Mostrar registro simples

dc.creatorBaumhardt, Tadeu
dc.date.accessioned2023-12-01T20:55:02Z
dc.date.available2023-12-01T20:55:02Z
dc.date.issued2023-08-25
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/30751
dc.description.abstractRadiotherapy can be divided into two modalities: brachytherapy and teletherapy, the latter being the most widespread technique. Teletherapy equipment is capable of producing beams of photons or electrons that leave the equipment towards the patient positioned on the treatment table. To ensure that the irradiation field provides the correct dose and the beams produced focus only on the region of interest, a series of quality control tests performed on the equipment are necessary, part of these tests being performed using specific equipment for dosimetry: a dosimetric set (ionization chamber and electrometer), in addition to a simulator (phantom) filled with water that simulates the interaction of the beam with the human body. Depending on the amount of energy that the linear accelerator can produce, and considering that the quality control must be carried out periodically on each of the energies available in the equipment, the whole process turns out to be too slow and time-consuming when using a manual drive simulator compared to automated equipment. The automated equipment currently available on the market is expensive and imported, or those that have a lower price are devices that carry out the automated movement only in the vertical direction, which does not solve the problem at all, because in the evaluations of the profile of the beams, for example, it is necessary to move the ionization chamber horizontally, leading to the manual process again. Thus, this work sought to develop an automated simulator system, both in the vertical and horizontal direction, at low cost, using open source microcontroller boards (Arduino platform) as a basis for development. The tests carried out on the developed equipment demonstrated its ability to carry out movements in both directions, positioning the ionization chamber in the desired position, with an accuracy of around tenths of a millimeter, equivalent to imported equipment at a higher price, with the mechanism being remotely controlled by a central that is positioned outside the treatment room, since the objective is to prevent the operator from entering the room during the procedure. And it is also expected, in a future work, to develop a software that, together with the equipment, is capable of carrying out the process of scanning the radiation beam, which would make this equipment equivalent to those that are currently available only by import and from high cost reaching its value in the order of U$ 100,000.00 (one hundred thousand dollars), such as the Blue Phantom (IBA) or the BeamScan (PTW).eng
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectControle de qualidadepor
dc.subjectRadioterapiapor
dc.subjectDosimetriapor
dc.subjectPlataforma Arduinopor
dc.subjectQuality controleng
dc.subjectRadiotherapyeng
dc.subjectDosimetryeng
dc.subjectArduino platformeng
dc.titleDesenvolvimento de um sistema automatizado de posicionamento para dosimetria em teleterapiapor
dc.title.alternativeDevelopment of an automated positioning system for dosimetry in teletherapyeng
dc.typeDissertaçãopor
dc.description.resumoA radioterapia pode ser dividida em duas modalidades: a braquiterapia e a teleterapia, sendo a última, a técnica mais difundida. Os equipamentos de teleterapia são capazes de produzir feixes de fótons ou elétrons que saem do equipamento em direção ao paciente posicionado sobre a mesa de tratamento. Para garantir que o campo de irradiação forneça a dose correta e que os feixes produzidos incidam apenas na região de interesse, é necessário uma série de testes de controle de qualidade realizados sobre os equipamentos, sendo uma parte destes testes executados por meio de equipamentos específicos de dosimetria: um conjunto dosimétrico (câmara de ionização e eletrômetro), além de um simulador (fantoma) cheio de água que simula a interação do feixe com o corpo humano. Depedendo da quantidade de energias que o acelerador linear pode produzir, e considerando que o controle de qualidade deve ser realizado periodicamente sobre cada uma das energias disponíveis no equipamento, o processo todo acaba por se tornar demasiadamente lento e moroso, quando se utiliza um simulador de acionamento manual comparado a um equipamento automatizado. Os equipamentos automatizados disponíveis no mercado atualmente são de alto custo e importados, aqueles que possuem um preço mais em conta são dispositivos que realizam o movimento automatizado apenas na direção vertical, o que não resolve de todo o problema, pois nas avaliações de perfil dos feixes, por exemplo, é necessário o deslocamento horizontal da câmara de ionização levando ao processo manual novamente. Assim, este trabalho procurou desenvolver um sistema simulador automatizado, tanto na direção vertical quanto na horizontal, de baixo custo, utilizando como base de desenvolvimento placas microcontroladoras open source (plataforma Arduino). Os testes realizados no equipamento desenvolvido, demonstraram sua capacidade de realizar os movimentos das duas direções posicionando a câmara de ionização na posição desejada, com uma precisão na ordem de décimos de milímetro, equivalente aos equipamentos importados de preço mais elevado, sendo o mecanismo telecomandado por uma central que fica posicionada fora da sala de tratamento, visto que o objetivo é fazer com que o operador não entre na sala durante o procedimento. E espera-se ainda, em um trabalho futuro, desenvolver um software que em conjunto com o equipamento, seja capaz de realizar o processo de varredura do feixe de radiação, o que tornaria este equipamento equivalente aqueles que hoje são disponíveis apenas por importação e de custo elevado chegando seu valor na ordem de U$ 100.000,00 (cem mil dólares), como o Blue Phantom (IBA) ou o BeamScan (PTW).por
dc.contributor.advisor1Santos, Leila Maria Araújo
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0427736982554233por
dc.contributor.advisor-co1Turchetti, Rogério Correa
dc.contributor.referee1Silva, Maurício Fraga da
dc.contributor.referee2Schwarz, Ana Paula
dc.creator.Latteshttp://lattes.cnpq.br/3441071369544492por
dc.publisher.countryBrasilpor
dc.publisher.departmentEducaçãopor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Educação Profissional e Tecnológicapor
dc.subject.cnpqCNPQ::CIENCIAS HUMANAS::EDUCACAOpor
dc.publisher.unidadeColégio Técnico Industrial de Santa Mariapor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International