedia algorithms are plentiful of Data-Parallel Statements. The DLP

can be classified as the capability of performing operations simultaneously over multiple data.

Currently, Single Instruction Multiple Data (SIMD) engines are used in market processors to

boost multimedia application performance through DLP exploitation. ARM NEON (ARM LI-

MITED, 2008), Intel SSE/AVX (LOMONT et al., 2011) and IBM Altivec (DIEFFENDORF et

al., 2000) are SIMD engines coupled to general purpose processors (GPP) with the purpose of

benefiting from the energy-performance tradeoff on data-parallel applications. The execution

of such engines is supported by vector instructions that are applied to vectorizable regions in

code. The most significant parcel of vectorizable regions is found in loop statements, which

have the property of repeating operations over multiple data. In order to convert loops to vector

instructions, SIMD engines apply vectorization techniques such as: auto-vectorization through

compiler or hand-coding vectorization. The hand-coding vectorization consists on using low-

level functions available on specific libraries to convert vectorizable regions (loops) in SIMD

instructions during programming time. Such method requires programming expertise reducing

software productivity. The auto-vectorization technique lies on converting vectorizable regions

to SIMD instructions during compile time, which does not affect software productivity since no

specific library usage is required.

Table 1 shows some factors that inhibit the automatic loop vectorization through com-

piler. Some limitations can be overcome by combining both techniques (Lines 8 and 10 - Table

1). However, loops with dynamic behavior, such as sentinel loops, dynamic ranged loops and

conditional loops, which depend on information generated during execution time, are not ef-

ficiently vectorized by such methods since both operate during programming or compile time

(statically) (Lines 4, 9 and 12 – Table 1).

15

Table 1 – Factors that limit or prevent the automatic loop vectorization
Inhibiting Factor Extent to which applies

1 No vector access pattern
If variables in a loop lack a vector access pattern, the

compiler cannot automatically vectorize the loop.

2
Data dependencies between
different iterations of a loop

Where there is a possibility of the use and storage of arrays overlapping on dif-
ferent iterations of a loop, there is a data dependency problem. A loop cannot be
safely vectorized if the vector order of operations can change the results, so the

compiler leaves the loop in its original form or only partially vectorizes the loop.

3 Memory hierarchy

Performing relatively few arithmetic operations on large data sets retrieved
from main memory is limited by the memory bandwidth of the system. Most

processors are relatively unbalanced between memory bandwidth and pro-
cessor capacity This can adversely affect the automatic vectorization process.

4
Iteration count not fi-

xed at start of loop

For automatic vectorization, it is generally best to write simple lo-
ops with iterations that are fixed at the start of the loop. If a loop does
not have a fixed iteration count, automatic addressing is not possible.

5 Carry-around scalar variables
Carry-around scalar variables are a problem for automatic vectorization because
the value computed in one pass of the loop is carried forward into the next pass.

6 Pointer aliasing Pointer aliasing prevents the use of automatically vectorized code.

7 Indirect addressing
Indirect addressing is not vectorizable because the NEON unit

can only deal with vectors stored consecutively in memory.

8
Separating access to dif-
ferent parts of a struc-
ture into separate loops

Each part of a structure must be accessed within
the same loop for automatic vectorization to occur.

9
Inconsistent length of mem-
bers within a loop structure

If members of a loop structure are not all the same
length, the compiler does not attempt to use vector loads.

10 Calls to non-inline functions
Calls to non-inline functions from within a loop inhibits vectori-
zation. If such functions are to be considered for vectorization,

they must be marked with the __inline or __forceinline keywords.

11 Source code without loops
Automatic vectorization involves loop analysis.

Without loops, automatic vectorization cannot apply.

12 if and switch statements
Extensive use of if and switch statements in loop

can affect the efficiency of automatic vectorization.

Besides both methods present performance limitations due their static fashion, the au-

tomatic vectorization and hand-coding programming also require code recompilation, which

breaks binary compatibility. To overcome such limitations, Just-in-time (JIT) compiler vec-

torization approaches emerge. The JIT compiler is capable of exploiting DLP by monitoring

vectorizable regions present in a code during runtime. By its dynamic fashion, it is possible

to vectorize loops with dynamic behavior and no code recompilation is required, since a JIT

compiled code is ISA (Instruction Set Architecture) independent. However, a JIT compiled

code generation demands more time than a binary generation, which is produced by an auto-

vectorization compiler. In addition, such method requires monitor tasks to detect vectorizable

regions, which results in performance penalties.

The solution proposed in this dissertation lies on removing the dependency of static

DLP exploitation methods through an engine that is capable of exploiting DLP during execu-

tion time. In this way, we created the Dynamic SIMD Assembler (DSA). The DSA can analyze

vectorizable regions during runtime and generate SIMD instructions based on such regions.

By operating at runtime, DSA increases software productivity, keeps binary compatibility and

16

embraces parallelism opportunities that have both static and dynamic behavior. Unlike a JIT

compiler approach, the DSA implies in no performance penalties, since it detects vectoriza-

ble regions parallel to the binary execution by using its own hardware. Considering the DSA

system proposed in (JORDAN, 2018), it is capable of outperforming the ARM NEON auto-

vectorization technique in 32%. When compared to the ARM NEON library usage approach

(Hand-vectorized Code), it can outperform such method by 26%. In addition, the DSA achieves

45% of energy savings over the ARM original execution.

The remaining chapters of this dissertation are based on the Integrated Scientific Arti-

cles format, where the formatting imposed by each conference will be respected. Chapter 2

presents the conceptual analysis. Chapter 3 presents the related works. In Chapter 4, the des-

cription and implementation of the DSA is addressed. Chapter 5 discusses the methodology

used to perform experiments. Scientific articles are presented during chapter 6, 7 and 8, where

the order of presentation respects the submission dates of each article. In chapter 9 there is a

discussion about the articles. Finally, the conclusion will be presented during chapter 10. It is

important to emphasize that all the articles present in this dissertation were submitted and appro-

ved in the following conferences: Improving Software Productivity and Performance through a

Transparent SIMD Execution (Chapter 6 - SBCCI), Runtime Vectorization of Conditional Code

and Dynamic Range Loops to ARM NEON Engine (Chapter 7 - SBESC) and Boosting SIMD

Benefits through Run-time and Energy Efficient DLP Detection (Chapter 8 - DATE).

17

2 CONCEPTUAL ANALYSIS

This chapter provides a quantitative sight of the concepts mentioned in this work. The

section 2.1 presents all types of parallelism in which an application may present. Section 2.2

discusses Conventional SIMD Architectures. Section 2.3 presents Code Vectorization techni-

ques applied to SIMD Architectures.

2.1 ILP, TLP AND DLP EXPLOITATION

Pipelining technique (HENESSY; PATTERSON 2011) is able to overlapping the execu-

tion of instructions when they are data independent. The potential overlap among instructions

is denominated Instruction Level Parallelism (ILP) since the instructions can be executed in

parallel in order to accelerate applications. However, the study suggested by (WALL, 1991),

proves that there are acceleration bounds related with ILP exploitation. The approach takes five

processors, ranging from a best one (perfect branch predictor, perfect memory alias analysis

and perfect register renaming) to a worst one (branches always mispredicted, no alias analysis,

no register renaming). It is shown that the limits of ILP could be as high as 20 instructions per

cycle in the perfect processor, for most of the benchmarks.

To overcome such limit, many micro-architectural techniques like superscalar execution,

out-of-order execution, register renaming and speculative execution have been applied conside-

ring the hardware perspective (HENESSY; PATTERSON 2011). From the software perspective,

compile and programming techniques that involves prediction of data and control flow, loop un-

rolling and software pipelining (ALLEN et al., 2001) (AHO et. al, 2014) are constantly applied.

Thread Level Parallelism (TLP) emerged as a performance and energy alternative due to

the limits on performance gains imposed by ILP exploitation. The TLP Exploitation is achieved

when each processor executes threads of the same application over different processors using

the same or different data.

According to the Amdahl’s Law (AMDAHL, 1967), the serial portions of a program that

cannot be executed in parallel limits the speed-up provided by the TLP technique. Plenty rese-

arches (HILL et al., 2008) (SUN et al., 2010) reevaluate Amdahl’s law premise. To expand the

ILP and TLP exploitation the Data Level Parallelism (DLP) emerges.

In contrast to the TLP concept, which divides different operations to execute over the

18

same or different data concurrently, the DLP is based on running the same operation over a da-

taset. DLP opportunities are mostly present in application loops, where operations are executed

multiple times over vector structures.

To improve applications performance by exploiting DLP, SIMD (Single Instruction Mul-

tiple Data) architectures, such as ARM NEON (ARM LIMITED, 2008), Intel SSE/AVX (LO-

MONT et al., 2011) and IBM Altivec (DIEFFENDORF et al., 2000), are widely present in

market processors. Such SIMD architectures are usually coupled with special vector libraries

and compilers that enable the DLP exploitation over applications.

2.2 SIMD ARCHITECTURES

Considering Patterson and Henessey’s approach (HENESSY; PATTERSON 2012), there

are three SIMD variations: Vector Architectures, SIMD Instruction Set Extensions and Graphic

Processing Units (GPUs).

2.2.1 Vector Architectures

Vector Architectures are based on applying SIMD instructions into a single processor’s

execution pipeline. Such approaches are easier to understand and compile than other SIMD

variations since there are few vector instructions that operate over a fixed data vector length and

their vector loads and stores specify regular access pattern, leading to less memory misalign-

ment issues.

However, vector architectures are considered more expensive than the SIMD Extensi-

ons, mainly due the cost of sufficient dynamic random access memory (DRAM) bandwidth,

given the general reliance on caches to meet memory performance demands on conventional

microprocessors.

Vector architectures gather sets of data scattered about memory, place them into large,

sequential register files, operate on data in those register files and then store the results back into

memory. A single instruction operates over data vectors, which results in dozens of register-to-

register operations on independent data elements. These large register files work as controlled

buffers to hide memory latency and to take advantage of the large memory bandwidth. Since

vector loads and stores are deeply pipelined, the program relies on long memory latency only

once per vector load or store and once per element load/store, thus amortizing the latency over

19

multiple elements.

Figure 1 shows a comparison between Scalar and Vector Registers. As it can be seen,

Vector Registers can hold multiple elements of n-bit per register while the Scalar Register holds

a single n-bit element per register. In such case, the Scalar Register has 16 scalar registers hol-

ding 32-bit element each while the Vector Register has 16 vector registers holding 8 elements,

32-bit per element.

Figure 1 – Scalar Registers vs Vector Registers

Vector Architectures are usually composed of: Vector Functional Units, Vector Regis-

ters, Vector Load-Store units and Scalar Registers. Figure 2 presents a Vector architecture

example (VMIPS). As can be seen, the VMIPS is composed of:

• Vector Registers: VMIPS has eight vector registers holding 64 elements, 64-bit per ele-

ment. Such registers must provide enough ports to feed all the vector functional units.

The VMIPS has 16 read ports and 8 write ports that are connected to the functional unit

inputs or outputs through crossbar switches. The large number of ports is one of the

reasons of the long memory latency;

• Vector Functional Units (FUs): Each unit is fully pipelined, which means that all units

are capable of starting a new operation on every clock cycle. A control unit is needed

to detect structural and data hazards. The functional units present on the figure are the

Floating-point FUs (FP add/subtract, FP multiply, FP divide), Integer FU and Logical FU;

• Vector load/store unit: The vector memory unit load or stores a vector to or from memory.

The VMIPS vector loads and stores are also fully pipelined. In this way, words can be

moved between the vector registers and memory with a bandwidth of one word per clock

cycle (after an initial latency). This unit is also capable of handle scalar loads and stores;

• Scalar Registers: Such registers provide input data to the vector functional units. They

are also responsible for computing addresses to pass to the vector load/store unit. These

20

are the normal general-purpose and floating-point registers present in the original MIPS.

One input of the vector functional units locks scalar values as they are read out of the

scalar register file;

• Cross-bar: Responsible for connecting Vector Registers, Functional Units and Load/Store

Units.

Figure 2 – VMIPS Overview

2.2.2 SIMD Instruction Set Extensions

The SIMD Instruction Set Extensions (SIMD Extensions) are found in most modern

instruction set architectures that support multimedia applications. Considering x86 architectu-

res, the SIMD instruction extensions started with the MMX (Multimedia Extensions) in 1996,

which were followed by several SSE (Streaming SIMD Extensions) versions in the next decade.

Nowadays, such architectures are commonly seen in Intel AVX and ARM NEON instruction

set extensions.

SIMD Extensions have been coupled to general-purpose processors since many multi-

media applications do not fully explore the vector structure sizes offered by Vector Architec-

tures. By partitioning such structures, a vector engine could perform simultaneous operations

21

on short vectors, offering more flexible vector operations. A vector structure of 128-bit, could

perform parallel operations over sixteen 8-bit operands, eight 16-bit operands, four 32-bit ope-

rands or two 64-bit operands. Unlike vector machines with large register files, which can hold

up to sixty-four 64-bit elements each of 8 vector registers (VMIPS), SIMD Extensions run over

fewer operands and consequently use much smaller register files.

In contrast to vector architectures, SIMD Extensions fix the number of data operands in

the opcode leading to the addition of hundreds of instructions. Vector architectures have a vector

length register that specifies the number of operands for the current operation. Besides, SIMD

Extensions do not offer the more refined addressing modes present in vector architectures. Such

particularities make it harder for the compiler to generate SIMD code and increase the difficulty

of programming for SIMD extensions.

However, besides such weaknesses, Multimedia SIMD Extensions are prominent due

to their smaller cost to add to the standard arithmetic unit. Another advantage of using SIMD

Extensions lies on the fact that a lot of memory bandwidth is needed to support a vector archi-

tecture, which many computers and embedded devices do not support. Also, the use of short,

fixed-length of SIMD extensions makes it easy to introduce flexible instructions that can be

applied to new media standards, such as instructions that consume fewer of more operands than

vector can produce or instructions that perform permutations.

An example of SIMD Multimedia Extension is the ARM NEON engine. The ARM

NEON is a solution for exploiting Data Level Parallelism on embedded devices. It works as a

co-processor, where vector statements (NEON statements) are executed in their own pipeline.

Figure 3 – ARM A8 Processor Schematic

Figure 3 presents a simple ARM A8 Processor schematic. As it can be seen, such archi-

tecture operates through the use of Instruction and Data queues to perform vector instructions

22

in the ARM NEON/VFP Engine. ARM A8 has a faster pipeline than the NEON Engine, which

means that scalar instructions and vector instructions are executed over independent pipelines.

Some ARM A8/NEON Engine aspects are:

• NEON instructions execute in their own 10-stage pipeline;

• ARM can dispatch 2 NEON instruction per cycle to the Instruction Queue;

• 16-entry instruction queue holds NEON instructions until they can enter the NEON pipe-

line;

• 12-entry data queue holds operations results until they can be received by the ARM A8

general-processor;

• The ARM general-processor will not stall until the NEON queue fills or some data ha-

zard between scalar and vector instruction is found. That means that the ARM general-

processor can dispatch several NEON instructions while performing other work until the

NEON finishes its execution.

Figure 4 shows the different degrees of parallelism that can be obtained through the 128-

bit wide NEON Engine depending on the type of data involved in the SIMD instruction. As it

can be seen, we can perform up to 16 operations simultaneously with 8-bit integer data (.I8).

With 32-bit float data (.F32), only 4 operations can be performed in parallel.

Figure 4 – ARM NEON Engine

23

2.2.3 Graphic Processing Units

The GPU offers higher performance potential on exploiting thread level parallelism than

traditional multicore computers since it is composed of thousands of processing elements. In

2006, NVIDIA created the Compute Unified Device Architecture (CUDA), a parallel proces-

sing technology that enables acceleration in general-purpose computing performance. With the

specific programming language CUDA C [NVIDIA 2011], it is possible to control such proces-

sing elements and, in this way, it is possible to explore not only graphical applications but also

to optimize general-purpose applications with high data-level parallelism.

Like vector architectures, GPUs work well with DLP issues. Both styles have gather-

scatter data transfer and mask registers, and GPU processors have even more registers than do

vector processors. In addition, both vector architectures and GPUs do not abstract hardware

complexity, which demands high programming expertise to generate efficient code, affecting

software productivity. Unlike most vector architectures, GPUs also rely on multithreading

within a single multithread SIMD processor to hide memory latency. Besides, the GPU has

many simple functional units and no scalar processor, opposed to a few deeply pipelined units

like a vector processor.

2.3 CODE VECTORIZATION

In 1970 decade (RUSSEL, 1977), the first computer to successfully implement a vector

processor emerged. Since then, with the multimedia applications arise, vector processors and

SIMD engines are present in most computers and embedded devices. Such processors have their

potential exploited by Code Vectorization techniques. Code Vectorization is an optimization

technique that exploits DLP through the use of SIMD instructions. Most DLP opportunities are

present in loops which operate the same instruction over multiple data. Depending the number

of data elements that can be merged into one vector operation, an application can reach high

acceleration. To enable code vectorization, SIMD engines adopt three common methods: hand-

code programming vectorization, auto-vectorization through compiler and Just-in-time (JIT)

Compiler vectorization.

24

2.3.1 Hand-code Programming Vectorization

An efficient code vectorization is challenging. Hand-code programming, where the pro-

grammer directly indicates which SIMD instruction to use, demands huge effort from the pro-

grammer since most vectorization libraries are not portable when targeting different Instruction

Set Architectures (ISAs).

Figure 5 presents a Matrix Sum hand-code algorithm adapted to the NEON, SSE and

Altivec extensions. As it can be seen, such vectorization libraries do not abstract hardware

complexity, requiring a high programming expertise. In the NEON case, the 64-bit vector

registers can placed two float elements while the 128-bit vector registers of the Altivec and SSE

approaches can vectorize four float elements in parallel. Besides, each approach has its own

functions to enable the use of each SIMD Engine. To solve such complexity, auto-vectorization

techniques have been added to compilers in order to perform Code Vectorization automatically.

Figure 5 – Hand-code Programming Overview

2.3.2 Auto-vectorization Compiler

The Auto-vectorization Compiler is responsible for vectorizing loops during compile

time. Figure 6 illustrates how the Auto-vectorization Compiler works. As it can be seen, a

non-adapted code is compiled with an auto-vectorization compiler. The compilation results in

25

an assembly code containing SIMD instructions (vectorizable instructions). However, although

improving software productivity, such method may reduce performance when compared with

the hand-code programming approach.

Figure 6 – Auto-vectorization Compiler Overview

(MITRA et. al, 2013) compares the performance of the auto-vectorization compiler

over the hand-code programming approach in several applications. Such comparison considers

10 different SoC scenarios. The results present speed-ups of 1.05 to 13.88 and 1.34 to 5.54

for using hand optimized SIMD intrinsic functions rather than gcc compiler auto-vectorization

for ARM and Intel platforms respectively. There are several factors which limits the compiler

auto-vectorization performance (MELNIK, 2010) (POHL et. al, 2018) (SHIN, 2007).

Some factors that inhibit the NEON Compiler auto-vectorization are (ARM Limited,

2017):

• Data dependencies between different iterations of a loop - Where there is a possibility of

the use and storage of arrays overlapping on different iterations of a loop, there is a data

dependency problem. A loop cannot be safely vectorized if the vector order of operations

can change the results, so the compiler leaves the loop in its original form or only partially

vectorizes the loop;

• Indirect addressing - Indirect addressing is not vectorizable because the NEON unit can

only deal with vectors stored consecutively in memory;

• if and switch statements - Extensive and complex use of if and switch statements can

affect the efficiency of automatic vectorization;

26

• Iteration count not fixed at start of loop - For automatic vectorization, it is generally best

to write simple loops with iterations that are fixed at the start of the loop. If a loop does

not have a fixed iteration count, automatic addressing is not possible;

• Memory hierarchy - Performing relatively few arithmetic operations on large data sets

retrieved from main memory is limited by the memory bandwidth of the system. Most

processors are relatively unbalanced between memory bandwidth and processor capacity.

This can adversely affect the automatic vectorization process;

• Calls to non-inline functions - Calls to non-inline functions from within a loop inhibits

vectorization. If such functions are to be considered for vectorization, they must be mar-

ked with the __inline or __forceinline keywords;

• Inconsistent length of members within a structure - If members of a structure are not all

the same length, the compiler does not attempt to use vector loads;

• Pointer aliasing - Indirect addressing is not vectorizable because the NEON unit can only

deal with vectors stored consecutively in memory;

• Source code without loops - Automatic vectorization involves loop analysis. Without

loops, automatic vectorization cannot apply;

• Target processor - The target processor (–cpu) must have NEON capability if NEON

instructions are to be generated. For example, Cortex-A7, Cortex-A8, Cortex-A9, or

Cortex-A15.

2.3.3 Just-in-time Vectorization Compilers

Another issue that limits Hand-code Programming and Automatic-vectorization Compi-

ler approaches lies in the fact that both of them operate statically, which means that loops with

dynamic behavior or complex control flow are not efficiently vectorized. In some ISAs, such

loops can not be vectorized statically.

To solve such problem, Just-in-time (JIT) compilers have emerged (NUZMAN et al.,

2011) (NAKAMURA; SATOSHI; SHUICHI; 2011). Unlike a traditional compiler that produ-

ces an object file statically, a Just-in-time compiler operates over a code dynamically, which can

provide portability among different ISAs. Figure 7 illustrates the differences between a Just-in-

time and a Traditional Compiler operation flow.

27

Figure 7 – Just-in-time and Traditional Compiler Comparison

As can be seen, the traditional compiler vectorizes an application statically and generates

a vectorized binary to a specific ISA. The JIT compiler operates over a JIT compiled code dyna-

mically, enabling vectorized binary generation to several ISAs. However, an application takes

longer time to be compiled. Besides, to detect vectorization possibilities during runtime, a JIT

compiler concurrently runs a monitor task, which cause processing demands. Such processing

needs may be unacceptable in embedded devices.

2.3.4 Critical Analysis

Table 2 compares the three cited code vectorization methods: Auto-Vectorization Com-

piler, Hand-Code Programming and Just-in-time Compiler. As can be seen, unlike the Just-in-

time approach, which operates dynamically, the Auto-Vectorization Compiler and the Hand-

Code Programming methods operate statically, which inhibits efficient vectorization of dyna-

mic vectorizable regions. Besides, the Just-in-time technique operates over a portable code,

which means that no code recompilation is needed. The Auto-Vectorization Compiler and the

Hand-Code Programming methods need code recompilation since they operate over specific

ISA binary, which breaks binary compatibility.

While the Hand-Code programming requires huge efforts from the programmer to ex-

tract an efficient code vectorization, the Auto-Vectorization compiler focuses on increasing soft-

28

ware productivity by automatically extracting vectorizable regions. In such aspect, the Just-in-

time approach can increase both software productivity and performance (by its dynamic nature).

However, the code generation latency is greater than a specific ISA binary. Besides, the Just-in-

time vectorization requires a monitor task, which requires processing demands from the system.

Table 2 – Vectorization Techniques Comparison

Technique Code
Recompilation

Software
Productivity Vectorization Performance

Penalty
Hand-Code

Programming
Yes Affected Static No

Auto-Vectorization
Compiler

Yes Not Affected Static No

Just-in-time
Compiler

No Not Affected Dynamic Monitor Task

2.4 CROSS-ITERATION DEPENDENCIES

A cross-iteration dependency is found in loops that require data generated from other ite-

rations within the same loop. Such property is the main factor that inhibits a loop vectorization,

limiting the DLP exploitation in a code. Figure 8 compares a loop containing no cross-iteration

dependency (8.a) and a loop with cross-iteration dependency (8.b). As can be seen, the loop

presentend in 8.a does not need any data generated in previous loop iterations, which means

that v[0] can be executed independently of v[1] and so on. In that case, the loop vectorization

is possible. However, the loop presented in 8.b depends on data generated in previous loop ite-

rations, which means that v[i] can only be executed when v[i-1] result is ready. Consequently

the loop 8.b can not be vectorized.

Figure 8 – Cross-iteration dependency example

29

3 RELATED WORKS

The SIMD vectorization is widely used in several emerging market platforms, such as

the Intel SSE, IBM AltiVec, and ARM NEON architectures. In the academic field, several

researches are exploiting Data Level Parallelism (DLP) to achieve performance improvements

and energy savings.

3.1 AUTO-VECTORIZATION COMPILER AND VECTOR LIBRARY APPROACHES

(SUI et al., 2016) improves the LLVM (Low Level Virtual Machine) compiler [3] in-

frastructure to explore vectorization opportunities by developing a more precise Loop-Oriented

Pointer Analysis (LPA) for Automatic SIMD Vectorization. This approach is able to detect

more basic blocks achieving performance improvements from 2.95% to 7.23%. However, such

an approach uses an auto-vectorization technique, which means that loops containing dynamic

behavior are not vectorized.

(ZHOU; XUE 2016) presents the Loop-Mix compiler, also implemented in the LLVM

compiler. Loop-Mix vectorizes loops regarding the data reorganization overhead caused between

mixed SIMD parallelism (inter-loops and intra-loops). The technique outperforms the Loop-

ILV [5] by 36%. Since the work is also implemented in the LLVM compiler, the binary com-

patibility is compromised, code recompilation is required and dynamic behavior loops are not

covered.

(NUZMAN; IRA; AYAL 2006) evaluates and applies a compiler outer loop vectorization

technique focusing on properties of modern SIMD architectures (Loop-ILV). It shows that even

though current optimizing compilers do not apply outer loop vectorization, they can provide

significant performance improvements over innermost loop vectorization. Loop-ILV achieves

performance improvements of 3.13 and 2.77 when coupled to a Cell BE SPU and PowerPC970,

respectively. Similar to our proposal, the authors focused on vectorizing both innermost and

outer loops but it relies on compiler support.

Being aware that most research focuses on vectorizing loops, (TIAN et al., 2012) pre-

sented a set of new C/C++ high-level extensions for SIMD programming capable of automatic

translating both functions and loops. Significant speedups (from 3.07x to 4.69x) are achie-

ved when these optimizations are applied. Similar to aforementioned related works, it relies

30

on specific compiler and library to achieve performance improvements, which breaks binary

compatibility and affects SW productivity.

(BRAMAS, 2017) proposes Inastemp, a lightweight opensource C++ library that pro-

vides portable SIMD-Vectorization. This approach has the same efficiency as computing for

a specific architecture, providing vector instructions that can be used to develop hardware-

independent computational kernels. These computational kernels are portable across compilers.

Inastemp covers SSE, AVX, AVX512 and ALTIVEC/VMX instructions. While such technique

improves binary portability, it compromises software productivity since code must be adapted

with the suggested library and requires code recompilation. In addition, no performance gains

are shown by using such technique.

ARM NEON (ARM Limited, 2008) is introduced in the ARMv6 architecture. The

NEON auto-vectorization compiler generates vectorizable code by instantiating SIMD instruc-

tions. Despite the advantages of autovectorization, the static code exploitation limits the per-

formance gains since it is difficult to identify vectorizable regions of conditional statements,

function calls or even loops that contain codes between inner-loops and outer-loops. To over-

come such issues, another strategy offered by the ARM to explore the NEON engine is the use

of ARM NEON library, which transfer the vectorization task responsibility to the SW developer

which affects SW productivity.

3.2 ISA/HARDWARE MODIFICATION APPROACHES

Liquid SIMD (CLARK et al., 2007) separates the SIMD accelerator implementation

from the ISA, providing an abstraction to overcome ISA migration problems. By the use of a

special compiler the Liquid SIMD translates SIMD instructions into a virtualized representation

using the processor’s baseline instruction set. The compiler isolates portions of the application

into dataflows and converts them into architecture-specific SIMD instructions. However, the

work needs compiler changes and code recompilation, which brakes binary compatibility.

(BAGHSORKHI; NALINI; YOUFENG; 2016) proposes FlexVec architecture that com-

bines a novel partial vector code generation technique with new vector instructions to dynami-

cally adjust vector length for loop statements affected by runtime cross-iteration dependencies.

FlexVec vectorization coupled to the Intel AVX-512 ISA shows a Geomean performance im-

provement from 9% to 11%. Although it is able to perform optimizations over loops with

cross-iteration dependencies, the method breaks binary compatibility, since it is necessary a

31

specific ISA adjustment and also relies on a particular compiler and library development.

(CHANG; WONYONG 2008), employed a unique memory access hardware, solving

the non-aligned and irregular data memory access operations to improve the performance of a

SIMD processor based on ARMv4 architecture. In addition, it develops an auto-vectorization

compiler, which utilizes the proposed hardware. By applying such technique, the number

of vectorized loops increases 50%, which provides 77% of performance improvement in the

MPEG2 encoder execution.

Besides the research above, many studies are also focused on applying reconfigurable

architectures, since besides exploiting ILP, they are also capable of exploring DLP. A reconfi-

gurable architecture, named as Samsung reconfigurable processor (SRP), is developed for di-

gital signal processing (KIM et al., 2012). The SRP architecture is designed to handle mobile

multimedia applications efficiently. It uses a CGRA to vectorize innermost loops by using a

conventional C/C++ programming model to annotate the code. Despite the huge chip area re-

quired to the CGRA, the SRP relies on compiler, library and ISA modifications. In addition, it

requires a design-time step to create CGRA configurations for each application which reduces,

even more, the binary compatibility and SW productivity.

3.3 JUST-IN-TIME APPROACHES

Vapor SIMD (NUZMAN et al., 2011) provides a just-in-time (JIT) compilation solution

for targeting different SIMD architectures. The Vector SIMD can combine static and dynamic

infrastructure for vectorization, focusing on the ability to revert efficiently and seamlessly to ge-

nerate scalar instructions when the JIT compiler or target platform do not support SIMD capabi-

lities and vector instructions when SIMD instructions are supported. Selftrans (NAKAMURA;

SATOSHI; SHUICHI; 2011) is capable of vectorizing automatically the x86 binary machine

code without requiring its source code, translating it into a binary code that uses SIMD units

dynamically.

Both solutions solve the problem of software productivity. However, JIT approaches

require a separate translation process to share the CPU (Monitor Task), which may be unaccep-

table in embedded systems.

32

Table 3 – Related Works and Proposed Technique Characteristics

Work Code
Recompilation

Library
Development

Support

ISA
Modification

SW
Productivity

Binary
Compatibility

Dynamic
Behavior

Loops
Support

JIT
Compiler

LPA Yes No No Not Affected No No No
Loop-Mix Yes No No Not Affected No No No
Loop-ILV Yes No No Not Affected No No No

Tian et al., 2012 Yes Yes No Affected No No No
Inastemp Yes Yes No Affected No No No

ARM NEON Yes Yes No Affected No No No
Liquid SIMD Yes No No Not Affected No Yes No

FlexVec Yes Yes Yes Affected No No No
Chang;

Wonyong 2008
Yes No Yes Not Affected No No No

SRP Yes Yes Yes Affected No No No
Vapor SIMD No No No Not Affected Yes Yes Yes

Selftrans No No No Not Affected Yes Yes Yes
DSA No No No Not Affected Yes Yes No

Table 3 compares all the aforementioned works with the proposed approach. As it can

be seen, binary and software compatibility are not prioritized in most designs since they em-

ploy ISA modification or specific libraries. JIT compiler approaches, even prioritizing software

compatibility and bringing dynamic SIMD exploitation, result in processing demands from the

CPU, since they need a separate process to dynamically translate code regions.

Our work proposes a transparent Dynamic SIMD Assembler that is capable of building

SIMD instructions at runtime. The proposed approach coupled to the ARM NEON engine

provides:

• higher performance than ARM auto-vectorization method with binary compatibility since

is not necessary to recompile the source code;

• SW productivity by avoiding the use of the ARM library in the code development lifecycle

to take advantage of the NEON engine processing capabilities;

• no system overhead during DSA analysis since the DSA operates in parallel with the

ARM processor;

• flexible dynamic vectorization techniques that can be applied to any ISA.

33

4 DYNAMIC SIMD ASSEMBLER

4.1 SYSTEM OVERVIEW

Figure 9 shows the overview of the Dynamic SIMD Assembler (DSA). The DSA is cou-

pled to the O3CPU processor (more details in section 4.9), which uses the ARMv7-A Instruc-

tion Set Architecture (ISA). As can be seen, the DSA consists of a SIMD instruction detection

and generation logic and two caches (DSA Cache and Verification Cache). The DSA Cache is

responsible for storing information of previously verified vectorizable loops, such as the iden-

tification of such loops and SIMD statements generated for these loops. Verification Cache

(V-Cache) stores the data memory addresses accessed by the loops (more details in section 4.4).

Figure 9 – System Overview

Figure 10 presents an overview about the DSA functionality. In the first scenario (Sce-

nario 1 - DSA Loop Analysis), the DSA and the ARMv7-A processor operate in parallel. While

the ARM processor executes the incoming instructions, the DSA works in probing mode, lo-

oking for a vectorizable loop to build SIMD instructions. During this step, NEON Engine

remains disable. If the DSA detects a vectorizable loop, the second scenario is activated (Sce-

nario 2 - DSA Loop Execution). In this scenario, the DSA disables the ARMv7-A processor

and activates the NEON Data Engine to execute the built-in SIMD (Vectorized Instructions)

statements. It is important to notice that the DSA runs in parallel with the ARMv7-A processor,

which means that the critical path of the processor is not affected by the DSA.

34

Figure 10 – System Functionality Overview

4.2 DSA COVERAGE

Figure 11 presents examples of loops that can be vectorized by the DSA (Count Loop

(A), Dynamic Range Loop (B), Conditional Loop (C) and Function Loop (D)). As can be seen,

pseudocode (A) presents a simple vectorizable loop which both compiler and DSA are able

to vectorize. The pseudocode (B) has a Dynamic Range Loop, where the size of the loop is

determined by an input or computed at runtime. The pseudocode (C) has a loop that contains

conditional statements and its execution is also determined during runtime. The same analysis

can be performed on the pseudocode (D), which has a loop containing a function call that

depends on a variable computed during execution time. In this way, the pseudocodes (B), (C)

and (D) can not be efficiently vectorized by compiler auto-vectorization methods since they

depend on data computed during execution time. However, because the DSA (Dynamic SIMD

Assembler) analyzes the application code during runtime, it is able to efficiently vectorize all

the aforementioned situations.

35

Figure 11 – Loop Examples

The DSA covers the vectorization of: Count Loops, Function Loops, Outer and Inner

Loops, Dynamic Range Loops and Sentinel Loops. In addition, DSA also supports partial

vectorization of loops with cross-iteration dependencies (further discussed at section 4.4).

It is important to notice that every loop type coverage implemented in the DSA was

selected based on the following works: (NAKAMURA; SATOSHI; SHUICHI; 2011), (NUZ-

MAN; ROSEN; ZAKS; 2006), (TIAN et al., 2012), (NUZMAN; ZAKS 2008) and (WU; EI-

CHENBERGER; WANG; 2005). The partial vectorization implementation was based on the

work: (BAGHSORKHI; VASUDEVAN; WU; 2016). Other state-of-the-art loop type vectori-

zation such as complex control flow loops or loops operating over misaligned data (CHANG;

SUNG 2008) are considered in our future work.

4.3 DSA OVERVIEW

The DSA detection process is based on a State Machine (SM) composed of six sta-

tes: Loop Detection, Data Collection, Dependency Analysis, Store ID/Execution, Mapping and

Speculative Execution. Each of these stages is activated in different iterations of the loop.

36

Figure 12 – DSA Execution Flow

As can be seen in figure 12, the Loop Detection stage is activated at the end of the first

iteration. The Loop Detection stage is responsible for:

• detecting the presence of a loop;

• detecting the presence of conditional code and functions present within the loop;

• verifying multiple loop layers (inner-most loop and outer loops);

• accessing the DSA Cache and check if the current loop has been previously verified as

vectorizable.

The Data Collection stage is triggered during the second iteration of the loop. This stage

is responsible for:

• evaluating the loop range (number of iterations), vectorizable instructions and their ope-

rands;

• storing the addresses of data memory accesses in the Verification Cache;

• verifying the presence of a Sentinel Loop.

The Dependency Analysis stage is triggered in the third loop iteration. This stage is

responsible for:

• analyzing the cross-iteration dependency (dependencies between two or more iterations

in the same loop statement).

37

The Store ID/Execution stage is triggered in the fourth loop iteration. This stage is

responsible for:

• concluding the vectorization of Count loops, Functions loops, Outer/Inner loops, Dyna-

mic Range Loops and Partial Loops;

• generating and saving the loop identification (ID) in the DSA Cache;

• allowing the partial vectorization of loops with cross-iteration dependencies (when pos-

sible);

• building SIMD instructions and activating the execution of the ARM NEON engine;

• applying Leftover techniques if necessary (further discussed in section 4.8).

The Mapping stage is only activated for Conditional loops. This stage is responsible for:

• evaluating the loop range (number of iterations);

• mapping the executed conditional code statements;

• verifying cross-iteration dependencies between iterations within each condition;

• evaluating the vectorizable instructions and their operands within each condition;

• building SIMD instructions and activating the execution of ARM NEON Engine;

• applying Leftover techniques if necessary (further discussed in section 4.8).

The Speculative Execution stage is only enabled for Conditional Loops and Sentinel

Loops. This stage is responsible for:

• selecting data generated during SIMD execution at the end of the Loop (Conditional

Loops and Sentinel Loops);

• storing the current range for Sentinel Loops (Speculative Range);

• storing mapped conditions of the Conditional Loop for further executions in the DSA

Cache;

• generating and saving the loop identification (ID) in the DSA Cache.

38

4.4 CROSS-ITERATION DEPENDENCY VERIFICATION

At the memory access point of view, a cross-iteration dependency exists when the same

data memory address is accessed in different loop iteration.The DSA cross-iteration analysis

starts in the 2nd loop iteration, where the addresses of data memory accesses are saved in the

Verification Cache (VC). Even having the memory addresses in the VC and comparing them to

the memory addresses performed on every iteration, one cannot discard cross-iteration depen-

dencies in future iterations. Assuming such situation, we have implemented the Cross-iteration

Dependency Prediction.

The equations below describe the steps of the prediction process, where MRead[2] and

MRead[3] are the memory addresses accessed by a MemRead (load) instruction in the second

and third loop iterations, respectively. MRead[lastiteration] is the memory address accessed by a

load instruction in the last executed iteration (Equation 4.4), x is the interval between MRead[2]

and MRead[lastiteration] (Equation 4.1), MWrite[2] is the memory address accessed by a Mem-

Write (store) instruction in the second iteration (Equations 4.2 and 4.3), MRange is the memory

address range between the MRead[2] and MRead[3] (Equation 4.5), CID means Cross-Iteration

Dependency and NCID means No Cross-Iteration Dependency.

MRead[3] <= x <= MRead[lastIteration] (4.1)

MWrite[2] ∈ x− > CID (4.2)

MWrite[2] /∈ x− > NCID (4.3)

MRead[lastIteration] = MRead[2] + (MGap ∗ (lastIteration− 2)) (4.4)

MGap = |MRead[3] −MRead[2]| (4.5)

Considering the equations above, if the MWrite[2] is within the memory address range of

MRead[3] and MRead[lastiteration] (Equation 4.2), the loop would have a cross-iteration dependency

since the load instruction of a future loop iteration could perform a memory access in the same

memory address of the store instruction executed in the second loop iteration. The memory

address of the load instruction executed in the last iteration is predicted based on the sum of

the MRead[2] and the equation (MGap ∗ (lastIteration − 2)) (Equation 4.4). Thus, in case of

MWrite[2] is out of the memory address interval of MRead[3] and MRead[lastiteration] (Equation 4.3),

one can ensure that the loop has no cross-iteration dependency (NCID). Figure 13 illustrates an

example of how Cross-iteration Dependency Prediction (CIDP) works.

39

Figure 13 – Cross-iteration Dependency Prediction

In such example, the DSA detects that there is no cross-iteration dependency between

2nd and 3rd iterations. Thus, by the end of the 3rd loop iteration, the CIDP is activated by

applying Equation 4.5 (MGap=|0x104 − 0x100| = 0x004). Using Equation 4.4, one can

calculate the memory address of the load instruction of the last iteration MRead[lastiteration] =

0x100+0x020 = 0x120. By applying Equations 4.1 and 4.2, the CIDP detects that MWrite[2] =

0x108 is within the interval (MRead[3] <= x <= MRead[lastiteration])=0x100 <= x <= 0x120),

which produces a cross-iteration dependency.

4.5 PARTIAL VECTORIZATION

Although having cross-iteration dependencies, some loops can be partially vectorized

avoiding the vectorization of iterations that produce dependencies. Figure 14 shows how the

partial vectorization works.

Figure 14 – Partial Vectorization Analysis

40

As can be seen, the CIDP detects dependencies between the 2nd and 11th iterations due

to the data memory address 0x124. However, there is an interval between the 2nd to the 10th

iteration that can be vectorized. Thus, in this example, the DSA executes the Loop Analysis

from the 1st to the 4th iteration, allowing the vectorization of the 4th to the 10th iteration. Such

vectorization will generate the necessary data for the vectorization of operations from the 11th

to the 19th iteration. The same process is repeated until the end of the loop execution.

4.6 DSA - ANALYSIS AND EXECUTION

4.6.1 Count Loops

Figure 15 exemplifies the execution of the DSA considering a Count Loop. As can be

seen, the Loop Detection Stage (A) detects the loop by the end of the execution of the first ite-

ration. In the second iteration, the Data Collection stage (B) identifies the loop range (400) and

the value of the increment/decrement (i = i + 1). In addition, such stage stores the addresses of

the data memory accesses (Mem[a[i]], Mem[b[i]] and Mem[v[i]]) in the Verification Cache. In

the third iteration the Dependency Analysis Stage (C) analyses dependencies between iterations

(more detailed in 4.4). For the current example, the DSA verifies that there is no cross-iteration

dependency and triggers the Store ID/Execution Stage. Such stage builds SIMD instructions to

execute the remaining iterations in the ARM NEON Engine. The DSA needs four parameters to

generate SIMD instructions: the data type, the loop range, the operation and the ARM NEON

execution support. In such example, the parameters are: float (F.32), 400, add, 128-bit wide,

respectively. Considering these parameters, for the current example, the DSA generates an ins-

truction equivalent to the vaddq_f32 instruction of the NEON architecture (further explained in

Generating SIMD Instructions). Since the corresponding ARM NEON engine can operate 128

bits in parallel and the float type is a 32-bit wide data, the DSA divides the loop range by the

factor four, running the vaddq_f32 one hundred times, instead of executing a non-vectorizable

add operation four hundred times.

41

Figure 15 – Count Loop Example

4.6.2 Function Loops

Figure 16 shows how the loops containing functions are vectorized. During the Loop

Detection Stage, the DSA keeps detecting any jumps that might occur. The DSA stores the

Jump and Return addresses in an array periodically. If there is a Branch instruction that causes

an instruction address regression, the DSA starts the Data Collection Stage. Before starting the

Data Collection Stage, the DSA verifies if the function Jump and Return addresses (Jump: 4

and Return: 5) are within the Loop Range (2 → 7). If that is the case, the loop is classified as

a Function Loop and instructions out of the loop range (11 → 12) are also verified during the

remaining stages.

Figure 16 – Function Loop Example

42

4.6.3 Inner/Outer Loops

Figure 17 exemplifies the Outer Loop vectorization in the DSA. As can be seen, when

the 1st iteration of the Outer Loop is executed, only the Inner Loop is detected by the Loop

Detection Stage (A.1) since the Outer-Loop did not suffered instruction address regression. In

that case, the Inner-Loop is tagged as vectorizable and the operation is vectorized to 36 elements

(B.1, C.1, D.1). At the second time the Outer-Loop is executed, the DSA detects the presence

of this loop and verifies if there are any vectorizable loop within this loop or any instructions

between both loops. However, since the DSA still does not know the Outer Loop size, it cannot

be vectorized in this stage. Then, the Inner-Loop is detected by the DSA. Since the DSA

previously classified such loop as vectorizable, the DSA Analysis is not necessary and all the 40

elements processed are vectorized (D.1). By the end of the 2nd Outer Loop iteration the DSA

knows it will be operating for more 8 times and there are no instructions operating over a data

vector between both loops (B.2). Since there are no vectorizable instructions between the loops,

by now, the DSA considers both inner and outer loop as only one, considering the loop size as

400. Since 320 elements still need to be vectorized, the DSA starts their vectorization in the 3rd

iteration of the Outer-Loop (D.2).

Figure 17 – Outer Loop Example

43

In case there are instructions between Inner and Outer Loop, we have four scenarios:

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if the inner-loop instruction depends on a data generated by an

outer-loop instruction, the Outer Loop is vectorized i times first and then the inner loop

instruction is vectorized i ∗ j times;

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if the outer loop instruction depends on a data generated by an inner

loop instruction, the Inner Loop is vectorized i ∗ j times first and then the Outer Loop

instruction is vectorized i times;

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if both loops have data dependencies between their instructions, the

outer loop is executed sequentially while the Inner Loop instruction is vectorized j times

every time the Outer Loop increases its iterations;

• considering a matrix i x j, where the i represents the Outer Loop size and the j represents

the Inner Loop size, if both loops have no data dependencies between their instructions,

the Outer Loop is executed i times while the Inner Loop instruction is vectorized i ∗ j

with no restriction in the execution order.

4.6.4 Conditional Loops

Some steps have been added on the DSA state machine to support loops with conditional

code. As can be seen in figure 18, during the DSA Analysis Mode (Probing Mode), we added the

stages of Mapping, which contains a Conditional Code Analysis sub-stage, and the Speculative

stage. The mapping stage (for the Conditional Loop approach) is responsible for:

• evaluating the loop range within each condition;

• evaluating the vectorizable instructions and their operands within each condition;

• mapping and verifying if every conditional statement present in loop can be vectorized;

• generating and executing SIMD instructions to the already verified conditions;

• applying leftover techniques if necessary (further discussed in section 4.8).

44

The Speculative Stage (for the Conditional Loop approach) is responsible for:

• selecting data generated during the Mapping Stage at the end of the loop execution;

• storing the Conditional Loop mapping conditions to further executions.

In addition, the Loop Detection Stage has been extended. At the end of the first iteration,

it is possible to check if there is any conditional code present in the loop through the Conditional

Code Detection sub-stage.

Figure 18 – DSA Conditional Loop State Machine

As can be seen, the substage of Conditional Code Detection occurs during the Loop

Detection stage. During this stage, besides checking for jumps that can characterize a loop,

the stage is constantly analyzing jumps that may be within the range of the loop. If a loop is

found and there is a jump within the loop range, the Conditional Code Analysis phase, which

occurs during the Mapping stage, is activated. In this stage, the DSA checks if the currently

accessed condition is vectorizable. The condition is then marked as vectorizable or not. If the

DSA detects a dependency between iterations in this condition, it classifies this loop in the DSA

Cache as non-vectorizable.

As conditions are checked during loop execution, the DSA also counts and classifies

the number of conditions using their instruction addresses (discussed later in section 4.6.4.1).

While there are still pending conditions, the DSA continues looking for these and verifying if

they are vectorizable. If such a condition is vectorizable, the DSA generates instructions and

executes them. In this manner, this step is repeated until all conditions are checked. If no

conditions are pending and all conditions are vectorizable, the DSA stores the loop in the DSA

45

Cache as vectorizable. Since there is no way to predict which conditional portion is executed

in further iterations, the DSA performs a Speculative Stage, which will be discussed in section

4.6.4.2.

4.6.4.1 Conditional Loops Vectorization

Figure 19 shows an example of a Conditional Loop (2 → 8 instruction addresses) con-

taining two possible conditions (A and B). In addition, the loop execution timeline is shown at

the bottom of the figure. During the first iteration (Loop Detection Stage), the presence of a

Conditional Loop is detected. At the 2nd iteration the Mapping Stage is already initialized with

some extra information collections (e.g.: loop size, start and end loop instruction addresses).

By the 2nd iteration the Conditional Code Analysis step is already activated. As can be seen in

the timeline, an instruction addressing gap is detected (from 5 → 6 (Condition A)) during the

execution of the 2nd iteration since Condition A is executed. In this way, the DSA starts the

verification to check whether the code contained in Condition A is vectorizable. Since it is the

first time the Condition A is performed, the Mapping Stage collects the data memory addresses

accessed by the condition during the 2nd iteration but still cannot predict whether the condition

is vectorizable or not.

During the 3rd iteration, Condition B is accessed. Since it is the first time the Condi-

tion B is performed, the Mapping Stage collects the data memory addresses accessed by the

condition during the 3rd iteration but still can not predict if the condition is vectorizable. At

the 4th iteration, Condition B is accessed another time and the Cross-iteration Dependency Pre-

diction (CIDP) is able to classify such iteration as vectorizable by comparing the data memory

addresses accessed during the 3rd and 4th iterations.

In the course of the 5th iteration, Condition A is accessed again. In this way, the Cross-

iteration Dependency Prediction (CIDP) is able to classify such iteration as vectorizable by

comparing the data memory addresses accessed during the 2nd and 5th iterations. From now on,

since all conditions were classified as vectorizable, there is no need to repeat the vectorization

analysis for Conditions A and B. Hence, during the 5th iteration, the DSA detects that there are

no pending conditions to be analyzed since all instruction memory addresses within the loop

have been accessed (2→ 8).

46

Figure 19 – Conditional Loop Vectorization Analysis

To verify if all conditions have been parsed, an address mapping becomes necessary.

Figure 20 illustrates the mapping considering the example shown in Figure 19 (previously).

During the 2nd iteration, condition A is performed, and the Cross-iteration Prediction Analysis

begin. The DSA indexes the condition through the address of its first instruction, this infor-

mation is stored in a temporary Vector Map. In this way, Condition A is indexed by address

3 (Condition A first instruction address (3 → 5)). During the 3rd iteration, the DSA starts the

Cross-iteration Prediction Analysis for Condition B. Hence, the Condition B is indexed in the

Vector Map by the address 5 (condition B first instruction address (5→ 6)). By the 4th and 5th

iterations both conditions are classified as vectorizable. Since all instructions in the instruction

addressing range (2→ 8) were executed and analyzed, in the 5th iteration the loop information

is stored in the DSA cache. Such information is required to vectorize the loop without the need

to repeat the vectorization analysis. The information is composed of:

• Loop ID: to identify the vectorizable regions in the loop during program execution;

• Loop Size: to generate SIMD instruction during execution;

• Conditions ID: to make the speculative execution (further discussed in the sub-section

Conditional Loop SIMD Execution).

47

Figure 20 – Conditional Code Loop Analysis Mapping and Data Storage

4.6.4.2 Conditional Loop SIMD Execution

Figure 21 shows a SIMD execution considering the example shown in figure 19. Since

condition B is verified as vectorizable during the 4th iteration, its instructions are vectorized

considering the range (Vectorize B - 4 → 20), generating results for 16 iterations (B - RE-

SULTS). In parallel, its execution is mapped to the Vector Map (4th Iteration - B) to later select

the results produced by each condition (speculative execution). In the 5th iteration, condition A

is executed. Since it is the first time that statement A is performed during SIMD execution, its

instructions are vectorized considering the range of the current iteration to the end of the loop

(Vectorize A - 5→ 20 iterations), generating results for the next 15 iterations (A-RESULTS). In

parallel, its execution is mapped to a Vector Map (5th Iteration - A). At the 6th iteration, since

Condition A has already been vectorized in the 5th iteration, its instructions are not executed

(Idle), and only the mapping is performed (6th Iteration - A). During the 7th iteration, Condition

B is only mapped in Vector Map (7th Iteration - B) since it was executed during the 4th itera-

tion. During the last iteration (20th iteration) condition A is performed again and, since it has

already been executed, it is only mapped (Idle) (20th Iteration - A). At the end of the loop, the

DSA analyzes the Vector Map to select only the mapped results, while the others are discarded

(Speculative Stage).

48

Figure 21 – Conditional Code Loop Execution Mapping and Data Storage

4.6.4.3 Conditional Loop DSA Limitations

As explained before, the Conditional Loop SIMD Execution is based on a Speculative

Execution. The idea is that the DSA generates vector operation results in each condition without

knowing what results will be harnessed. During the Mapping Stage, every accessed condition

is mapped in a Vector Map. Such mapping is responsible for selecting the previously generated

results. However, the operation results must be kept in Vector Registers to be further selected.

The DSA is composed of 4 extra registers (called Array Maps), each one is 128-bit wide. Such

registers are reserved to conditional loop vectorizations.

Figure 22 presents the Conditional Code Loop Array Map functionality. As can be seen,

the Conditional Loop is composed of 4 conditional statements, each one with one vectorizable

instruction. Supposing all operands are 32-bit wide and we are operating over 128-bit wide

vector registers, we can vectorize 4 operands in parallel. Since the Loop Size is 8, the DSA

must execute its Mapping and Speculative logic twice. Considering that the loop was previ-

ously classified as vectorizable by the DSA Loop Analysis, during the 1st iteration, the loop

executes the condition A (Mapping Stage). In this way, the DSA vectorizes the condition A

from iterations (0 → 3). During the 2nd iteration, the loop vectorizes the condition B from

49

iterations (0 → 3) using the Overlapping leftover method (further discussed at section 4.8.2).

At the 3rd iteration the condition D is executed (also applying the Overlapping method). In the

4th iteration the condition C is executed using the Single Elements leftover method (discussed

at section 4.8.1). Since we can only vectorize 4 elements in parallel, the Speculative Execution

Stage is triggered and the DSA selects the results accessed during the Mapping Stage (Vector

Map). For the next four elements (4→ 7), the same process occurs. During the 5th iteration the

condition B is vectorized from iterations (4 → 7). At the 6th and 7th iterations the condition B

is accessed again. Since it was previously vectorized, the DSA only maps the accesses to the

Vector Map. At the 8th iteration the condition D is accessed and vectorized using the Single

Elements leftover method. Since the DSA went through the iterations (4→ 7), the Speculative

Stage is triggered. In this way, the DSA selects the results accessed during the Mapping Stage

(Vector Map).

Figure 22 – Conditional Code Loop Array Map Logic

It is important to notice that the Conditional Loop vectorization is limited to the number

of Array Maps available. If the Conditional Loop presents more instructions to be vectorized

than Array Maps available, the DSA looks for ARM NEON Vector Registers available. If there

50

are no Vector Registers available, the Conditional Loop is classified as non-vectorizable.

4.6.5 Sentinel Loops Vectorization

Since Sentinel Loops have their size or stop condition calculated during loop execution,

it is impossible for the DSA to know the number of times this loop will execute. To enable the

execution of Sentinel Loops the DSA:

• speculates the number of times the loop will execute based on the last loop execution;

• verifies if there is cross-iteration dependency between iterations assuming a speculative

loop size on every loop execution;

• partial vectorization is applied if the execution continues after determined speculative

final loop iteration.

Figure 23 shows the analysis and execution of a sentinel loop. The first three iterations

are responsible for checking whether there is a dependency between iterations in the loop. Since

a loop size is required to predict if there is a cross-iteration dependency between iterations and

there is no defined size for the Sentinel Loop, the DSA assumes a Speculative Range. In this

way, the DSA chooses a loop size that maximizes the use of vector units. In this example, the

DSA assumes a vector architecture of 128-bit Wide (ARM NEON 128-bit Wide) . Since the size

of the operands is 8 bits (8 bits operands), the DSA selects a speculative range of 16 (Specu-

lative Range 16) in order to use all vector units. In this way, in the 3rd iteration (Dependency

Analysis Stage), the DSA predicts that there is no dependency between iterations considering

the size 16 (Cross-iteration Prediction) and the loop can be vectorized. In the 1st execution of

the loop (Execution Stage - 4th iteration), the DSA executes the loop operation considering a

speculative size (Vectorize - 4 → 20). From the 5th iteration to the 10th, the already vectori-

zed operations are not executed (Idle) and the only instructions that are processed in the loop

are those responsible for the stopping condition calculation. When the stop condition is rea-

ched (10th iteration), the results from iterations (4 → 10) are kept, while the operation results

(11→ 20) are discarded. Since the current loop execution has 10 iterations, on the next execu-

tion the speculative range value is 16, since is the minimum operation range to be allocated at

the vector units considering an operand width of 8 bits. At the second time this loop is detected

by the DSA, in the DSA Loop Analysis Stage, it predicts that there is no cross-iteration depen-

dency. At the 4th iteration (Execution Stage), the DSA executes the loop operation considering

51

the speculative loop range (Vectorize - 4 → 20). From the 5th to the 16th iteration, the already

vectorized operations are not executed. This time the loop executes until the 18th iteration (Real

Range - 18). Despite the DSA computed results from 4th to the 20th iteration, only the results

from 4th to 16th are considered, since the cross-iteration prediction was based on the range 16.

The operations of the 17th and 18th iterations are sequentially executed by the ARM Processor.

There are three Sentinel Loop predicting possibilities:

• if the loop executes a smaller number of iterations than previously performed, only the

results of the current range are saved and the previous loop range is replaced by the current

range;

• if the loop executes a greater number of times, the remaining iterations are performed

by the general purpose processor and the previous loop range is replaced by the current

range;

• if the loop executes the expected number of iterations, the speculative range is retained.

52

Figure 23 – Sentinel Loop Cross-iteration Analysis and Execution

4.6.6 Dynamic Range Loop Vectorization

We consider as general Dynamic Range Loops those who have their size calculated be-

fore the loop execution. Considering that, a Dynamic Range Loop can be analyzed maintaining

the original DSA State Machine. However, it must be analyzed every time it repeats, since the

Dependency Analysis Stage needs to verify if the vectorization is feasible based on loop range.

As it can be seen in figure 24, at the 1st time the loop executes, the Dependency Analysis

Stage cannot detect any cross-iteration dependency (refer to the section 4.4). Thus, considering

the loop range 5, the DSA Loop Analysis predicts the loop as vectorizable. However, at the 2nd

time the loop executes, a cross-iteration dependency is detected at the 10th iteration (MemRead

53

Access = 0x120 = MemWrite Access). Such an example shows that different loop sizes imply

in a different DSA Loop Analysis (such problem is solved by the Partial Vectorization - 2.5).

Figure 24 – Dynamic Range Loop Cross-iteration Analysis

4.7 GENERATING SIMD INSTRUCTIONS

The NEON engine execution consists of three steps: loading data to vector registers,

operating over data with NEON functional units and storing the data to memory or moving data

to scalar registers. Thus, in order to generate NEON instructions, the DSA should detect: the

Loop Size, the Vector Data, Vectorizable Instructions and Operand Types.

Figure 25 demonstrates an example of how the DSA collects data from vectorizable

regions and generates SIMD instructions. As can be seen, the present assembly is generated

from a Vector Sum. To detect Index and Stop Condition, the DSA looks for the instructions

that are responsible for incrementing the index. In such example, the respective instructions are

the ldr and str. By knowing such instructions, the DSA is able to know the registers acting as

indexes (in this case r5, r10 and r2). Along with it, the DSA detects instructions that indicate

the loop stop condition. In such example, the respective instruction is the cmp instruction which

compares the constant value present in register r4 and the memory address (index) present in

r5.

54

Figure 25 – SIMD Instruction Generation Steps

To evaluate which Registers contain Data and which Registers contain Data Addresses

(Data Registers and Data Address Registers), the DSA evaluates every MemRead and Mem-

Write instruction types. In such example, r3 and r1 are used as target registers in the ldr and str

instructions, which means that they are classified as Registers containing Data. Analyzing the

Rn register in the MemRead and MemWrite, the r5, r10 and r2 can be classified as address regis-

ters. In such case, the index and address registers are the same, since the ldr and str instructions

are able to do memory operations and increment.

To detect which data type is being processed, the DSA verifies: the MemRead instruction

(e.g.: LDRB for Byte and LDR for Word), the instruction bytecode and its destiny register type

(float or int instructions). In such example, we consider 32 bits int data.

Increments, constants and operations must be detected by the DSA. To detect incre-

ments, the DSA evaluates the instructions that operate over registers containing Data Addresses.

As can be seen, the only constant present in the loop is the loop increment (#4). Considering

the operations detection, ALU type instructions that operate over Registers Containing Data,

are classified as operations by the DSA (add r3, r3, r1).

Being aware about the increment (#4), the initial index in r5 and the instruction that

55

defines the stop condition, the DSA is able to determine the number of iterations (Size) (Num-

ber of SIMD Iterations). Depending the number of iterations, the DSA may assume different

instruction generations based on the leftover techniques (further discussed in section 4.8).

With the collected data, the DSA must operate over data sizes of 32 bits. Considering

the ARM NEON 128-bit wide, the DSA can execute 4 data per vector instruction (Dpv =

NEONw/Datas = 128/32 = 4, where Dpv is the amount of data per vector, NEONw is the

ARM NEON width and Datas is the operands data size). At the Store ID/Execution Stage (or

Speculative Stage), the DSA generates the SIMD instructions assuming the NEON execution

flow (Generating SIMD Instructions):

• the DSA generates the vector load instructions based on the load registers containing data

addresses (r5 and r10) and the operands data size (32 bits) (vld1.32 q8, [r5]! and vld1.32

q9, [r10]!);

• the DSA generates the SIMD operation based on the collected operations and the ope-

rands data size (32 bits) (vadd.i32 q9, q9, q8);

• the DSA generates a vector store instruction based on the store register containing data

address (r2) and the operands data size (32 bits) (vstr.32 q9, [r2]!);

• the DSA repeats the SIMD instruction generation 6 times (n = Lrange/Dvu = 24/4 = 6,

where n is the number of times the DSA must generate the SIMD instructions, Lrange re-

presents the loop range and Dvu is the amount of data which can be processed in parallel).

4.8 DEALING WITH LEFTOVERS

The NEON Engine execution generally implies on performing operations on data vec-

tors of 2, 4, 8, 16 or 32 elements. However, it is also possible to find arrays that are not multiple

of such values. In this way, the remaining elements must be processed individually. Figure 26

shows an example where there are remaining elements to be processed. As can be seen, there

are 21 elements to be processed. Assuming that, in this example, one can perform up to 8 data

per operation, the first two operations will be executed normally, whereas the third iteration

will not have enough elements (multiples) to be executed. In order to enable the vectoring of

non-multiple arrays, three techniques are implemented in the DSA: Single Elements, Overlap

and Larger Arrays. Such techniques are discussed in the following subsections.

56

Figure 26 – Leftovers

4.8.1 Single Elements

The NEON instruction set provides LOAD and STORE instructions that can operate

over individual elements. Figure 27 shows how the Single Elements method works. As it can

be seen, only 2 vector operations could be executed 0 → 7 and 8 → 15 since the size of the

array is not multiple of 8. In this way, elements 16→ 20 must be loaded, processed and stored

individually.

Figure 27 – Single Elements Method

The Single Elements technique is the slowest among the three techniques mentioned,

since each element must be loaded, processed and stored individually. It is important to notice

that such method requires the execution of two loops, the first one for the execution of the

vectors and the second for the execution of the individual elements.

57

4.8.2 Overlapping

The Overlapping method involves processing some elements of the array twice to cover

the operation of the remaining elements. Figure 28 shows the functionality of such method.

As shown, since the array size is not a multiple of 8, it is unfeasible to perform three vector

operations. Through the use of Overlapping, the first operation processes the data from 0 → 7

normally. However, the second instruction will repeat the operation performed on the elements

5, 6 and 7, operating over the elements 5→ 12. In this way, the last operation is performed over

8 elements 13→ 20.

Figure 28 – Overlapping Method

However, the Overlapping method is only allowed when the operations applied over

the elements do not vary the resulting array regardless of the number of times the operation is

applied. In addition, the number of elements present in the array must fill at least one vector

completely.

4.8.3 Larger Arrays

The Larger Arrays technique is based on changing the size of the array being processed.

The value of the array is raised to the next multiple value that the vector unit supports. Figure

29 shows how the Larger Arrays method works. As can be seen, in order to make the array size

(21) a multiple value for execution on the vector unit (24), three adjacent elements need to be

allocated. In this way, it was possible to use the vector engine through three operations: 0→ 7,

8→ 15 and 16→ 23.

58

Figure 29 – Larger Arrays Method

However, allocating larger arrays results in greater memory occupation. Such size can

be significant depending on the number of arrays that have leftovers to execute. These new

elements at the end of the array need to be initialized to not affect the final calculation result.

59

5 METHODOLOGY

We coupled the DSA to the gem5 O3CPU Model (ARMv7 ISA) to evaluate the per-

formance of the proposed approach. The gem5 simulator is a modular platform for computer-

system architecture research that enables the execution of a variety of architecture binaries with

Linux emulation. The gem5 provides us high simulation precision (tick precision), several

architectural configurations possibilities and architectural information during runtime (e.g: ins-

tructions, registers, data and instruction memory access). Figure 30 shows how the performance

results were generated. As can be seen, we extracted the results using a trace level simulation.

While the gem5 O3CPU executes benchmarks, the DSA monitors all O3CPU incoming ins-

tructions and tick information. In this way, we could check the DSA Vectorization Analysis

functionality. To evaluate the DSA Execution we detect the vectorizable regions and adjust the

timing model replacing the scalar vectorizable instructions by vector instructions. To improve

the simulation accuracy, we infer several latencies to both DSA Analysis and Execution Stages.

For the DSA Analysis we consider:

• DSA Cache Access Latency;

• Verification Cache Access Latency;

• Array Map Access Latency - (Conditional Loop);

• Partial Vectorization Latency - Multiple Cross-iteration Analysis.

For the DSA Execution we consider:

• Pipeline Flush Latency;

• Non-Vectorizable Instructions Latency;

• Load Data Vector (Scalar Register to Vector Register) Latency;

• Store Data Vector (Vector Register to Scalar Register) Latency;

• Leftover operations Latency.

60

Figure 30 – DSA Simulation Model

5.1 O3CPU PROCESSOR/DSA IMPLEMENTATION

The O3CPU processor is an out-of-order model that has an ISA-independent pipeline.

However, there are parts of its implementation which are composed of specific ISA functi-

ons. Currently, the processor is compatible with the Alpha, ARM and x86 architectures. This

model was chosen because it presents a higher timing precision when compared to other simu-

lators implemented in high level (eg.: SimpleScalar, MultiSim) and also because it supports the

ARMv7-A ISA that implements vector instructions (ARM NEON).

Figure 31 illustrates the O3CPU pipeline steps and where DSA was coupled. As can

be seen, the O3CPU processor has 7 pipeline stages, since it is an out-of-order processor, the

Issue and Commit stages become present. To perform the DSA Loop Analysis Stage, the DSA

must be aware of all the incoming instructions arriving on the processor and the order such

instructions arrive. In this way, the vectorization analysis takes place during the Fetch Stage

of the O3CPU pipeline. In order to execute SIMD instructions, the DSA stalls the Fetch Step,

waits for every instruction to be flushed from the pipeline and then addresses SIMD instructions

to the Issue Stage. At the end of the SIMD execution, the Fetch Step receives the instruction

address that succeeds the last instruction address of the loop.

61

Figure 31 – O3CPU - DSA Implementation

5.2 DSA AND O3CPU ENERGY RESULTS

We used the Cadence RTL Compiler and ModelSim to gather energy results from the

VHDL description of the Dynamic SIMD Assembler Analysis Stage and McPAT to gather

energy results of the O3CPU Model (ARMv7 ISA). To improve the DSA energy consumption

accuracy, we developed different scenarios based on different loop types. Figure 32 illustrates

such exploitation. Considering the Conditional Loop Execution the DSA Analysis performs the

states: Loop Detection Stage→ Data Collection Stage→ Dependency Analysis Stage→ Store

ID/Execution Stage. Unlike the Conditional Loop approach the Count Loop performs the states:

Loop Detection Stage→Mapping Stage→ Speculative Stage. As can be seen, for each scenario

different logic paths (different states) are accessed resulting in several possible energy results.

62

Figure 32 – DSA Energy Analysis

5.3 SYSTEMS SETUP

We have coupled the DSA to an ARMv7 ISA processor using the O3CPU model of gem5

simulator to evaluate the proposed approach. In all articles (Sections 6,7 and 8) we considered

the same System Setup for all systems. Table 4 shows the configurations of all setups presented

in the subsequent articles.

Table 4 – Systems Setup

Configurations ARM Original
Execution

ARM NEON
DSA

ARM NEON
(AutoVec and Hand-Coded)

Processor
gem5 O3CPU

(ARMv7)
gem5 O3CPU

(ARMv7)
gem5 O3CPU

(ARMv7)
Superscalar Width 2 wide 2 wide 2 wide

CPU Clock 1GHz 1GHz 1GHz
L1 Cache 64 kb 64 kb 64 kb
L2 Cache 512 kb 512 kb 512 kb

Cache Policy LRU LRU LRU
Parallelism

(NEON)
Not Used

Type Dependent
128-bit Wide

Type Dependent
128-bit Wide

NEON Registers Not Used
Sixteen 128-bit

(Q0 - Q15)
Sixteen 128-bit

(Q0 - Q15)
DSA Cache - 8 kb -

Verification Cache - 1 kb -
Array Maps

(Conditional Loop)
- 4 (128-bit Wide) -

63

It is important to notice that we coupled the same ARM NEON architecture in ARM

NEON DSA and the ARM NEON Approaches, which provides the same DLP exploitation

degree. Also, considering a conditional loop execution, the max number of array maps for the

speculative execution is 4 (128-bit Wide), which limits the number of vectorizable instructions

within conditional statements. E.g.: If a Conditional Loop has 2 conditional statements, both of

them can have 4 vectorizable instructions. In case of having unused ARM NEON registers, such

registers can be used to the speculative execution, increasing the number of allowed vectorizable

instructions.

64

6 ARTICLE 1 - IMPROVING SOFTWARE PRODUCTIVITY AND PER-
FORMANCE THROUGH A TRANSPARENT SIMD EXECUTION

978-1-5386-7431-4/18/$31.00 ©2018 IEEE

Improving Software Productivity and Performance
through a Transparent SIMD Execution

Michael Guilherme Jordan, Tiago Knorst and Mateus Beck Rutzig
Electronics and Computing Department - Federal University of Santa Maria – Santa Maria – Brazil

{michael.jordan, tiago.knorst}@ecomp.ufsm.br; mateus@inf.ufsm.br

Abstract— Multimedia and DSP applications have been widely present
in embedded devices. Due to their intrinsic nature, such application
domains are benefited from Data Level Parallelism (DLP) exploitation,
which is mostly employed in current embedded platforms by using
vectorization techniques extending the underlying ISA. However, such
strategy relies on specific library which affects software productivity
and compiler support, such as ARM auto-vectorization approach,
which breaks binary compatibility. This work proposes a transparent
Dynamic SIMD Assembler (DSA) that is capable of detecting
vectorizable code regions at runtime without requiring specific library
or compilers. As a case study, we coupled the DSA to a 128-bit wide
ARM NEON Engine. Results show that the proposed approach shows
performance improvements of 31% over the original execution
(without DLP exploitation). In addition, Dynamic SIMD Assembler,
besides keeping binary compatibility, outperforms ARM auto-
vectorization technique in 6%.

Keywords— DLP, SIMD, Vectorization, ARM

I. INTRODUCTION

Multimedia and DSP applications are increasingly present on
current mobile devices demanding efficient software execution to
respect power constraints imposed by battery supply. Instruction and
Thread-Level Parallelism are widely exploited on such platforms by
applying aggressive superscalar execution and increasing the number
of cores encapsulated in a single die. However, such application
domains are not benefited, in terms of both performance and energy,
from their exploitation due to the well-known limitation of Von
Neumann execution model.

Dataflow machines [13][14] and Reconfigurable Architectures
[15][16] have been arising to overcome Von Neumann bottleneck by
ridding the control flow execution model. However, such architectures
rely on a high degree of functional unit replication, which does not
respect the energy constraints of embedded devices.

Most market processors have been coupling vector processing units
(i.g. IBM Altivec [8], x86 AVX [7] and ARM NEON [6]) to allow
Single Instruction Multiple Data (SIMD) execution since such
application domains offer great opportunities to exploit Data Level
Parallelism (DLP). As the number of functional units required to
employ such execution model is smaller than Dataflow machines, it is
feasible to achieve performance improvements with low power
consumption by merging SIMD and Von Neumann execution models.

However, most SIMD engines rely on specific libraries, which
increases the development process lifecycle affecting the software
productivity. In addition, such libraries do not completely abstract the
hardware complexity and most SW developers do not have enough
knowledge about the architecture implementation details to exploit the
potential of the vector processing engines.

Automatic code vectorization techniques extract DLP by building
SIMD instructions over vectorizable code regions to exploit vector
processing engines at compile time. However, although keeping

software productivity by avoiding the use of specific libraries, auto-
vectorization techniques still rely on code recompilation which breaks
binary compatibility. In addition, such an approach is restricted to
static code exploitation, which limits the DLP extraction since it is
difficult to identify vectorizable regions, such as conditional
statements, which can affect the vector processing engine utilization
[12].

This work proposes a transparent Dynamic SIMD Assembler
(DSA) that is capable of exploiting DLP at runtime by identifying
vectorizable loops to generate SIMD instructions. Unlike most market
SIMD engines, due to its transparent fashion, the development process
life cycle is maintained since it does not rely on specific libraries. As
SIMD instructions are built at runtime, unlike automatic code
vectorization techniques, binary compatibility is also maintained.
Moreover, the dynamic nature of the proposed technique opens the
room to achieve higher performance than static auto-vectorization
approaches.

This work is organized as follows. Section II presents the Related
Work. Section III presents the Dynamic SIMD Assembler System.
Methodology and Results are shown in Section IV. Finally, we present
the conclusion and future works in Section V.

II. RELATED WORK

The SIMD vectorization is widely used in several emerging market
platforms, such as the Intel SSE, IBM AltiVec, and ARM NEON
architectures. In the academic field, several researches are exploiting
Data Level Parallelism (DLP) to achieve performance improvements
and energy savings. Sara S. Baghsorkhi [1] proposes FlexVec
architecture that combines a novel partial vector code generation
technique with new vector instructions to dynamically adjust vector
length for loop statements affected by runtime cross-iteration
dependencies. FlexVec vectorization coupled to the Intel AVX-512
ISA shows a Geomean performance improvement from 9% to 11%.
Although it is able to perform optimizations over loops with cross-
iteration dependencies, the method breaks binary compatibility, since
it is necessary a specific ISA adjustment and also relies on a particular
compiler and library development.

Dorit Nuzman [2] evaluates and applies a compiler outer loop
vectorization technique focusing on properties of modern SIMD
architectures. It shows that even though current optimizing compilers
do not apply outer loop vectorization, they can provide significant
performance improvements over innermost loop vectorization. The
proposal achieves performance improvements of 3.13 and 2.77 when
coupled to a Cell BE SPU and PowerPC970, respectively. Similar to
our proposal, the authors focused on vectorizing both innermost and
outer loops but it relies on compiler support.

Being aware that most research focuses on vectorizing loops, Tian
Xinmin [3] presented a set of new C/C++ high-level extensions for
SIMD programming capable of automatic translating both functions
and loops. Significant speedups (from 3.07x to 4.69x) are achieved
when these optimizations are applied. Similar to aforementioned
related works, it relies on specific compiler and library to achieve

performance improvements, which breaks SW compatibility and
affects SW productivity.

Hoseok Chang [4], employed a unique memory access hardware,
solving the non-aligned and irregular data memory access operations
to improve the performance of a SIMD processor based on ARMv4
architecture. In addition, it develops an auto-vectorization compiler,
which utilizes the proposed hardware. By applying such technique, the
number of vectorized loops increases 50%, which provides 77% of
performance improvement in the MPEG2 encoder execution.

Besides the research above, many studies are also focused on
applying reconfigurable architectures, since besides exploiting ILP,
they are also capable of exploring DLP. A reconfigurable architecture,
named as Samsung reconfigurable processor (SRP), is developed for
digital signal processing [5]. The SRP architecture is designed to
handle mobile multimedia applications efficiently. It uses a CGRA to
vectorize innermost loops by using a conventional C/C++
programming model to annotate the code. Despite the huge chip area
required to the CGRA, the SRP relies on compiler, library and ISA
modifications. In addition, it requires a design-time step to create
CGRA configurations for each application which reduces, even more,
the binary compatibility and SW productivity.

ARM NEON [6] is introduced in the ARMv6 architecture. The
NEON auto-vectorization compiler generates vectorizable code by
instantiating SIMD instructions. Despite the advantages of auto-
vectorization, the static code exploitation limits the performance gains
since it is difficult to identify vectorizable regions of conditional
statements, function calls or even loops that contain codes between
inner-loops and outer-loops. To overcome such issues, another strategy
offered by the ARM to explore the NEON engine is the use of ARM
NEON library, which transfer the vectorization task responsibility to
the SW developer which affects SW productivity.

Table 1 compares all the aforementioned works with the proposed
approach. As it can be seen, binary and software compatibility are not
prioritized in their designs since they employ ISA modification or
specific libraries. Our work proposes a transparent Dynamic SIMD
Assembler that is capable of building SIMD instructions at runtime.
The proposed approach coupled to the ARM NEON engine provides:

 higher performance than ARM auto-vectorization method
with binary compatibility since is not necessary to recompile
the source code;

 SW productivity by avoiding the use of the ARM library in
the code development lifecycle to take advantage of the
NEON engine processing capabilities.

Table 1 – Related Works and Proposed Technique Characteristics

III. SYSTEM OVERVIEW

The proposed Dynamic SIMD Assembler (DSA) is tightly coupled
to an ARM Cortex-A12 processor (ARMv7 ISA). Figure 1 shows the
system overview. As it can be seen, the DSA is composed of a SIMD
instruction logic detection and two cache memories (DSA Cache and
Verification Cache). The DSA Cache is responsible for storing
information about the built SIMD instructions over the vectorizable
loops. The Verification Cache stores the addresses of data memory
accesses performed into the vectorizable loops (more details about
caches in Section IV).

Figure 1 - System Overview

 Figure 2 shows an overview of how the DSA works. In the first
scenario (Scenario 1 – Ordinary Execution), the DSA and ARMv7
processor operate in parallel. While the ARM Cortex-A12 processor
executes the incoming instructions, the DSA is in a probing mode,
searching for a vectorizable loop to build SIMD instructions. In such
execution mode, the NEON Engine remains deactivated. If the DSA
detects a vectorizable loop, the second scenario is triggered (Scenario
2 – DLP Exploitation). In this scenario, the DSA deactivates the ARM
Cortex A12 processor and activates the NEON Data Engine to execute
the built SIMD instruction.

Figure 2 – System Functionality Overview

IV. DYNAMIC SIMD ASSEMBLER

This section is divided into five subsections. Subsection A shows a
superficial analysis of the Dynamic SIMD Assembler (DSA).
Subsection from B to E presents a more detailed analysis of the DSA
stages.

A. Dynamic SIMD Assembler Overview
As shown in Figure 3, the Dynamic SIMD Assembler (DSA)

detection process is based on a State Machine (SM) composed of four
stages: Loop Detection, Data Collection, Dependency Analysis, and
Store ID/Execution. Each one of these stages is activated in different
loop iterations.

Figure 3 – State Machine of DSA

Code Recompilation
Library Development

Support ISA Modification SW Productivity Binary Compatibility

[1] Yes Yes Yes Affected No
[2] Yes No Yes Not Affected No
[3] Yes Yes Yes Affected No
[4] Yes No Yes Not Affected No
[5] Yes Yes Yes Affected No
[6] Yes No Yes Not Affected No

DSA No No No Not Affected Yes

As it can be seen, the state machine starts in the Loop Detection
stage and is triggered by the end of the first loop iteration. The Loop
Detection stage is responsible for:

- checking the existence of innermost-loop and outer-
loops at runtime;

- accessing the DSA cache, checking if the current loop is
already vectorizable.

The Data Collection stage is triggered in the second loop iteration.
This stage is responsible for:

- evaluating the loop range (number of iterations)
- identifying the existence of a function call inside the

loop;
- storing the addresses of data memory accesses in the

Verification Cache.
The Dependency Analysis stage is triggered in the third loop

iteration. This stage is responsible for:
- analyzing the cross-iteration dependency (dependencies

between two or more iterations in the same loop).
The Store ID/Execution stage is triggered in the fourth loop

iteration. This stage is responsible for:
- generating and saving the loop identification (ID) in case

of a vectorizable loop;
- building SIMD instruction and activating the execution

on NEON engine.
Figure 4 exemplifies the execution of the DSA considering a

vectorizable loop (vectorizable_Loop()) and a non-vectorizable loop
procedures (non_vectorizable_Loop()).

Figure 4 – DSA Execution

Considering the vectorizable_loop() procedure, the Loop Detection
stage (A) detects the loop by the end of the execution of the first
iteration (more detailed in Section C). In the second iteration, the Data
Collection stage (B) identifies the loop range (400) and the value of the
increment/decrement (i = i + 1) (more detailed in Section D). In
addition, such stage stores the addresses of the data memory accesses
(Mem[a[i]], Mem [b[i]] and Mem[v[i]]) in the Verification Cache
(more detailed in Section E). In the third iteration, the Dependency
Analysis Stage (E) analyses dependencies between iterations. For the
current example, the DSA verifies that there is no cross-iteration
dependency and triggers the Store ID/Execution Stage. Such stage
builds SIMD instructions to execute the remaining iterations in the
ARM NEON engine. The DSA needs four parameters to generate
SIMD instructions: the data type, the loop range, the operation and the
ARM NEON execution support. In the example of Figure 4, the
parameters are: float, 400, add, 128-bit wide, respectively. Considering
these parameters, for the current example, the DSA generates an
instruction equivalent to the vaddq_f32 instruction of the NEON

architecture. Since the corresponding ARM NEON engine can operate
128 bits in parallel and the float type is a 32-bit wide data, the DSA
divides the loop range by the factor four, running the vaddq_f32 one
hundred times, instead of executing a non-vectorizable add operation
four hundred times.

Considering the DSA analysis over the non_vectorizable_Loop ()
procedure, the Loop Detection and Data Collection stages behave the
same as shown in the vectorizable_Loop() procedure. However, in the
third loop iteration, during the Dependency Analysis Stage (C), a
cross-iteration dependency is found (v [i] = v [i-1] + b [i]) which breaks
the DLP detection process classifying such procedure as non-
vectorizable.

B. Loop Detection Stage
Figure 5 shows the steps of the Loop Detection stage during the

execution of the first and second iterations of the loop. The left side of
Figure 5 shows the instruction trace that contains: the memory
addresses of instructions (Inst. Address) and instructions descriptions
(Instructions). The right side of the Figure shows the loop detection
stage steps (DSA execution).

Figure 5 – Loop Detection Stage Behavior

A Branch-type instruction is responsible for triggering the Loop
Detection stage. If the first instruction after a Branch (“First
Instruction” in the example) has a memory address lower than the
branch instruction address, the DSA identifies the beginning of a loop,
setting its ID as the current value of the Program Counter (PC) register
(ID = Address = 0x00000004). Whenever DSA detects a loop, the
DSA Cache is accessed to verify if there exists a cache entry with the
value of the current loop ID. If DSA has already evaluated this loop
as vectorizable, the DSA Cache would contain the ID (CACHE HIT),
which triggers the ARM NEON execution (Generate/Activate ARM
NEON). However, if the ID of the loop is not found at the DSA Cache
(CACHE MISS), the Data Collection stage is triggered.

C. Data Collection Stage
Figure 6 illustrates the behavior of the Data Collection Stage,

which is triggered after the Loop Detection Stage. Similar to Figure 5,
the left side of Figure 6 shows the instruction trace that contains: the
memory addresses of instructions (Inst. Address) and instructions
descriptions (Instructions). The right side of the Figure shows the
corresponding Data Collection stage steps (DSA execution).

In the second loop iteration, the Data Collection gathers the
addresses of data memory accesses (MemRead (load) and MemWrite
(store) type instructions) performed in the Loop execution (Gather
Memory Address) and stores them in the Verification Cache (MemRead
→ Address = 0x100 and MemWrite → Address = 0x108).

In addition, the Data Collection stage identifies the number of
iterations and the value of increment/decrement of the loop. The
number of iterations is calculated with the support of the Cmps
instruction (Address = 0x00F), which contains, as operands, the
increment/decrement and limit_value.

Figure 6 - Data Collection Stage Behavior

This stage also identifies function calls inside the loop by verifying
the memory address gap between instructions fetched from memory.
As it can be seen in Figure 7, the execution of a Jump instruction
preceded by a context switch process (Instructions -> Save Context
and Load Context) indicates a function call (Jump1 → Begin and
Jump2 → End). To be sure that the Jump instruction considers a
function call, the DSA verifies if the target address of the Jump is out
the loop body addressing (0x011→ 0x020). In the example of Figure
7, the loop body comprehends memory addresses from 0x004 to 0x00F
while the function call comprehends addresses from 0x011 to 0x020.
The detection of function calls is mandatory to analyze cross-iteration
dependencies since the increment/decrement register can be modified
for an operation inside a function call.

Figure 7 – Data Collection Stage

D. Dependency Analysis Stage
Figure 8 illustrates the behavior of the Dependency Analysis stage

during the execution of the 3rd loop iteration. As shown in the previous
subsection, the Loop Stage analysis collects data in the second loop
iteration to support cross-iteration dependency verification.

Figure 8 – Dependency Analysis Stage

If any of the data memory addresses (stored in the Verification
Cache by the Data Collection Stage) matches with a data memory
address accessed in the third loop iteration, a cross-iteration
dependency is detected, and the loop cannot be vectorized. However,
if data memory addresses stored in the second loop iteration does not
match with the addresses performed in the third loop iteration, one
cannot discard cross-iteration dependencies in future iterations.
Assuming such possibility, we have implemented a cross-iteration
dependency prediction process (Cross-iteration Prediction). The
equations below describe such process, where 𝑀ோ௘௔ௗ[ଶ] and
𝑀ோ௘௔ௗ[ଷ] is the memory address accessed by a MemRead (load)
instruction in the second and third loop iterations, respectively.
𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] is the memory address accessed by a load
instruction in the last iteration (Equation d), x is the interval between
𝑀ோ௘௔ௗ[ଶ] and 𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] (Equation a), 𝑀ௐ௥௜௧௘[ଶ] is the
memory address accessed by a MemWrite (store) instruction in the
second iteration (Equations b and c), 𝑀ோ௔௡௚௘ is the memory address
range between the 𝑀ோ௘௔ௗ[ଶ] and 𝑀ோ௘௔ௗ[ଷ] (Equation e), 𝐶𝐼𝐷 means
Cross-Iteration Dependency and NCID means No Cross-Iteration
Dependency.

𝑀ோ௘௔ௗ[ଷ] ≤ 𝑥 ≤ 𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] (𝑎)

𝑀ௐ௥௜௧௘[ଶ] ∈ 𝑥 → 𝐶𝐼𝐷 (𝑏)
𝑀ௐ௥௜௧௘[ଶ] ∉ 𝑥 → 𝑁𝐶𝐼𝐷 (𝑐)

𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] = 𝑀ோ௘௔ௗ[ଶ] + (𝑀ீ௔௣ ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

− 2)) (𝑑)
𝑀ோ௔௡௚௘ = |𝑀ோ௘௔ௗ[ଷ] − 𝑀ோ௘௔ௗ[ଶ]| (𝑒)

As shown in equations, if the 𝑀ௐ௥௜௧௘[ଶ] is within the memory

address range of 𝑀ோ௘௔ௗ[ଷ] and 𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] (Equation b), the
loop could have a cross-iteration dependency since the load instruction
of a future loop iteration could perform a memory access in the same
memory address of the store instruction executed in the second loop
iteration. The memory address of the load instruction of the last
iteration is predicted based on the sum of the 𝑀ோ௘௔ௗ[ଶ] and the equation
(𝑀ீ௔௣ ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 2)) (Equation e). Thus, in case of
𝑀ௐ௥௜௧௘[ଶ] is out of the memory address interval of 𝑀ோ௘௔ௗ[ଷ] and
𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] (Equation c), one can ensure that the loop has no
cross-iteration dependency.

Figure 9 illustrates an example of how Cross-iteration Prediction
works. In such example, the DSA detects that there is no cross-iteration
dependency between 2nd and 3rd iteration. Thus, by the end of the 3rd
loop iteration, the Cross-iteration Prediction is activated applying
Equation “e” resulting in 𝑀ீ௔௣ = |0𝑥104 − 0𝑥100| = 0𝑥004. This
gap is used to calculate the memory address of the load instruction of
the last iteration (𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡]) using Equation “d”. Such

memory address results 𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] = 0𝑥100 + 0𝑥020 =

0𝑥120. By applying the Equations “a” and “b”, the Cross-iteration
Prediction detects that the 𝑀ௐ௥௜௧௘[ଶ] = 0𝑥108 is within the range of
the addresses accessed by the MemRead (load) in the 3rd and last (10th)
iterations (𝑀ோ௘௔ௗ[ଷ] ≤ 𝑥 ≤ 𝑀ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡]) = 0𝑥100 ≤ 𝑥 ≤

0𝑥120), which causes a cross-iteration dependency.

Figure 9 – Example of a Cross-iteration Dependency Prediction
Process

E. Store ID/Execution Stage
Figure 10 illustrates the behavior of the Store ID/Execution Stage

during the execution of 4th loop iteration, which is just triggered if the
loop is vectorizable. In this stage, the loop ID and the number of
iterations are saved (Store ID) in the DSA cache. In addition, the
corresponding SIMD instruction is generated to be executed in the
NEON Data Engine (Generate / Activate ARM NEON).

Figure 10 - Store ID/Execution Stage Behavior

As explained before, The Store ID/Execution Stage uses four
parameters, collected in the previous stages, to generate a SIMD
instruction: the data type, the loop range, the operation, and the ARM
NEON SIMD support. Figure 11 shows the different degrees of
parallelism that can be obtained through the NEON 128-bit Engine
depending on the type of data involved in the SIMD Instruction.

Figure 11 – ARM NEON Parallelism

V. RESULTS

A. Methodology
To evaluate the effectiveness of the proposed approach, we have

coupled the DSA to the ARM Cortex A12 (ARMv7 ISA) O3 model of
gem5 [9] simulator. To gather performance results, we have compared
the proposed technique with an ARM Cortex A12 processor without
DLP exploitation (ARM Original Execution) and with an ARM Cortex
A12 processor coupled to NEON architecture (ARM NEON AutoVec)
exploiting DLP through the support of ARM NEON auto-vectorization
compiler. It is important to notice that we employ the same ARM
NEON architecture in both ARM NEON AutoVec and ARM Dynamic
SIMD Assembler, which provides the same DLP exploitation degree.
Table 2 shows the configurations of ARM Original Execution, ARM
NEON Dynamic SIMD Assembler, and ARM NEON AutoVec.

Table 2 – Systems Setups

We have chosen benchmarks that cover three different levels of

DLP to evaluate the systems shown in Table 2. We have selected three
applications with a great opportunity to exploit DLP (MM [17], RGB-
Gray [18], and Gaussian Filter [18]), an application with a medium
opportunity to exploit DLP (Susan E [17]) and two applications with
low opportunity to exploit DLP (Q Sort [17] and Dijkstra [17]). Finally,
we used RTL Compiler [10] software from Cadence to gather results
about area from the VHDL description of the ARM processor and
Dynamic SIMD Assembler.

B. Performance
Figure 12 shows the performance improvements of the ARM

NEON DSA and ARM NEON AutoVec over the ARM Original
Execution. As it can be noticed, when the applications provide great
opportunities to exploit DLP, the proposed technique achieves up to
61% of performance improvements over the ARM Original Execution.
In cases of Gaussian Filter e Susan Edges, the performance gains are
lower since such applications provide smaller opportunities to exploit
DLP. The proposed approach does not show performance
improvements on Quicksort and Djikstra execution since they do not
provide opportunities to exploit DLP. On average, the DSA provides
performance improvements of 31% over the ARM Original Execution
showing the importance of DLP exploitation.

The proposed approach outperforms ARM auto-vectorization in all
benchmarks but MM 64x64. Due to the dynamic DLP analysis of DSA,
it achieves 20% of performance improvements over ARM auto-
vectorization technique when executing RGB-Gray. For applications
with low DLP exploitation opportunities, our proposal maintained the
same performance of the ARM Original Execution since DSA does not
cause performance penalties when loops are not found. In such
scenario, ARM NEON auto-vectorization provides performance
penalties of 3% on Dijkstra and 1% on Q Sort. In addition, besides
achieving 20% of performance improvements over the ARM auto-
vectorization technique, the proposed approach keeps software

compatibility and does not affect the SW development life cycle due
to its transparent and dynamic DLP detection.

Figure 12 – NEON Auto-Vectorization vs. DSA Vectorization

Performance

C. Area
Table 3 shows the area occupied by the ARM processor and the

Dynamic SIMD Assembler (DSA). As it can be noticed, the logic to
implement the DSA detection is just 2.18% of the ARM core.
Considering the DSA and Verification Cache Memories, the total area
overhead of the DSA system is 10.37%.

Table 3 – Area overhead of DSA

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed a transparent Dynamic SIMD
Assembler (DSA) that is capable of detecting vectorizable code regions
at runtime without requiring specific libraries or compilers. The
proposed approach shows performance improvements of 31% over the
original execution (without DLP exploitation). In addition, Dynamic
SIMD Assembler, besides keeping binary compatibility, outperforms
ARM auto-vectorization technique in 6% by increasing 10.37 % of the
chip area. Since the Dynamic SIMD Assembler is an in-progress work,
we intend to extend the current version to support: vectorization of
loops with conditional statements; partial vectorization of loops with
cross-iteration dependencies; vectorization of outer-loops with data
dependencies with inner-loops; vectorization of loops with dynamic
range.

ACKNOWLEDGEMENT
We are grateful to the institutions listed below for the direct or indirect support that

they are providing us: Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) e Fundação de Amparo à pesquisa do Estado do Rio Grande do Sul (FAPERGS).

REFERENCES
[1] Baghsorkhi, Sara S., Nalini Vasudevan, and Youfeng Wu. "FlexVec:

Auto-vectorization for irregular loops." ACM SIGPLAN Notices. Vol. 51.
No. 6. ACM, 2016.

[2] Nuzman, Dorit, and Ayal Zaks. "Outer-loop vectorization-revisited for
short SIMD architectures." Parallel Architectures and Compilation
Techniques (PACT), 2008 International Conference on. IEEE, 2008.

[3] Tian, Xinmin, et al. "Compiling C/C++ SIMD extensions for function and
loop vectorization on multicore-SIMD processors." Parallel and
Distributed Processing Symposium Workshops & Ph.D. Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 2012.

[4] Chang, Hoseok, and Wonyong Sung. "Efficient vectorization of SIMD
programs with non-aligned and irregular data access
hardware." Proceedings of the 2008 international conference on
Compilers, architectures, and synthesis for embedded systems. ACM,
2008.

[5] SAIT RP Core Group. SRP SDK User Guide. Samsung Advanced
Institute of Technology internal document (available by SAIT SRP SDK
distribution program), 2011.

[6] Reddy, Venu Gopal. "Neon technology introduction." ARM
Corporation (2008).

[7] Lomont, Chris. "Introduction to Intel advanced vector extensions." Intel
White Paper (2011): 1-21.

[8] Diefendorff, Keith, et al. "Altivec extension to PowerPC accelerates
media processing." IEEE Micro 20.2 (2000): 85-95.

[9] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH Computer
Architecture News 39.2 (2011): 1-7.

[10] Cadence, R. T. L. "Compiler User’s Manual."

[11] Stephan Nolting (2012), Storm Core Processor System [Online].
Available at www.opencore.org. Access on 16 March 2016.

[12] Mitra, Gaurav, et al. "Use of SIMD vector operations to accelerate
application code performance on low-powered ARM and Intel
platforms." Parallel and Distributed Processing Symposium Workshops
& PhD Forum (IPDPSW), 2013 IEEE 27th International. IEEE, 2013.

[13] Swanson, K. Michelson, A. Schwerin and M. Oskin, "WaveScalar,"
Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36., 2003, pp. 291-302.

[14] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello and Y.
LeCun, "NeuFlow: A runtime reconfigurable dataflow processor for
vision," CVPR 2011 WORKSHOPS, Colorado Springs, CO, 2011, pp.
109-116.

[15] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev and L. Carro, "Transparent
Reconfigurable Acceleration for Heterogeneous Embedded
Applications," 2008 Design, Automation and Test in Europe, Munich,
2008, pp. 1208-1213.

[16] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov and E.
M. Panainte, "The MOLEN polymorphic processor," in IEEE
Transactions on Computers, vol. 53, no. 11, pp. 1363-1375, Nov. 2004.

[17] Guthaus, Matthew R., et al. "MiBench: A free, commercially
representative embedded benchmark suite." Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop on. IEEE, 2001.

[18] Bradski, Gary, and Adrian Kaehler. "OpenCV." Dr. Dobb’s journal of
software tools 3 (2000).

Cell Area(um) Net Area(um) Total Area(um)
ARM Core 391158 219015 610173

DSA 8667 4607 13274
Area Overhead 2,22% 2,10% 2,18%

Cell Area(um) Net Area(um) Total Area(um)
ARM Core + Caches 512912 279801 792713

DSA + Caches 53716 28520 82236
Total Area Overhead 10,47% 10,19% 10,37%

71

7 ARTICLE 2 - RUNTIME VECTORIZATION OF CONDITIONAL CODE
AND DYNAMIC RANGE LOOPS TO ARM NEON ENGINE

Runtime Vectorization of Conditional Code and
Dynamic Range Loops to ARM NEON Engine

Michael Guilherme Jordan, Tiago Knorst, Julio Vicenzi and Mateus Beck Rutzig
Electronics and Computing Department - Federal University of Santa Maria – Santa Maria – Brazil

{michael.jordan, tiago.knorst, julio.vicenzi}@ecomp.ufsm.br; mateus@inf.ufsm.br

Abstract — SIMD engines are widely present in market
processors aiming to improve performance of applications
through Data Level Parallelism (DLP) exploitation. However,
most SIMD engines rely on specific libraries and compilers to
support DLP execution, which limits DLP gains since they are
restricted to analyze static code. Dynamic SIMD Assembler
(DSA) [8] is capable of exploiting DLP at runtime by identifying
vectorizable loops to generate ARM NEON SIMD instructions.
However, its DLP coverage capability is not fully exploited, since
portion of code that depends on runtime information, such as
dynamic range and conditional code loops are not exploited. In
this work, we extend the DSA coverage by coupling the
exploitation of conditional code and dynamic range loop
vectorization. Results show that the proposed techniques
improve the original DSA performance in 38% considering
benchmarks with opportunities to exploit conditional code and
dynamic range loops. In addition, the Extended DSA, besides
keeping software productivity and binary compatibility,
outperforms ARM compiler auto-vectorization by 12%.

Keywords— DLP, SIMD, Vectorization, ARM

I. INTRODUCTION

SIMD (Single Instruction Multiple Data) engines, such as ARM
NEON [7], Intel SSE/AVX [9] and IBM Altivec [10], are widely
present in market processors to improve applications performance
by exploiting Data Level Parallelism (DLP). To exploit the potential
of vector processing engines most techniques rely on specific
libraries to vectorize the application code. However, it is hard to
predict at software development time the behavior of certain
vectorizable regions of code, making it unfeasible to extract the
maximum available DLP using such techniques. In addition, the use
of specific libraries increases the development process lifecycle and
affects software productivity.

Automatic code vectorization techniques [15] extract DLP from
vectorizable code regions by building SIMD instructions to exploit
vector processing engines at compile time. However, although
keeping software productivity by avoiding the use of specific
libraries, auto-vectorization techniques still rely on code
recompilation which breaks binary compatibility. Also, such an
approach is restricted to static code exploitation [12], which, similar
to the employment of specific libraries, restricts the performance
gains due to the low DLP coverage.

DLP opportunities are mostly present in application loops, where
operations are executed multiple times over vector structures.
However, three issues prevent loop vectorization: cross-iteration
dependences; loops with conditional codes and dynamic range loops.
Cross-iteration dependences are intrinsically non-vectorizable due to
the data dependencies between iterations. However, instead of
having data dependencies, loops with conditional codes and dynamic
range loops present control dependencies which rely on runtime
information to be vectorized. Thus, they cannot be handle through
special libraries and compiler auto-vectorization techniques.
 Dynamic SIMD Assembler (DSA) [8] is capable of exploiting
DLP at runtime by identifying vectorizable loops to generate SIMD
instructions. Unlike most market SIMD engines, due to its

transparent fashion, the development process life cycle is maintained
since it does not rely on specific libraries. As SIMD instructions are
built at runtime, unlike automatic code vectorization techniques,
binary compatibility is also maintained. Moreover, DSA has already
shown higher performance than ARM static auto-vectorization
approach since it is capable of vectorizing count loops (static range
loops), such as inner-loops and outer-loops and loops containing
function calls at runtime [8]. However, its DLP coverage capability
is not fully exploited, since conditional code and dynamic range
loops are not vectorized.

In this work, we extend DLP exploitation capability of the DSA
by taking advantage of its intrinsic and transparent execution that
makes it possible to evaluate loops during runtime. By analyzing
code during runtime it is possible to extract DLP from dynamic
behavior loops. Thus, this work extends the DSA coverage by
proposing the exploitation of: Conditional Code and Dynamic Range
Loop vectorization. We show that the extended DSA approach
outperforms the auto-vectorization compiler in 12%, on average,
maintaining software productivity and binary compatibility.

This work is organized as follows; Section II presents the Related
Work. Section III and IV present the Dynamic SIMD Assembler
System. Section V presents the Conditional Code Loop and Dynamic
Range Loop vectorization techniques. Methodology and Results are
shown in Section VI. Finally, we present the conclusion and future
works in Section VII.

II. RELATED WORK

The SIMD vectorization is widely used in several emerging
market platforms, such as the Intel AVX, IBM AltiVec, and ARM
NEON architectures. In the academic field, several researches are
exploiting Data Level Parallelism (DLP) to achieve performance
improvements and energy savings. Sui Yulei [1] improves the
LLVM compiler [16] infrastructure to explore vectorization
opportunities by developing a more precise Loop-Oriented Pointer
Analysis for Automatic SIMD Vectorization. This approach is able
to detect more than 273 vectorizable basic blocks achieving
performance improvements from 2.95% to 7.23%. However, such
an approach uses an auto-vectorization technique, which means that
loops containing dynamic behavior cannot be vectorized.

Zhou Hao [2] presents the Loop-Mix compiler, also
implemented in the LLVM compiler. Loop-Mix vectorizes loops
regarding the data reorganization overhead caused between mixed
SIMD parallelism (inter-loops and intra-loops). The technique
outperforms the Loop-ILV [4] by 36%. Since the work is also
implemented in the LLVM compiler, the binary compatibility is
compromised, code recompilation is required and dynamic behavior
loops are not covered.

Sara S. Baghsorkhi [3] proposes FlexVec architecture that
combines a novel partial vector code generation technique with new
vector instructions to dynamically adjust vector length for loop
statements affected by runtime cross-iteration dependencies.
FlexVec vectorization coupled to the Intel AVX-512 ISA shows a
Geomean performance improvement from 9% to 11%. Although it
is able to perform optimizations over loops with cross-iteration
dependencies, it is not capable of vectorize Dynamic Range loops.
Besides, the method breaks binary compatibility since it is necessary

a specific ISA adjustment and also relies on a particular compiler
and library development.

Dorit Nuzman [4] proposes a compiler outer loop vectorization
technique focusing on properties of modern SIMD architectures. It
shows that even though current optimizing compilers do not apply
outer loop vectorization, they can provide significant performance
improvements over innermost loop vectorization. It shows
performance improvements of 3.13 and 2.77 when coupled to a Cell
BE SPU and PowerPC970, respectively. Similar to our proposal, the
authors focused on vectorizing both innermost and outer loops but it
relies on compiler support and cannot cover loops with dynamic
range or conditional code.

Being aware that most research focuses on vectorizing loops,
Tian Xinmin [5] presented a set of new C/C++ high-level extensions
for SIMD programming capable of automatic translating both
functions and loops. Significant speedups (from 3.07x to 4.69x) are
achieved when these optimizations are applied. Similar to
aforementioned related works, dynamic behavior loops are not
covered and it relies on specific compiler and library to achieve
performance improvements, which breaks binary compatibility and
affects SW productivity.

Bramas Berenger [6] proposes Inastemp, a lightweight open-
source C++ library that provides portable SIMD-Vectorization. This
approach has the same efficiency as computing for a specific
architecture, providing vector instructions that can be used to
develop hardware-independent computational kernels. These
computational kernels are portable across compilers. Inastemp
covers SSE, AVX, AVX512 and ALTIVEC/VMX instructions.
While such technique improves binary portability, it compromises
software productivity since code must be adapted with the suggested
library and requires code recompilation. In addition, no performance
gains are shown by using such technique.

ARM NEON [7] is introduced in the ARMv6 architecture. The
NEON auto-vectorization compiler generates vectorizable code by
instantiating SIMD instructions. Despite the advantages of auto-
vectorization, the static code exploitation limits the performance
gains since it is difficult to identify vectorizable regions of
conditional statements, function calls or even loops that contain
codes between inner-loops and outer-loops. To overcome such
issues, another strategy offered by the ARM to explore the NEON
engine is the use of ARM NEON library, which transfer the
vectorization task responsibility to the SW developer, which affects
SW productivity. Since both solutions evaluate static code, they
cannot vectorize dynamic behavior loops.

The Dynamic SIMD Assembler (DSA) [8] is capable of building
SIMD instructions at runtime. The DSA is coupled to the ARM
NEON engine, providing: higher performance than ARM auto-
vectorization method with binary compatibility since it is not
necessary to recompile the source code; SW productivity by
avoiding the use of specific libraries in the code development
lifecycle to take advantage of the NEON engine processing
capabilities. This approach is capable of vectorizing count loops,
such as inner-loops and outer-loops and loops containing function
calls at runtime. However, the runtime capabilities still opens room
for vectorizing dynamic behavior loops, which are not supported in
DSA implementation.

Table 1 compares all the aforementioned works with the
proposed approach. As it can be seen, except DSA, binary and
software compatibility are not prioritized in all designs since they
employ ISA modification or specific libraries. Both auto-
vectorization and techniques that use specific libraries cannot
vectorize loops that depend on data computed at runtime (dynamic
behavior loops) which limits their vectorization coverage. The
extension of the DSA benefits of the runtime capabilities, expanding
its DLP exploitation by proposing the vectorization of:

• Dynamic Range Loop;
• Conditional Code Loop.

By applying both dynamic behavior loops vectorization
techniques, the proposed approach presents performance

improvements that outperforms the auto-vectorization compiler and
preserves software productivity and binary compatibility as well.

Table 1 – Related Works and Proposed Technique Characteristics

III. DSA OVERVIEW

The Dynamic SIMD Assembler (DSA) is tightly coupled to an
ARM Cortex-A12 processor (ARMv7 ISA). Figure 1 shows the
system overview. As it can be seen, the DSA is composed of a SIMD
instruction logic detection and two cache memories (DSA Cache and
Verification Cache). The DSA Cache is responsible for storing
information about the built SIMD instructions over the vectorizable
loops. The Verification Cache stores the addresses of data memory
accesses performed into the vectorizable loops (more details about
caches in Section IV).

Figure 1 - System Overview

 Figure 2 shows an overview of how the DSA works. In the first
scenario (Scenario 1 – Ordinary Execution), the DSA and ARMv7
processor operate in parallel. While the ARM Cortex-A12 processor
executes the incoming instructions, the DSA is in a probing mode,
searching for a vectorizable loop to build SIMD instructions. In such
execution mode, the NEON Engine remains deactivated. If the DSA
detects a vectorizable loop, the second scenario is triggered
(Scenario 2 – DLP Exploitation). In this scenario, the DSA
deactivates the ARM Cortex A12 processor and activates the NEON
Data Engine to execute the built SIMD instruction.

Figure 2 – System Functionality Overview

IV. DYNAMIC SIMD ASSEMBLER

This section is divided into two subsections. Subsection A shows
a superficial analysis of the Dynamic SIMD Assembler (DSA).

Subsection B shows how the DSA predicts cross-iteration
dependencies.

A. Dynamic SIMD Assembler Overview
As shown in Figure 3, the Dynamic SIMD Assembler (DSA)

detection process is based on a State Machine (SM) composed of
four stages: Loop Detection, Data Collection, Dependency Analysis,
and Store ID/Execution. Each one of these stages is activated in
different loop iterations.

Figure 3 – State Machine of DSA

As it can be seen, the state machine starts in the Loop Detection
stage and is triggered by the end of the first loop iteration. The Loop
Detection stage is responsible for:

- checking the existence of innermost-loop and outer-
loops at runtime;

- accessing the DSA cache, checking if the current loop
is already vectorizable.

The Data Collection stage is triggered in the second loop
iteration. This stage is responsible for:

- evaluating the loop range (number of iterations)
- identifying the existence of a function call inside the

loop;
- storing the addresses of data memory accesses in the

Verification Cache.
The Dependency Analysis stage is triggered in the third loop

iteration. This stage is responsible for:
- analyzing the cross-iteration dependency

(dependencies between two or more iterations in the
same loop).

The Store ID/Execution stage is triggered in the fourth loop
iteration. This stage is responsible for:

- generating and saving the loop identification (ID) at
DSA Cache in case of a vectorizable loop;

- building SIMD instruction and activating the
execution on NEON engine.

Figure 4 exemplifies the execution of the DSA considering a
vectorizable loop (vectorizable_Loop()) and a non-vectorizable loop
procedures (non_vectorizable_Loop()).

Figure 4 – DSA Execution

Considering the vectorizable_loop() procedure, the Loop
Detection stage (A) detects the loop by the end of the execution of
the first iteration. In the second iteration, the Data Collection stage
(B) identifies the loop range (400) and the value of the
increment/decrement (i = i + 1). In addition, such stage stores the
addresses of the data memory accesses (Mem[a[i]], Mem [b[i]] and
Mem[v[i]]) in the Verification Cache. In the third iteration, the
Dependency Analysis Stage (E) analyses dependencies between
iterations (more detailed in subsection B). For the current example,
the DSA verifies that there is no cross-iteration dependency and
triggers the Store ID/Execution Stage. Such stage builds SIMD
instructions to execute the remaining iterations in the ARM NEON
engine. The DSA needs four parameters to generate SIMD
instructions: the data type, the loop range, the operation and the
ARM NEON execution support. In the example of Figure 4, the
parameters are: float, 400, add, 128-bit wide, respectively.
Considering these parameters, for the current example, the DSA
generates an instruction equivalent to the vaddq_f32 instruction of
the NEON architecture. Since the corresponding ARM NEON
engine can operate 128 bits in parallel and the float type is a 32-bit
wide data, the DSA divides the loop range by the factor four, running
the vaddq_f32 one hundred times, instead of executing a non-
vectorizable add operation four hundred times.

Considering the DSA analysis over the non_vectorizable_Loop
() procedure, the Loop Detection and Data Collection stages behave
the same as shown in the vectorizable_Loop() procedure. However,
in the third loop iteration, during the Dependency Analysis Stage
(C), a cross-iteration dependency is found (v [i] = v [i-1] + b [i])
which breaks the DLP detection process classifying such procedure
as non-vectorizable.

Figure 5 shows the different degrees of parallelism that can be
obtained through the NEON 128-bit Engine depending on the type
of data involved in the SIMD Instruction.

Figure 5 – ARM NEON Parallelism

B. Cross-iteration Dependency Prediction
A cross-iteration dependency exists when any of the data

memory addresses accessed in a loop iteration matches with a data
memory address accessed in a further loop iteration.

The cross-iteration analysis is processed during the 2nd (Data
Collection Stage) and 3rd (Dependency Analysis Stage) loop
iterations. During the 2nd iteration all the data memory accesses are
saved at the Verification cache. The data saved at Verification Cache
is compared with the data accessed at the 3rd iteration. If any of the
data memory addresses accessed at the 2nd loop iteration matches
with a data memory address accessed in the 3rd loop iteration, a
cross-iteration dependency is detected, and the loop cannot be
vectorized. However, if data memory addresses of the second loop
iteration do not match with the addresses performed in the third loop
iteration, one cannot discard cross-iteration dependencies in future
iterations. Assuming such possibility, we have implemented a cross-
iteration dependency prediction process (Cross-iteration
Prediction). The equations below describe such process, where ܯோ௘௔ௗ[ଶ] and ܯோ௘௔ௗ[ଷ] is the memory address accessed by a

MemRead (load) instruction in the second and third loop iterations,
respectively. ܯோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] is the memory address accessed by
a load instruction in the last iteration (Equation 4), x is the interval
between ܯோ௘௔ௗ[ଶ] and ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡]ܯ	 (Equation 1), ܯௐ௥௜௧௘[ଶ]
is the memory address accessed by a MemWrite (store) instruction
in the second iteration (Equations 2 and 3), ܯோ௔௡௚௘ is the memory
address range between the ܯோ௘௔ௗ[ଶ] and ܯோ௘௔ௗ[ଷ] (Equation 5), ܦܫܥ means Cross-Iteration Dependency and NCID means No Cross-
Iteration Dependency. 																												ܯோ௘௔ௗ[ଷ] ≤ ݔ ≤ ௐ௥௜௧௘[ଶ]ܯ																																							 ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] (1)ܯ ∈ ݔ → ௐ௥௜௧௘[ଶ]ܯ																																								 (2) 																								ܦܫܥ ∉ ݔ	 → (3)																																	ܦܫܥܰ
ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡]ܯ							 = ோ௘௔ௗ[ଶ]ܯ ௔௣ீܯ)	+ ∗ ݊݋݅ݐܽݎ݁ݐܫݐݏ݈ܽ) − ௔௣ீܯ																								 (4) ((2 = ோ௘௔ௗ[ଷ]ܯ| − ோ௘௔ௗ[ଶ]| (5)ܯ

As shown in equations, if the ܯௐ௥௜௧௘[ଶ] is within the memory
address range of ܯோ௘௔ௗ[ଷ] and ܯோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] (Equation 2), the
loop could have a cross-iteration dependency since the load
instruction of a future loop iteration could perform a memory access
in the same memory address of the store instruction executed in the
second loop iteration. The memory address of the load instruction of
the last iteration is predicted based on the sum of the ܯோ௘௔ௗ[ଶ] and
the equation (ீܯ௔௣ ∗ ݊݋݅ݐܽݎ݁ݐܫݐݏ݈ܽ) − 2)) (Equation 5). Thus, in
case of ܯௐ௥௜௧௘[ଶ] is out of the memory address interval of ܯோ௘௔ௗ[ଷ]
and ܯோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡] (Equation 3), one can ensure that the loop
has no cross-iteration dependency.

Figure 6 illustrates an example of how Cross-iteration
Prediction works. In such example, the DSA detects that there is no
cross-iteration dependency between 2nd and 3rd iteration. Thus, by
the end of the 3rd loop iteration, the Cross-iteration Prediction is
activated applying Equation 5 resulting in 	ீܯ௔௣ = 104ݔ0| |100ݔ0− = This gap is used to calculate the memory address .004ݔ0
of the load instruction of the last iteration (ܯோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡])
using Equation 4. Such memory address
results ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡]ܯ = 100ݔ0 + 020ݔ0 = 120ݔ0 . By
applying the Equations 1 and 2, the Cross-iteration Prediction
detects that the ܯௐ௥௜௧௘[ଶ] = 108ݔ0 is within the range of the
addresses accessed by the MemRead (load) in the 3rd and last (10th)
iterations ோ௘௔ௗ[ଷ]ܯ) ≤ ݔ ≤ (ோ௘௔ௗ[௟௔௦௧ூ௧௘௥௔௧௜௢௡]ܯ = 100ݔ0 ≤ ݔ .which causes a cross-iteration dependency ,(120ݔ0≥

Figure 6 - Example of a Cross-iteration Dependency Prediction Process

V. CONDITIONAL CODE AND DYNAMIC RANGE LOOP

ANALYSIS

The compiler does not have enough information to detect and
vectorize certain types of loop, especially those whose behavior
depends on user inputs. At compile time, Dynamic Range loops
cannot be vectorized, since the loop size is required beforehand to
allocate a certain number of SIMD operations. Concurrently,
Conditional Code Loops can hardly be vectorized at compile time,
since the execution of conditional portions are solved at runtime.

As it can be seen in Figure 7, the pseudocode (A) presents a
simple vectorizable loop in which both the compiler and DSA would
be capable of obtaining DLP. The pseudocode (B) has a dynamic
range loop, where this size is determined by an input or even a data
calculated at runtime. The pseudocode (C) has a loop containing
conditional statements which the execution is also determined at
runtime. The same evaluation can be made for the pseudocode (D)
which has a loop containing a function call that depends on a variable
calculated at runtime. In this way, the pseudocodes (B), (C) and (D)
cannot be vectorized by the compiler auto-vectorization techniques
since they depend on data manipulation at runtime. However, as the
DSA (Dynamic SIMD Assembler) analyzes the application code at
runtime, it is able to evaluate all aforementioned situation. Thus, the
contribution of this work is the extension of the DSA to vectorize:
conditional code and dynamic range loops.

Figure 7 – Vectorizable, Dynamic Range, Conditional Code and Function

Loops

A. Vectorizing Conditional Code Loop
Few steps should be added in the original DSA State Machine to

support the vectorization of conditional code loop. As it can be seen
in Figure 8, during the Dependence Analysis Stage, we have added
the Conditional Coverage Stage. The Conditional Coverage Stage is
responsible for:

- identifying if the loop body has conditional statements;
- verifying if the identified conditional statements can

be vectorized.

Figure 8 – Conditional Loop DSA State Machine

As it can be seen in Figure 9, the first Conditional Coverage state
is the Conditional Code Detection, that occurs during the DSA’s
Dependency Analysis Stage (3rd Loop Iteration). In this state, we
identify if there is a condition statement within the loop body. If there
exists, the Conditional Code Analysis is activated. In this state, the
DSA checks if the condition of the current iteration is vectorizable.
The analyzed condition is then marked as vectorizable or not. If the
DSA detects a cross-iteration dependency in this condition, it sets
such loop in the DSA Cache as non-vectorizable.

As the conditions are verified during the loop execution, the
DSA also counts the number of conditions and classifies them using
their instruction addresses (further discussed at Conditional Loop
Vectorization Analysis subsection). While there are still pending
conditions, the DSA continues searching for them and verifying if

they can be vectorizable. In this way, this step is repeated until all
conditions have been verified. If there is no pending condition and
all detected conditions are vectorizable, the DSA saves the loop at
the DSA Cache as vectorizable. Thus, the remaining iterations can
be executed in a vectorized fashion during the DSA Store
ID/Execution Stage. Since we cannot predict which condition code
portion is executed at the remaining iterations, the DSA performs
speculative execution (further discussed at the Conditional Code
Loop SIMD Execution subsection).

Figure 9 – Conditional Code Coverage Stage

1. Conditional Code Loop Vectorization Analysis

Figure 10 shows an example of a Conditional Code Loop
(instruction addresses from 2 to 8) containing two possible
conditions (A and B). In addition, the execution timeline of the loop
is shown at the bottom of this Figure. During the 1st and 2nd iteration,
the DSA’s Loop Detection Stage and Loop Analysis Stage are
performed. At the 3rd iteration the Conditional Code Detection is
active. The Conditional Code Detection verifies if there is any
instruction address gap. As it can be seen in the timeline, an
instruction address gap is detected (from 3 → 4 (Condition A)) at the
execution of the 3rd iteration (Conditional Code Detection) since the
condition B is executed. This gap confirms the existence of
conditional statement within the loop. In parallel with the
Conditional Code Loop confirmation, the DSA verifies if the
Condition B code is vectorizable. At the 4th iteration, the Conditional
Code Analysis is activated, there is no need to repeat the
vectorization analysis since the Condition B is previously verified
(at the 3rd iteration). Considering that there are still pending
conditions since addresses from 3 → 4 were not accessed yet, the
Conditional Code Analysis state is kept active. At the 5th iteration,
the Condition A is executed for the first time, so the DSA verifies if
the Condition A code is vectorizable. At the 6th iteration, the DSA
detects that there is no pending condition to analyze since all
instruction addresses were accessed (2 → 8) and conditions A and B
are vectorizable, the remaining loop iterations can be executed as
SIMD fashion.

Figure 10 – Conditional Code Loop Vectorization Analysis

To verify if all condition has been analyzed, an instruction
address mapping becomes necessary. Figure 11 illustrates the
analysis mapping considering the example shown in Figure 10. At
the 3rd iteration, the condition B is executed, its instructions are
analyzed and classified as vectorizable. The DSA indexes the
condition by the address of its first instruction, this information is
stored into a temporary vector map. For instance, the Condition B is
indexed by the address 5. At the 4th iteration, the DSA has identified
that the Condition B has already been analyzed by comparing the
stored ID with the instruction addresses executed in this iteration. At
the 5th iteration, condition A is executed, its instructions are
analyzed, classified as vectorizable and stored in the vector map
indexed by its first address (in the case 3). As all instructions in the
loop instruction address range (2 → 8) were executed and analyzed,
at the 6th iteration we store the loop information in the DSA Cache.
This information is necessary to further vectorizing the loop without
repeating the vectorization analysis. The information is composed
of:

- Loop ID: to identify the vectorizable loop during the
program execution;

- Loop Size: to generate SIMD instructions during
execution;

- Conditions ID: necessary to make the speculative
execution (further discussed at Conditional Code Loop
SIMD Execution).

Figure 11 – Conditional Code Loop Analysis Mapping and Data Storage

2. Conditional Code Loop SIMD Execution

Figure 12 shows the SIMD Execution considering the example
shown in Figure 10. Therefore, at the 6th iteration, the condition B is
executed. Since is the first time the condition B is executed during
SIMD Execution, its instructions are vectorized. Since the condition
B is executed at the 6st iteration, its operations are vectorized
considering the range (Vectorize B - 6 → 20), generating preemptive
results to 14 iterations (B - RESULTS). In parallel, its execution is
mapped into a vector map (6th Iteration - B) to further select the
results produced by each condition (speculative execution). In the 7th
iteration, condition B is executed again. Since this condition has
already been vectorized at the 6th iteration, its instructions are not
executed (Idle), and only the mapping is performed (7th Iteration -
B). In the 8th iteration, condition A is executed. As it is the first time
condition A is executed during SIMD Execution, its instructions are
vectorized considering the range of the current iteration until the end
of the loop (Vectorize A - 8 → 20 iterations), generating preemptive
results to the 12 remaining iterations (A - RESULTS). In parallel, its
execution is mapped in the Vector Map (8th Iteration - A). The 6th
and 7th iterations are not considered in this vectorization since they
executed condition B. At the 9th iteration, condition B is executed.
Because it has already been executed, condition B is only mapped

(Idle) in Vector Map (9th Iteration - B). At last iteration (20th
iteration) condition A is executed again and because it has already
been executed it is only mapped (Idle) (20th Iteration - A). At the end
of the loop, we use the Vector Map to select only the mapped results,
while the others are discarded.

Figure 12 – Conditional Code Loop SIMD Execution

B. Vectorizing Dynamic Range Loop (DRL)
As shown in Figure 13, there are two types of Dynamic Range

loops. In the Type A (DRLA), the loop size is determined by the user
input or even by a variable handled at runtime, before of the loop
execution. The vectorization size of such example is unfeasible to be
determined at compile time. However, DSA can vectorize such DRL
since such value is available at runtime. In the Type B (DRLB), the
loop size or the loop stop condition is determined in the body of the
loop. In this case, it is unfeasible to determine the vectorization size
at both compile time and runtime. In this case, the DSA uses a
speculative execution to vectorize this type of loop.

Figure 13 – DRL Type A, DRL Type B

1. DRLA - size calculated before loop execution

Since the DRLA size is calculated before the loop execution, the
loop can be analyzed maintaining the original DSA state machine.
However, the DRLA must be analyzed every time it repeats, since
the Dependence Analysis Stage needs to verify if the vectorization
is feasible based on loop range.

As it can be seen in Figure 14, at the 1st time the loop executes,
the Dependence Analysis Stage cannot detect any cross-iteration
dependence (refer to the Section “Cross-iteration Dependency
Prediction”). Thus, considering the loop range 5, the DSA Loop
Analysis predict the loop as vectorizable. However, at the 2nd time
the loop executes, a cross-iteration dependence is detected at the 10th
iteration (MemRead Access = 0x120 = MemWrite Access). Such an
example shows that different loop sizes imply in different DSA Loop
Analysis.

Figure 14 – DRLA Cross-iteration Analysis

2. DRLB - size calculated during loop execution

Since the DRLB size or stop condition is calculated during the
loop execution, it is unfeasible for the DSA to determine the number
of times the loop would execute. As a way to vectorize the DRLB
the DSA:

- speculates the number of times the loop will execute
based on the last loop execution;

- verifies cross-iteration dependency based on the
speculative value every time the loop executes.

Figure 15 shows the DRLB analysis and execution. During the
1st Loop Analysis, the 2nd and 3rd iterations are responsible for
verifying if there is a cross-iteration dependency in the loop. Since a
loop range is necessary to predict a cross-iteration dependency and
there is no defined range in the DRLB, the DSA assumes a
speculative range. Thus, the DSA chooses a loop range that
maximizes vector units’ utilization. In this example, the DSA
assumes a 128-bit wide ARM NEON, since the instruction operands
widths are 8 bits (8 bits operands), the DSA chooses a Speculative
Range of 16 (Speculative Range - 16) in order to use all vector units.
In this way, at the 3rd iteration (Dependency Analysis Stage), the
DSA predicts that there is no cross-iteration dependency considering
the range 16 (Cross-iteration Prediction) and the loop can be
vectorized. At the 1st Loop Execution (Execution Stage – 4th
iteration), the DSA executes the loop operation considering the
speculative loop range (Vectorize - 4 → 20). From the 5th iteration
to the 10th , the already vectorized operations are not executed (Idle)
and the only instructions that are processed in the loop are those
responsible for the stopping condition calculation. When the stop
condition is reached (10th iteration), the results from iterations (4 →10) are kept, while the operation results (11 → 20) are discarded.
Since the current loop execution has 10 iterations, on the next
execution the speculative range value is 16, since is the minimum
operation range to be allocated at the vector units considering an
operand width of 8 bits. At the second time this loop is detected by
the DSA which, in the DSA Loop Analysis Stage, predicts that there
is no cross-iteration dependency. At the 4th iteration (Execution
Stage), the DSA executes the loop operation considering the
speculative loop range (Vectorize - 4 → 20). From the 5th iteration
to the 16th iteration, the already vectorized operations are not
executed. This time the loop executes until the 18th iteration (Real
Range - 18). Despite the DSA computed results from 4th to the 20th
iteration, only the results from 4th to 16th are considered, since the
cross-iteration prediction was based on the range 16. The operations
of the 17th and 18th are sequentially executed by the ARM Processor.

Figure 15 – DRLB Cross-iteration Analysis and Execution

There are three Dynamic Range loop predicting possibilities:
• if the loop executes a smaller number of iterations than

previously performed, only the results of the current
range are saved and the previous loop range is replaced
by the current range;

• if the loop executes a greater number of times, the
remaining iterations are performed by the general
purpose processor and the previous loop range is
replaced by the current range;

• if the loop executes the expected number of iterations,
the speculative range is retained.

VI. RESULTS

A. Methodology
To evaluate the effectiveness of the proposed approach, we have

applied the Conditional Code Loop and Dynamic Range Loop
techniques to the DSA (ARM NEON Extended DSA), and coupled
the DSA to the ARM Cortex A12 (ARMv7 ISA) O3 model of gem5
[11] simulator. To gather performance results, we have compared the
proposed technique with:

- the original ARM NEON DSA without Conditional Code Loop
and Dynamic Range Loop support (ARM NEON Original DSA);

- the ARM Cortex A12 processor without DLP exploitation
(ARM Original Execution);

- the ARM Cortex A12 processor coupled to NEON architecture
(ARM NEON AutoVec) exploiting DLP through the support of
ARM NEON auto-vectorization compiler.

 It is important to notice that we employ the same ARM NEON
engine in ARM NEON Original DSA, Extended DSA and ARM
NEON AutoVec approaches, which provides the same opportunities
to exploit DLP. Table 2 shows the configurations of ARM Original
Execution, ARM NEON AutoVec, ARM NEON Original and
Extended Dynamic SIMD Assembler.

Table 2 – Systems Setups

We have chosen benchmarks that cover two different scenarios
of DLP exploitation to evaluate the systems shown in Table 2. We
have selected:

- three applications with Conditional Code and
Dynamic Range loops (Bit Counts[13], Dijkstra[13]
and Susan E[13]);

- four applications with opportunities to exploit DLP but
without Conditional Code and Dynamic Range loops
(MM[13], RGB-Gray[14], Gaussian Filter[14] and Q
Sort[13]).

B. Performance
Figure 16 shows the performance improvements of the ARM

NEON Compiler, ARM NEON Original DSA [8] and ARM NEON
Extended DSA over the ARM Original Execution. As it can be
noticed, when the applications contain Conditional Code or
Dynamic Range loops (Dijkstra and BitCounts), the Extended DSA
presents performance improvements of 45% for BitCounts and 32%
for Dijkstra over the ARM Original Execution. In cases where we
have a great opportunity of exploiting DLP, our approach achieves
up to 61% of performance improvements over the ARM Original
Execution. When Gaussian Filter and Susan Edges are considered,
the performance gains are lower since such applications provide
smaller opportunities to exploit DLP. On average, the Extended
DSA provides performance improvements of 37% over the ARM
Original Execution showing the importance of DLP exploitation.

The Original DSA cannot vectorize any loop of Dijkstra and
BitCounts benchmarks since both just contain conditional code and
dynamic range loops. Considering these benchmarks, the Extended
DSA shows a performance improvement of 38.5% over the Original
DSA. Susan E presents DLP exploitation opportunities in both
Dynamic Behavior Loops and Count Loops. Thus, such benchmark
is benefited from the improvements of both Original and Extended
DSA, but the Extended DSA shows performance improvements of
4% over the Original DSA. In the remaining benchmarks there are
no performance differences between Original DSA and Extended
DSA, since such benchmarks do not contain conditional code and
dynamic range loops.

The Extended DSA outperforms ARM auto-vectorization in all
benchmarks but MM 64x64. Due to the extension proposed in this
work, it achieves 40% of performance improvements over ARM
auto-vectorization technique when executing BitCounts. The ARM
auto-vectorization technique provides performance penalty of 3%
considering Dijkstra benchmark, while our approach achieves a
performance gain of 32%.

For the application with low DLP exploitation opportunities, our
proposal maintained the same performance of the ARM Original
Execution since DSA does not cause performance penalties when
vectorizable loops are not found. In such scenario, ARM NEON
auto-vectorization provides performance penalties of 1% in the Q
Sort execution. In addition, besides achieving 40% performance
improvements over the ARM auto-vectorization technique, the
proposed approach keeps software compatibility and does not affect
the SW development life cycle due to its transparent and dynamic
DLP detection.

Figure 16 – ARM NEON Compiler AutoVec. vs. ARM NEON Original DSA

vs. ARM NEON Extended DSA Performance

Table 3 presents the time consumed by ARM NEON Extended
DSA to detect vectorizable loops and generate SIMD instructions
considering the total execution time of each benchmark. As it can be
seen, Dijkstra and BitCounts spend more time detecting vectorizable
loops since they contain more Conditional Code and Dynamic Range
loops. Benchmarks containing only static ranged vectorizable loops
spent, on average, 1.5% of the execution time detecting vectorizable
loops. Q Sort has no vectorizable loops but it spends 1.02% of its
time analyzing non-vectorizable loops. However, since the DSA
process is done in parallel with the ARM Cortex execution, no
performance penalty is shown in the total execution time, as it can
be noticed in Figure 16.

Table 3 – DSA Latency

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed the coupling of two vectorization
techniques to the Dynamic SIMD Assembler (DSA) approach. With
such extension, the DSA is capable of vectorizing Dynamic Range
and Conditional Code Loops. The proposed approach shows
performance improvements of 37% over ARM original execution
(without DLP exploitation). In addition, the extended DSA version
outperforms: the original DSA up to 45% and the ARM auto-
vectorization technique in 12%. For future work, we intend to
support partial vectorization techniques.

ACKNOWLEDGEMENT

We are grateful to the institutions listed below for the financial
support that they are providing us: Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à
pesquisa do Estado do Rio Grande do Sul (FAPERGS).

REFERENCES
[1] Sui, Yulei, et al. "Loop-oriented array-and field-sensitive pointer

analysis for automatic SIMD vectorization." ACM SIGPLAN Notices.
Vol. 51. No. 5. ACM, 2016.

[2] Zhou, Hao, and Jingling Xue. "Exploiting mixed SIMD parallelism by
reducing data reorganization overhead." Proceedings of the 2016
International Symposium on Code Generation and Optimization. ACM,
2016.

[3] Baghsorkhi, Sara S., Nalini Vasudevan, and Youfeng Wu. "FlexVec:
auto-vectorization for irregular loops." ACM SIGPLAN Notices. Vol.
51. No. 6. ACM, 2016.

[4] Nuzman, Dorit, Ira Rosen, and Ayal Zaks. "Auto-vectorization of
interleaved data for SIMD." ACM SIGPLAN Notices 41.6 (2006): 132-
143.

[5] Tian, Xinmin, et al. "Compiling C/C++ SIMD extensions for function
and loop vectorizaion on multicore-SIMD processors." Parallel and

Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. IEEE, 2012.

[6] Bramas, Berenger. "Inastemp: A Novel Intrinsics-as-Template Library
for Portable SIMD-Vectorization." Scientific Programming 2017
(2017).

[7] Reddy, Venu Gopal. "Neon technology introduction." ARM
Corporation (2008).

[8] Ommited to allow blind review.

[9] Lomont, Chris. "Introduction to Intel advanced vector
extensions." Intel White Paper (2011): 1-21.

[10] Diefendorff, Keith, et al. "Altivec extension to PowerPC accelerates
media processing." IEEE Micro 20.2 (2000): 85-95.

[11] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH
Computer Architecture News 39.2 (2011): 1-7.

[12] Mitra, Gaurav, et al. "Use of SIMD vector operations to accelerate
application code performance on low-powered ARM and Intel
platforms." Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International.
IEEE, 2013.

[13] Guthaus, Matthew R., et al. "MiBench: A free, commercially
representative embedded benchmark suite." Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop
on. IEEE, 2001.

[14] Bradski, Gary, and Adrian Kaehler. "OpenCV." Dr. Dobb’s journal of
software tools 3 (2000).

[15] Maleki, Saeed, et al. "An evaluation of vectorizing compilers." Parallel
Architectures and Compilation Techniques (PACT), 2011 International
Conference on. IEEE, 2011.

[16] Lattner, Chris, and Vikram Adve. "LLVM: A compilation framework
for lifelong program analysis & transformation." Proceedings of the
international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
2004.

80

8 ARTICLE 3 - BOOSTING SIMD BENEFITS THROUGH A RUN-TIME
AND ENERGY EFFICIENT DLP DETECTION

Boosting SIMD Benefits through a Run-time and

Energy Efficient DLP Detection

Michael Guilherme Jordan, Tiago Knorst, Julio Vicenzi and Mateus Beck Rutzig

Electronics and Computing Department - Federal University of Santa Maria – Santa Maria – Brazil

{michael.jordan, tiago.knorst, julio.vicenzi}@ecomp.ufsm.br; mateus@inf.ufsm.br

Abstract — Data Level Parallelism has been improving performance-

energy tradeoff of current processors by coupling SIMD engines, such

as Intel AVX and ARM NEON. Special libraries and compilers are

used to support DLP execution on such engines. However, timing

overhead on hand coding is inevitable since most software developers

are not skilled to extract DLP using unfamiliar libraries. In addition,

DLP detection through compiler, besides breaking software

compatibility, is limited to static code analysis, which compromises

performance gains. In this work, we propose a runtime DLP detection

named as Dynamic SIMD Assembler, which transparently identifies

vectorizable code regions to execute in the ARM NEON engine. Due

to its dynamic fashion, DSA keeps software compatibility and avoids

timing overhead on software developing process. Results have shown

that DSA outperforms ARM NEON auto-vectorization compiler by

32% since it covers wider vectorized regions, such as Dynamic Range,

Sentinel and Conditional Loops. In addition, DSA outperforms hand-

vectorized code using ARM library by 26% reducing 45% of energy

consumption with no penalties over software development time.

Keywords— DLP, SIMD, Vectorization, ARM NEON

I. INTRODUCTION

Speech and vision recognition have been taking important

role in the current era of cognitive computing to analyze human

behaviors [1]. In particular, such application domains are

benefit from Single Instruction Multiple Data (SIMD) machines

since their algorithms are plentiful of Data-Parallel Statements.

Currently, SIMD engines are present in market processors,

which can support the execution of such application domains.

ARM NEON [2], Intel SSE/AVX [3] and IBM Altivec [4] are

vector engines coupled to general purpose processors with the

purpose of benefiting energy-performance tradeoff on data-

parallel applications. The execution of such engines is

supported by vector instructions that can be generated by:

automatic vectorization through compiler and hand-coding

using low-level functions available on specific programming

libraries.

Both compiler techniques and libraries directives focus on

exploiting Data Level Parallelism (DLP) opportunities on loops

statements, since same operations are repeated over data

independent structures. However, the vectorization of most loop

statements, such as dynamic range, sentinel and conditional

loops relies on runtime information, which restrict compiler and

hand-coding DLP coverage. In addition, besides breaking

software compatibility, timing overhead on hand-coding is

inevitable since most software developers are not skilled to

extract DLP using unfamiliar libraries.

In this work, we propose a runtime DLP detection, named as

Dynamic SIMD Assembler (DSA), which transparently

identifies vectorizable code regions, builds SIMD instructions

and triggers the SIMD engine. Due to its dynamic fashion, DSA

keeps binary compatibility and avoids timing overhead on

software developing process. In addition, unlike compiler and

hand-coding techniques, DSA is capable of vectorizing all

aforementioned loop statements since it is aware of runtime

information, which boost the DLP coverage and, consequently,

performance-energy tradeoff over techniques based on static

analysis. Summarizing, this work contributes to:

 show that is mandatory a runtime vectorization

exploitation to boost the applications DLP coverage;

 propose an energy efficient runtime vectorization

technique capable of boost applications performance by

increasing vectorization coverage of techniques based

on static analysis with no penalties over software

development time.

This work is organized as follows; Section II presents the

Related Work. Section III presents the Dynamic SIMD

Assembler System. Methodology and Results are shown in

Section IV. Finally, we present conclusions and future work in

Section V.

II. RELATED WORK

In the academic field, many researches have been exploiting

Data Level Parallelism (DLP) to achieve performance

improvements and energy savings. Sui Yulei [5] extends the

LLVM compiler [6] to automatically vectorize Loop-Oriented

Pointer. This technique is able to increase the number of

vectorizable basic blocks achieving performance improvements

from 2.95% to 7.23%.

Similar to [5], Zhou Hao [7] presents the Loop-Mix

compiler that vectorizes loops focusing on reorganizing data

when mixed SIMD parallelism (inter-loops and intra-loops) is

considered. This technique outperforms the Loop-ILV by 36%.

Sara S. Baghsorkhi [8] proposes FlexVec, a partial

vectorization technique to dynamically adjust vector length for

loops affected by cross-iteration dependencies. FlexVec

extends the AVX-512 ISA showing a Geomean performance

improvement over the original AVX ISA from 9% to 11%.

Dorit Nuzman [9] proposes a compiler based techquite aiming

to vectorize outer loop. It shows performance improvements of

3.13 and 2.77 when coupled to a Cell BE SPU and a

PowerPC970, respectively.

Tian Xinmin [10] presents a set of C/C++ directives

extensions for SIMD programming capable of automatic

translating both functions and loops. Significant speedups (from

3.07x to 4.69x) are achieved when these optimizations are

applied. Bramas Berenger [11] proposes Inastemp, a

lightweight open-source C++ library that provides SIMD

Vectorization to several ISA, such as SSE, AVX, AVX512 and

ALTIVEC/VMX. The authors claim that Inastemp shows the

same performance on exploiting DLP than libraries developed

for specific ISA.

ARM NEON [2] is a SIMD engine coupled to the ARMv7

architecture that is triggered through specific ARM SIMD

instructions. ARM supports two approaches to produce ARM

NEON code: compiler auto-vectorization and ARM NEON

software library.

Despite the advantages of automatic auto-vectorization

through the compiler shown in [2][5][7][8][9], their static code

exploitation limits the performance gains since it is not capable

of identifying vectorizable regions that depends on data that is

only available at runtime, such as: conditional, dynamic range

loops and sentinel loops. In addition, hand coding using

software libraries proposed in [2][10][11] inevitably causes

timing overhead since most software developers are not skilled

to extract DLP using unfamiliar low-level functions. Thus, in

this work, we propose Dynamic SIMD Assembler (DSA) that

automatically vectorizes code regions to execute in a SIMD

engine. DSA is a hardware module coupled to an ARM

Processor responsible for detecting vectorizable code regions,

generating ARM SIMD instruction and triggering NEON

engine at runtime. Due to its dynamic nature, DSA keeps binary

compatibility and avoids timing overhead on software

developing process. Moreover, performance improvements

with energy savings are feasible to achieve in a wide range of

application domains since the proposed approach covers larger

vectorizable code regions than static analysis techniques, such

as count loops, conditional statements, dynamic range and

sentinel loops.

III. DYNAMIC SIMD ASSEMBLER

A. DSA Overview

The Dynamic SIMD Assembler (DSA) is tightly coupled to

the ARMv7-A processor [12]. Figure 1 shows the system

overview. As it can be seen, the DSA is composed of a SIMD

instruction logic detection and two cache memories (DSA

Cache and Verification Cache). The DSA Cache is responsible

for storing information about the built SIMD instructions over

the vectorizable loops. The Verification Cache (V-Cache)

stores the addresses of data memory accesses performed into the

vectorizable loops (more details about caches in Section IV).

Figure 1. System Overview

 Figure 2 shows an overview of how the DSA works. In the

first scenario (Scenario 1 – DSA Loop Analysis), the DSA and

ARMv7-A processor operate in parallel. While the ARM

processor executes the incoming instructions, the DSA is in a

probing mode, searching for a vectorizable loop to build SIMD

instructions. In such execution mode, the NEON Engine

remains deactivated. If the DSA detects a vectorizable loop, the

second scenario is triggered (Scenario 2 – DSA Loop

Execution). In this scenario, the DSA deactivates the ARMv7-

A processor and activates the NEON Data Engine to execute the

built SIMD instruction (Vectorized Instructions). It is important

to notice that the DSA works in parallel with the ARMv7-A

CPU execution, which means that the processor’s critical path

is not affected by the DSA.

Figure 2. Execution Flow

B. Dynamic SIMD Assembler DLP Coverage

As explained before, the Dynamic SIMD Assembler is

capable of exploiting vectorizable regions at runtime, which

extends DLP Exploitation of hand coding using ARM library

and auto-vectorization compiler. Figure 3 shows loop examples

of (A) count loop; (B) dynamic range loop; (C) conditional

loop; (D) loop with a function call. As it can be seen, the

pseudocode (A) presents a simple vectorizable loop in which

both the compiler and DSA would be capable of vectorize. The

pseudocode (B) has a dynamic range loop, where the loop size

is determined by an input or even a data calculated at runtime.

The pseudocode (C) has a loop containing conditional

statements which the execution is also determined at runtime.

The same evaluation can be made for the pseudocode (D),

which has a loop containing a function call that depends on a

variable calculated at runtime. In this way, the pseudocodes (B),

(C) and (D) cannot be vectorized by the compiler auto-

vectorization techniques since they depend on data

manipulation at runtime. However, as the DSA (Dynamic

SIMD Assembler) analyzes the application code at runtime, it

is capable of vectorizing all aforementioned situation.

Summarizing, the DSA covers full vectorization of: Count

Loops, Function Loops, Outer and Inner Loops, Dynamic

Range Loops and Sentinel Loops. In addition, as it can be seen

in next section, the DSA also supports partial vectorization of

loops with cross-iteration dependencies.

Figure 3 – Examples of Loops

C. Dynamic SIMD Assembler Overview

The Dynamic SIMD Assembler (DSA) detection process is

based on a State Machine (SM) composed of six stages: Loop

Detection, Data Collection, Dependency Analysis, Store

ID/Execution, Mapping and Speculative Execution. Each one

of these stages is activated in different loop iterations.

As it can be seen in Figure 4, the Loop Detection stage is

triggered by the end of the first loop iteration. The Loop

Detection stage is responsible for:

 detecting the presence of a loop;

 checking the existence of innermost-loop and outer-
loops;

 accessing the DSA cache, checking if the current loop
is already vectorizable.

The Data Collection stage is triggered in the second loop

iteration. This stage is responsible for:

 evaluating the loop range (number of iterations),
vectorizable instructions and their operands;

 identifying the existence of function calls and
conditional code inside the loop;

 storing the addresses of data memory accesses in the
Verification Cache.

The Dependency Analysis stage is triggered in the third loop

iteration. This stage is responsible for:

 analyzing the cross-iteration dependency (dependencies
between two or more iterations in the same loop
statement).

The Store ID/Execution stage is triggered in the fourth loop

iteration. This stage is responsible for:

 concluding the vectorization of Count loops, Function
loops, Outer/Inner loops, Dynamic Ranged Loops,
Sentinel loops and Partial loops;

 generating and saving the loop identification (ID) in the
DSA Cache;

 building SIMD instruction and activating the execution
of the ARM NEON engine.

The Mapping stage is only activated for Conditional loops.

This stage is responsible for:

 mapping the executed conditional code statements;

 detecting cross-iteration dependencies between
conditional statements.

The Speculative Execution stage is only activated for

Conditional and Sentinel loops. This stage is responsible for:

 selecting data generated during the vectorization in the
end of loop execution (Sentinel and Conditional Loop);

 tracking Sentinel loop range;

 storing mapped conditions of Conditional Loop for
further executions.

Figure 4 shows a DSA execution example by considering:

Count and Function Loop (a), Dynamic Range Loop (b),

Conditional Loop (c) and Sentinel Loop (d).

Following the Count_Loop() (a) procedure example, the

Loop Detection stage (A) detects the loop by the end of the

execution of the first iteration by analyzing instruction address

gaps and branches. In the second iteration, the Data Collection

stage (B) identifies the loop range (400) and the value of the

increment/decrement (i++). In addition, such stage: stores the

addresses of the data memory accesses (Mem[a[i]], Mem [b[i]]

and Mem[v[i]]) in the Verification Cache; and identifies

function calls inside the loop (x[i] = function[i]) by verifying

branches and the memory address gap between instructions

fetched from memory. The detection of function calls is

mandatory to analyze cross-iteration dependencies since the

increment/decrement register can be modified for an operation

inside the function call. In the third iteration, the Dependency

Analysis Stage (B) analyses data dependencies between

iterations (more detailed in subsection D). For the current

example, the DSA identifies that no cross-iteration dependency

exists and triggers the Store ID/Execution Stage. Such stage

stores the Loop ID in the DSA cache to avoid repeating loop

analysis and builds SIMD instructions to execute the remaining

iterations in the ARM NEON engine. The DSA needs four

parameters to generate SIMD instructions: data type, loop

range, operation and ARM NEON execution support. For such

an example the parameters are: float, 400, add, 128-bit wide,

respectively. Thus, the DSA generates an instruction equivalent

to the vaddq_f32 instruction of the NEON architecture. Since

the corresponding ARM NEON engine can operate 128 bits in

parallel and the float type is 32-bit wide data, the DSA divides

the loop range by the factor four, running the vaddq_f32 one

hundred times, instead of executing a non-vectorizable add

operation four hundred times.

In the Dynamic_Range_Loop (b) procedure example, the

loop size is calculated at runtime but before the loop execution.

In this case, the loop analysis passes through the same steps as

the Count_Loop (a) example. However, instead of having a

single analysis when the loop executes for the first time, the

Dynamic_Range_Loop (b) must be analyzed on every

execution, since the loop range can change on each loop

execution, the Dependency Analysis Stage (C) needs to verify

if the vectorization is allowed based on current value of the loop

range.

Considering the Conditional_Loop (c) example, the Loop

Detection Stage (A) detects the loop by the end of the execution

of the first iteration. The Data Collection Stage (B), besides

collecting the necessary data to vectorize the loop, also detects

if all instruction addresses within the loop range were accessed.

In case a instruction address gap is detected, a conditional loop

is confirmed. In such case, the Mapping stage (E) is activated.

Figure 4- DSA Analysis and Execution Process

This stage is responsible for mapping every condition within the

loop body and detecting any cross-iteration dependency. If no

cross-iteration dependency is detected, all conditions within the

loop can be vectorized considering the remaining loop range.

During the remaining loop execution, the DSA maps every

accessed condition. While the mapping is activated, the

vectorized instructions (if: v[i] = a[i] + b[i] and else:

v[i]=a[i]-b[i]) are not executed. At the end of the loop, the

Speculative Execution Stage (F) selects the appropriate results

based on the mapping process.

The Sentinel_Loop (d) vectorization is based on Speculative

Execution. The DSA assumes a speculative loop range when

detecting such loop type since it is not feasible to have such

information beforehand. In the Data Collection Stage, besides

collecting all the necessary data to vectorize the loop, the DSA

chooses a loop range that maximizes utilization of the

functional units available in the ARM NEON engine. Assuming

a 128-bit wide ARM NEON, the DSA chooses a speculative

loop range of four, in order to use all vector units, since the

operands width is 32 bits (32 bit float). In the third iteration, in

the Dependency Analysis Stage (C), the DSA analyses and

predicts any cross-iteration dependency based on the

speculative loop range. If no Cross-Iteration Dependency is

found, the Store ID/Execution stage (D) is activated and the

instructions are vectorized based on the speculative loop range.

In addition, the loop ID is saved in the DSA cache. The

speculative execution can provide three situations:

 if the loop executes fewer iterations than the
speculated number of iterations, the execution results
of the speculated number of iterations are written back,
the remaining results are discarted and the loop range
is updated in DSA cache;

 if the loop executes greater iterations than the
speculated number of iterations, the execution results
of the speculated number of iterations are written back,
the further iterations are executed by the general
purpose processor and the loop range is updated in
DSA cache;

 if the loop executes the speculated number of
iterations, the ARM NEON results of the speculated
number of iterations are written back and the
speculative range is maintained in the DSA cache.

D. Cross-iteration Dependency Prediction

At the memory access point of view, a cross-iteration

dependency exists when the same data memory address is

accessed in different loop iterations. The DSA cross-iteration

analysis starts in the 2nd loop iteration, where the addresses of

data memory accesses are saved in the Verification Cache (VC).

Even having the memory addresses in the VC and comparing

them to the memory addresses performed on every iteration, one

cannot discard cross-iteration dependencies in future iterations.

Assuming such situation, we have implemented Cross-iteration

Dependency Prediction. The equations below describe the steps

of the prediction process, where 𝑀𝑅𝑒𝑎𝑑[2] and 𝑀𝑅𝑒𝑎𝑑[3]is the

memory address accessed by a MemRead (load) instruction in

the second and third loop iterations, respectively.

𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] is the memory address accessed by a load

instruction in the last executed iteration (Equation 4), x is the

interval between 𝑀𝑅𝑒𝑎𝑑[2] and 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] (Equation 1),

𝑀𝑊𝑟𝑖𝑡𝑒[2] is the memory address accessed by a MemWrite

(store) instruction in the second iteration (Equations 2 and 3),

𝑀𝑅𝑎𝑛𝑔𝑒 is the memory address range between the 𝑀𝑅𝑒𝑎𝑑[2] and

𝑀𝑅𝑒𝑎𝑑[3] (Equation 5), 𝐶𝐼𝐷 means Cross-Iteration Dependency

and NCID means No Cross-Iteration Dependency.

 𝑀𝑅𝑒𝑎𝑑[3] ≤ 𝑥 ≤ 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] 

 𝑀𝑊𝑟𝑖𝑡𝑒[2] ∈ 𝑥 → 𝐶𝐼𝐷  

 𝑀𝑊𝑟𝑖𝑡𝑒[2] ∉ 𝑥 → 𝑁𝐶𝐼𝐷 (3)

 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] = 𝑀𝑅𝑒𝑎𝑑[2] + (𝑀𝐺𝑎𝑝 ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 2)) 

 𝑀𝐺𝑎𝑝 = |𝑀𝑅𝑒𝑎𝑑[3] − 𝑀𝑅𝑒𝑎𝑑[2]| 

Considering the equations above, if the 𝑀𝑊𝑟𝑖𝑡𝑒[2] is within

the memory address range of 𝑀𝑅𝑒𝑎𝑑[3] and 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛]

(Equation 2), the loop would have a cross-iteration dependency

since the load instruction of a future loop iteration could

perform a memory access in the same memory address of the

store instruction executed in the second loop iteration. The

memory address of the load instruction executed in the last

iteration is predicted based on the sum of the 𝑀𝑅𝑒𝑎𝑑[2] and the

equation (𝑀𝐺𝑎𝑝 ∗ (𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 2)) (Equation 4). Thus, in

case of 𝑀𝑊𝑟𝑖𝑡𝑒[2] is out of the memory address interval of

𝑀𝑅𝑒𝑎𝑑[3] and 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] (Equation 3), one can ensure

that the loop has no cross-iteration dependency.

Figure 5 illustrates an example of how Cross-iteration

Dependency Prediction (CIDP) works. In such example, the

DSA detects that there is no cross-iteration dependency between

2nd and 3rd iteration. Thus, by the end of the 3rd loop iteration,

the CIDP is activated by applying Equation 5 (𝑀𝐺𝑎𝑝 =

|0𝑥104 − 0𝑥100| = 0𝑥004). Using Equation 4, one can

calculate the memory address of the load instruction of the last

iteration 𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛] = 0𝑥100 + 0𝑥020 = 0𝑥120. By

applying Equations 1 and 2, the CIDP detects that 𝑀𝑊𝑟𝑖𝑡𝑒[2] =

0𝑥108 is within the interval (𝑀𝑅𝑒𝑎𝑑[3] ≤ 𝑥 ≤

𝑀𝑅𝑒𝑎𝑑[𝑙𝑎𝑠𝑡𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛]) = 0𝑥100 ≤ 𝑥 ≤ 0𝑥120), which produces

a cross-iteration dependency.

E. Dynamic SIMD Assembler Partial Vectorization

Despite having cross-iteration dependencies, loops can be

partially vectorized by avoiding vectorization of iterations that

produces dependencies. Figure 6 shows how the partial

vectorization works. As it can be seen, the CIDP detects cross

iteration dependency between the 2nd Iteration and the 11th

Iteration due to the data memory address 0x124. However, there

is a gap between the 2nd Iteration to the 10th that could be

vectorized. Thus, for such an example, the DSA performs the

Figure 5- Example of a Cross-iteration Dependency Prediction Process

Figure 6. DSA Partial Vectorization Technique

vectorization detection process from 1st to 4th Iterations, which

allows the vectorization from the 4th up to 10th iteration which

provides data to the vectorization of the iterations from 11th up

to 19th. The same process repeats until the end of the loop

execution.

IV. RESULTS

A. Methodology

We have coupled the DSA to an ARMv7 ISA processor

using the O3CPU model of gem5 [12] simulator to evaluate the

proposed approach. To gather performance results, we have

compared the DSA with:

 an ARMv7 ISA processor without NEON engine (ARM
Original Execution);

 an ARMv7 ISA processor coupled to a NEON
architecture exploiting DLP through the support of the
ARM NEON auto-vectorization compiler (ARM
NEON AutoVec);

 an ARMv7 ISA processor coupled to a NEON
architecture exploiting DLP through hand-coded
applications using ARM NEON library (ARM NEON
Hand-Coded).

Table 1 shows the configurations of all setups. It is important

to notice that we coupled the same ARM NEON architecture in

ARM NEON AutoVec, ARM NEON Hand-Coded and DSA,

which provides the same DLP exploitation degree. We used

Cadence RTL Compiler [13] to gather energy results from the

VHDL description of the Dynamic SIMD Assembler and

McPAT of the ARMv7 processor.
Table 1 – System Setups

B. Benchmarks Characterization

Aiming to create a heterogeneous workload to evaluate the

proposed approach, we have selected benchmarks from

different suites following their opportunities to exploit DLP:

MM 64x64 [14] and RGB-Grayscale [14], which provide great

opportunities; Susan E [14] and JPEG [16] that provide medium

opportunities; and Bit Counts [14], Susan C [14], Susan S [14]

and Gaussian Filter [15], which have low opportunities.

Figure 7 presents a static profiling that considers the

percentage of each loop type in the aforementioned

benchmarks. Such analysis quantifies the presence of

vectorizable loops statically, which means that weight over the

execution time of each loop is not considered. As it can be seen,

there are different degrees of vectorization opportunities in the

selected benchmarks, 86% of the Susan E loops can be

vectorized but just 33% of MM 64x64 and RGB-G 320x240.

However, as explained before, considering 86% of Susan E

vectorizable loops, only 14.3% (Count Loops) could be

vectorized at compile and programming time. On the other

hand, all 33% of the loops of MM 64x64 and RGB-G 320x240

are vectorized at compile and programming time. However, on

average, only 21% of the application loops can be vectorized at

compile and programming time. A runtime analysis potentially

increases such coverage to 57%, since it can vectorize all

considered loops types. The benchmarks characterization

indicates the need for a runtime analysis to boost application

performance on exploiting DLP.

As shown in Section III, the DSA produces a time overhead

to detect vectorizable code regions and build NEON

instructions. Table 2 shows the percentage of the execution

time spent in the DSA detection process. As it can be seen, Bit

Counts and Susan E spend 26.20% and 15.58% of the execution

time detecting vectorizable loops. Such applications contain

sentinel loops that relies on Mapping Stage execution (Figure

4) which leaves active during the whole vectorization/execution

process. The remaining benchmarks spend, on average, only

1.53% of the whole execution time detecting vectorizable

regions showing the acceptable overhead of the proposed

approach.

Table 2- DSA Detection Latency

Figure 7 - Percentage of Loop Types in the Selected Applications

C. Performance

Figure 8 shows the performance improvements of the ARM

NEON DSA, the ARM NEON AutoVec and the ARM NEON

Hand-Coded over the ARM Original Execution. As it can be

noticed, the proposed technique provides performance

improvements over the ARM Original Execution in all

benchmarks. The performance gains increase as the DLP

opportunities increase as well. Bit Counts (low DLP

opportunities) shows performance improvements of 32% while

RGB-G 320x240 (great DLP opportunities) of 70%. RGB-G

and MM 64x64, besides having only 33.33% of vectorizable

loops (shown in Figure 7), such loops consume most of the

execution time, which explains the high acceleration in both

benchmarks. Results demonstrate the efficient runtime DLP

exploitation of the proposed approach by showing, on average,

45% of performance improvements over ARM Original

Execution running applications with heterogeneous DLP

opportunities.

Due to the larger DLP exploitation opportunities of DSA

over the static analysis of the ARM NEON AutoVec, the

proposed approach outperforms the compiler technique in all

benchmarks but MM 64x64 by only 0.6%. Performance gains

of the proposed approach over compiler technique comes from

the vectorization of Sentinel Loops, Dynamic Ranged Loops

and Conditional Loops vectorization which are not capable to

be achieved at compile time. As it can be seen in Figure 7,

considering Susan E, ARM NEON AutoVec covers only 14.3%

of vectorizable loops (Count Loops) while DSA boost such

covering to 86% which results on 71,5% of performance

improvements over the compiler technique. In addition, the

ARM NEON AutoVec provides performance penalties in Bit

Counts, Gaussian Filter and Susan S since the greater latencies

of NEON instructions allocated by the compiler were not

diluted by DLP performance gains. Besides keeping the binary

compatibility, broken by the ARM NEON AutoVec, the

proposed approach provides, on average, 32% of performance

improvements over the ARM NEON AutoVec technique

considering benchmarks with different DLP opportunities.

Similar to the ARM NEON AutoVec, due to its dynamic

DLP exploitation, the proposed approach outperforms ARM

NEON Hand-Coded.

Figure 8 – Performance Improvements over ARM Original Execution

D. Energy

Figure 9 shows the energy consumption of DSA, ARM

NEON AutoVec and ARM NEON Hand-Coded considering the

ARM Original Execution as a baseline. As it can be seen, the

DSA achieves greater energy savings than static analysis

approaches in all benchmarks but RGB-G 320x240 since such

an application boost performance due to code optimizations

using ARM NEON library. On average, DSA achieves 45%,

31.2% and 23.5% of energy savings over ARM Original

Execution, ARM NEON AutoVec and ARM NEON Hand-

Coded, respectively.

Table 3 shows the energy consumption percentage of the

DSA hardware relative to the whole system energy (ARMv7

CPU + NEON Engine). As it can be noticed, the DSA detection

process is responsible for, at most, 11% and, on average, for

2.8% of the whole system energy. Summarizing, the

experiments have shown that the lightweight DSA detection

achieves higher performance than static analysis approaches

with lower energy consumption maintaining binary

compatibility with no penalties on software development time.

V. CONCLUSION AND FUTURE WORK

In this work, we propose the Dynamic SIMD Assembler

(DSA) that automatically vectorizes code regions to execute in

ARM NEON. In comparison with compiler and programming

techniques, due to its dynamic nature, DSA boosts DLP

coverage, keeps binary compatibility and avoids timing

overhead on software developing process. Experimental results

show that the DSA outperforms both ARM NEON Auto-

Vectorization and ARM NEON Hand-Coded methods by 32%

and 26%, respectively, while keeping binary compatibility and

software productivity. In terms of energy, the DSA shows 45%,

31% and 23.5% of energy savings over the ARM Original

Execution, ARM NEON AutoVec and ARM NEON Hand-

Coded considering applications with heterogeneous DLP

opportunities. For future works, we intend to merge DLP, ILP

and TLP exploitation in a single MPSoC by using DSA in a

heterogenous fashion.

Figure 9. Energy Savings over ARM Original Execution

Table 3. DSA Energy Consumption

REFERENCES

[1] Dharmendra S. Modha, Rajagopal Ananthanarayanan, Steven K. Esser,
Anthony Ndirango, Anthony J. Sherbondy, and Raghavendra Singh. 2011.
Cognitive computing. Commun. ACM 54, 8 (August 2011), 62-71.

[2] Reddy, Venu Gopal. "Neon technology introduction." ARM
Corporation (2008).

[3] Lomont, Chris. "Introduction to Intel advanced vector extensions." Intel
White Paper (2011): 1-21.

[4] Diefendorff, Keith, et al. "Altivec extension to PowerPC accelerates
media processing." IEEE Micro 20.2 (2000): 85-95.

[5] Sui, Yulei, et al. "Loop-oriented array-and field-sensitive pointer analysis
for automatic SIMD vectorization." ACM SIGPLAN Notices. Vol. 51. No.
5. ACM, 2016.

[6] Lattner, Chris, and Vikram Adve. "LLVM: A compilation framework for
lifelong program analysis & transformation." Proceedings of the
international symposium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer Society, 2004.

[7] Zhou, Hao, and Jingling Xue. "Exploiting mixed SIMD parallelism by
reducing data reorganization overhead." Proceedings of the 2016
International Symposium on Code Generation and Optimization. ACM,
2016.

[8] Baghsorkhi, Sara S., Nalini Vasudevan, and Youfeng Wu. "FlexVec: auto-
vectorization for irregular loops." ACM SIGPLAN Notices. Vol. 51. No.
6. ACM, 2016.

[9] Nuzman, Dorit, Ira Rosen, and Ayal Zaks. "Auto-vectorization of
interleaved data for SIMD." ACM SIGPLAN Notices 41.6 (2006): 132-
143.

[10] Tian, Xinmin, et al. "Compiling C/C++ SIMD extensions for function and
loop vectorizaion on multicore-SIMD processors." Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International. IEEE, 2012.

[11] Bramas, Berenger. "Inastemp: A Novel Intrinsics-as-Template Library for
Portable SIMD-Vectorization." Scientific Programming 2017 (2017).

[12] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH Computer
Architecture News 39.2 (2011): 1-7.

[13] Cadence, R. T. L. "Compiler User’s Manual."

[14] Guthaus, Matthew R., et al. "MiBench: A free, commercially
representative embedded benchmark suite." Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop on. IEEE, 2001.

[15] Bradski, Gary, and Adrian Kaehler. "OpenCV." Dr. Dobb’s journal of
software tools 3 (2000).

[16] Lee, Chunho, Miodrag Potkonjak, and William H. Mangione-Smith.
"MediaBench: a tool for evaluating and synthesizing multimedia and
communicatons systems." Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture. IEEE Computer Society,
1997.

87

9 DISCUSSION

The paper titled Improving Software Productivity and Performance through a Transpa-

rent SIMD Execution introduces the first version of the DSA. This work focuses on presenting

a transparent hardware capable of detecting vectorizable regions at runtime without requiring

specific libraries or compilers. This primary version is capable of detecting: Count Loops, Ou-

ter loops and Function Loops. To evaluate this work, we have compared the DSA performance

with the ARM NEON auto-vectorization compiler. We also implemented the HDL version of

the DSA to gather data about area. Unlike the auto-vectorization compiler, the DSA does not

provide performance penalties running benchmarks with low DLP Exploitation opportunities.

Besides, in the RGB-Gray benchmark, the DSA could achieve 20% of performance impro-

vements over the auto-vectorization compiler with an area overhead of 2.18% over the ARM

processor. Considering all benchmarks, the DSA outperforms the ARM auto-vectorization in

6%, showing that its dynamic nature could exploit vectorizable regions efficiently.

In the paper titled Runtime Vectorization of Conditional Code and Dynamic Range Lo-

ops to ARM NEON Engine the DSA was extended in order to provide vectorization of loops

with dynamic behavior. The extended version is capable of detecting: Count Loops, Outer

loops, Function Loops, Conditional Loops, Dynamic Sized Loops and Sentinel Loops. To eva-

luate this work, we compared the DSA with its primary version and with the ARM NEON

auto-vectorization compiler. Due to the proposed extensions, the DSA outperforms the NEON

auto-vectorization compiler by 40% considering BitCounts benchmark. In general, the exten-

ded DSA could provide 38% performance improvements over the original approach and 12%

performance improvements over the NEON auto-vectorization compiler. In this paper, we also

provide data about the time consumed by the DSA to detect vectorizable loops and generate

SIMD instructions considering the total execution time of each benchmark. Benchmarks con-

taining more Conditional Loops and Dynamic Range Loops (Dijkstra and BitCounts) spent

more time detecting vectorizable loops. Benchmarks containing only static ranged vectorizable

loops spent, on average, 1.5% of the execution time detecting vectorizable loops. For the Q Sort

benchmark, which has no vectorizable loops, the DSA spent only 1.02% of the time analyzing

non- vectorizable loops.

The paper titled Boosting SIMD Benefits through a Run-time and Energy Efficient DLP

Detection evaluates the DSA energy consumption and applies the Partial Vectorization tech-

88

nique to the DSA. We also compare the performance and energy results of the DSA with an

ARM NEON Hand-Coded approach and with the ARM NEON Auto-vectorization Compi-

ler. The DSA boosts in 71,5% the performance of the Susan E benchmark over the NEON

Auto-vectorization compiler and outperforms in 67% the ARM NEON Hand-Coded in Susan

S benchmark. On average, the DSA outperforms the Hand-Coded approach in 26% reducing

23.5% of energy consumption and improves the Auto-vectorization Compiler performance in

32% reducing 31% of energy consumption.

All presented works show that is mandatory a runtime vectorization exploitation to boost

applications DLP coverage and keep binary compatibility. Also, unlike a Just-in-time compiler,

which demands a monitor task running concurrently, the DSA adds no execution time penalty,

since it has its own processing hardware. Besides, the DSA applies little area overhead over the

system. We coupled the DSA to an ARM ISA approach to evaluate its functionality and extract

performance results, but the techniques can be adapted to any ISA.

Summarizing, the Dynamic SIMD Assembler is capable of:

• improving DLP coverage and software productivity in a runtime fashion with no execu-

tion time penalty;

• keeping binary compatibility since no code recompilation is needed;

• suggesting multi-ISA runtime vectorization techniques;

• improving performance and reducing energy consumption.

As aforementioned, the DSA was compared with the ARM auto-vectorization and li-

brary usage approaches, which are static DLP exploitation techniques. In our future works,

we intend to evaluate the DSA over a Just-in-time compiler method, since they are both dyna-

mic DLP exploitation approaches. Besides, by comparing both approaches, we expect to see

which dynamic vectorization approach is the best option: the DSA hardware, which impacts

on area increase, or the Just-in-time compiler, which demands no area increase but implies in

performance penalties due a monitor task.

The DSA HDL implementation as well as the high-level simulator (DSA + O3CPU) can

be found in (JORDAN, 2019).

89

10 CONCLUSION AND FUTURE WORK

In this work, we propose the Dynamic SIMD Assembler (DSA) that automatically vec-

torizes code regions to execute in ARM NEON during runtime. In comparison with compiler

and programming techniques, due to its dynamic nature, DSA boosts DLP coverage, keeps bi-

nary compatibility and avoids timing overhead on software developing process. Experimental

results show that the DSA outperforms both ARM NEON Auto-Vectorization and ARM NEON

Hand-Coded methods by 32% and 26%, respectively, while keeping binary compatibility and

software productivity. In terms of energy, the DSA shows 45%, 31% and 23.5% of energy sa-

vings over the ARM Original Execution, ARM NEON AutoVec and ARM NEON Hand-Coded

considering applications with heterogeneous DLP opportunities.

For future works, we intend to:

• apply improved DSA instruction generation and memory hierarchy approaches in the

DSA since both of them influence in the DSA analysis and execution latencies;

• implement the whole system in an HDL (hardware description language) to enable an

accurate performance and energy system analysis;

• develop a software Just-in-time version of the DSA and compare such approach with the

original DSA (hardware);

• provide an exploitation of the DSA version that mixes the benefits of a static vectorization

compiler and the dynamic vectorization of the DSA (high performance version);

• expand the DSA loop vectorization (DSA Analysis), which means that complex control

flow loops and loops with misaligned memory access will be covered;

• merge ILP, DLP and TLP exploitation in a single MPSoC by using DSA in an heteroge-

nous fashion.

 REFERENCES

Aho A. V., Lam M. S., Sethi R., Ullman J. D. (2014). Compilers: Principles, Techniques, and

Tools (2nd Edition). Addison Wesley.

Allen, Randy; Kennedy, Ken. Optimizing compilers for modern architectures: a dependence-

based approach. San Francisco: Morgan Kaufmann, 2002.

Amdahl, Gene M. "Validity of the single processor approach to achieving large scale computing

capabilities." Proceedings of the April 18-20, 1967, spring joint computer conference. ACM,

1967.

ARM Limited 2017, “What can limit or prevent automatic vectorization”, accessed 30

December 2018, https://developer.arm.com/docs/dui0472/i/using-the-neon-vectorizing-

compiler/what-can-limit-or-prevent-automatic-vectorization.

Baghsorkhi, Sara S., Nalini Vasudevan, and Youfeng Wu. "FlexVec: auto-vectorization for

irregular loops." ACM SIGPLAN Notices. Vol. 51. No. 6. ACM, 2016.

Bramas, Berenger. "Inastemp: A Novel Intrinsics-as-Template Library for Portable SIMD-

Vectorization." Scientific Programming 2017 (2017).

Chang, Hoseok, and Wonyong Sung. "Efficient vectorization of SIMD programs with non-

aligned and irregular data access hardware." Proceedings of the 2008 international conference

on Compilers, architectures and synthesis for embedded systems. ACM, 2008.

Clark, Nathan, et al. "Liquid SIMD: Abstracting SIMD hardware using lightweight dynamic

mapping." 2007 IEEE 13th International Symposium on High Performance Computer

Architecture. IEEE, 2007.

Courtland, Rachel. "Transistors could stop shrinking in 2021." IEEE Spectrum 53.9 (2016): 9-

11.

Diefendorff, Keith, et al. "Altivec extension to PowerPC accelerates media processing." IEEE

Micro 20.2 (2000): 85-95.

Hill, Mark D., and Michael R. Marty. "Amdahl's law in the multicore era." Computer 41.7

(2008).

Hwu, Wen-reel, and Yale N. Patt. "HPSm, a high performance restricted data flow architecture

having minimal functionality." ACM SIGARCH Computer Architecture News. Vol. 14. No. 2.

IEEE Computer Society Press, 1986.

John L. Hennessy and David A. Patterson, "Computer architecture: a quantitative approach",

Fifth Edition, Elsevier, 2012.

Jordan, Michael Guilherme, DSA Implementation. Accessed 25 January 2019,

https://github.com/dsaproject2019/DSA.

Jordan, Michael Guilherme, Tiago Knorst, and Mateus Beck Rutzig. "Improving Software

Productivity and Performance Through a Transparent SIMD Execution." 2018 31st Symposium

on Integrated Circuits and Systems Design (SBCCI). IEEE, 2018.

Jordan, Michael Guilherme, Tiago Knorst, Julio Vicenzi and Mateus Beck Rutzig. "Runtime

Vectorization of Conditional Code and Dynamic Range Loops to ARM NEON Engine." VII

Brazilian Symposium on Computing Systems Engineering (SBESC). 2018 (forthcoming).

Jordan, Michael Guilherme, Tiago Knorst, Julio Vicenzi and Mateus Beck Rutzig. "Boosting

SIMD Benefits through a Run-time and Energy Efficient DLP Detection." 2019 Design,

Automation and Test in Europe (DATE). 2019 (forthcoming).

Kaeli, David, and Pen-Chung Yew, eds. Speculative execution in high performance computer

architectures. Vol. 6. CRC Press, 2005.

Kim, Changmoo, et al. "ULP-SRP: Ultra low power Samsung Reconfigurable Processor for

biomedical applications." Field-Programmable Technology (FPT), 2012 International

Conference on. IEEE, 2012.

Lomont, Chris. "Introduction to intel advanced vector extensions." Intel White Paper (2011):

1-21.

Melnik, Dmitry, et al. "A case study: optimizing GCC on ARM for performance of libevas

rasterization library." Proceedings of GROW (2010).

Mitra, Gaurav, et al. "Use of SIMD vector operations to accelerate application code

performance on low-powered ARM and Intel platforms." 2013 IEEE International Symposium

on Parallel & Distributed Processing, Workshops and Phd Forum. IEEE, 2013.

Mittal, Sparsh. "A survey of value prediction techniques for leveraging value

locality." Concurrency and computation: practice and experience 29.21 (2017): e4250.

Nakamura, Takashi, Satoshi Miki, and Shuichi Oikawa. "Automatic vectorization by runtime

binary translation." Networking and Computing (ICNC), 2011 Second International

Conference on. IEEE, 2011.

Nuzman, Dorit, et al. "Vapor SIMD: Auto-vectorize once, run everywhere." Proceedings of the

9th Annual IEEE/ACM International Symposium on Code Generation and Optimization. IEEE

Computer Society, 2011.

Nuzman, Dorit, Ira Rosen, and Ayal Zaks. "Auto-vectorization of interleaved data for

SIMD." ACM SIGPLAN Notices 41.6 (2006): 132-143.

Nuzman, Dorit, and Ayal Zaks. "Outer-loop vectorization: revisited for short SIMD

architectures." Proceedings of the 17th international conference on Parallel architectures and

compilation techniques. ACM, 2008.

Nvidia, C. U. D. A. "Nvidia cuda c programming guide." Nvidia Corporation 120.18 (2011): 8.

Patterson, David A., and John L. Hennessy. Computer Organization and Design MIPS Edition:

The Hardware/Software Interface. Newnes, 2013.

Pohl, Angela, Biagio Cosenza, and Ben Juurlink. "Control Flow Vectorization for ARM

NEON." Proceedings of the 21st International Workshop on Software and Compilers for

Embedded Systems. ACM, 2018.

Reddy, Venu Gopal. "Neon technology introduction." ARM Corporation (2008).

Russell, Richard M. "The CRAY-1 computer system." Communications of the ACM 21.1

(1978): 63-72.

Shin, Jaewook. "Introducing control flow into vectorized code." Proceedings of the 16th

International Conference on Parallel Architecture and Compilation Techniques. IEEE

Computer Society, 2007.
Smith, James E., and Andrew R. Pleszkun. "Implementation of precise interrupts in pipelined

processors." 25 years of the international symposia on Computer architecture (selected

papers). ACM, 1998.

Sui, Yulei, et al. "Loop-Oriented Pointer Analysis for Automatic SIMD Vectorization." ACM

Transactions on Embedded Computing Systems (TECS) 17.2 (2018): 56.

Sun, Xian-He, and Yong Chen. "Reevaluating Amdahl’s law in the multicore era." Journal of

Parallel and Distributed Computing 70.2 (2010): 183-188.

Tian, Xinmin, et al. "Compiling C/C++ SIMD extensions for function and loop vectorizaion on

multicore-SIMD processors." Parallel and Distributed Processing Symposium Workshops &

PhD Forum (IPDPSW), 2012 IEEE 26th International. IEEE, 2012.

Wall, David W. Limits of instruction-level parallelism. ACM, 1991.

Wu, Peng, Alexandre E. Eichenberger, and Amy Wang. "Efficient SIMD code generation for

runtime alignment and length conversion." International Symposium on Code Generation and

Optimization. IEEE, 2005.

Zhou, Hao, and Jingling Xue. "Exploiting mixed SIMD parallelism by reducing data

reorganization overhead." Proceedings of the 2016 International Symposium on Code

Generation and Optimization. ACM, 2016.

	Introduction
	Conceptual Analysis
	ILP, TLP and DLP Exploitation
	SIMD Architectures
	Vector Architectures
	SIMD Instruction Set Extensions
	Graphic Processing Units

	Code Vectorization
	Hand-code Programming Vectorization
	Auto-vectorization Compiler
	Just-in-time Vectorization Compilers
	Critical Analysis

	Cross-iteration Dependencies

	Related Works
	Auto-vectorization Compiler and Vector Library Approaches
	ISA/Hardware Modification Approaches
	Just-in-time Approaches

	Dynamic SIMD Assembler
	System Overview
	DSA Coverage
	DSA Overview
	Cross-iteration Dependency Verification
	Partial Vectorization
	DSA - Analysis and Execution
	Count Loops
	Function Loops
	Inner/Outer Loops
	Conditional Loops
	Conditional Loops Vectorization
	Conditional Loop SIMD Execution
	Conditional Loop DSA Limitations

	Sentinel Loops Vectorization
	Dynamic Range Loop Vectorization

	Generating SIMD Instructions
	Dealing with Leftovers
	Single Elements
	Overlapping
	Larger Arrays

	Methodology
	O3CPU Processor/DSA Implementation
	DSA and O3CPU Energy Results
	Systems Setup

	Article 1 - Improving Software Productivity and Performance through a Transparent SIMD Execution
	Article 2 - Runtime Vectorization of Conditional Code and Dynamic Range Loops to ARM NEON Engine
	Article 3 - Boosting SIMD Benefits through a Run-time and Energy Efficient DLP Detection
	Discussion
	Conclusion and Future Work

