Mostrar registro simples

dc.creatorFerreira, Letícia de Oliveira
dc.date.accessioned2021-11-30T13:20:28Z
dc.date.available2021-11-30T13:20:28Z
dc.date.issued2020-03-06
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/23068
dc.description.abstractThis work presents a study on the charge transfer of the automatic micropipette and the glass microsyringe with the grounded and ungrounded metallic part when dripping with different liquids and also when applying different electric fields in a metallic cylinder, measured with Faraday cup and analyzing how charges can change and how the excess occur at the interface drops. The main object of study developed was the evaporation of drops, the liquid was transferred through a glass microsyringe with the grounded metallic part and deposited on polytetrafluoroethylene (PTFE) surfaces with low residual electrostatic potential. During evaporation, the Kelvin probe was used to measure changes in electrostatic potential in the droplets, which registered an increase in the positive charge in the liquid until reaching a maximum value, followed by a rapid decrease in potential and then stabilization after total evaporation of the liquid. Different solutions were evaporated, deionized water and 3% NaCℓ (sodium chloride), solutions of three different surfactants sodium dodecyl sulfate (sodium lauryl sulfate) (SDS), cetylpyridinium chloride (CPCℓ), and ether 1,1,3, 3-tetramethyl-butyl-phenyl (9.5) - polyoxyethylene (Triton X-100) and drops of different pH. Through the mapping of electrostatic potential and microscopic measurements it was possible to verify an increase in charge in the drop, and where the drop was deposited the dielectric surface became positive and the surroundings in the PTFE, negative. In addition, an electrostatic model was proposed for the evaporation of liquid droplets deposited on the PTFE surface, where the negative charges (hydroxyls; OH-) are disposed in excess at the water-air and water-PTFE interface, while the positive charges (hydrons, H3O+) are found inside the drop (bulk). It is believed that all this work can collaborate/contribute to meteorological research in the future, as there is no model or electrification process explained for drops during evaporation. Also to be able to store all this energy generated spontaneously, which may someday be an alternative energy source.eng
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLíquidospor
dc.subjectEvaporaçãopor
dc.subjectPotencial eletrostáticopor
dc.subjectEletrodo de Kelvinpor
dc.subjectLiquidseng
dc.subjectEvaporationeng
dc.subjectElectrostatic potentialeng
dc.subjectKelvin probeeng
dc.titleMosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidospor
dc.title.alternativeMosaics of electrical charges and large gradients of potential in dielectric surfaces formed by the evaporation of liquidseng
dc.typeDissertaçãopor
dc.description.resumoEste trabalho apresenta um estudo sobre a transferência de carga da micropipeta automática e da microseringa de vidro com a parte metálica aterrada e não aterrada ao fazer o gotejamento com diferentes líquidos e também ao aplicar diferentes campos elétricos em um cilindro metálico, medidos através do Copo de Faraday e analisando como ocorre a alteração e excesso de cargas na interface das gotas. O principal objeto de estudo desenvolvido foi a evaporação de gotas, o líquido era transferido através de uma microseringa de vidro com a parte metálica aterrada e depositadas em superfícies de politetrafluoroetileno (PTFE) com baixo potencial eletrostático residual. Durante a evaporação o eletrodo de Kelvin foi utilizado para medir as alterações de potencial eletrostático nas gotas, os quais registraram aumento de carga positiva no líquido até atingir um valor máximo, seguido de um rápido decréscimo de potencial e então estabilização após a evaporação total do líquido. Foram evaporadas diferentes soluções, água deionizada e 3% NaCℓ (cloreto de sódio), soluções de três diferentes surfactantes dodecilsulfato de sódio (lauril sulfato de sódio) (SDS), cloreto de cetilpiridínio (CPCℓ), e éter 1,1,3,3-tetrametil-butil-fenil (9,5) – poli-oxietilênico (Triton X-100) e gotas de diferentes pH. Através do mapeamento de potencial eletrostático e das medidas microscópicas foi possível verificar um aumento de carga na gota e onde estava depositada a gota a superfície dielétrica tornou-se positiva e aos arredores no PTFE, negativa. Além disto foi proposto um modelo eletrostático para a evaporação de gotas líquidas depositadas na superfície de PTFE, onde as cargas negativas (hidroxilas; OH-) estão dispostas em excesso na interface água-ar e água-PTFE, enquanto as cargas positivas (hidrônios, H3O+) encontram-se no interior da gota (bulk). Acredita-se que todo este trabalho possa colaborar/contribuir futuramente com pesquisas meteorológicas, pois não há nenhum modelo e nem processo de eletrização explicado para gotas durante a evaporação. Também conseguir armazenar toda esta energia gerada espontaneamente, podendo quem sabe algum dia ser uma fonte de energia alternativa.por
dc.contributor.advisor1Burgo, Thiago Augusto de Lima
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5737213839553155por
dc.contributor.advisor-co1Villetti, Marcos Antonio
dc.contributor.referee1Köhler, Mateus Henrique
dc.contributor.referee2Fagan, Solange Binotto
dc.creator.Latteshttp://lattes.cnpq.br/0061711985233710por
dc.publisher.countryBrasilpor
dc.publisher.departmentQuímicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICApor
dc.publisher.unidadeCentro de Ciências Naturais e Exataspor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International