Mostrar registro simples

dc.creatorLeite Júnior, Mirabor José
dc.date.accessioned2022-05-06T11:42:26Z
dc.date.available2022-05-06T11:42:26Z
dc.date.issued2022-01-31
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/24298
dc.description.abstractFruit farming has been standing out as one of the main agricultural activities in the country, exerting great influence on the social and economic sector. This is linked to some important factors, such as the generation of employment and income in small areas and the high added value in its product. Still because it is an activity performed, most of the time, in a manual and conventional way, fruit farming has a great potential for technological growth, especially when adopting the concepts applied by Precision Agriculture (PA) on the cultures of grains, fibers and energy, creating a new segment: the Precision Fruticulture. For being it is an activity that depends on climatic factors that in most cases cannot be controlled, the monitoring of environmental variables is an important tool for planning actions in the orchard, whether preventive or corrective. In the apple culture, for example, producers have adopted alternatives to prevent damage caused by bad weather, such as covering orchards with anti-hail screens. This action has been proving to be the most effective alternative to avoid damage to plants and fruits, and economic losses caused by hail, with an expected evolution to cover 80% of the production area in the next few years. However, the use of this system alters the microclimate conditions in comparison with the management used in plants grown in full sun, and therefore requires different management. In addition, traditional meteorological data are obtained under open-air conditions, under different climatic conditions than the way orchards are being conducted under canvas. To meet this growing demand for information and technology in the area of fruit growing, this work aims to develop a prototype of a micro meteorological station, of low cost, to be attached directly to the plant, which can be installed in plants with and without canvas cover, collecting data of air temperature, relative humidity, solar radiation, soil moisture and leaf wetting. The prototype was built using the Arduino standard, a reference in DIY projects. Besides the sensors, the station also has a data storage module to be processed and interpreted by the end user. As a result, the built device proved to be able to collect data as efficiently as commercial and official INMET weather stations, through validation tests in the lab and in the field. It is worth mentioning its low manufacturing cost (R$ 456.80), the ease of replication and adaptation to other agricultural activities by adding more or less sensors, or even the possibility of integrating, from future work, wireless data transmission systems.eng
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArduinopor
dc.subjectFruticultura de precisãopor
dc.subjectInstrumentaçãopor
dc.subjectMicroclimapor
dc.subjectArduinoeng
dc.subjectPrecision agricultureeng
dc.subjectInstrumentationeng
dc.subjectMicroclimateeng
dc.titleProtótipo de microestação meteorológica de baixo custo para monitoramento de variáveis microclimáticaspor
dc.title.alternativePrototype of a low-cost micro-meteorological station for monitoring microclimatic variableseng
dc.typeDissertaçãopor
dc.description.resumoA fruticultura vem se destacando como uma das principais atividades agrícolas do país, exercendo grande influência sobre o setor social e econômico. Isso está ligado a alguns fatores importantes, como a geração de emprego e renda em pequenas áreas e o alto valor agregado em seu produto. Ainda por se tratar de uma atividade realizada, na maioria das vezes, de forma manual e convencional, a fruticultura possui um grande potencial de crescimento tecnológico, principalmente ao adotar os conceitos aplicados pela Agricultura de Precisão (AP) sobre as culturas de grãos, fibras e energia, criando um novo segmento: a Fruticultura de Precisão. Por ser uma atividade que depende de fatores climáticos que na maioria das vezes não podem ser controlados, o monitoramento de variáveis ambientais é uma importante ferramenta para o planejamento de ações no pomar, sejam elas preventivas ou corretivas. Na cultura da maçã, por exemplo, os produtores têm adotado alternativas para prevenção de danos causados por intempéries climáticas, como a cobertura dos pomares com telas antigranizo. Essa ação vem se mostrando a alternativa mais eficaz para evitar danos em plantas e frutos e perdas econômicas causadas pelo granizo, com previsão de evolução para cobertura de 80% da área de produção nos próximos anos. No entanto, o uso deste sistema altera as condições de microclima em comparação com o manejo utilizado em plantas cultivadas a pleno sol, portanto exige manejo diferenciado. Além disso, os dados meteorológicos tradicionais são obtidos em condições a céu aberto, em condições climáticas diferentes do modo que os pomares estão sendo conduzidos sob tela. Para atender a essa crescente demanda por informações e tecnologias na área de fruticultura, o presente trabalho tem como objetivo o desenvolvimento de um protótipo de uma microestação meteorológica, de baixo custo, a ser acoplada diretamente à planta, que possa ser instalada em plantas com e sem cobertura de tela, coletando dados de temperatura do ar, umidade relativa do ar, radiação solar, umidade do solo e molhamento foliar. A construção do protótipo se deu a partir do padrão Arduino, referência em projetos DIY (Faça você mesmo). Além dos sensores, a estação possui também um módulo de armazenamento de dados para serem tratados e interpretados pelo usuário final. Como resultado, o dispositivo construído se mostrou capaz de coletar dados tão eficientes quanto estações meteorológicas comercial e oficial do INMET, através de testes de validação em laboratório e campo. Vale destacar seu baixo custo de fabricação (R$ 456,80), a facilidade de replicação e adaptação para demais atividades agrícolas por meio da adição de mais ou menos sensores ou até mesmo a possibilidade de integrar, a partir de trabalhos futuros, sistemas de transmissão de dados sem fio.por
dc.contributor.advisor1Gebler, Luciano
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3800729962480769por
dc.contributor.referee1Bazzi, Claudio Leones
dc.contributor.referee2Amaral, Lúcio de Paula
dc.creator.Latteshttp://lattes.cnpq.br/7643371906896553por
dc.publisher.countryBrasilpor
dc.publisher.departmentAgronomiapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Agricultura de Precisãopor
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::AGRONOMIApor
dc.publisher.unidadeColégio Politécnico da UFSMpor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International