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RESUMO

IMAGENS DE SATÉLITE PARA PREDIÇÃO ESPAÇO-TEMPORAL DA
PRODUTIVIDADE DE MILHO E SOJA EM DIFERENTES ESCALAS

GEOGRÁFICAS

AUTOR: Raí Augusto Schwalbert
ORIENTADOR: Telmo Jorge Carneiro Amado

À  medida  que  as  questões  relacionadas  à  segurança  alimentar  global  se  tornam  cada  vez  mais
desafiadores,  estimativas  confiáveis  da  produtividade  de  culturas  agrícolas  passam  a  ser  mais
imperativas do que nunca para a comunidade científica. Atualmente, com a maior facilidade de acesso
a dados provenientes de sensores embarcados em satélites, essa fonte de informação tem se tornado
muito  promissora  para  o  desenvolvimento  de  modelos  de  previsão  de  produtividade  de  culturas
agrícolas. Apesar disso, seu uso ainda é limitado na maioria dos esforços operacionais para monitorar
produtividade  em  diferentes  escalas  geográficas.  De  maneira  geral,  os  modelos  de  previsão  de
produtividade baseados em imagens de satélite podem ser avaliados considerando três aspectos: i) a
acurácia das previsões; ii) a antecedência com que a previsão é realizada em relação à data de colheita;
e iii) a escala espacial da unidade de previsão, (e.g. país, estado, município, área agrícola, etc.). Os
principais objetivos desse estudo foram: i) desenvolver um modelo de previsão de produtividade com
base em imagens de satélite capazes de predizer a produtividade da cultura do milho (no Corn Belt dos
Estados  Unidos)  e  da  soja  (no  estado  do  Rio  Grande  do  Sul-  Brasil)  nos  níveis  de  condado  e
município,  respectivamente;  ii)  avaliar  o  desempenho  do  modelo  após  a  inclusão  de  variáveis
meteorológicas  juntamente  aos  índices  de  vegetação  derivados  de  satélite;  iii)  testar  diferentes
algoritmos de aprendizado de máquina para prever a produtividade em nível regional; e iv) avaliar a
capacidade de generalização dos modelos preditivos desenvolvidos em nível de área agrícola quando
aplicados para áreas localizadas em diferentes regiões em relação à onde eles foram parametrizados.
Os principais resultados foram: i) modelos preditivos baseados em imagens de satélite e variáveis
meteorológicas  podem  antecipar  a  produtividade  da  cultura  do  milho  em  até  122  dias
(aproximadamente 16 dias antes do primeiro relatório de produtividade de milho em nível estadual da
USDA/NASS) com um erro médio absoluto menor que 1 Mg ha-1, e em até 70 dias para a soja com
erro médio absoluto de 0,42 Mg ha-1; ii)  temperatura do ar,  temperatura da superfície do dossel e
deficit de pressão de vapor melhoraram o desempenho dos modelos em relação aos modelos baseados
apenas em índices de vegetação (NDVI e EVI); iii) o algoritmo  Long Short Term Neural Network
apresentou desempenho superior  em comparação com os outros  algoritmos testados (e.g.  random
forest e  regressão ordinária de mínimos quadrados);  iv)  os  modelos  de previsão de produtividade
parametrizados em nível de área agrícola apresentaram capacidade de generalização limitada fora dos
limites onde foram ajustados, mas as semelhanças nos dados usados para parametrização do modelo
podem fornecer diretrizes de como eles podem ser extrapolados. Os resultados apresentados nesse
estudo têm potencial para auxiliar agricultores e agentes formuladores de políticas durante o processo
de  tomada  de  decisão.  Estudos  futuros  sobre  esse  tópico  devem  explorar  a  fusão  de  modelos
mecanísticos (baseados em processos) com modelos empíricos, a fim de aumentar os limites espaço-
temporais de predicabilidade e tornar os modelos menos dependente de dados oriundos de terceiros.

Palavras-chave: Imagens de satélite. Predição de produtividade. Aprendizagem de máquina.



ABSTRACT

SATELLITE IMAGERY FOR SPATIO-TEMPORAL CORN AND SOYBEAN
YIELD PREDICTION AT DIFFERENT GEOGRAPHICAL LEVELS

AUTHOR: Raí Augusto Schwalbert
ADVISOR: Telmo Jorge Carneiro Amado

As global food security issues become increasingly challenging, reliable estimates of crop yields are
becoming  more  imperative  than  ever  for  the  scientific  community.  Today,  with  greater  ease  of
accessing remote sensing data from satellite-embedded sensors, this source of information has become
very promising for developing crop yield forecast models. Nevertheless, the use of such models is still
limited in most operational efforts to monitor crop yield at different geographic scales. In general,
satellite-based yield forecast models can be evaluated by considering three aspects: i) the accuracy of
the predictions; ii) the date when the yield forecast is released in relation to the crop harvest date; and
iii) the spatial scale of the forecasting unit, (e.g. country, state, county, field, etc.). The main objectives
of this study were: i) to develop a complete model based on satellite images capable of predicting corn
(in  the  US Corn  Belt)  and  soybean (in  the  state  of  Rio  Grande  do  Sul  –  Brazil)  in  county  and
municipality  levels,  respectively;  ii)  evaluate  the  performance of  the  model  after  the  inclusion of
weather variables along with satellite derived vegetation indices; iii) test different machine learning
algorithms  to  predict  yield  at  the  regional  level;  and  iv)  evaluate  the  generalization  capacity  of
predictive models developed at field level when applied to fields in different regions from which they
were parameterized. The main results were: i) satellite-based predictive models and weather variables
can anticipate corn yield by up to 122 days (approximately 16 days prior to the first USDA/NASS
state-level corn yield report) with an mean absolute error of less than 1 Mg ha -1, and soybean yield by
up to  70  days  with  an  mean absolute  error  of  0.42  Mg ha -1;  ii)  air  temperature,  canopy surface
temperature and vapor pressure deficit improved model performance in relation to models based only
on vegetation indices (NDVI and EVI); iii) the Long Short Term Memory Neural Network algorithm
performed  better  compared  to  the  other  algorithms  tested  (e.g.  random forest  and  ordinary  least
squares regression); and iv) the models parameterized at field level presented limited generalization
capacity outside the limits where they were adjusted, but similarities in the data distribution used for
model parameterization can provide guidance on how they can be extrapolated. The results presented
in this study have potential to assist farmers and policy makers in the decision making process. Future
studies on this topic should explore the fusion of mechanistic (process-based) with empirical models in
order to increase the spatio-temporal limits of predictability and make models less dependent on third
party data.

Keywords: Satellite imagery. Yield forecast. Machine learning.
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1 APRESENTAÇÃO

A agricultura está passando por uma revolução digital baseada na geração, coleta e

interpretação de massiva quantidade de dados. Acesso a informação de qualidade e de maneira

antecipada, ou seja, no menor tempo decorrido desde sua coleta, é extremamente interessante

no contexto da operação agrícola,  com potencial  para interferir  na tomada de decisão em

diferentes esferas, desde a compra dos insumos, manejo da propriedade até comercialização

do produto final.

Atualmente,  considerável  parcela  dos  dados com potencial  prático para  influenciar

decisões  nas  operações  agrícolas  são  proveniente  de  sensores  embarcados  em  satélites.

Imagens de satélites possuem ampla aplicação na agricultura (LOBELL, 2013; SAKAMOTO;

GITELSON; ARKEBAUER, 2014), em especial na geração de modelos capazes de predizer

produtividade em tempo real. Estimativas (pós-colheita) ou previsões (a.k.a predições) (pré-

colheita) confiáveis de produtividade podem ser úteis para diversos propósitos, e normalmente

sua aplicabilidade está associada à escala em que elas são realizadas. Previsões em nível de

áreas agrícolas são particularmente úteis  para entender como a produtividade das culturas

responde  a  fatores  ambientais  e  de  manejo  (LOBELL,  2013;  PERALTA et  al.,  2016),

permitindo o uso mais eficiente de recursos como água e fertilizantes. Ao passo que, previsões

em domínios maiores (municípios,  estados ou países) são úteis para questões envolvendo,

políticas  governamentais,  segurança  alimentar,  logística  e  transporte  da  produção agrícola

(SAKAMOTO; GITELSON; ARKEBAUER, 2014), especialmente em países como o Brasil,

que desempenha papel importante no mercado internacional de grãos.

Previsões de produtividades baseadas em técnicas de sensoriamento remoto têm sido

do  interesse  de  pesquisadores  durante  muitos  anos,  inicialmente  com  foco  em  escalas

regionais  (DIRIENZO;  FACKLER;  GOODWIN,  2000;  LOPRESTI;  DI  BELLA;

DEGIOANNI, 2015; MACDONALD; HALL, 1980; SIBLEY et al.,  2014), principalmente

porque  no  passado  havia  acesso  limitado  a  dados  com  alta  resolução  espacial,  e  mais

recentemente,  à  nível  de  área  agrícola  (JIN et  al.,  2017;  JIN;  AZZARI;  LOBELL,  2017;

LOBELL et al., 2015; PERALTA et al., 2016). Entre os principais fatores que propiciaram

esse maior nível de detalhamento nos estudos atuais destacam-se: i) o lançamento de satélites

capazes  de  adquirir  imagens  com  alta  resolução  espacial  e  temporal,  incluindo  satélites

públicos como o Sentinel-2 (DRUSCH et al., 2012), e privados como RapidEye e Skysat, ii) a

disponibilização gratuita de imagens de satélites de instituições públicas, como a NASA e a
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ESA,  e  algumas  instituições  privadas  (AZZARI;  JAIN;  LOBELL,  2017),  e  iii)  o

desenvolvimento e aperfeiçoamento de algoritmos e plataformas de processamento de dados,

como por exemplo, o Google Earth Engine (GEE) (GORELICK et al., 2017).

1.2 REFERENCIAL TEÓRICO

Desde  o  advento  dos  satélites  observadores  da  Terra  há  várias  décadas,  diversos

pesquisadores têm feito esforços para obter informações úteis para o setor agrícola usando

essa fonte de informação. Um dos usos mais notórios dessa tecnologia na agricultura é para

estimativas  ou  previsões  de  produtividade  (ou  seja,  a  produção  de  grãos  –  ou  outro

componente vegetal com valor comercial – por unidade de área). O processo de previsão de

produtividade geralmente integra séries temporais de estatísticas históricas de produtividade e

indicadores  de  produtividade,  que  podem ser  provenientes  de  sensoriamento  remoto  (e.g.

índices de vegetação), de modelos biofísicos, de medições de campo, etc. Esses indicadores

são usados para parametrizar modelos de previsão usando critérios estatísticos (GALLEGO;

CARFAGNA; BARUTH, 2010).

Existe  uma  considerável  variedade  de  abordagens  para  estimar/predizer  a

produtividade  de  culturas  agrícolas  com  dados  provenientes  de  sensoriamento  remoto

(GALLEGO; CARFAGNA; BARUTH, 2010; MOULIN; BONDEAU; DELECOLLE, 1998).

Abordagens  mais  simples  são baseadas  em relações  empíricas  entre  a  produtividade  e  os

indicadores de produtividade usando tanto modelos paramétricos, como as regressões lineares

(uni- ou multivariadas), ou não-paramétricos usando técnicas como  random forest,  support

vector machine ou redes neurais artificias. Estudos pretéritos demonstram que estimativas de

produtividade baseada em relações empíricas podem explicar até 80% da variabilidade na

produtividade  de  culturas  como  milho  e  trigo  para  as  áreas  onde  esses  modelos  foram

ajustados  (SHANAHAN  et  al.,  2001;  TUCKER;  HOLBEN;  ELGIN,  1980;  WIEGAND;

RICHARDSON, 1990). Entretanto, modelos puramente empíricos normalmente apresentam

baixo  grau  de  generalização  o  que  compromete  sua  capacidade  de  extrapolação  para

diferentes locais ou anos. 

Uma  segunda  classe  de  modelos  usados  para  estimativas  de  produtividade  estão

relacionados aos estudos de  Monteith (1977), os quais demonstram que a produção total de

biomassa vegetal  por  unidade de área é  proporcional  à  radiação fotossinteticamente ativa

(RFA) absorvida pelas plantas durante a estação de crescimento. De acordo com Bloom et al.
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(1985), a razão da biomassa pela RFA absorvida pelas plantas, conhecida como eficiência do

uso da radiação (EUR) é relativamente constante, uma vez que as plantas ajustam à área foliar

total em função de fatores limitantes de crescimento como estresses causados por falta de

nutrientes  ou temperatura.  Diversos  estudos têm confirmado à validade dessa abordagem,

embora se reconheça que variações na EUR ocorrem em decorrência de diferentes fatores,

especialmente quando as plantas passam por estresses hídricos  (STEINMETZ et al., 1990).

Modelos para estimativa de produtividade baseados no conceito de EUR possuem pelo menos

quatro componentes de acordo com a equação 1:

                                      Produtividade=(∑
t=1

n

fRFA t xRFAt) xEURxIC                              (1)

onde fRFAt  é a fração RFA absorvida pela dossel vegetal no tempo t, IC é o índice de colheita,

e EUR representa a eficiência no uso da radiação.

Uma  terceira  abordagem  é  a  combinação informações  de  sensoriamento  remoto

provenientes  de  imagens  de  satélites  e  modelos  de  crescimento  cultura  (i.e.,  modelos

mecanísticos  –  baseados  em  processos).  O  uso  dos  modelos  de  crescimento  de  plantas

baseados em processos oferece uma nova perspectiva para o desenvolvimento de modelos de

predição  de  produtividade  com uma  maior  capacidade  de  generalização,  uma  vez  que  é

possível considerar as complexas interações entre genética, ambiente e manejo no processo de

previsão de produtividade. Como demonstrado em Sibley et al. (2014), existem, pelo menos,

duas  alternativas  para  combinar  essas  duas  fontes  de  informação  para  previsão  de

produtividade de culturas agrícolas. A primeira delas é usar modelos baseados em processos

para estimar a produtividade das culturas, com os dados de sensoriamento remoto empregados

para  ajustar  os  dados  de  entrada  ou  os  parâmetros  inciais  do  modelo,  sendo esse  último

aplicado individualmente para cada pixel da imagem de satélite (CLEVERS, 1997; DENTE et

al.,  2008;  DORAISWAMY  et  al.,  2005;  LAUNAY;  GUERIF,  2005).  Na  prática,  essa

abordagem é comumente aplicada através da simulação de crescimento e produtividade de

culturas  para  múltiplas  combinações  de  fatores  como  datas  de  semeadura,  densidade  de

plantas,  genótipos,  capacidade de retenção de água no solo,  etc.  Os valores simulados de

variáveis como, índice de área foliar ou fRFA são comparados com estimativas derivadas de

imagens de satélite  para essas mesmas variáveis.  Os dados de entradas  e  parâmetros que

resultem  na  correspondência  mais  próxima  entre  os  valores  simulados  e  os  observados

(derivados de imagens de satélite) ao longo da estação de crescimento, resultando em um
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quadrado médio do erro mais baixo por exemplo,  são selecionadas, e a produtividade das

culturas associada a essa simulação é atribuído ao pixel especificado.

A segunda alternativa é usar os modelos baseado em processos para gerar pseudo-

observações que serão usadas para treinar modelos empíricos sob uma grande variedade de

condições climáticas, de solo e de manejo e acessar a produtividade das culturas através de

relações  empíricas  (AZZARI;  JAIN;  LOBELL,  2017;  JIN  et  al.,  2017;  JIN;  AZZARI;

LOBELL, 2017; LOBELL et al.,  2015; SIBLEY et al.,  2014).  Assim como na abordagem

atenrior,  várias  simulações  são  realizadas  com  o  modelo  mecanístico  de  crescimento  de

cultura para diferentes combinações de dados de entrada e parâmetros. Porém, ao invéz de

comparar  diretamente  os  dados  simulados  com as  estimativas  derivadas  das  imanges  de

satélite, os dados simulados são usados para ajustar modelos de regressão que relaciona a

produtividade  à  preditores  como,  índices  de  vegetação  e  variáveis  meteorológicas.  Um

exemplo dessa abordagem é apresentado por Lobell et al. (2015) onde simulações de índice de

área foliar provenientes de modelos de crescimento de culturas são convertidas para unidades

de GCVI (Green Chlorophyll Index), usando relações empíricas descitas na literatura (NGUY-

ROBERTSON  et  al.,  2012),  e  posteriormente  são  utilizadas  em  conjunto  com  os  dados

simulados de produtividade para ajustar  relações  empíricas entre  essas  duas  variáveis.  Os

modelos empíricos ajustados usando pseudo-observações de GCVI e produtividade são então

aplicados para todos os pixlels da imagem de satélite. De acordo com Clevers (1997) essa

segunda abordagem, apesar de sua maior simplicidade normalmente apresenta resultados que

supera a primeira.

1.3 PROPOSIÇÃO

Apesar  dos  importantes  avanços  nos  diferentes  campos  do  sensoriamento  remoto

aplicado à estimativa/previsão de produtividade  citados  anteriormente,  relevantes  questões

ainda necessitam ser estudadas com maior detalhamento, e portanto fazem parte dos objetivos

desse trabalho.

Previsões de produtividade associadas à escalas geográficas mais extensas, como por

exemplo à nível municipal, estadual, ou até mesmo nacional, requerem, além do entendimento

da relação entre a variável resposta (produtividade) e dos preditores (e.g. índices de vegetação

gerados a partir de imagens de satélite), um extenso conhecimento relacionado à localização e

distribuição espacial das áreas produtores sobre a região considerada. Esse conhecimento é
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essencial,  pois  apenas  informações  relevantes,  associadas  às  áreas  de  produção  agrícola

precisam ser coletadas das imagens de satélites, descartando toda informação proveniente de

outros alvos como cidades, florestas, corpos de água, etc. Além disso, essa informação precisa

ser levantada durante o decorrer da estação de crescimento das culturas, adicionando um grau

extra de complexidade aos modelos de previsões de produtividade em nível regional. Essas

camadas  de  informações  contento  a  localização  espacial  das  áreas  cultivadas  com  uma

determinada cultura (e.g. soja) normalmente não são disponíveis ao acesso público na maioria

dos países (incluindo o Brasil), ou não são disponibilizadas durante a estação de crescimento

da cultura, como é o caso dos Estados Unidos, onde o Serviço Nacional de Estatística na

Agricultura  (National  Agricultural  Statistic  Service –  NASS),  torna  essa  informação

disponível  com um ano  de  atraso  em relação  ao  ano  corrente.  Dessa  forma,  o  primeiro

objetivo desse estudo foi o desenvolvimento e a validação de modelos capazes de identificar

áreas agrícolas produtoras da cultura de interesse e predizer a produtividade dessas culturas à

nível  regional  (nível  municipal  para  o estado do Rio Grande do Sul  –  Brasil  e  nível  de

condado para o Corn Belt – Estados Unidos), usando apenas dados de domínio público, para a

cultura  da  soja  no  Brasil  e  para  a  cultura  do  milho  nos  Estados  Unidos como meses  de

antecedência em relação à colheita.

Outra  lacuna  explorada  nesse  estudo  está  relacionado  à  inclusão  das  variáveis

meteorológicas nos modelos de previsão de produtividade. Variáveis dessa natureza têm uma

grande contribuição na variabilidade da produtividade dentro e entre anos agrícolas e possuem

um grande potencial para melhorar o desempenho dos modelos de previsão de produtividade

(JOHNSON, 2014). Apesar disso, poucos estudos têm explorado os impactos dessas variáveis

na assertividade das previsões (SHAO et al., 2015). Precipitação, temperatura média, máxima

e mínima do ar,  são as  variáveis  mais  comumente incluídas  nos  modelos  de previsão de

produtividade (JOHNSON, 2014; SHAO et al., 2015). Outra variável com potencial para ser

incluída nos modelos de previsão de produtividade é o deficit de pressão de vapor (DPV). O

DPV é o gradiente entre o interior de folha saturado de vapor de água e o ar mais seco no

exterior (ORT; LONG, 2014) e é amplamente utilizado como uma medida da demanda hídrica

atmosférica que depende da temperatura e umidade do ar. O DPV tem sido frequentemente

relatado  como uma das  variáveis  meteorológicas  mais  importantes,  explicando  anomalias

históricas de produtividade da cultura do milho em todo o meio-oeste americano (LOBELL et

al., 2014).

Um terceiro aspecto  que ainda é  explorado de maneira  incipiente  nos  modelos  de

predição de produtividade é relacionado à utilização de algoritmos mais complexos capazes
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de captar e descrever com mais precisão as relações entre a variável resposta e os preditores.

Nos  últimos  anos  algoritmos  de  aprendizagem  de  máquina  ou  machine  learning,  como

random forest,  support vector machine e principalmente as redes neurais têm substituído as

regressões lineares multivariadas na estimativa de produtividade de culturas agrícolas. Porém,

com o advento  da  computação em nuvem e  o significativo  incremento  da  capacidade  de

armazenamento e processamento de dados, a possibilidade de utilização de algoritmos ainda

mais  sofisticados  também  evoluiu.  As  redes  neurais  de  aprendizagem  profunda  (Deep

Learning  Neural  Networks)  representam  uma  classe  relativamente  nova  de  algoritmos

baseados em redes neurais  compostas de múltiplas camadas de processamento capazes de

aprender  representações  complexas  de  dados  usando múltiplos  níveis  de  abstração.  Esses

algoritmos têm potencial para superar a maioria dos algoritmos anteriormente citados porém

requerem grande quantidade de dados para ser adequadamente ajustados. Assim, o terceiro

objetivo desse estudo é verificar a adequabilidade do uso de redes neurais de aprendizagem

profunda para previsões de produtividade da cultura da soja, comparando seus resultados com

algoritmos  comumente  usados  (e.g.  random  forest,  support  vector  machine e  regressões

lineares multivariadas). 

Assim como as previsões de produtividade em escala regional são importantes para

aspectos relacionados a logística, comercialização e criação de políticas agrícolas, previsões e

estimativas de produtividade à nível de área agrícola são interessantes do aspecto relacionado

ao manejo dentro do escopo da agricultura de precisão.  Porém, quando se altera  a escala

geográfica em que o modelo será aplicado, necessita-se alterar a escala da coleta de dados de

produtividade, a fim de calibrar os modelos de predição. A geração e coleta de dados à nível

de área agrícola é uma atividade onerosa, que demanda tempo e mão de obra qualificada. Os

mapas de colheita oferecem uma oportunidade interessante de coleta de dados nessa escala

geográfica,  porém  existem  diversos  fatores  que  podem  comprometer  a  qualidade  desse

produto (SCHWALBERT et al.,  2018). Além disso, modelos de predição de produtividade

calibrados  em  nível  de  área  agrícola  normalmente  apresentam  baixa  capacidade  de

generalização  tanto  espacial  quanto  temporal.  Assim,  o  quarto  objetivo  desse  estudo  foi

explorar a capacidade de modelos empíricos de previsão de produtividade calibrados à nível

de  área  agrícola,  serem  extrapolados  espacial  e  temporalmente.  Mais  especificadamente,

verificar se modelos desenvolvidos usando dados provenientes de áreas de uma determinada

região em um determinado ano agrícola podem ser aplicados para: i) áreas provenientes de

outras  regiões  com  dados  de  produtividade  seguindo  uma  distribuição  de  frequência

semelhante, ii) áreas provenientes de outras regiões com dados de produtividade seguindo
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uma  distribuição  de  frequência  não-semelhante,  e  iii)  áreas  provenientes  de  uma  mesma

região mas de um ano agrícola diferente daquele usado para parametrização do modelo.

1.3 MATERIAIS E MÉTODOS

Esta subseção apresenta uma versão simplificada dos materiais  e métodos dos três

artigos  que  compõem essa  tese.  Maior  detalhamento  das  técnicas  e  análises  utilizadas  é

apresentado nas subseções destinadas a esse propósito inseridas nas seções 2, 3 e 4.

Com exceção dos  19 mapas de colheita usados no terceiro artigo apresentado nessa

tese, apenas dados e softwares de acesso público foram utilizados na elaboração deste estudo. 

1..3.1 Materiais e métodos do artigo 1

Para  o  artigo  1  (Mid-season  county-level  corn  yield  forecast  for  us  Corn  Belt

integrating satellite imagery and weather variables), NDVI (Normalized Vegetation Index) e

EVI (Enhanced Vegetation Index) foram derivadas de imagens do sensor MODIS (Moderate-

Resolution  Imaging  Spectroradiometer)  embarcado  no  satélite  Terra  (coleções

MODIS/006/MOD09Q1  e  MODIS/006/MOD13Q1).  Dados  climáticos  (temperatura,

precipitação e DPV) foram acessados através do PRISM (Parameter elevation Regression on

Independent  Slopes  Model) e  GRIDMET (Gridded Surface  Meteorological  Dataset),  dois

bancos de dados contendo informações de clima na forma de grid georreferenciado. Todas as

variáveis  supracitadas  foram  coletadas  durante  um  período  de  10  anos  (2008  até  2017)

iniciando no dia 1 maio até o dia 20 de agosto de cada ano.

As informações da distribuição das áreas produtores de milho no Corn Belt americano

foram acessadas através da CDL (Cropland Data Layer), um banco de dados na forma de grid

georreferenciado  desenvolvido  pelo  NASS  anualmente.  Essas  informações  associadas  as

informações supracitadas foram usadas para treinar um modelo de classificação de cultura

usando o algortimo random forest com o objetivo de identificar as áreas de milho durante a

estação de crescimento em que a previsão de produtividade seria realizada.  O modelo de

classificação foi ajustado usando o tipo de cultura como variável dependente (e.g. soja, milho

ou sorgo)  e  NDVI,  EVI,  precipitação,  temperatura  e  DPV como variáveis  independentes.

Todas as informações usadas até esta etapa foram acessadas usando a plataforma GEE.
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Dados de produtividade à nível de condado dos anos considerados nesse estudo foram

coletados  do  banco  de  dados  do  USDA/NASS  e  foram  usados  para  treinar  um modelo

empírico de predição de produtividade usando EVI, NDVI, precipitação, temperatura e DPV

como preditores.

O modelos de classificação e regressão foram avaliados usando uma validação cruzada

pelo  método  leave-one-out.  Dessa  forma 10  modelos  diferentes  foram ajustados,  sempre

removendo o ano que seria usada para validação. Os modelos de regressão foram avaliados

usando  o erro médio absoluto, a raiz do quadrado médio do erro, e a eficiência de Nash-

Sutcliffe. O modelo de classificação foi avaialdo usando a acurácia global.  Por último, uma

análise de sensibilidade foi realizada para verificar com que antecedência o modelo preditivo

pode ser implementado e qual o impacto da antecipação no desempenho geral do modelo.

Dessa maneira, as variáveis foram subsequentemente removidos dos modelos de classificação

e regressão e a mesma abordagem de validação mencionada acima foi usada. Os modelos

foram testados usando dados até 11 de julho, 19 de julho, 27 de julho, 4 de agosto, 12 de

agosto e  20 de agosto.

1.3.2 Materiais e métodos do artigo 2

Para o artigo 2 (Satellite-based soybean yield forecast: integrating machine learning

and weather data for improving crop yield prediction in southern Brazil), imagens do sensor

MODIS  embarcado  no  satélite  Terra  (coleções  MODIS/006/MOD09Q1  e

MODIS/006/MOD13Q1), foram uadas para calcular dois índices de vegetação: NDVI e EVI.

Temperatura  da  superfície  do  dossel  vegetal  foi  acessada  através  do  sensor  MODIS

embarcado no satélite  Aqua (coleção  MYD11A2).  Precipitação  foi  acessada  do  banco de

dados  CHIRPS  (Climate  Hazards  Group  Infrared  Precipitation  with  Stations).  Todas  as

variáveis supracitadas foram coletadas para um período de 14 anos (2003 até 2016) iniciando

no dia 5 março até o dia 15 de outubro. Todas as informações usadas até esta etapa foram

acessadas usando a plataforma online GEE.

As informações da distribuição das áreas destinadas à agricultura para o estado do Rio

Grande do Sul foram acessadas através do banco de dados georreferenciado disponibilizado

pelo Cadastro Ambiental Rural (CAR). 

Dados de produtividade à nível municipal de anos anteriores foram coletados do banco

de  dados  do  Instituto  Brasileiro  de  Geografia  e  Estatística  –  IBGE/Sistema  IBGE  de

Recuperação  Automática  –  SIDRA (https://sidra.ibge.gov.br/pesquisa/pam/tabelas)  e  foram

https://sidra.ibge.gov.br/pesquisa/pam/tabelas
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usados para treinar um modelo empírico de predição de produtividade usando EVI, NDVI,

precipitação e temperatura da superfície do dossel como preditores. Três algoritmos foram

testados:  regressão  linear  multivariada,  random  forest,  e  redes  neurais  de  aprendizagem

profunda (Deep Learning Neural Networks).

Os três algoritmos foram avaliados usando uma validação cruzada pelo método leave-

one-out.  Dessa forma 14 modelos diferentes foram ajustados, sempre removendo o ano que

seria  usada  para  validação.  A performance  do  modelo  foi  avaliada  usando  o  erro  médio

absoluto e a raiz do quadrado médio do erro. Por último, uma análise de sensibilidade foi

conduzida para verificar com que antecedência o modelo preditivo pode ser implementado e

qual o impacto da antecipação no desempenho geral do modelo. Dessa maneira, as variáveis

foram  subsequentemente  removidos  dos  modelos  regressão  e  a  mesma  abordagem  de

validação mencionada acima foi usada para avaliar os modelos.  Os modelos foram testados

usando dados até 16 de janeiro, 1 de fevereiro, 17 de fevereiro e 5 de março.

1.3.3 Materiais e métodos do artigo 3

Produtividade da cultura do milho em nível de área agrícola foi acessada através de 19

mapas de colheita (6 para o estado do Rio Grande do Sul, 7 para o estado do Mato Grosso e 6

para o estado do Kansas – EUA) para os anos de 2016 e 2017. Imagens do satélite Sentinel 2

foram recuperadas para essas áreas de maneira a calcular os seguintes índices de vegetação:

NDVI,  NDRE  (Normalized  Difference  Red  Edge  Index)  e  GNDVI  (Green  Normalized

Difference Vegetation Index). A data de coleta das imagens variou de uma área para outra

dependendo da localização espacial e da incidência de nuvens. Procurou-se coletar imagens

em um período  compreendido  entre  20  dias  antes  e  20  dias  após  o  florescimento.  Uma

provável data de florescimento foi estimada baseada na data de plantio e colheita das áreas.

Modelos de regressão linear multivariada foram ajustados considerando produtividade

como variável dependente e os índices de vegetação como variáveis independentes. O banco

de dados foi  dividido  em dados de treinamento  e  validação.  Modelos  foram inicialmente

validados  localmente  (validados  para  o  ano  e  local  onde foram inicialmente  ajustados)  e

depois foram validados temporalmente (modelos ajustados com dados de 2016 aplicados em

2017 – apenas para o estado do Kansas) e espacialmente (modelos ajustados no Rio Grande

do Sul, aplicados para o Mato Grosso e para o Kansas).
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2 ARTIGO 1 – MID-SEASON COUNTY-LEVEL CORN YIELD FORECAST FOR US 

CORN BELT INTEGRATING SATELLITE IMAGERY AND WEATHER VARIABLES

Abstract
Yield estimations are of great interest to support interventions from governmental policies and
to increase global food security. This study presents a novel model to perform in-season corn
yield predictions at the US county-level, providing robust results under different weather and
yield levels.  The objectives of this study were to: i) evaluate the performance of a random
forest  classification  to  identify  corn  fields  using  NDVI,  EVI  and  weather  variables
(temperature, precipitation, and vapor pressure deficit- VPD), ii) evaluate the contribution of
weather variables when forecasting corn yield by using remote sensing data and perform a
sensitivity analysis to explore the model performance in different dates, and iii) develop a
model  pipeline  for  performing  in-season  corn  yield  predictions  at  county-scale. Main
outcomes from this study were: i) high accuracy (87% on average) for corn field classification
achieved in late August, ii) corn yield forecasts with a mean absolute error (MAE) of 0.89 Mg
ha-1, iii) weather variables (VPD and temperature) highly influenced the model performance,
and iv) model performance decreased when predictions were performed early in the season
(mid-July), with MAE increasing from 0.87 Mg ha-1  to 1.36 Mg ha-1 when forecast timing
changed  from DOY 232  to  DOY 192.  This  research  portrays  the  benefits  of  integrating
statistical techniques and remote sensing to field survey data in order to perform more reliable
in-season corn yield forecasts.

Keywords: Crop classification, random forest, satellite imagery, yield forecast, MODIS.

Abbreviations:  CDL, Cropland Data Layer; DOY, day of year; EVI, Enhanced Vegetation
Index;  GEE,  Google  Earth  Engine;  MODIS,  Moderate  Resolution  Imaging
Spectroradiometer; NASA, National Aeronautics and Space Administration; NASS, National
Agricultural Statistic Service; NDVI, Normalized Difference Vegetation Index; RMSE, Root
Mean Square Error; USDA, United States Department of Agriculture; VI, vegetation index;
VPD, Vapor Pressure Deficit.

INTRODUCTION
Yield forecasts with high accuracy before harvest are extremely useful in agricultural

decision-making processes, but its applicability largely depends on the spatial scale in which

predictions  are  performed.  On the  one  hand,  within-field  yield  variability  predictions  are

helpful to understand how crops respond to numerous management and environmental factors

(Peralta et al., 2016; Lobell, 2013). On the other hand, yield forecast models at a larger scale

(e.g.  county,  state  and  country)  are  useful  for  questions  involving  global  food  security,

government assistance in food policies, and trade of agricultural commodities. Moreover, such

forecasts can permit grain traders to make informed decisions, especially in food exporting

countries such as the US (Sakamoto et al., 2014).
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Remotely  sensed  vegetation  indices  (VIs)  such  as  the  Normalized  Difference

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are commonly used for

agricultural  mapping and yield  forecasting (Maselli  and Rembold,  2001;  Mkhabela et  al.,

2005; Funk and Budde, 2009). Researches have been focused on a wide range of satellite

imagery data to predict corn yield worldwide (Bognár et al., 2011; Lobell, 2013; Hamada et

al., 2015; Peralta et al., 2016; Schwalbert et al., 2018), demonstrating the potential of the yield

forecast models based on remote sensing data, as a tool for providing quantitative and timely

information on agricultural crops. Satellite images with greater spatial resolution, such as the

freely available Landsat 8 (30m) and Sentinel 2 (10m) or commercial options RapidEye (5m)

and Skysat (2m), are needed for field-level crop monitoring and yield forecasts. On the other

hand, models designed to perform predictions on county, state or country level are based on

images with an intermediate to coarse resolution, such as AVHRR (1km) and MODIS (250m).

These images have advantages in regard to their superior temporal revisit frequency and larger

spatial coverage, which avoids problems with cloud interference (Rembold et al., 2013).

There  are  two equally  important  characteristics  that  should be considered in  yield

forecast models: i)  accuracy of the forecasts and ii)  timing when forecasts  are performed.

Usually, those two aspects are related, in order that predictions performed early in the season

have lower accuracy (Hayes and Decker,  1996; Shanahan et  al.,  2001; Wall  et  al.,  2008).

Sakamoto et al. (2014) found high accuracy in US county- and state-level predictions using

images from the beginning of the season, with the error decreasing as more images were

added during the progression of the crop growing season. Early yield predictions are highly

affected  by  weather  events  (e.g.  heavy  precipitation,  drought  and  heat  stresses)  and

corresponding agronomic management decisions in the remaining growing season. Weather

has a large contribution to  yield variability  within-  and between-season and usually yield

forecast models have an improved performance when those variables are taken into account

(Johnson, 2014). Despite of that, only a few studies have examined impacts of these additional

input variables on the model performance (Shao et al.,  2015). Precipitation, daily average,

maximum  and  minimum  air  temperature  (based  on  weather  stations),  and  daytime  and

nighttime land surface temperature (derived from earth observations) are the most common

variables included into crop yield forecast models (Johnson, 2014; Shao et al., 2015). Another

potential variable that can be included into yield forecast models is the vapor pressure deficit

(VPD). The VPD is the gradient between the water vapor–saturated leaf interior and the drier

bulk air (Ort and Long, 2014) and is widely used as a measure of atmospheric water demand

that depends on air temperature and humidity. It has frequently been reported as one of the
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most decisive weather variables on historical corn yield anomalies across the US Corn Belt

(Lobell et al., 2014).

Currently, one of the most critical steps to make in-season yield predictions at large

scales is related to obtaining reliable information about geographical distribution of field and

crop yields across large areas (Sakamoto et al., 2014; Jin et al., 2017a; Shelestov et al., 2017).

For the US, the National Agriculture Statistical Service (NASS), a statistical arm of the United

States Department of Agriculture (USDA), releases a layer with detailed information about

geographical  distribution  of  fields  since  1997  (since  2008  for  the  entire  country).  This

information is usually released three months after the harvest of summer crops in the US

(approximately early February). This information is valuable for training yield models but not

useful  for  in-season  (“near  real-time”)  yield  forecasts.  Recent  agricultural  studies  using

remote sensing data have focused on exploring techniques aiming crop classification based on

satellite images (Sakamoto et al., 2014; Jin et al., 2017a; Shelestov et al., 2017). This is an

essential  step  on  the  development  of  near  real-time  forecast  models.  Classification  trees

techniques such as random forest is growing in popularity among the classification methods to

crop mapping, presenting a high computational efficiency and robustness against overfitting

(Belgiu and Drãgut, 2016). For this technique, users need to set only two parameters – the

number of variables in the random subset at each node and the number of trees in the forest –

and the output usually is not very sensitive to their values, avoiding any subjectivity (Liaw

and Wiener, 2002).

The objectives of this study were to: i) evaluate the performance of a random forest

classification to identify pixels where corn is grown at 250m resolution using NDVI and EVI

derived from MODIS images and weather variables, ii) assess the impact of weather variables

(precipitation,  temperature,  and  VPD)  on  corn  yield  predictions  and  evaluate  the  model

performance when forecasting  corn  yield  earlier  on the  season,  and iii)  develop a  model

pipeline to perform corn yield forecast at county level for the US Corn Belt (e.g., Kansas,

Iowa, and Indiana). For our analyses, we select Iowa, Indiana, and Kansas – the 1st,  4th, and

12th ranked US states for state-level average corn yield (2008-2017 average), respectively –

to test the model at varying yield levels.

MATERIALS AND METHODS

Data sources

Historical  county-level  corn  yield  data  (2008-2017)  was  obtained  from  the

USDA/NASS  (“https://quickstats.nass.usda.gov/”).  This  database  is  released  as  point
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information  in  a  county  (each  point  is  a  county/year  yield  record)  without  geographical

identification such as latitude and longitude.

Additionally,  VIs  from  satellite  imagery  were  obtained  from  MODIS  Surface

Reflectance products via the Google Earth Engine (GEE) platform (Gorelick et al.,  2017).

Since we are working on a large scale, and we need to build a crop land layer free of clouds

for the entire region, the available options for satellite data were limited. The NASA Earth

Observing  System  Data  and  Information  System  (EOSDIS)  provided  8-  and  16-days

imageries  on  a  near  real-time  basis  allowing  to  retrieve  satellite  data  with  a  minimal

interference of clouds. This cloud-freeness is the main reason to choose the EOSDIS data for

building our model. From those layers we retrieved two VIs, NDVI and EVI. The NDVI is a

widely used VI, with several applications in agriculture including crop classification in the US

Corn Belt (Wardlow and Egbert, 2008), however its ability to separate corn from soybean has

been questioned since those crops have relatively similar NDVI profiles (Shao et al., 2010;

Gonzalez-Sanchez et al., 2014) and within-crop variations of season are at least as large as

inter-crop differences. Moreover, when corn and soybeans reach their peak growth stage and

thus  high  biomass,  NDVI  usually  saturates  and  no  further  allows  for  deciphering  of

differences in biomass. For that reason, we have included the EVI, since it is more sensitive in

capturing variability during high-biomass periods (Zhong et al., 2016), despite of its lower

image frequency (16 days) compare to the NDVI layers (8 days).

All  NDVI  images  were  generated  using  data  from  the  collection

MODIS/006/MOD09Q1. This collection provides images with 250-meter resolution, and each

MOD09Q1 pixel contains the best possible observation during an 8-day period in order to

minimize problems with cloud interference. All EVI images were obtained from the collection

MODIS/006/MOD13Q1 that provides images with 250-meter resolution, and each MOD13Q1

pixel contains the best possible observation during a 16-day period. All the images from these

two collections were gathered between May 1 and August 20 from 2008 to 2017. The starting

date was selected based on the corn planting date. The initial date was defined in order to

capture information from the beginning of the crop growing season in the Corn Belt, which is

typically from May to October (USDA/NASS), up to the date of the yield forecast. The initial

date is similar to the one used by Johnson et  al.  (2014) for the US Corn Belt.  Moreover,

Shanahan  et  al.  (2001)  shows  that  satellite  images  earlier  than  May  1st  have  a  weak

correlation with the final yield. The final date, August 20, was chosen in order to get images

which cover the period of the highest reflectance of the corn canopy and where the selected

weather variables have the highest correlation with the corn yield. This period is expected to
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capture the two most  important  phenological  stages,  flowering and grain filling,  which is

usually in July and August (Johnson, 2014; Lobell 2015; Peng et al., 2018). Despite the use of

fixed dates for forecasting yield in a large region as the US Corn Belt, this simple approach

has produced robust results for other related studies (Schlenker and Roberts, 2009; Bolton and

Friedl, 2013; Johnson, 2014; Sakamoto et al., 2014, Peng et al., 2018).” Because of the high

variability related to planting date, comparative relative maturity (CRM), and management,

fixed dates seems to be the more robust approach.

The Cropland Data Layer (CDL) was used in this study to retrieve information related

to corn and non-corn field locations. The CDL is a raster, geo-referenced, 30-meter resolution,

crop-specific land cover data layer created annually for the US using moderate resolution

satellite  imagery  (e.g.  Landsat  and  MODIS)  and  extensive  on-the-ground  agricultural

measurements. Its accuracy exceeds 90% for crops such as corn and soybean (Johnson and

Mueller, 2010). All CDL images between 2008 and 2017 were obtained from GEE platform.

For this study, the CDL was re-projected to the MODIS sinusoidal projection and up-scaled to

250 m, so that all the pixels from CDL and from MODIS match perfectly. When changing the

scale from 30 m to 250 m, the values of the new pixels were equal to the average from all the

smaller pixels partly or entirely overlapping with the new pixel. This process was performed

to identify the pure corn pixels.

Three weather variables were selected to be potentially included on the models: daily

average temperature, precipitation and VPD. The first two are refer to negative correlations of

heat and positive correlations of precipitation on corn yields (Smith, 1914; Wallace, 1920;

Bolton and Friedl, 2013; Johnson, 2014). Additionally, the VPD is known for having strong

influence  in  several  processes  during  the  crop  growth  (Messina  et  al.,  2015;  Basso  and

Ritchie, 2018) and can provide important information with potential to improve the model

performance in years with large yield anomalies due to weather stress events. All the weather

variables  were  summarized  (averaged  for  temperature  and  VPD  and  summed  for

precipitation) on an 8 days period in order to exactly match with the NDVI derived from

MODIS.

Temperature  and  precipitation  were  obtained  from  the  Parameter-elevation

Regressions on Independent Slopes Model (PRISM), and VPD was obtained from GRIDMET.

Both layers are daily gridded datasets for the conterminous US, and provide information with

a resolution of ~4 km. Thus those layers were re-projected and  down-scaled in order to be

combined with the rest of the collected information.



22

Data collection and organization

Before collecting data from the aforementioned sources, a mask layer was built which

contains all the pixels with a high likelihood of overlapping corn fields in any growing season

(pixels entirely contained within corn fields). This mask layer was basically a mosaic of all

the re-projected CDLs (process described above) from 2008 to 2017. The function of this

mask layer was to reduce the number of non-agricultural pixels in the crop classification step.

The inclusion of this layer has significantly decreased the processing time. In addition, the

layer increase the model accuracy due to lower variability in the input data. For each year, all

pixels  that  were labeled as corn,  at  least  once in  a  period between 2008 and 2017,  were

considered as candidates to overlap corn fields. All the collected information comprises the

first step on the model development (Figure 1 – Step 1).

Crop classification

The  second  step  on  the  model  development  was  to  train  a  model  capable  to

differentiate corn from non-corn field pixels (Figure 1 – Step 2). This step was necessary

because  otherwise  the  model  would  become  largely  dependent  on  the  CDL  updates,

commonly released three months after  the harvest  of US summer crops  (early February),

impeding any near real-time corn yield forecast. The crop classification model was based on

the random forest algorithm. Random forest is an ensemble classifier that randomly selects a

subset of training samples and variables to produce multiple decision trees. A larger fraction

of the entire dataset (usually around two-thirds of the samples) is used to train the trees and

the remaining fraction is used in a cross-validation technique for estimating how well the

resulting  random  forest  model  performs  (Breiman,  2001).  This  technique  has  become

common in the remote sensing community due to the accuracy of its outcomes (Belgiu and

Drãgut, 2016). The algorithm was set to use 600 trees, with a minimum leaf sample size of

five to  build the classification tree through the randomForest  package (Liaw and Wiener,

2002) by the R program (R Core Team, 2017)

The classification model used crop types as the dependent variable (only two classes

were considered, corn – 100% pure corn pixels – and non-corn). Factors such as NDVI, EVI,

VPD,  temperature,  and  precipitation  were  all  considered  as  independent  variables.  All

independent variables were only used up to the forecasting time within the season, therefore

different classification models were trained for the different yield forecast dates. This implies

that the crop mask can slightly change between different forecasting days. The classification

model was run eight times following an assembly approach. In the first round only the multi-
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temporal  VIs  were  used.  In  the  rounds  number  2,  3,  and  4,  the  weather  variables  were

included individually into the model, then in rounds 5, 6, and 7 two weather variables were

included in pairs, and finally a full model using all the variables were tested. The efficiency of

this step was obtained using a leave-one-year-out cross-validation (removing one year per

round from the model and then using that year as the validation) and calculating the overall

accuracy for each validated year. Overall accuracy was computed by dividing the number of

correctly  classified  observations  by  the  total  number  of  observations  derived  from  the

confusion matrix. The best model was considered the model with the highest and constant

accuracy over the ten years, and it was selected to be used on the step 3.

Empirical relationships between yield, vegetation indices and weather

For building the forecast model in step 3, only the pixels tagged as corn were used and

these  corn  pixels  were  averaged to  county  level  in  order  to  be  combined  with  the  yield

information  from USDA/NASS.  A multivariate  model  was  fitted  using  corn  yield  as  the

independent  variable.  The  dependent  variables  were  added  following  the  same  assembly

approach used for the classification model (Figure 1 –step 3). This process was independently

repeated for all the yield forecast dates considered in this study.

Model  performance  was  evaluated  using  a  leave-one-year-out  cross-validation

approach and four metrics were used to assess the model accuracy: the mean absolute error

(MAE),  the  root-mean  square  error  (RMSE),  the  bias  coefficient  and  the  Nash–Sutcliffe

model efficiency coefficient (NSE). The MAE represents the average magnitude of the errors

while RMSE is a quadratic scoring rule for the average magnitude of the error, and it is more

useful when large errors are particularly undesirable.  The RMSE will  always be larger or

equal  to  the  MAE;  the  greater  difference  between  them,  the  greater  the  variance  in  the

individual errors in the sample. If the RMSE = MAE, then all the errors are of the same

magnitude. Bias computes the average amount by which observed is greater than predicted, if

the model is unbiased the index should be close to zero, positive values means that the model

is  underestimating  the observed data  and negative values  means that  observed values  are

overestimated. The NSE is a normalized statistic that determines the relative magnitude of the

residual variance compared to the measured data variance and shows how well the prediction

fits to the year-to-year yield variability, and its interpretation is analogous to the coefficient of

determination (R2).
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Figure 1. Flowchart indicating all steps of the (A) model development: 1 – data collection and

organization, 2 – variable selection and crop classification model aiming at separating corn

fields from non-corn fields using random forest algorithm (crop labels is referred to the labels

used in  the  supervised classifications  – random forest),  step  3 – data  selection  and yield

forecast model based on empirical relationships; and (B) pipeline with all steps for applying

the model in future conditions.
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Time series sensitivity analysis

After selecting the best models for crop classification and yield forecast, a sensitivity

analysis was performed to check how early in the season the forecasting yield model can be

implemented  and  its  impact  on  the  overall  model  performance.  For  this  purpose,  data

collected later during the growing season were subsequently removed from the model and the

same validation approach aforementioned was used to compute using MAE, RMSE, bias, and

NSE. Thus, we tested the model using data until DOY 232 (August 20), DOY 224 (August

12), DOY 216 (August 4), DOY 208 (July 27), DOY 200 (July 19), and DOY 192 (July 11).

We have assumed the existence of a delay in the release of the yield forecast models based on

the process for uploading the MODIS product by NASA, 5 days (Sakamoto et al., 2014), and

a processing time for the proposed algorithm under parallel processing to be 1 day, totalizing a

delay of 6 days.

All  the data  collection and organization was performed on the GEE platform. The

analysis comprised in step 2 and 3 were performed in the R environment in the Beocat, the

High Performance Computer from Kansas State University, under parallel processing. 

RESULTS

Crop classification

The  importance  of  the  weather  on  the  crop  classification  was  assessed  using  an

assembly  approach  where  the  weather  variables  were  independently  added  to  the  model.

There  was  no  significant  improvement  on  the  model  performance  after  the  inclusion  of

precipitation,  temperature  or  VPD,  compare  to  the  model  using  only  NDVI  and  EVI.

Accuracy of the model presented some degree of variability over the growing seasons and

among the states, with Iowa and Kansas having higher accuracy relative to Indiana (Figure 2).

Additionally, 2012 had the lowest accuracy related to the other years considered on this study

(lowest points in Figure 2A). In overall, average for all the years on the three states, the model

presented an accuracy of 87% for DOY 232 (Figure 2), 87% for DOY 224, 86.5% for DOY

216, 86% for DOY 208, 84.6% for DOY 200, and 82% for DOY 192 (data not shown) related

to the CDL.
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Figure 2.  (A) Overall out-of-sample accuracy (number of correctly classified observations

divided by the total number of observations derived from the confusion matrix), for all the

years  and states  considered  in  this  study (each point  represents  a  year/state).  The shapes

around the points represent the  kernel density plot for the accuracy in each condition. (B)

Thematic  maps representing the  spatial  distribution of  corn  pixels  from CDL (at  MODIS

scale) (green) and predicted by the model using NDVI and EVI (blue) for 2017.

Empirical relationships between yield, vegetation indices and weather

There was a significant difference on the model performance driven by the inclusion

of  weather  variables  into  the  model.  The simplest  model,  based  only  on  NDVI and EVI

resulted in the highest MAE (1.33 Mg ha-1), RMSE (1.04 Mg ha-1), the lowest NSE (0.7), and

the most negative bias (-77 kg ha-1), indicating that this model presented a large dispersion of

points along the 1:1 line, and tended to overestimate the observed yield in a higher proportion

compare  to  the  other  models.  Following  a  hierarchical  order  of  importance,  the  weather

variable  with  the  highest  contribution  on  enhancing  the  model  performance  was  VPD,

followed by temperature  and then  accumulated  precipitation.  When the  weather  variables

were included in pairs, the combination of precipitation + temperature did not yield better

results than the model that only included VPD as the weather variable. The remaining three

models had a better  performance relative to the previous ones, with the model containing

NDVI,  EVI,  temperature,  and  VPD  having  a  similar  performance  to  the  full  model  and

https://en.wikipedia.org/wiki/Kernel_density_estimation
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slightly better than the model including precipitation instead of temperature (Figure 3A). For

that reason we selected the model including temperature and VPD as the weather variables,

additional to the VI predictors, for being used in the last step. The inclusion of temperature

and VPD resulted in a decrease of 0.15 Mg ha-1 in MAE, 0.18 Mg ha-1 in RMSE, 68 kg ha-1 in

bias, and an increase of 0.07 in the NSE, related to the model that only included NDVI and

EVI (Figure 3B). The model performance was quite stable over the years. The 2012 growing

season presented the lowest model performance, mainly related to the dry conditions during

this growing season (2012 had the lowest yield average among all the years considered in this

study). On the other hand, 2009, 2011, and 2016 presented the better  model performance

according to the RMSE, MSE, NSE, and Bias metrics (supplementary figure 1).

Figure 3. (A) Mean absolute error (MAE), Root-mean square error (RSME), Nash–Sutcliffe

model  efficiency  coefficient (NSE),  and  bias  coefficient  for  all  the  models  tested  in  the

assemble approach. (B) Observed versus out-of-sample forecasted corn yield from a yield

forecast model with multitemporal VIs (left) and observed versus predicted corn yield from a

yield forecast model with multitemporal VIs, temperature and vapor pressure deficit (right).

Predictive yield based on aggregating data until DOY 232 (August 20) for Kansas, Indiana,

https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient
https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient
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and Iowa from 2008 to 2017. The black line is presented in panel portraying the 1:1 line for

the observed-predicted relationship. The sample size is n = 2501 data points.

Sensitivity of the results to forecasting time

The  accuracy  of  the  model  decreased  as  the  county-level  corn  yield  forecast  was

anticipated from the DOY 232 (August 20) to DOY 196 (July 11) (Figure 4A). MAE and

RMSE increased and NSE decreased as the yield forecast was performed earlier in the season.

Model performance was most affected when the predictions were performed before DOY 208

(July 27), with MAE overpassing 1 Mg ha-1 (Figure 4B).

Another negative effect of performing yield forecast earlier in the season was the trend

to  overestimate  yields  in  a  higher  frequency,  evidenced by the  decreased  (more  negative

values) in the bias coefficient as the predictions are performed towards the beginning of the

growing season. This behavior was more evident for the lowest yields on DOY 200 (July 19)

and 196 (July 11).

Figure  4. (A)  Observed  versus  out-of-sample  forecasted  corn  yield  (forecast  model  with

multitemporal VIs, temperature and vapor pressure deficit) for different dates expressed in

days of year (DOY). A black dashed line is presented in panel portraying the 1:1 line for the

observed-predicted relationship.  The sample size is n = 2501 data points. (B) Variations in the

mean absolute error (MAE), root-mean square error (RMSE), Nash–Sutcliffe model efficiency

coefficient (NSE), and bias coefficient for different dates of yield prediction. 

DISCUSSION
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This study offered a novel approach using the CDL as a ground truth layer for crop

classification and remote sensing combined with weather data as predictors for estimating

corn yield at  the county-scale. Moreover, it  provides information related to the impact on

model  accuracy  by  anticipating  corn  yield  forecast  earlier  in  the  season  relative  to  the

projected by USDA/NASS. This study suggests that at DOY 208 (July 27) models aiming at

forecasting corn yield in the US Corn Belt could be implemented with an error (MAE) lower

than 1 Mg ha-1.

One of the main challenges for building accurate yield forecast models is to determine

the geographical distribution of the fields, herein after termed as crop mapping layer. This

information  is  valuable  since  all  the  pixels  not  corresponding  to  corn  fields  should  be

removed, “masked”, from the image, before establishing empirical relationships between VI

and yield. Different techniques focused on crop classification and crop masking have been

proposed worldwide,  exploring differences  in emergence dates between corn and soybean

(Sakamoto et al., 2014), using different machine learning algorithms (e.g. supported vector

machine, decision trees, and neural networks) (Shelestov et al., 2017), and exploring different

resolution satellites options, such as Landsat 8, Sentinel 2, and RapidEye (Azzari et al., 2017;

Jin et al.,  2017a; Xiong et al.,  2017). In the US the CDL is also an interesting option for

masking crops pixels from satellite scenes, due its very high accuracy, exceeding 90% for

corn and soybean (Johnson and Mueller, 2010). However this layer is not useful for near real-

time yield forecast, since it is released with one year of delay. Despite of that, the CDL has

great  value  as  source  of  labeled  data  for  training  crop classification  models.  As the  first

outcome this study presented a novel crop classification approach based on Random Forest

and multitemporal NDVI and EVI images from early May (DOY 128) to late August (DOY

232) and CDL from previous  years  as  ground-truth  for  field  geographical  positions.  This

model achieved an accuracy of 87% (DOY 232) on average, higher than the 85% threshold,

desired for most of agricultural purposes (Shelestov et al., 2017). Similar values of accuracy

were  reported  in  previous  studies  using  MODIS  images  and  different  approaches  for

classifying the fields (Sakamoto et al., 2014). The crop classification model makes the yield

forecast not dependent on the CDL updates and allows near real-time yield predictions.

The second outcome from this research was the development of a model to forecast

corn yield at DOY 232 at county-level. The USDA/NASS usually releases the first corn yield

report approximately at the 224th DOY, but in a state-level, county-level yield information is

only released in the following year (usually three months after harvest). Satellite imagery data

are known to be a useful and a  reliable information to forecast  yield before harvest  time
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(Bolton and Friedl, 2013; Sakamoto et al., 2014; Johnson, 2014; Peralta et al., 2016; Jin et al.,

2017a;  b),  and  the  simplest  approach  to  estimate  crop  yields  by  establishing  empirical

relationships  between  end-season  yield  observations  and  mid-season  VIs  calculated  from

multispectral images (Moriondo et al., 2007; Wall et al., 2008; Bognár et al., 2011; Minuzzi

and Lopes, 2015; Shao et al., 2015; Hamada et al., 2015; Peralta et al., 2016; Bu et al., 2017).

The model based on multitemporal VIs was able to predict yield with a MAE of 1.04 Mg ha-1

(DOY 232)  over  ~2,500  combinations  of  county-years  and  have  its  model  performance

significantly improved by the introduction of temperature and VPD as predictors, reaching a

MAE of 0.89 Mg ha-1  (DOY 232).  Information related to inclusion of weather variables on

empirical  yield  forecast  models  are  still  scarce  on  the  literature.  Johnson  (2014)  found

negative  correlation  between  daytime  surface  temperature  and  corn  yields,  but  lack  of

improvement  on  the  model  performance  was  documented  by including  nighttime  surface

temperature or precipitation.  Additionally,  Shao et  al.  (2015) did not find any benefits  by

including  precipitation,  average  daily,  maximum  and  minimum  air  temperature  into  the

model. However, our study is one of the few studies evaluating the performance of VPD along

with multitemporal VIs as predictors for estimating corn yield at county-scale. Lobell et al.

(2014) reported VPD in the third month after sowing, which is typically July for a field sown

in early May, as the most influencing variable among other 19 weather variables explaining

historical  yield  variations  across  the  US  Corn  Belt.  VPD  is  a  widely  used  measure  of

atmospheric water demand. It is closely related to crop evapotranspiration and consequently

has major impacts on crop growth and yields. It has been documented that the photosynthetic

rate declines when atmospheric VPD increases (Quick et al., 1992; Hirasawa and Hsiao, 1999;

Fletcher  et  al.,  2007).  It  is  because  plants  under  high  VPD  conditions  reduce  stomatal

conductance,  which  effectively  saves  water  in  the  plant,  at  the  cost  of  reduced  carbon

assimilation (Lobell et al., 2013).

Lastly, a sensitivity analysis was pursued to explore how early reliable county-level

corn yield predictions can be accomplished. The importance of a yield prediction could be

considered  as  a  balance  between  its  accuracy  and  the  timing  when  the  prediction  are

performed, considering that usually there is a trade-off between the error and the date of the

prediction (Bolton and Friedl, 2013; Sakamoto et al., 2014; Shao et al., 2015). Our results

showed that corn yield can be forecasted at county-scale for the US Corn Belt at DOY 208

with a MAE < 1 Mg ha1, and a RMSE of 1.26 Mg ha-1. Equal RMSE was reported by Johnson

et  al.  (2014)  when  forecasting  yield  at  DOY  305  using  the  CDL  as  the  crop  mask.

Furthermore, the RMSEs reported in this study are within the range of the values reported by
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Shao et al.  (2015), and bellow the ones reported by Sakamoto et al. (2014), ranging from

~1.68 Mg ha-1 to ~1.76 Mg ha-1 at DOY 215 when performing prediction independently from

CDL for 2002 and 2012. Therefore, these results represent a great prospect for anticipating the

yield forecast in approximately two weeks related to the first USDA/NASS yield report at

state level.

Despite of the model pipeline presented in this study being dependent only on remote

sensing and weather data to forecast corn yield at the county-level, the layers used to train the

crop classification model and to establish the yield-VI/weather empirical relationships came

from extensive field surveys performed by USDA/NASS or analogous agencies. Therefore,

the  contribution  of  the  research  is  to  show the  potential  benefits  of  integrating  statistical

techniques and remote sensing data to standard approaches (field survey) to perform more

reliable  in-season  yield  forecasts.  Moreover,  it  is  worth  acknowledging  that  the  model

developed in this study presents limitations that can be overcome in future studies. The first

constraint is related to the resolution, since the MODIS pixel size is 250 m. Thus, fields below

that resolution are blended with other fields and may therefore be inaccurately treated in the

analysis. The second constraint is related to the model dependence on field survey data, since

this study was developed for the US, the crop classification model was trained using the CDL.

For countries where this type of information is not yet available extensive field surveys will

be required to achieve high accuracy in the crop classification step.  The model performance

could still  be enhanced by i)  adding phenology information during the crop classification

process (Bolton and Friedl, 2013), ii) exploring new sources of information combining better

spatial and temporal resolutions, such as Sentinel-2, RapidEye, and Skysat, iii) exploring new

direct indicators of photosynthesis (such as solar-induced florescence) that will be available in

a near future (Drusch et al., 2017), iv) adding management information into the model scope

such  as  selection  of  crop  varieties,  fertilizer,  plant  density,  comparative  relative  maturity

(CRM), or irrigation,  and v)  combining remote sensing information and crop models [i.e.

mechanistic (process-based) models] output to enhance predictability power and increase the

spatio-temporal limits of predictability. As summarized in Sibley et al. (2013), there are at

least  two approaches for combining these two sources of information for forecasting crop

yields. The first one is to use crop simulation models to forecast crop yields, with the remote

sensing data employed to adjust inputs or parameters for the model on a pixel-by-pixel basis

(Clevers, 1997; Doraiswamy et al., 2005; Doraiswamy et al., 2005; Launay and Guerif, 2005;

Dente et al., 2008). The second approach is to use crop models for training empirical models

under a larger variety of weather, soil and management conditions and access the crop yield
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through the empirical coefficients (Sibley et al. 2013, Lobell 2015; Azzari et al. 2017; Jin et

al., 2017a;b). Both approaches result in models less dependent on third-party data such as the

USDA/NASS, and more robust against weather anomalies such as the 2012 growing season.

Results from this study suggest that remote sensing and weather variables (temperature and

VPD) are valuable data sources to perform accurate near real-time county-level corn yield

predictions  even  early  in  the  season (late  July),  having  potential  to  enhance  and help  to

anticipate yield predictions from official government departments such as the USDA/NASS.

Despite only three states were considered in this study, Iowa, Indiana and Kansas, we tested

the model for additional random combinations of counties (from different states) and years

and the estimated error was within the range reported in the result section.

CONCLUSIONS

Multi-temporal satellite imagery combined with weather variables can provide useful

information allowing the development of models able to forecast and monitoring corn yield at

early  season  (after  flowering)  at  county-scale.  A  decrease  in  accuracy  is  expected  by

anticipating the yield predictions, but this study suggests that corn yield forecast based on

satellite imagery, temperature and VPD could be implemented at 208 DOY (July 27) with an

accuracy of 78%. This is ~16 days before the first corn yield report of the USDA/NASS (at

state  level)  and  approximately  122  days  before  the  harvest. Additionally,  the  novel  crop

classification model developed in this study using the Random Forest classification technique

was adequate to separate pixels from MODIS images between corn and non-corn fields with

an overall accuracy higher than 85%.

The training and validation approach used in this study with data from different states

and  years  was  adequate  to  test  the  model  performance  in  different  weather  and  yield

conditions. Despite the analysis being developed for the US, the general approach described

can potentially be applied to other regions around the globe if a reasonable amount of survey

data is available for building a solid crop mapping data layer. This could contribute to support

agricultural decisions in regard to managing and transferring risks within the crop production.

This can help farmers to plan interventions and enable governments and traders to adjust

trading schemes and thus, avoid yield failures and food shortages.
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3 ARTIGO 2 – SATELLITE-BASED SOYBEAN YIELD FORECAST: INTEGRATING 

MACHINE LEARNING AND WEATHER DATA FOR IMPROVING CROP YIELD 

PREDICTION IN SOUTHERN BRAZIL

Abstract

Soybean  yield  predictions  in  Brazil  are  of  great  interest  for  market  behavior,  to  drive
governmental  policies  and  to  increase  global  food  security.  In  Brazil  soybean  yield  data
generally demand various  revisions through the following months after harvest suggesting
that there is space for improving the accuracy and the time of yield predictions. This study
presents  a novel model to perform in-season (“near real-time”) soybean yield forecasts  in
southern Brazil using Long-Short Term Memory (LSTM), Neural Networks, satellite imagery
and weather data.  The objectives of this study were to: i) compare the performance of three
different  algorithms (multivariate  OLS linear  regression,  random forest  and LSTM neural
networks)  for  forecasting  soybean  yield  using  NDVI,  EVI,  land  surface  temperature  and
precipitation as independent variables, and ii) evaluate how early (during the soybean growing
season) this method is able to forecast yield with reasonable accuracy. Satellite and weather
data were masked using a non-crop-specific layer with field boundaries obtained from the
Rural Environment Registry that is mandatory for all farmers in Brazil. Main outcomes from
this study were: i) soybean yield forecasts at municipality-scale with a mean absolute error
(MAE) of 0.24 Mg ha-1 at DOY 64 (march 5) ii) a superior performance of the LSTM neural
networks relative to  the other  algorithms for all  the forecast dates except DOY 16 where
multivariate OLS linear regression provided the best performance, and iii) model performance
(e.g.,  MAE) for  yield  forecast  decreased  when  predictions  were  performed  earlier  in  the
season,  with  MAE increasing  from 0.24 Mg ha-1  to  0.42 Mg ha-1 (last  values  from OLS
regression) when forecast timing changed from DOY 64 (March 5) to  DOY 16 (January 6).
This  research  portrays  the  benefits  of  integrating  statistical  techniques,  remote  sensing,
weather  to  field  survey  data  in  order  to  perform  more  reliable  in-season  soybean  yield
forecasts.

Keywords: Yield forecast; Satellite imagery, deep learning, Long-Short Term Memory.

Introduction

Soybean [Glycine  max (L.)  Merrill]  represents  one  of  the  world’s  most  important

sources of protein and oil, with four countries, US, Brazil, Argentina, and China, accounting

for approximately 90% of the total global production (Embrapa, 2018; USDA, 2019). Brazil is

currently the second largest soybean producer, only behind the US, contributing to ~34.7% of

the global  production.  As a consequence,  the soybean production from Brazil  has a large

impact on the global market, with seasonal fluctuations on production impacting the financial

market.
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In Brazil, there are two institutions responsible for providing data about the status of

the crops, the National Supply Company (Conab) and the Brazilian Institute of Geography

and Statistics (IBGE). Both Conab and IBGE are primarly based on field survies and they

release annually yield forecasts (before harvest) on a state-level and estimations (after harvest)

on a municipality-level (the last is released only by IBGE). Alternatively, with the advent of

new cloud platforms such as Google Earth Engine (GEE) (Gorelick et al., 2017) providing an

easier way to access large volumes of satellite and weather data, and dramatically increasing

processing power through parallel  computing resources,  satellite  imagery  became an easy

alternative  for  providing  yield  forecasts  over  larger  domains  in  a  near  real-time  basis.

Research have repeatedly shown the potential of satellite imagery on providing quantitative

data about yield worldwide (Ferencz et al., 2004; Hamada et al., 2015; Lobell, 2013; Peralta et

al., 2016; Schwalbert et al., 2018), and improved model performance has been documented

when weather  data is  effectively integrated on the estimations (Cai  et  al.,  2018; Johnson,

2014; Lobell et al., 2015; Peng et al., 2018).

Along with the increase in computational processing power, more complex algorithms

to data analysis also have become more popular when exploring larger and spatio-temporal

datasets. Empirical relationships between soybean yield, canopy reflectance, and weather data

usually  present  non-linearities  (Johnson  et  al.,  2016),  and  yield  forecast  models  using  a

collection of those variables recorded over time are prone to over-fitting due to a high degree

of autocorrelation. For those reasons, machine learning algorithms are able to more robustly

deal  with  non-linearities  against  over-fitting.  Those  machine  learning  algorithms  such  as

random forest and the neural networks have been successfully utilized to predict crop yield

using remotely sensed vegetation indices (Alvarez,  2009; Cai et  al.,  2018; Johnson et  al.,

2016; Khaki and Wang, 2019; Li et al., 2013; Drummond et al., 2013; Shao et al.,  2015).

Random forest  is  an ensemble  classifier  that  bootstraps  training samples  and variables  to

produce  multiple  decision  trees  performing  predictions  after  aggregating  the  results  from

individual trees; this process is also known as bagging (Breiman, 2001). The neural networks

consist  of  layers  of  highly  interconnected  processing  units  (neurons).  The  data  moves

throughout those layers across weighed connections, and each inner neuron is associated with

an activation function, usually responsible for a non-linear transformation (Cai et al., 2018). A

specific variation of the neural network, known as Long-Short Term Memory (LSTM) has

been more recently noticed because of its large capacity to deal with sequential data (Cunha et

al., 2018; You et al., 2017).
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In addition to data processing, another challenge when performing yield forecast over

large domains is to access to the crop geolocations. For some regions of the world such as the

US, this information is easily available since it is yearly released by the National Agricultural

Statistic  Service  (NASS)  named  Cropland  Data  Layer..  A 30-m  resolution  crop  specific

gridded layer (Johnson and Mueller,  2010) that is largely employed as a relevant layer in

studies aiming at  forecasting crop yield in the US (Johnson, 2014; Shao et  al.,  2015).  In

Brazil, such information is not yet available, despite the efforts of the governmental agencies.

However, for most of the municipalities (similar to the county-level in US) in Brazil, it is

possible  to  access  the  field  boundaries  of  permanent  agricultural  fields  from  the  Rural

Environmental  Registry  (Cadastro  Ambiental  Rural  -  CAR)  (http://www.car.gov.br).  This

layer despite not holding information related to crop types, provide an useful data source for

removing most part of the noise from the satellite imagery, coming from areas that are not

meaningful for agricultural purposes.

Thus, considering the importance of soybean in Brazil and its impact on the global

economy,  and  the  evident  lack  of  reliable  yield  information  in  near  real-time  basis,  the

implementation of a near-real time yield forecast will provide a useful layer for agricultural

purposes  and  policy  applications.  Therefore,  the  objectives  of  this  research  were  to:  i)

compare the performance of three different algorithms (multivariate  ordinary least square –

OLS - linear regression, random forest and LSTM neural network) for forecasting soybean

yield using vegetation indices such as NDVI, EVI, and weather data such as land surface

temperature and precipitation as independent variables, and ii) evaluate how early (during the

soybean growing season) this method is able to forecast yield with reasonable accuracy.

Material and Methods

Region selection

The study was conducted in the northern region of the Rio Grande do Sul (RS) state,

Brazil. This region was chosen due to: i) the high area and frequency of soybean crop in the

soybean-corn summer crop rotation (85% of the cropland is allocated to soybean), and ii)

since its represents the largest contiguous cropland area in RS state (Figure 1A).
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Figure  1. (A)  Annual  International  Geosphere-Biosphere  Programme  (IGBP)  land  cover

classification generated by  NASA LP DAAC (500 m - spatial resolution). Only two classes

(12 and 14 from original raster file) are highlighted, with percentage of the pixel covered with

cropland ranging from 40 to 100%. (B) Example of file available for downloading in CAR -

Consolidated areas for the municipality of Não-Me-Toque, RS.

Data sources

Historical municipality-level soybean yield data (2003-2016) was obtained from IBGE

(https://sidra.ibge.gov.br/pesquisa/pam/tabelas).  This  database  is  released  as  a  point

information  in  a  municipality  (each  point  is  a  municipality/year  yield  record)  without

geographical identification such as latitude and longitude. We used 80 municipalities once we

focused only in the ones with yield data available for the entire period considered in the study.

Additionally,  vegetation  indices  (VIs)  from  satellite  imagery  were  obtained  from

MODIS Surface Reflectance products. Since we are working on a large region, and we need

to build a mosaic free of clouds for the entire region, the available options for satellite data are

limited.  The  NASA Earth  Observing  System  Data  and  Information  System  (EOSDIS)

provided 8- and 16-days mosaics on a near real-time basis allowing to retrieve satellite data

with minimal interference of clouds. This cloud-freeness is the main reason to choose the

EOSDIS  data  for  building  our  model.  From  those  mosaics,  we  retrieved  two  VIs,  the

normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI). Since

EVI is released in a lower image frequency (every 16 days) compare to the NDVI (every 8

https://sidra.ibge.gov.br/pesquisa/pam/tabelas
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days) we calculated the average between each two consecutive EVI images in order to provide

an EVI time series that matches with the NDVI images.

All  NDVI  images  were  generated  using  data  from  the  collection

MODIS/006/MOD09Q1. This collection provides images with 250-m resolution,  and each

MOD09Q1 pixel contains the best possible observation during an 8-day period in order to

minimize problems with cloud interference. All EVI images were obtained from the collection

MODIS/006/MOD13Q1 that provides images with 250-m resolution, and each MOD13Q1

pixel contains the best possible observation during a 16-day period. All the images from these

two  collections  were  gathered  between  October  15  and  March  5  (soybean  planting  and

harvesting are not in the same calendar year in Brazil) from 2002 to 2016. The starting date

was selected based on the soybean planting date and phenology based on the analysis of the

soybean progress information and satellite images for the last 14 years. Moreover, this period

was selected in order to get images covering the time series when the soybean reflectance and

yield have the highest correlation (Johnson, 2014).

Two  weather  variables were selected to be evaluated on the models:  daytime land

surface temperature (LST), and precipitation. The LST is a similar, but not exactly the same,

measurement as more commonly collected air temperature. The two variables (LST and air

temperature) are strongly related, though, with LST having larger temperature extremes and

being locally dependent on the land cover type (Mildrexler et al., 2011; Wan, 2008). The LST

was  produced  from the  8-day  composited  thermal  product  from Aqua  satellite's  MODIS

sensor (termed MYD11A2). Daily precipitation data was provided by the Climate Hazards

Group  Infrared  Precipitation  with  Stations  (CHIRPS)  dataset.  The  CHIRPS  provides

precipitation data at ~5.5 km resolution by merging satellite and weather station information.

This source of data (CHIRPS) uses satellite in three ways: first, satellite means are used to

produce high-resolution rainfall climatologies; second infrared Cold Cloud Duration fields are

used  to  estimate  daily  rainfall  deviation  from climatologies.  Lastly,  satellite  precipitation

fields are used to guide interpolation through local distance decay functions (Cunha et al.,

2018).  Precipitation layers were re-projected and down-scaled in order to be combined with

the rest of the collected data. Precipitation was accumulated (summed) in an 8 days period to

match with NDVI and LST derived from MODIS. 

Data collection and organization

Since  Brazil  does  not  have  a  crop-specific  data  layer  for  retrieving  geographical

information about soybean field locations, we decided to use the data from CAR. The CAR is
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an electronic national public registry, mandatory for all rural properties, with the purpose of

integrating  the  environmental  information  related  to  the  permanent  preservation  areas

(restricted use), remnants of forests, other forms of native vegetation, and the consolidated

areas, composing a database for control, monitoring, environmental and economic planning

against deforestation. For the purposes of this study, we selected the consolidated rural areas,

that is considered as an area of rural property with anthropogenic occupation preexisting on

July  22,  2008.  This  information  was  downloaded  as  individual  shapefiles  (one  for  each

municipality considered in this  study),  and then merged via  R (R Core Team, 2017) in  a

unique file to be uploaded on the GEE platform.

All the VIs and the weather data were gathered via GEE using the CAR layer as a

cropland mask. All the collected information was organized in a table format and averaged to

municipality level before being merged with the yield data layer, comprising the first and the

second steps on the model development (Figure 2).

Figure 2. Flowchart indicating all steps of the model development: 1- data access, 2- data

wrangling which includes masking gridded data using CAR field boundaries and re-scaling
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the satellite and weather data to municipality-level before merging it with the yield data, and

step  3-  building  the  empirical  relationships  between  soybean  yield  and  the  predictors

(enhanced  vegetation  index  -  EVI,  normalized  difference  vegetation  index  -  NDVI,  land

surface temperature - LST, and precipitation) for the three considered algorithms (multivariate

OLS, random forest, LSTM neural network), and selecting the best model based on metrics

(MAE, MSE, and RMSE) derived from a leave-one-year-out cross validation.

Empirical relationships between yield, vegetation indices and weather

Three  algorithms  were  tested  to  describe  the  relationship  between  yield,  VIs  and

weather:  i)  multivariate  OLS  linear  regression,  ii)  random  forest,  and  iii)  LSTM  neural

network. Multivariate OLS model was choosen as a benchmark relative to the two machine

learning  algorithms,  since  it  represents  the  one  of  the  simplest  form  to  build  empirical

relationships between dependent and independent variables. Secondly, we chose the random

forest model to explore non-linear models. Random forests are easy to train relaying on tuning

only two hyper-parameters, the number of variables in the random subset at each node and the

number of trees in the forest,  and the output is usually not very sensitive to their  values,

avoiding any subjectivity (Liaw and Wiener, 2002). In addition, they have low sensibility to

outliers, resulting in high computational efficiency and robustness against over-fitting (Belgiu

and Drãgut, 2016). Lastly, we tested the model performance using the LSTM neural network.

The LSTM neural network are prepared for receiving sequential data as an input and are able

to extract important aspects related to the time series since it maintains a chain structure with

time steps, similar to the way that crop growth modeling works. Each step takes information

from  previous  step  and  outside  input  (from  feature  space  –  new  NDVI,  EVI,  LST and

precipitation values), and provides output for the next step. Furthermore, during the training

process this algorithm is capable of retaining key information of input signals, and ignore less

important parts.

For multivariate OLS and random forest, two classes of predictors were tested: i) the

multi temporal EVI, NDVI, LST and precipitation, and ii) the seasonal integrated EVI, NDVI,

LST and precipitation  (as  cumulative  over  the growing season).  Therefore,  for  those two

algorithms the annual municipality-level soybean yield forecasting model can be written as

the following function:

yij = f(xij) + eij (1)
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where, yij is soybean yield for the ith municipality and jth year, x is the user-selected vector of

predictors,  f  is  a  user-selected  computer  algorithm,  and  eij is  error  associated  with  the

prediction.

The  LSTM  neural  network  received  the  two  classes  of  inputs  at  the  same  time,

classified as dynamic and static data. The dynamic data were related to the VIs and weather

time series, and were organized in a 3D array (samples, time steps, and features). The static

data were the seasonal integrated variables. A concatenated layer was used to deal with those

different input dimensions.

Since random forest and LSTM neural network are machine learning algorithms, there

is a need for defining some hyper-parameters (parameters that the algorithm cannot lean from

the data). For random forest the considered hyper-parameter were the number of variables in

the random subset at each node and the number of trees in the forest. For the LSTM neural

network,  we tuned the number of hidden layers,  number of neuron on each hidden layer,

dropout  rate,  batch  size,  activation  function,  learning  rate,  learning  rate  decay,  and  the

gradient descent optimization algorithms. Moreover, the number of epoch was set to 60 and

the training made use of the EarlyStopping callback function from the Keras (Chollet, 2015),

with a patience parameter (the number of epochs with no improvement after which training is

stopped) equal to 20 to avoid over-fitting. Four years were randomly selected from the data:

2009, 2010, 2012 and 2016 for fine-tuning the machine learning hyper-parameters (sensitivity

analyses showed that the changes in the selected years did not significantly impact on the

model parameterization). We performed a random search in order to find the best values for

the hyper-parameters for the two considered algorithms.

For all the algorithms, model performance was evaluated using a leave-one-year-out

cross-validation approach and three metrics were used to assess the model accuracy: the mean

absolute error (MAE), the mean square error (MSE) and the root-mean square error (RMSE).

The MAE represents the average magnitude of the errors while RMSE is a quadratic scoring

rule  for  the  average  magnitude  of  the  error,  and  it  is  more  useful  when large  errors  are

particularly undesirable. The RMSE will always be larger or equal to the MAE; the greater

difference between them, the greater the variance in the individual errors in the sample. If the

RMSE equals to the MAE, then all  the errors are of the same magnitude.  The MSE was

chosen because this metric can be dissected into two components, bias2  (squared bias) and

variance (σ2), and this decomposition is helpful to understand if the model error has a more

systematic or non-systematic structure.
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Time series sensitivity analysis

For all the models, a sensitivity analysis was performed to check how early in the crop

growing season the forecasting yield model can be implemented and its impact on the overall

model  performance.  For this  purpose,  data  collected later  during the growing season was

subsequently removed from the model and the same validation approach aforementioned was

used to compute the MAE, MSE, and RMSE. Thus, we tested the models using data until

DOY 16 (January 16), DOY 32 (February 1), DOY 48 (February 17), and DOY 64 (March 5).

We have assumed the existence of a delay in the release of the yield forecast models based on

the  process  for  uploading  the  MODIS  product  by  NASA,  in  approximately  five  days

(Sakamoto et al., 2014).

The model training highlighted in the step 3 of the model development framework

(Figure 2) was performed in the R environment using the RandomForest (Liaw and Wiener,

2002) and the Keras (Chollet, 2015) packages.

Relationship between model accuracy and yield/weather anomalies

Long-term  yield  data  (1972-2017)  for  the  entire  region  considered  in  this  study

(average over all  the municipalities)  was collected from IBGE. A regression analysis  was

performed using year as the independent variable and yield as the response variable.  The

residuals from this relationship (yield anomalies) were used in a Monte Carlo simulation in R

program aiming at estimating the likelihood of any particular event to occur. We assume that

the yield anomalies follow a normal distribution with mean and standard deviation estimated

from the data. Residuals from the fitted model were utilized instead of using the absolute yield

value to account for the genetic and technological evolution over the years.

We repeated  this  task  using  weather  data  instead  of  yield,  and for  doing that  we

extracted  long-term  (1982-2018)  temperature  and  precipitation  information  from  NASA

POWER for all the municipalities considered in this study. We used NASA POWER for this

analysis instead of MODIS and CHIRPS because MODIS only has information available after

2000. This information was summarized in 8-days periods (average for temperature and sum

for  precipitation).  A Pearson correlation  was performed among all  the  8-days  periods  for

precipitation  and  temperature,  and  yield  in  order  to  find  a  contiguous  period  of  high

correlation between these weather variables and yield. After defining this period, precipitation

and temperature were summarized for the entire period and a Monte Carlo simulation was

performed  assuming  that  precipitation  and  temperature  follow  a  multivariate  normal

distribution with μ1, μ2 and Σ, where: μ1 is the precipitation mean, μ2 is the temperature mean
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and Σ the variance-covariance matrix between precipitation and temperature. We decide to use

a  bivariate  normal  distribution  instead  a  high  dimensional  distribution  to  avoid  problems

related to the curse of dimensionality, when the dimension is large and the sample size is

moderate (Amato et al., 2013).

Results

Model performance at different forecast dates

Regardless of the date of the forecast, the seasonal integrated predictors outperformed

the multi-temporal ones for multivariate OLS regression and random forest (data not shown).

As the soybean yield forecasts were performed earlier in the growing season all the models

tended  to  become less  accurate.  Overall,  the  LSTM neural  network  presented  the  lowest

values for MAE, MSE, and RMSE compared to the rest of the tested models, except for DOY

16 where the LSTM had the least accurate performance among the three options, with the best

performance for the multivariate OLS (Table 1).

The observed versus predicted soybean yield for the four dates tested in our model

were explored using the best algorithm for each specific date. Based on the data presented on

Table 1, we used the multivariate OLS regression model for DOY 16 and the LSTM for the

remaining dates (Figure 3A-D). The overall soybean yield data distribution for RS, Brazil

from 2003 to 2016 presented a wide range of values from 0.2 to 4.2 Mg ha -1 with no evidence

to reject the null hypothesis that the sampled yield values came from a normally distributed

population  (Shapiro-Wilk  test  p-value>0.05).  The  maximum likelihood  estimation  for  the

mean and standard deviation based on the data were 2.4 and 0.8 Mg ha-1 respectively.

Table  1. Model  metrics  comparison  among multivariate  OLS,  random forest,  and  LSTM

neural network.

Day of

year

MAE (Mg ha-1) RMSE (Mg ha-1) MSE (kg ha-1)2

OLS RF LSTM OLS RF LSTM OLS RF LSTM

DOY16 0.42 0.46 0.52 0.53 0.57 0.68 0.28 0.33 0.46

DOY32 0.46 0.44 0.42 0.58 0.57 0.56 0.34 0.33 0.31

DOY48 0.40 0.37 0.25 0.50 0.48 0.32 0.25 0.23 0.10

DOY64 0.32 0.32 0.24 0.40 0.39 0.32 0.16 0.15 0.10
* Values presented for OLS (multivariate OLS regression) and RF (random forest)  are related to models using the seasonal integrated

variables.
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Despite residuals have been equally distributed along the 1:1 line considering all the

years together for the predicted versus observed yield models, this pattern was not followed

when the years were analyzed individually. Years such as 2004 and 2005 presented an error

greater than the others, mainly for the early season forecasts (DOY 16 and 32) (Figure 3).

Moreover, after decomposing the MSE into its two components, the bias2  and  σ2,  it can be

seen that for the years presenting a greater MSE, the highest contributions came from the bias2

(lack of the capacity of the model to describe a specific phenomenon, systematic error) and

not from σ2 (non-systematic source of error) (Figure 3).

Figure 3. Upper panels (A to D) portraying the observed versus out-of-sample forecasted corn

yield (forecast model with multi-temporal vegetation indices (VIs), land surface temperature

and precipitation) for different dates expressed in days of year (DOY). A black dashed line

portrays the 1:1 line for the predicted-observed relationship. The Long-Short Term Memory

(LSTM) Neural Network used for DOY 32, 48 and 64. Multivariate OLS regression for DOY

16.  In  bottom  panels  (E  to  H)  variations  in  the  mean  square  error  (MSE)  and  its

decomposition in bias2 and variance along the years for different dates expressed in DOY.
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We calculated the cumulative probability frequency for the soybean yield anomalies

(residuals from the soybean yield-year relationship) for the region considered in this study

(Figure 4 A-C).  The analyses showed that years presenting the greatest anomalies tended to

present the highest MSE values, and consequently the highest values for bias2 (Figure 4D).

Moreover, it was demonstrated that the frequency of occurrence of years with anomalies equal

or higher than the one found in 2005 year seems to be really negligible, ~0.7% or in other

words 1 in ~142 years. Following a similar approach, but using weather data instead of yield,

we built a second probability density function based on temperature and precipitation. For the

second approach, we focused on a specific period of the soybean growing season in Brazil -

between DOY 360 and DOY 56 (usually from flowering to seed filling stages), where these

variables presented the highest correlation with yield (Figure 4E). Using this second approach

the probability of occurrence for a year with an anomaly equal or higher to 2005 year was

0.3%, close to the 0.7% (but even smaller) that we estimated using the first approach.
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Figure  4.  (A)  Relationship  between  soybean  yield  and  years  for  the  study  region.  (B)

Relationship  between  residuals  for  panel  A  and  growing  season  year.  (C)  Cumulative

distribution function estimated through the Monte Carlo simulation for the yield residuals. (D)

Relationship  between the  Bias2 from the  DOY 16 yield  forecast  and the  1-High Density

Region (HDR) needed to overlap the considered year – 1-HDR measures how far a specific

year is from the mean of the distribution towards the tails, putting equal weights for both tails.
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(E) Pearson’s correlation between soybean yield and average air temperature and precipitation

for  different  8-days  periods  during  the  soybean  growing  season.  (F)  Multi-Gaussian

probability density function estimated through the Monte Carlo simulation for average air

temperature and precipitation (from DOY 360 to DOY 56) for the study region.

Discussion

Our results  clearly  showed that  satellite  imaging combined with  weather  data  can

provide useful information to develop more accurate models to forecast yields of soybean in

Brazil.  Crop  yield  forecast  based  on  satellite  imagery  have  become  a  popular  tool  for

providing near real-time prediction of crop status from small (field and sub-field conditions)

(Azzari et al., 2016; Jin et al., 2019, 2017; Lobell et al., 2015; Peralta et al., 2016; Schwalbert

et  al.,  2018) to medium/large domains (county/state)  (Bolton and Friedl,  2013;  Cai et  al.,

2018; Johnson, 2014; Lobell,  2013; Peng et  al.,  2018; Sakamoto et al.,  2014; Shao et  al.,

2015). Furthermore, the integration of canopy reflectance (sometimes summarized as VIs) and

weather variables, have been demonstrated as a promising approach to enhance performance

of yield forecast models.  The negative correlation of heat,  vapor  pressure deficit,  and the

positive correlation of precipitation (Cai et al., 2018; Johnson, 2014; Peng et al., 2018) have

been  successfully  explored  in  combination  with  multi-temporal  VIs  for  providing  more

accurate near real-time forecasts for different crops.

Most of the algorithms used for exploring relationships between yield - multi-temporal

VIs and weather variables rely on multivariate OLS (Cai et al.,  2018; Lobell et al.,  2015;

Sakamoto et al., 2014), random forest (Cai et al., 2018; Shao et al., 2015), Rulequest Cubist,

(Johnson, 2014), or supported vector machine (Cai et al.,  2018). Despite those algorithms

usually presents a satisfactory performance for the aforementioned task, they are not prepared

for dealing with time-ordered data. Since VIs and weather variables are inherently temporal,

with past state of these variables usually presenting on the future cause-effect relationship,

algorithms able of learning patterns based on the sequence how the data is collected have a

great potential for outperforming algorithms that treat data in a static viewpoint. In our study,

the LSTM neural network outperformed the multivariate OLS regression and random forest

for  all  the  tested  dates  except  for  the  earliest  one.  For  the  earliest  date,  there  was  less

information from the past (related to the forecast date) to be learned by the LSTM neural

network model. The use of LSTM for forecasting crop yield is still limited on literature with
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only a few research studies exploring this topic (Cunha et al., 2018; Wang et al., 2018; You et

al., 2017).

Regardless  the choice of the algorithm for  modeling the yield-predictors  empirical

relationship, one of the main challenges on using satellite and weather data as proxies to yield

at a regional level still remain on the crop field detection, mainly for countries where the crop

field boundary and crop-specific layers are not available. The main outcome of this research

was a soybean yield forecast model able to predict yield at the municipality level in RS state,

southern Brazil. This model has proven to present a high accuracy even without using any

crop specific  layer,  with  performance comparable  to  the  models  developed in  the  US by

Johnson (2014) using the CDL as crop mask layer and You et al.  (2017) using a general

world-wide land cover data derived from MODIS (DAAC, 2015), and models developed in

Brazil (for four municipalities in Paraná state), by Figueiredo et al. (2016). Similar results also

have been reported for corn in the US, demonstrating that models based on multi-temporal

NDVI summary statistics  had similar  performance either  using a specific  or general  (e.g.

summer crops, cultivated crop) crop masks (Shao et al., 2015). It is important to note that in

the US Midwest and in RS state a corn-soybean rotation on an annual basis is widely adopted.

More importantly, previous studies have shown that corn and soybean have relatively similar

NDVI profiles (Shao et al., 2010; Wardlow and Egbert, 2008). Therefore, the inclusion of corn

in the summer crop mask may still mimic the reflectance signal derived for soybean field

only.  In RS,  the soybean/corn cultivated area is  more towards  to  the soybean side (more

frequency of this crop in the rotation), therefore most of the pixels included in this analysis

came from soybean fields. The results presented in this paper represents a great prospect for

providing municipality-level soybean yield data in a near real-time basis, contrasting with the

frequency  of  the  data  currently  released  by  SIDRA/IBGE,  with  the  last  yield  estimation

(2016/2017 growing season) announced in 2018.

Furthermore, we extended our analysis pursuing to explore the sensitivity of the time

for  the  forecast  model,  considering  that  the  importance  of  a  yield  forecast  is  a  balance

between its accuracy and the timing when the prediction is performed, and usually there is a

trade-off between the error and the date of the prediction (Bolton and Friedl, 2013; Sakamoto

et al., 2014; Shao et al., 2015; You et al., 2017). Our results clearly reflected this trade-off

since as the forecast is anticipated during the growing season the error of the model tended to

rise. Despite of that, soybean yield still can be forecasted at municipality-level in RS, Brazil at

DOY 16 with a MAE of 0.42 Mg ha1, and a RMSE of 0.53 Mg ha-1. The penalization in model

accuracy  for  anticipating  the  yield  forecast  was  greater  for  years  with  extreme  weather
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(anomalies from the normal weather) but most of the error from the MSE came from bias2

instead of σ2. The latter shows that even for years with conditions highly adverse, the model

was still able to predict the most and least yielding municipalities even without accurately

predicting the absolute soybean yields.

Moreover, yield anomalies such as the ones reported in the 2005 soybean growing

season in southern Brazil are unlikely to happen, and the reported model performance (RMSE,

MSE, and MAE) was highly penalized by the errors associated with this growing season.

After dissecting MSE in σ2 and bias2 for each one of the years, it became quite clear that years

with a lower probability to occur had the highest bias2, and the bias2 tended to decrease and

get stable as the years were settled towards the middle of the yield anomalies distribution

(high-density region). The relationship between the probability of a specific type of year to

occur and the bias2 is in fact related to the lack of information about that event in the training

dataset. Future applications of this model under conditions similar to 2005 year are expected

to result in accurate soybean yield forecast, because those events (weather variation) will be

already present on the training data.

Conclusions

Multi-temporal satellite imagery combined with weather variables can provide useful

information,  allowing  the  development  of  more  precise  yield  forecast  models  to  monitor

soybean yield at municipality level. A decrease in the accuracy of the yield forecast model is

expected by anticipating the date for yield prediction before harvest, but this study suggests

that soybean yield can be predicted by DOY 16 (January 16) with reasonable accuracy. This is

approximately 70 days before harvest in RS. Better accuracy (MAE of 0.24 Mg ha-1) can be

obtained by DOY 48 (February 17) - 40 days before harvest in RS. The LSTM neural network

has been tested to have a better performance relative to random forest or the multivariate OLS

regressions, mainly for predictions towards the end of the growing season plausible due to the

amount of data collected to compose the time series.

The training and validation approaches were adequate to test the model performance in

different  weather  and  yield  conditions.  Model  performance  for  years  with  more  adverse

weather  conditions  (dramatically  different  from the  normal  years)  and  consequently  with

higher yield anomalies related to the historical yield distribution is expected to be inferior

compared to  the  overall  model  accuracy for  the  remaining years.  Under  extreme weather

conditions, the increase in the error was mainly associated with bias2 than σ2. For this reason,
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we expect an increase in the model generalization for future extreme weather events as more

data is added into the training process.  Despite the analysis  being developed for southern

Brazil,  the  general  approach  described  in  this  study  can  be  potentially  applied  to  other

geographical regions around the globe with similar availability of data. This could contribute

to support  agricultural  decisions  in  regard to managing and transferring risks within crop

production and to improve overall crop predictions for policy makers.
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4 ARTIGO 3 – FORECASTING MAIZE YIELD AT FIELD SCALE BASED ON HIGH-

RESOLUTION SATELLITE IMAGERY

Abstract:  Estimating  maize (Zea mays L.)  yields  at  the field level  is  of  great  interest  to
farmers, service dealers, researchers, and policy-makers. The main objectives of this study
were to: i) provide guidelines on data selection aimed at building forecasting yield models
using Sentinel-2 satellite imagery; ii) compare different approaches and vegetation indices
(VIs) during  model  building;  and  iii)  perform  spatial  and  temporal  validation  to  see  if
empirical models could be applied to other regions or when models coefficients should be
updated. Data analysis was divided into four major steps: i) data acquisition and preparation;
ii)  selection of training data;  iii)  building of forecasting yield models;  and iv) spatial  and
temporal validation. The analysis were performed using yield data collected from 19 maize
fields located in Brazil – Rio Grande do Sul state (2016/2017 season) and Mato Grosso state
(2016 and 2017 seasons) – and in the United States – state of Kansas (2016 season), and VIs
(NDVI, green NDVI and red edge NDVI) derived from Sentinel-2. Main outcomes from this
study were:  i)  data  selection  impacted  yield  forecast  model  and fields  with narrow yield
variability and/or with skewed data distribution should be avoided; ii) models considering
spatial correlation of residuals outperformed OLS regression; iii) red edge NDVI was most
frequently retained into the model compared with the other indices; and iv) model prediction
power  was  more  sensitive  to  yield  data  frequency  distribution  than  to  the  geographical
distance or years. Thus, this study provided guidelines to build more accurate maize yield
forecasting models, but also established limitations for up-scaling, from farm-level to county,
district, and state-scales.

Keywords: forecasting yield models; maize; satellite imagery; yield maps; model validation; 
Sentinel-2

1. Introduction 

Precise  and  reliable  yield  forecast  tools  could  play  a  fundamental  role  in  supporting

policy formulation, and decision-making process in agriculture (e.g. storage and transport)

(Córdoba et al., 2016; Kantanantha et al., 2010; Stone and Meinke, 2005). Historically, most

models  developed  for  yield  forecasting  are  focused  to  large  domains  (between-field

variability), (DiRienzo et al., 2000; Doraiswamy et al., 2003; Hamar et al., 1996; Lopresti et

al.,  2015; Reeves et  al.,  2005; Sibley et  al.,  2014), mostly because,  in the past there was

limited source of data with a sufficient temporal and spatial resolution for accurate within-

field crop yield estimates. Nowadays, satellite data have become more accessible (Azzari, et

al.,  2017)  with  more  options  of  high  resolution  imagery,  such  as  Skysat  RapidEye,  and

Sentinel-2 satellites, and more studies have portrayed the benefits of using high-resolution

satellite imagery for identifying within-field yield variation (Azzari et al.,  2017; Jin et al.,

2017 ;Peralta et  al.,  2016).  Among the high resolution satellites Sentinel-2, that is a joint
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initiative  of  the  European  Commission  (EC)  and  the  European  Space  Agency  (ESA),

represents  a  great  opportunity  towards  fine  resolution  yield  forecast  models  since,  it  is

publically  accessible  satellite  and was design to  provide systematic  global  acquisitions  of

high-resolution (10 to 20m) multi-spectral imagery with a high revisit frequency (5 days at

equator) (Drusch, et al., 2017).

The potential to forecast yield using satellite information is already known and a wide set

of statistical approaches have been explored. Some approaches rely on the statement that total

biomass  production is  closed related  to  the  fraction of  photosynthetically  active  radiation

absorbed by vegetation (fAPAR) over the course of the growing season (Monteith  1977).

fAPAR  estimations  are  most  often  derived  from  VIs  (Lobel,  2013),  since  the  linear

relationships between those two variables are well-known (Myneni et al., 1994). However,

considering  that  most  remote  sensing  data  are  not  available  on  a  daily  basis,  some

interpolation is needed to estimate daily fPAR and this task becomes a challenge with a low

number of images.

Empirical relationships between ground-based yield measures and remote sensing data

have been considered as the simplest approach to forecast yield with low computational power

demanding (Hatfield et al., 2008; Lobell, 2013), and have been successfully implemented in

several studies with maize (Bognár et al., 2011; Bu et al., 2017; Lobell et al., 2015; Peralta et

al., 2016; J. Shanahan et al., 2001; Sibley et al., 2014). The separation of data into the training

and validation datasets is a common practice allowing self-test model replicability irrespective

of the difference between the two datasets in space or time. Selection of ground-truth data to

build models is one of the most important steps aiming at getting reliable yield predictions,

and it is known that nature and volume of data have a  direct impact on the model quality

(Hatfield et al., 2008; Schwalbert et al., 2018). Despite that mostly studies randomly selected

a subset of the data for comprising training or validation data (Gholap et al., 2012; Gonzalez-

Sanchez et al.,  2014; Sheridan, 2013; Peralta et al.,  2016; Yared et al.,  2016) without any

guideline.

Thus, aiming at model constructing, the choice of fields in order to get a representative

sample is very important. Moreover, the choice of the statistical model used to forecast yield

have a large impact on the final result (Anselin et al.,  2004; Peralta et  al.,  2016). Mostly

empirical yield forecasting models based on VIs utilize classical ordinary least squares (OLS)-

based on simple or multiple regression techniques (Noureldin et al., 2013; Rembold et al.,

2013; J. Shanahan et al., 2001), without properly accounting for the spatial autocorrelation

structure evolving these variables (Imran, et al., 2013; Peralta et al., 2016). The latter situation
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can lead to problems with inflated variance and likely resulting in wrong conclusions (Anselin

et al., 2004; Bongiovanni et al., 2007).

A second constraint related to models derived from simple empirical relationships is that

they tend to  be time- and space-limited,  valid  only under  similar  conditions  as when the

correlation  was  established  (Hatfield  et  al.,  2008;  Lobell,  2013;  Tucker  et  al.,  1980).

Currently, the potential to forecast yield using satellite information through empirical models

is already known, but the challenge is to extend these tools beyond the structured environment

of  research  studies  (Hatfield  et  al.,  2008).  Lastly,  the  selection  of  adequate  VIs  also  an

important  step  in model  development  (Peralta  et  al.,  2016).  The  normalized  difference

vegetation index (NDVI) (Rouse et al., 1974) is one the most widely used VIs to assess crop

growth and yield (Peralta et al., 2016; Raun et al., 2002; Rembold et al., 2013; Solie et al.,

2012),  and it  becomes  as  somewhat  of  a  benchmark for  researchers  developing new VIs

(Hatfield et al., 2008). However, there are some constraints related to saturation in medium to

high leaf area index (LAI) values with this VI (Tucker, 1979; Haboudane et al., 2004; Nguy-

Robertson et al., 2012). Thus, the incorporation of other indices that still have sensibility in

high values of LAI, such as green NDVI (NDVIG) (Gitelson et al., 1996) and red-edge NDVI

(NDVIre) (Gitelson and Merzlyak, 1994), have been reported as an important technique to

improve empirical models (Hatfield et al., 2008; Peralta et al., 2016).

Following this rationale, guidelines for implementing yield forecasting models derived

from empirical  relatioships  and for  validating  their  spatio-temporal  relevancy still  remain

unknown. Thus,  the objectives of this  study were to:  i)  identify parameters to  guide data

selection aiming at building forecasting yield models using Sentinel-2 satellite imagery; ii)

compare different approaches (OLS vs. spatial correlation) and different VIs during the model

building  process;  iii)  perform  spatial  and  temporal  model  validation  using  independent

datasets  to  identify potential  limitations  in  up-scaling forecasting yield models.  The main

hypothesis is that model predictability power increases as the yield frequency distribution of

the training data becomes more alike to the validation data even when considering diverse

spatio-temporal scales (geographical distance or time, years).

2. Materials and Methods

The analysis was performed on end-season yield monitor data and mid-season. Sentinel-2

images  image were collected during a critical period for determining the grain yield in maize

(approximately 20 days before and 20 after flowering) (Johnson 2014; Sakamoto et al., 2014;
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Peralta et al.,  2016). Sentinel satellite imagery of selected maize fields in farm conditions

located in Brazil (BR) (Figure 1A and 1B) and US (Figure 1C). Six fields from Rio Grande do

Sul (RS) state (2016/2017 season) and seven fields from Mato Grosso (MT) state (five from

2016 season and two from 2017 season) were selected for comprising the BR database. The

field size ranged from 20 to 130 ha.  It  is  important  to  mention that  for  MT, fields were

selected from the second season (mainly cultivated after the soybean) since the first season is

harvested around February. Usually the during the second season in MT the maize yield is

lower compare to RS due the less favorable weather condition. In RS the average temperature

during the growing season is 20.4 oC with an accumulated precipitation of 1080 mm, and in

MT the  average  temperature  during  the  second  season  is  23.7  oC  with  an  accumulated

precipitation of 700 mm.

The United States (US) database was composed of six fields (2016 season), all located in

the state of Kansas (KS). Kansas database was only considered as validation data in the last

step (spatial validation) where the models previously build were used to forecast maize yield

in Kansas fields, in oder to test  our main hypotheses. Information related to harvest date,

satellite imagery collection data, and specific coordinates (latitude, longitude) for each field

were recorded (Table 1). Most of the BR fields were utilized for training purposes, comprising

the  training  database.  Fertilizer  application  rates,  crop  management,  and  tillage  practices

varied between fields.

Table 1. Descriptive information of maize yield and satellite data: state, season, geographical

position, harvest date and imagery acquisition date.

Field State Season Data
Latitud

e*

Longitud

e*

Harvest

date

Imagery

date
F1 RS 2016-2017 V -28.48 -52.78 02/16/2017 11/29/2016
F2 RS 2016-2017 V -28.53 -53.54 02/21/2017 11/29/2016
F3 RS 2016-2017 V -28.18 -52.69 02/14/2017 11/29/2016
F4 RS 2016-2017 T -28.32 -52.71 02/27/2017 11/29/2016
F5 RS 2016-2017 V -27.62 -53.36 02/18/2017 11/29/2016
F6 RS 2016-2017 T -28.53 -53.56 02/17/2017 11/29/2016
F7 MT 2016 V -15.47 -54.01 07/02/2016 04/29/2016
F8 MT 2016 T -15.57 -54.15 07/06/2016 04/29/2016
F9 MT 2016 V -15.57 -54.16 07/05/2016 04/29/2016
F10 MT 2016 V -15.56 -54.17 07/05/2016 04/29/2016
F11 MT 2016 T -15.58 -54.15 06/30/2016 04/29/2016
F12 MT 2017 V -15.15 -53.94 06/30/2017 04/24/2017
F13 MT 2017 V -15.15 -53.94 06/29/2017 04/24/2017
K1 KS 2016 V 39.53 -97.21 09/27/2016 06/20/2016
K2 KS 2016 V 39.54 -97.15 10/01/2016 06/20/2016



62

K3 KS 2016 V 39.55 -97.22 10/03/2016 06/20/2016
K4 KS 2016 V 39.57 -97.23 09/30/2016 06/20/2016
K5 KS 2016 V 39.53 -97.23 09/22/2016 06/20/2016
K6 KS 2016 V 39.56 -97.24 09/29/2016 06/20/2016

*Decimal coordinates  - WGS 84. RS = Rio Grande do Sul. MT = Mato Grosso. KS = Kansas.

T = Training Database. V = Validation Database.

Figure 1. Field research studies located in Mato Grosso (MT) (A), Rio Grande do Sul (RS)

(B), and Kansas (KS) (C). Circles represent the precise geo-position of the fields within each

region. Scales bars are in different scales for panels A, B, and C.

This study was divided into four major steps, representing the main analysis performed to

achieve the objectives (Figure 2). The four steps were: 1) data acquisition and preparation, 2)

selection of training data, 3) building forecasting yield models, and 4) spatial and temporal

validation (including fields from different growing season and geographies).
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Figure 2. Theoretical framework indicating all steps of the analysis: step 1- data acquisition

and preparation, step 2- selection of training data, step 3- building forecasting yield models,

and step 4- model validation.

2.1. Data acquisition and preparation

The primary objective of this step was to establish criteria for selecting adequate quality

of yield monitor (calibrated) and satellite imagery data. Yield data was submitted to a filter

process in order to remove outliers and inliers. In this research, outliers were considered as

values out of the mean ± 3 standard deviations (SD) range. According to Chebyshev's theorem

(Amidan et al., 2005), it is inferred that a minimum of 89% of the data is within the mean ± 3

SD,  regardless  the  data  distribution.  Inliers  are  data  that  differ  significantly  from  their

neighborhood but lie within the general range of variation of the data set (Córdoba et al.,

2016). Spatial autocorrelation Moran's local index (Ii) (Anselin, 1995) was used to identifying
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inliers. The Ii is basically applied individually to each neighborhood and shows the degree of

similarity between an observation and its neighbors. In summary, localmoran function of the

“spdep” R package (Bivand and Piras,  2015)  was  used  to  identify  inliers.  Moreover,  the

moran.plot function was implemented to calculate Ii and perform the Moran scatter plot to

identify additional inliers. Further details can be found in Córdoba et al. (2016).

Spatial interpolation was performed to estimate maize yield values for areas where yield

was not sampled. This procedure was required, even considering that yield monitor data was

recorded  in  a  high  density  (5  x  10  m),  because  after  filtering  yield  density  data  was

significantly  decreased. Aiming at  getting  similar  arrangement  for  all  datasets,  equivalent

satellite imagery grid structure was used (10 x 10 m). Geostatistical interpolations involving

semivariogram adjustment and ordinary kriging were performed, individually for each dataset,

using R packages “geoR” (Ribeiro Jr and Diggle, 2016) and “gstat” (Pebesma, 2004).

Sentinel-2 images are composed by 10 bands with resolution between 10x10m and 20x20

m, in the visible, near infrared, and short wave infrared part of the spectrum. All bands were

tested  for  its  usefulness  in  building  VI  for  yield  forecast  purposes.  As  a  first  step,  a

multivariate regression was applied to select the bands presenting greater correlation with

yield;  retaining only 6 bands,  3  (green),  4 (red),  5  (red-edge 1),  6  (red-edge 2),  8 (near-

infrared), and 8a (red-edge 4) (Supplementary Table 1). The latter is in agreement with the

scientific  literature  in  the  topic  of  forecasting  crop yields  using  satellite  data  –  primarily

highlighting the importance of 5 bands (wavelengths): blue, green, red, red-edge, and near-

infrared (Bu et al., 2017; DiRienzo et al., 2000; Doraiswamy et al., 2003; Hamar et al., 1996;

Lobell et al., 2015; Lopresti et al., 2015; Peralta et al., 2016; Reeves et al., 2005; J. Shanahan

et al., 2001; Sibley et al., 2014). The selected bands were employed to calculate 3 diverse VIs:

NDVI,  NDVIG, and NDVIre.  The selection  of  the  VI was based on previous  researches

showing the efficiency of these VI to forecast final maize yield (Bognár et al., 2011; Bu et al.,

2017;  Peralta  et  al.,  2016;  Shanahan et  al.,  2001).  Sentinel-2 images  were  collected  in  a

interval between 20 days before flowering and 20 days after flowering,  depending on the

availability of the image and the cloud interference (Table 1). Different satellite imagery data

collection dates were tested for improved yield forecast, greater coefficient of determination

(Figure S1).  The red-edge band was resized to 10 m pixel size. Atmospheric correction was

performed using the semi-automatic classification plugin in QGIS 2.18 (Congedo, 2016) in

order  to  obtain surface  reflectance  without  the  interference  of  atmospheric  gases.  VIs,

including NDVI, NDVIre, and NDVIG were generated using a combination of visible, near-

infrared and red-edge bands.
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2.2. Selection of training data

As previously detailed, since only selected BR fields (RS and MT) were used as training

data; all KS fields were not used in this step. All fields were randomly sampled (bootstrap

with replacement) to generate equal size of data points per field, 800 per field. Since one of

the objectives of the paper was provided guidelines for training data selection three different

alternatives of field selection were tested.  Steps 2 and 3 in figure 2 were performed in a

retroactive process for each one the data selection strategies.

The  three  data  selection  strategies  tested  to  comprise  the  training  data  were:  i)

selection of the two fields with high yield amplitude and mostly recorded yield (more than

50% of the values) between first and third quartiles of the overall frequency distribution; ii)

selection of the two fields with the lowest average yield among all fields (left shifted fields in

relation to the overall distribution); and iii) selection of fields with the lowest, the highest and

intermediate average yield among all  fields (Supplementary table 2).  For each one of the

alternatives,  the  remained  fields  were  considered  as  validation  data.  The  aforementioned

procedure was performed individually for RS and MT.

The similarity of training and validation distribution frequency was compared using two

statistic parameters, mode and the Interquartile Range (IQR) position (range between the first

and the third quartiles),   skewness, and kurtosis. To compare the statistic parameters a 95%

bootstrap  percentile  confidence  interval  (CI)  (Efron  and Tibshirani,  1993)  was  calculated

using the “boot” package in R (Canty and Ripley, 2017), obtaining a total of 1000 bootstrap

replicates to estimate the variability. Each time that training data was selected, models were

build and validated with remain fields.

2.3. Building forecasting yield models

As aforementioned, this step occurred in parallel to the data selection step, forecasting

yield  models  were  built  utilizing  the  selected  training  data  to  verify  model  predictability

power  and  to  access  to  the  most  important  parameters  driving  to  suitable  training  data

selection.

As  an  initial  phase,  spatial  autocorrelation  analysis  was  conducted  on  yield  and  VIs

(NDVI,  NDVIG, and  NDVIre)  data  of  each  field  using  Moran’s  test.  Moran’s  I  statistic

measures the strength of spatial autocorrelation in a response among nearby locations in space

as  a  function  of  cross-products  of  the  neighboring  weighted  deviations  from  the  mean.
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Moran’s I  coefficient values near 1 and −1 indicate positive and negative autocorrelation,

respectively. Coefficient near 0 refers to lack of spatial autocorrelation.

In order to identify an appropriate model that describes the relationship between end-

season  observed  maize  yields  and  VIs of  mid-season  imagery  for  the  training  data  two

approaches were considered. First, implementation of a linear regression model assuming that

the errors are independent and identically distributed (i.i.d.).  Ordinary least squares (OLS)

method is known as an efficient procedure for estimating the unknown parameters for this

model, herein termed as “OLS” model. When response (maize yield) and predictor variables

(VIs),  as  well  as  the  regression  errors,  exhibited  spatial  autocorrelation  according  to  the

Moran’s  I  coefficient,  the  i.i.d.  assumption was  violated,  and  the  application  of  models

considering the spatial structure of the errors was pursued. Hence, models were adjusted using

the gls function of the “nlme” R package (Pinheiro et al., 2017) with Gaussian, spherical and

exponential spatial correlation of plotted errors. 

At all steps above that require model selection, stepwise-regression procedure was used to

determine  the  variables  (VIs)  that  significantly  contributed  to  yield  prediction  models.

Stepwise  forward  was  implemented  using  the  function  stepAIC  of  the  “MASS”  package

(Venables  and  Ripley,  2002)  from  the  R  software.  Statistical  model  comparison  was

performed using statistical criteria proposed by Akaike (AIC) (Johnson and Omland, 2004)

and the coefficient of determination (R2).

The  multicollinearity  (or  collinearity)  of  the  remaining  bands  was  evaluated  by

computing the variance inflation factor (VIF). A threshold VIF value of 2 was established

(Zuur et  al.,  2010) and a VI with VIF higher than 2 were removed from the model.  The

standardized coefficient was calculated using the R package “lm.beta”  to check the weight of

each VI into the model. 

After running all the round for step 2 and step 3 (Figure 2) we checked for coincidences

in  similarities  between  training  and  validation  data  distribution  according  the  parameters

tested (mode, quartiles, skewness and kurtosis) and model accuracy assessing using RMSE

(observed yield vs predicted yield).

Two categories of forecasting yield models were built: i) universal models, with both RS

and  MT training  data  and  ii)  site-specific  models,  for  RS  and  MT states,  obtaining  one

specific-model per state/region evaluated.
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2.4. Spatial and temporal validation data

After selection of training data, a second validation was performed aiming at verifying

spatial and temporal dependency on the models. For testing the first one, Kansas database was

included as validation data. All the six sets of training data (three from RS and three from

MT) were tested. The same approach discussed in the previous sections was applied. Yield

frequency distribution of all the training data from RS and MT were compared with KS yield

frequency distribution. After studying all yield frequency distributions, the most proper model

was selected to forecast yield of the KS database (US), comprising six fields.

Temporal validation was performed using MT fields since only in MT there was data

available from two different seasons (2016 and 2017). Forecasting yield model built using

data from 2016 was used to  estimate 2017 yields.  The accuracy of estimation and model

fitting was evaluated using the RMSE. In addition, spatial predictions from each model were

visually compared with geostatistical interpolation of yield.

3. Results

3.1. Selection of training data

Different yield frequency distribution was documented for RS and MT. For RS, average

maize yield was 12.7 Mg ha-1, with 50% of the data (IQR) ranging from 10.6 to 14.8 Mg ha-1

and with a mode of 12.9 Mg ha-1 (Figure 3A). For MT, average maize yield was 5.5 Mg ha-1,

with IQR ranging from 4.5 to 6.4 Mg ha-1 and with a mode of 5.7 Mg ha-1 (Figure 3F). In both

states, yield frequency distribution was not considered normal according to Shapiro-Wilk test

(P < 0.05). Furthermore, high within- and between-field variability was documented (Figure

3B and 3G). For RS, field 1 was the most productive with a yield average of 14.9 Mg ha-1 with

a variation range from 9.2 to 20 Mg ha-1  and field 5 was the least productive with a yield

average of 10.3 Mg ha-1  and ranging from 5 to 15.2 Mg ha-1. For MT, field 10 was the most

productive field with a yield average of 7 Mg ha-1  with a variation range from 4.1 to 8.6 Mg

ha-1, while field 9 was the least productive with a yield average of 4.2 Mg ha -1 and with values

ranging from 2.9 to 5.9 Mg ha-1.
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Figure 3.  Maize yield frequency distributions for RS (A-E) and MT (F-G) fields. (A and F)

Overall yield frequency distribution in RS and MT respectively. (B and G) Field level yield

frequency distribution in RS and MT respectively. (C, D, E) Training and validation yield

frequency distribution for different training data selection strategies in RS. (H, I, J) Training

and validation yield frequency distribution for different training data selection strategies in

MT. Root mean square error (RMSE) reported is from the observed and predicted yields using

each set of training and validation data.

The  field  selection  to  comprise  the  training  data  affected  the  model  quality  and,

consequently, the predictability power of the model. For RS, three different sets of fields were

tested as training data: fields 4 and 6 (Figure 3C), fields 1, 3 and 4 (Figure 3D) and fields 2

and  4  (Figure  3E)  (Supplementary  table  3).  The  RMSE tended  to  decrease  as  the  yield

frequency distribution of the training data becomes similar to the validation data. When fields
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2 and 4 comprised the training data different modes; first and third quartiles (P < 0.05) were

documented  to  training  and  validation  data  (Supplementary  table  4).  The aforementioned

combination of fields resulted in the highest RMSE (1.97 Mg ha-1). When fields with high

amplitude  and  intermediate  yield  (compared  with  all  fields)  were  selected,  training  and

validation data were more alike sharing comparable IQR (P > 0.05) with a slightly different

mode (12.4 vs. 13 Mg ha-1) (P < 0.05) and RMSE of 1.5 Mg ha-1. The lowest RMSE, 1.48 Mg

ha-1, was reported when the number of fields increased from 2 to 3, by means the selection of

the lowest, the intermediate and the greatest productive field. After this process, training and

validation yield frequency distribution resulted in comparable mode (P > 0.05) and IQR (P >

0.05). Since the selection of one additional field just increased slightly the RMSE (from 1.48

to 1.50 Mg ha-1), only fields 4 and 6 were chosen for posterior analysis, leaving one more field

available for the model validation. Likewise, the same criteria aforementioned was applied to

MT fields, the selection of the left shifted fields resulted in significantly different modes, first

and third quartiles (P < 0.05) and the highest RMSE (1.23 Mg ha-1) (Figure 3J). For MT the

increase in number of selected fields for comprising training data did not result in the lowest

RMSE (0.7 Mg ha-1). This strategy leaded to statistically equal modes (P >0.05), but different

first  and third quartile  positions  (P < 0.05)  (Figure  3I).  The selection  of  fields  8 and 11

resulted  in  non-differences  between  training  and  validation  modes  and  IQR  (P  >  0.05)

obtaining a RMSE of 0.62 Mg ha-1 (Figure 3H). Following the rationale for field selection for

RS, the fields 8 and 11 were chosen for posterior analysis since this data training presented the

lowest RMSE (Figure 3H) relative to the other tested models (Figure 3I, J). No pattern was

observed for skewness and kurtosis linking yield data distribution similarities and RMSE for

the models from RS and MT (Supplementary table 4).

3.2. Building forecasting yield models

Spatial autocorrelation analysis conducted using Moran’s I test (MI) on VIs and yield data

are presented in Supplementary Table 2. In general, autocorrelation (Moran’s I test) for all

variables was positive and statistically  significant  (exception for  F8)  indicating that  when

yield or VI values are geographically in shorter distances are more alike,  diminishing the

spatial  correlation as the distance increases.  The absence of spatial  correlation in  F8 was

probably due to higher yield homogeneity in this field compared to the other ones.

Following  the  same  rationale,  forecasting  yield  models  increase  predictability  power

when  a  spatial  correlation  structure  was  considered.  The  spatial  regression  models

outperformed the OLS once the AIC values were smaller for the spatial models compared to
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the OLS ones (Table 2). It indicated that there was a good trade-off between the goodness of

fit and the complexity of the model. For the RS model, residuals were assumed following a

Gaussian spatial  correlation structure,  while  for the MT and the universal  (both RS+MT)

models the exponential correlation structure presented the best fit to describe the data (Table

2).

Table 2. Multiple linear regression models for the ordinary least-square (OLS) and regression

considering  spatial  correlation  including  the  vegetation  indices  (VIs)  obtained  from mid-

season satellite imagery as predictors of the end-season yield monitor data.  Equations are

related  to  model  with  the  lowest  AIC. SRE =  spatial  regression  considering  exponential

correlation of the plotted errors. SRG = spatial regression considering Gaussian correlation of

the plotted errors. SRS = spatial regression considering spherical correlation of the plotted

errors.

Data Model AIC Equation

RS

OLS 3771

Yield (Mg ha-1)  =2.7*** + 69.88*** (NDVIre)   (R2 = 

0.68)

SRE 3762

SRG 3759

SRS 3770

MT

OLS 3087

Yield (Mg ha-1)  = 15.3*** + 81.6*** (NDVIre) – 8.8*** 

(NDVIG) – 20.3 (NDVI)***  (R2 = 0.59)

SRE 891

SRG 1986

SRS 894

Universal

OLS 9985
Yield (Mg ha-1)  = -25.6*** -46.5 (NDVIre)*** +145.1 

(NDVIG)*** 

– 67.5 (NDVI)***    (R2 = 0.32)

SRE 6750

SRG 8959

SRS 6836
Notes: The statistically significant coefficients are indicated by asterisks, where * indicates P

< 0.05; ** indicates P < 0.01; and *** indicates P < 0.001. Parameters with no asterisks are

therefore not significant at the 0.05 level. 

All VIs were kept into the MT and universal models after the stepwise selection, while for

RS only the NDVIre was retained (Table 2). The NDVIre presented the greatest weight for all

models. Even some degree of multicollinearity among the indices was expected since NIR



71

band was a component of all of them, the VIFs were less than 2 for the VI that remain in the

model.

3.3. Spatial and temporal validation of models

In the first step of the spatial validation, the universal model was compared to the site-

specific models (state-scale models).  The predictability power of the universal model was

drastically reduced both for within- (data not shown)  and between-field variability (Figure

4A)  compared  to  the  site-specific  models  (Figure  4B).  The  universal  model  slightly

overestimated yield for the MT fields (low productivity fields) and underestimated yield in RS

(high productive fields). Site-specific models resulted in RMSE of 1.5 Mg ha-1 for RS and

0.62 Mg ha-1 for MT.

Figure 4. Estimated versus observed maize yield. (A) State-level yield prediction using the

Universal  forecasting yield model.  (B)  Within-field yield variability  prediction  using site-

specific maize yield forecasting models. A red dashed line is presented in panel portraying the
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1:1 line for the estimated–observed relationship. (C) Observed yield map versus predicted

yield map generated based on a  site-specific model for RS. (D) Observed yield map versus

predicted yield map generated based on a  site-specific model for MT. RMSE = Root-mean

square error. RS = Rio Grande do Sul. MT = Mato Grosso. 

In the second step of the spatial validation, the RS model was used to forecast yield of

one additional dataset comprised of six fields located in KS (US). The RS model was chosen

for this purpose since the yield frequency distribution of the RS training data was the closest

to the one for KS fields (Figure 5A). Despite the similarity in yield frequency distribution for

KS and  RS,  differences  in  mode  and  IQR (P >  0.05)  were  documented.  The  RS  model

presented a good predictability in low productive areas and tended to overestimate yield in

high productive zones, resulting in a RMSE of 2.22 Mg ha-1 (Figure 5B).

Figure 5. (A) Yield frequency distribution for RS (training data – Fields 4 and 6) and for KS

fields and (B) Predicted (estimated via RS yield forecasting model) versus KS observed maize

yield  (end-season  yield  monitor  data).  A dashed  black  line  portrays  the  1:1  line  for  the

predicted–observed yield relationship. RMSE = Root-mean square error. RS = Rio Grande do

Sul. KS = Kansas.

For the temporal validation, the MT model built with the 2016 data was used to forecast

yield  for  independent  fields  harvested  in  2017.  Yield  distribution  frequency between MT

training data (2016) and MT yield data from 2017 was similar with statistically equal mode

and  IQR (P >  0.05)  (Figure  6A).  The  MT model  presented  a  good predictability  power

predicting within-field variability of 2017 fields, with a RMSE of 0.95 Mg ha-1  (Figure 6B).

Historical weather data showed that the 2016 and 2017 growing seasons were similar, with
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temperatures slightly above and total precipitation slightly below the average of the last 17

years (period from 1st January to 31st June) (Figure 6C).

Figure 6. (A) Yield frequency distribution for RS (training data – Fields 4 and 6) and for KS

(B) Estimated (predicted via RS yield forecasting model) versus KS observed maize yield

(end-season yield monitor data). A dashed black line is presented in panel portraying the 1:1

line  for  the  estimated–observed  relationship.  (C)  Average  temperature  and  accumulated

precipitation  from last  17  years  (period from 1st  January to  31st June).  A dashed red  line

represents the average from the entire period. RMSE = Root-mean square error. RS = Rio

Grande do Sul. MT = Mato Grosso. KS = Kansas.

4. Discussion

4.1. Building forecasting yield models

Processes  to  build  empirical  models  usually  involve  two  steps;  construction  and

validation  (Becker-Reshef  et  al.,  2010;  Hatfield  et  al.,  2008;  Peralta  et  al.,  2016).  The

selection  of  training  and  validation  data  is  usually  done  randomly  (Assefa  et  al.,  2016;

Lopresti et al., 2015; Peralta et al., 2016), but it is predictable that the selected training data

can affect directly the model predictability power (Schwalbert et al., 2018; Sheridan, 2013).

The first outcome of this study was a relationship between similarity of training and validation
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data and predictability power of the model. Statistics parameters such as mode, first and third

quartiles, were implemented to test the similarity between datasets. The selection of fields

with a high variability and not shifted (related to the overall  yield frequency distribution)

increased the likelihood of obtaining more representative models. Fields with a high degree of

uniformity in yield are not expected to add useful information to the  model related to the

yield-VI relationship (Peralta et al., 2016). Fields with left or right shift on the yield frequency

distributions  related  to  the  overall  yield  frequency  distribution  (when  all  fields  were

aggregated) also can bias the model. Left shifted fields (with yields towards low values) could

have  a  yield-VI  relationship  affected  by  biotic  or  abiotic  stress  condition  after  image

acquisition (Sadras and Calviño, 2001), while right shifted fields (with yields towards high

values) could face problems related to saturation of VIs, such as NDVI (Hatfield et al., 2008).

This  study  tested  different  statistical  parameters  (mean,  mode,  first  and  third  quantile

positions, skewness and kurtosis) as potential indicators of similarities in yield frequency data

distribution providing guidelines for selection of ground truth data for build in season forecast

models. Mode and the quantile positions were most suitable parameters driving the selection

for the set of training and validation data that minimize the RMSE (Supplementary table 4).

Similar results were reported by Schwalbert et al. (2018) in a study involving maize yield

response to plant density and nitrogen rates. In summary, this study also presents a novel

approach for the selection of the ground-truth training data utilized for building forecasting

yield models based on studying data yield distribution.

Additionally, the approach used to build the yield forecasting models as well as the

selection  of  the  VIs  influenced  model  predictability.  The  approach  considering  spatial

correlation  of  the  regression  residuals  outperformed  the  method  considering  the  i.i.d

assumption. This result is expected, since the positive spatial correlation for yield data and for

VI is already well-known (Bakhsh et al., 2000; Bressler et al., 1981,1982; Jaynes and Colvin,

1997; Peralta  et  al.,  2016;  Morkoc et  al.,  1985, Timlin et  al.,  1998) and therefore  spatial

correlation of regression residuals should be accounted for (Anselin et al., 2004; DiRienzo et

al., 2000; Leiser et al., 2012; Peralta et al., 2016). Despite that, still there is a few number of

studies showing the benefits of spatial adjustment to models predicting yield from imagery

data  (Imran etl  al.,  2013;  Peralta  et  al.,  2016).  Regarding the  performance of  the  VIs  as

explanatory variables, NDVIre presented the highest weight in the regression and it was also

the most retained index. Recently, Peralta et al. (2016) also reported that this VI was more

effective to predicted yields relative to NDVI and NDVIG. The explanation for this is that the

NDVIre is less influenced by changes in leaf area avoiding saturation issues at medium to
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high LAI and yield. It is imperative also mentioned that for the MT and universal models,

NDVIG and NDVI were also retained, reflecting the potential of these indices for predicting

yield variation and to fine-tune the proposed yield forecasting model.

4.2. Spatial and temporal validation of models

Empirical models are frequently reported as an efficient tool to forecast cereal yield, and

variations in VI can account for more than 80% of the observed variation in yields within

individual fields (Shanahan et al., 2001; Wiegand and Richardson, 1990). Despite the high

capacity to  explain yield variability,  even within-field,  empirical  models are  known to be

regionals  (Becker-Reshef  et  al.,  2010;  Doraiswamy  et  al.,  2003;  Hatfield  et  al.,  2008;

Moriondo et al., 2007).  Similar constraint was documented in this study since the universal

model was not suitable even to forecast yield variations in a state-scale. When forecasting

yield  models  were applied individually  for  MT or  RS,  the predictability  power increased

substantially. The overall yields were lower in MT than in RS because the maize in MT was

not grown during the best season for that region (second season).  The maize in MT was

affected adversely by abiotic stresses (Minuzzi et al., 2015) due to the season. When satellite

imagery was obtained prior to flowering, further abiotic stress in these fields could severely

affect  final  yield  (Sadras  and  Calviño,  2001)  and  consequently  the  yield-VI  relationship.

Truly, the model is forecasting the potential yield at the flowering, and that is the reason why

in some conditions there was an overestimation in the prediction, as visualized in figure 5B,

for high yield values. Furthermore, as with any purely empirical approach, extrapolation of

equations to new locations or years can be problematic (Hatfield et al., 2008; Lobell, 2013;

Lopresti et al., 2015; Moriondo et al., 2007). For this study, the yield frequency distribution of

RS and KS fields were quite similar resulting in reasonable yield predictability despite a loss

in sensibility to explain within-field yield variability, highlighted by the increase in RMSE in

relation  to  the  forecast  for  the  RS fields.  Another  example  that  in  determined conditions

empirical models could overcome the spatial constraint is the study developed by Becker-

Reshef et al. (2010), where models developed in KS were successfully applied to forecasting

wheat yields in Ukraine.  In the same way as the distance in  space (geographic distance),

distances in time (years) are expected to decrease the predictability of the model (Bognár et

al.,  2011). However, in our study, weather conditions lead to similar growth environments

resulting in comparable yield frequency distributions between 2016 and 2017 seasons (Fig.

6C); therefore, the model predictability was just slightly affected but quite alike. Despite that,
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the  temporal  analysis  should  be  cautiously  evaluated  since  it  comprises  one  year  and  a

specific  region  around  the  globe.  Further  testing  including  more  years  and  other  regions

presenting comparable weather conditions should be pursued to validate this point.

This study showed that the selection of the fields for comprising training data affected

directly the model structure.  Historical yield information is  available in platforms such as

National  Agricultural  Statistics  Service  (NASS),  and  once  knowing  the  overall  yield

frequency  distribution  from  a  specific  region,  fields  representative  to  the  region  can  be

selected to scale-up the yield forecasting models to  county, agricultural districts, and state-

scales. One of the main drawbacks of remotely sensed based empirical models for estimating

yields has been that their application is valid only for the areas they have been calibrated for

(Doraiswamy et  al.,  2003;  Hatfield  et  al.,  2008;  Lobell,  2013).  By means  of  the  current

outcomes presented in this study, it can be inferred that independent datasets could portray in

a high-probability comparable yield-VI relationship if the following criteria are fulfilled: yield

data distribution with, i) IQR, ii) mode statistically similar, and satellite imagery, iii) collected

at a similar growth stage, even with fields separated by space or time. The latter could provide

a foundational knowledge to establish conditions (regions in space and year characteristics)

where  determined empirical  models  could  be suitable,  and when a new model  should  be

developed. Furthermore, this study may provide guidelines for applicability of yield forecast

models where ground-truth data is limited or scarce, providing fundamental information for

supporting  policy  formulation  and  helping  farmers,  consumers,  researchers,  providing

guidelines for making informed decisions based on the crop yield forecast report. Therefore,

standards or basis of how to collect data for building more accurately forecasting yield models

and  information  regarding  the  applicability  of  those  models  are  extremely  important  and

useful.

5. Conclusions

The  likelihood  of  two  independent  datasets portray  comparable  yield-IV relationship

increases as their yield data distribution becomes more alike, mainly related to the position of

the mode, first and third quartiles (IQR). In this current study model performance was more

affected by differences in the yield frequency distribution rather than by distance in space (BR

and KS) or time (2016 and 2017 seasons). Since RS and MT presented a large difference in

yield  frequency  distribution,  the  universal  model  to  estimate  maize  yield  in  both  states
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presented small predictability power compared to the site-specific models (individual model

per state).

The regression model using the NDVI, NDVIG, and NDVIre showed high performance

for predicting within-field yield variability. Approaches that adequately account for spatial

correlation outperformed the OLS models since yield and VIs were spatially correlated

This  current  analysis  is  among  the  few studies  demonstrating  the  utilization  of  mid-

season  high-resolution  satellite  imagery  to  forecasting  within-field  maize  yield  variation.

Future  research  should  be  focused  on  improving  the  understanding  of  historical  yield

distribution at larger scales (county, district or state-level) aiming at mapping the potential and

limitations of scaling-up yield forecasting models.
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5 DISCUSSÃO

Embora imagens de satélites ainda tenham um papel limitado na maioria dos esforços

operacionais para monitorar a produtividade, vários estudos recentes permitiram o progresso

em direção ao uso mais rotineiro dessa ferramenta, impulsionados pelo acesso facilitado às

imagens  nos  últimos  anos  devido ao  maior  número de satélites  em órbita,  e  pelas  novas

tecnologias  de  processamento  em  nuvem  como  o  GEE,  permitindo  a  manipulação,

armazenamento  e  processamento  de  grande  volume  de  dados,  possibilitando  o

desenvolvimento de novos algoritmos mais generalizáveis (AZZARI et al., 2017).

Apesar  da  evidente  evolução  nas  técnicas  de  mapeamento  de  produtividade,  sua

aplicabilidade  regional  ainda  é  limitada  pela  dificuldade  de  obtenção  de  informações

confiáveis sobre a distribuição geográfica das áreas agrícolas (JIN et al., 2017; SAKAMOTO;

GITELSON; ARKEBAUER, 2014; SHELESTOV et al.,  2017). As primeiras contribuições

desse estudo foram: a) a proposição de um modelo capaz de mapear a localização espacial das

áreas  produtoras  de  milho  no  Corn Belt americano  com uma acurácia  superior  a  80% e

predizer a produtividade dessa cultura com um erro médio absoluto inferior a 0,9 Mg ha-1,

com  uma  antecedência  de  98  dias  em  relação  a  colheita.  Esse  modelo  foi  amplamente

validado para diferentes condições de clima e solo e pode ser aplicado para diferentes regiões

produtoras que possuam um nível de informação semelhante ao encontrado na região onde o

modelo foi proposto; e b) a proposição de um modelo para predizer a produtividade da cultura

da soja no estado do Rio Grande do Sul sem o uso de uma camada de informação específica

de cultura, capaz de predizer a produtividade dessa cultura com um erro absoluto médio de

0,24 Mg ha-1 com uma antecedência de aproximadamente 40 dias em relação à colheita. Os

dois modelos foram testados para diferentes datas, e apesar de apresentarem um erro crescente

à  medida  que  a  data  da  previsão  é  antecipada  eles  ainda  apresentaram um  desempenho

satisfatório para previsões 70 dias antes da colheita para a cultura da soja com um erro médio

absoluto de 0,42 Mg ha-1, e 122 dias antes da colheita do milho com um erro médio absoluto

inferior a 1 Mg ha-1.

Uma segunda contribuição desse estudo está relacionado à incorporação dos dados

climáticos no modelo preditivo. Apesar dos índices de vegetação indiretamente captarem o

efeito  das  variáveis  meteorológicas  sobre  o  desenvolvimento  vegetal,  uma  substancial

melhora no desempenho dos modelos foi documentada quando temperatura, precipitação e

DPV foram incluídas no modelo juntamente aos índices de vegetação. Apesar desse efeito já
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ter sido reportado anteriormente na literatura (PENG et al., 2018) apenas uma pequena fração

dos modelos propostos faz uso dessa fonte de informação adicional. 

Não  obstante,  considerável  melhora  no  desempenho  dos  modelos  de  previsão  foi

documentada pelo uso de redes neurais de aprendizagem profunda. Essa técnica representa

uma extensão das redes neurais convencionais apresentando diversas camadas de abstração o

que possibilita o modelo representar complexas interações entre as variáveis explanatórias e a

variável  resposta  (CUNHA;  SILVA;  NETTO,  2018;  KHAKI;  WANG,  2019;  YOU et  al.,

2017).  Nesse trabalho em especial,  foram usadas  uma classe específica  de  redes  neurais,

conhecidas  como  Long  Short  Term  Memory  –  LSTM.  Redes  neurais  dessa  natureza  são

adequadas para reconhecer padrões em séries  temporais (como os dados provenientes  das

imagens de satélite e dados meteorológicos) e normalmente apresentam desempenho superior

com dados dessa natureza (YOU et al., 2017).

Com exceção  ao  desafio  de  identificar  a  localização  espacial  das  áreas  agrícolas,

estabelecer  relações  empíricas  entre  produtividade e  preditores  normalmente é  uma tarefa

menos  complexa  para  domínios  maiores,  como  municípios,  condados,  estados,  etc.,

comparados com pequenas  áreas produtivas.  As dificuldades  de estabelecer  essas relações

matemáticas  em domínios  menores  (maior  resolução)  está  relacionada a  aspectos  como a

menor disponibilidade de séries históricas de satélites com alta resolução espacial e temporal e

a maior dificuldade de coletar dados de produtividade em quantidade suficiente para treinar e

validar modelos adequadamente.  Além disso,  a capacidade de generalização (aplicação do

modelo além das condições onde ele foi parametrizado) permanece uma grande incógnita para

relações empíricas estabelecidas localmente. A quarta contribuição desse estudo foi fornecer

diretrizes  a  fim  de  estabelecer  limites  para  generalizações  espaço-temporais  de  modelos

empíricos locais. Os resultados desse estudo demonstram que similaridades na distribuição de

frequência dos dados de produtividade usados para treinar os modelos são mais importantes

que distâncias geográficas (espaciais)  ou temporais (anos).  Foi documentado que modelos

ajustados  para  o  estado do Rio  Grande  do Sul  tiveram um desempenho superior  quando

aplicados  no  estado  do  Kansas  –  EUA  (distribuições  de  frequência  de  produtividade

semelhantes)  em relação  às  áreas  localizadas  no  estado  do  Mato  Grosso  (segunda  safra)

(distribuição de frequência não-similares). Em relação à escala temporal, modelos ajustados

para  o  ano  agrícola  de  2016  tiveram  um  desempenho  satisfatório  para  a  safra  2017,

considerando que as duas safras tiveram condições meteorológicas similares o que resultou

em patamares de produtividades comparáveis.
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A  principal  contribuição  dessa  pesquisa  é  mostrar  os  benefícios  potenciais  da

integração de técnicas estatísticas, dados de sensoriamento remoto e dados meteorológicos na

estimativa  de  produtividade  de  culturas  agrícolas  em  diferentes  escalas  geográficas.

Entretanto, vale ressaltar que existe oportunidade para aprimorar os resultados apresentados

nesse estudo através do(a):  i)  uso de imagens de satélites comercias com maior resolução

temporal e espacial como Rapid-Eye, Skysat and WorldView, ii) uso de novas tecnologias

embarcas em satélites baseadas na fluorescência da clorofila que estarão disponíveis em um

futuro próximo (DRUSCH et al., 2017), e iii) fusão de modelos empíricos e mecanísticos para

aumentar a capacidade de generalização dos modelos preditivos. 

6 CONCLUSÃO

Modelos de preditivos baseados em imagens de satélite e variáveis meteorológicas

podem antecipar  informações  de  produtividade  da  cultura  do  milho  em até  122  dias  em

relação à data de colheira com um erro menor que 1 Mg ha-1, e em 70 dias para a cultura da

soja com um erro de 0,42 Mg ha-1  em nível municipal no estado do Rio Grande do Sul –

Brasil. Espera-se que o erro associado as previsões diminua a medida que as previsões sejam

realizadas em datas mais próximas à colheita. Duas diferentes abordagens foram testadas com

sucesso  nesse  estudo  para  filtrar  pixels de  interesse  das  imagens  de  satélite  e  remover

informações de alvos não desejados: a) o uso de informações de anos anteriores para treinar

modelos de classificação usando imagens de satélite, capazes de identificar áreas agrícolas em

tempo real. Esses modelos foram capazes de atingir valores de acurácia superiores à 85% para

a cultura do milho nos EUA; e b) uso de informações de acesso público e georreferenciadas

de áreas agrícolas, porém não específicas para a cultura de interesse. Essa segunda abordagem

funcionou para o estado do Rio Grande do Sul, porém deve-se destacar que o sistema de

rotação de cultura de verão nessa região têm predominância de duas culturas, soja e milho,

com uma frequência de ocorrência muito maior da primeira, que foi a cultura considerada no

modelo preditivo.

A incorporação de variáveis meteorológicas nos modelos preditivos se mostra uma

abordagem promissora  com potencial  para  aumentar  a  assertividade das  previsões.  O uso

conjunto de dados de sensoriamento remoto e meteorológicos oferece uma oportunidade de

coleta  de  dados  em  um  volume  sem  precedentes  suficientes  para  treinar  modelos  mais

complexos  baseados  em  deep  learning  capazes  de  retratar  complexas  interações  entre  a
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variável resposta e os preditores com potencial para superar os algoritmos convencionalmente

usados.

Modelos preditivos empíricos locais possuem menor capacidade de generalização em

decorrência da limitada quantidade de dados nessa escala, tanto da variável resposta como dos

preditores.  Esse  estudo  objetivou  fornecer  diretrizes  a  fim  de  determinar  limites  para

extrapolação espaço-temporal de tais  modelos.  Os resultados apesar de promissores,  ainda

podem  ser  considerados  incipientes  e  novas  abordagens  incluindo  o  uso  de  modelos

mecanísticos baseados em processos fornece uma ótima oportunidade para geração de pseudo-

observações capazes  aumentar a capacidade de generalização desses modelos em diversas

ordens de magnitude.
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APÊNDICE A – TABELA DE EQUAÇÕES DOS ÍNDICES DE VEGETAÇÃO

Supplementary Table -  Equations for the vegetation indices used in this study

Índices de Vegetação Sigla Equação

Normalized Difference
Vegetation Index

NDVI (Red - NIR) / (Red + NIR)

Green Normalized 
Difference Vegetation 
Index

GNDVI (Green - NIR) / (Green + NIR)

Enhanced Vegetation 
Index

EVI (NIR - Red) / (NIR + C1 x Red - C2 x Blue +L)

Normalized Difference
Red Edge Index

NDRE, NDVIre (Red-edge - NIR) / (Red - edge + NIR)

*Red  representa  a  reflectância  na  região  do  vermelho,  NIR  representa  a  reflectância  na  região  do  infravermelho  próximo,  Blue
representa a reflectância na região do azul, Green representa a reflectância na região do verde, Red-Edge representa a reflectância na
região da borda do vermelho, L representa um o ajuste de fundo do dossel que trata da transferência de radiação não-linear para o NIR e
vermelho através do dossel,  C1, C2 são os coeficientes de resistência ao aerossol, esses coeficientes usam o comprimento de onda do
azul para corrigir influências de aerossol na faixa vermelha, G representa o fator de ganho. Os coeficientes adotados no algoritmo
MODIS-EVI são; L = 1, C1 = 6, C2 = 7,5 e G = 2,5.
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APÊNDICE B – FIGURA SUPLEMENTAR 1 DO ARTIGO 1

Supplementary figure 1.  (A) Observed yield data distribution. (B) Root-mean absolute

error  (RMAE).  (C)  Mean  absolute  error  (MAE).  (D)  Nash–Sutcliffe  model  efficiency

coefficient (NSE). (E) Bias coefficient for all the years considered in this study.

https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient
https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient
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APÊNDICE C – TABELA SUPLEMENTAR 1 DO ARTIGO 3

Supplementary Table 1.  Multiple linear regression models using Sentinel 2 full resolution 
for Rio Grande do Sul (RS) and Mato Grosso (MT).

Satellite description RS model MT model

Band Band name   Wavelength Coefficient P-value Coefficient P-value

Intercept -  - 10.929022 < 2e-16 3.5819608 1.98e-06

Band 2 Blue 490 nm -0.0001439 0.89075 0.0002143 0.868

Band 3 Green 560 nm 0.0025959 0.00113 0.0067544 < 2e-16

Band 4 Red 665 nm -0.0027115 2.5e-12 0.0084745 < 2e-16

Band 5 Red Edge 1 705 nm -0.0013806 3.2e-05 -0.0019428 5.10e-06

Band 6 Red Edge 2 740 nm -0.0098994 < 2e-16 -0.0152953 < 2e-16

Band 7 Red Edge 3 783 nm -0.0001205 0.61825 -0.0004666 0.0564

Band 8 NIR 842 nm 0.0088876 < 2e-16 0.0104068 < 2e-16

Band 8a Red Edge 4 865 nm -0.0010748 3.8e-08 -0.0001988 0.3580

Band 11 SWIR 1 1610 nm 0.0006389 0.053 0.0004448 0.2337

Band 12 SWIR 2 2190 nm 0.0003569 0.415 -0.0001865 0.7715
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APÊNDICE D – TABELA SUPLEMENTAR 2 DO ARTIGO 3

Supplementary Table 2. Moran’s I  test  to vegetation indexes (VI’s) obtained from
mid-season satellite imagery and yield monitor data.

Field State Season Maize yield NDVI NDVIG NDVIre
F1 RS 2016-2017 0.49*** 0.48*** 0.52*** 0.48***
F2 RS 2016-2017 0.32*** 0.35*** 0.42*** 0.30***
F3 RS 2016-2017 0.20*** 0.22*** 0.25*** 0.26***
F4 RS 2016-2017 0.17*** 0.15*** 0.21*** 0.12***
F5 RS 2016-2017 0.18*** 0.19*** 0.23*** 0.20***
F6 RS 2016-2017 0.13*** 0.16*** 0.19*** 0.21***
F7 MT 2016 0.25*** 0.23*** 0.31*** 0.22***
F8 MT 2016 -0.05 0.03 0.07 0.04
F9 MT 2016 0.17*** 0.21*** 0.23*** 0.28***
F10 MT 2016 0.24*** 0.27*** 0.31*** 0.28***
F11 MT 2016 0.15*** 0.19*** 0.20*** 0.18***
F12 MT 2017 0.21*** 0.24*** 0.26*** 0.24***
F13 MT 2017 0.28*** 0.26*** 0.30*** 0.24***
K1 KS 2016 0.08*** 0.20*** 0.18*** 0.14***
K2 KS 2016 0.12*** 0.15*** 0.14*** 0.09***
K3 KS 2016 0.14*** 0.15*** 0.16*** 0.15***
K4 KS 2016 0.04*** 0.25*** 0.26*** 0.18***
K5 KS 2016 0.06*** 0.15*** 0.18*** 0.13***
K6 KS 2016 0.05*** 0.17*** 0.16*** 0.14***

Notes: The statistically significant coefficients are indicated by asterisks, where * 
Significant at the alpha = 0.05 error level; ** Significant at the alpha = 0.01 error level; 
*** Significant at the alpha = 0.001 error level.
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APÊNDICE E – FIGURA SUPLEMENTAR 1 DO ARTIGO 3

Supplementary figure 1. Boxplot showing NDVI (A), NDVIG (B) and NDVIre (C) range

from different image date acquisition. The lower and upper hinges correspond to the first and

third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to

the largest value no further than 1.5 x IQR (inter-quartile range) from the hinge. Coefficient of

determination (R2) versus image date acquisition from a yield-NDVI (D), yield-NDVIG (E)

and yield-NDVIre (F) relationship. Selec. = Selected image used to build the forecasting yield

models. 30 d. before = Image acquired 30 days before the selected image. 10 d. after = Image

acquired 10 days after the selected image.
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