Mostrar registro simples

dc.creatorRosanelli, Adrion Andrei
dc.date.accessioned2024-04-18T13:17:16Z
dc.date.available2024-04-18T13:17:16Z
dc.date.issued2024-02-16
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/31791
dc.description.abstractSignal resampling is a signal processing technique with several applications, among them, to improve Sampled Values (SV) signals defined by IEC-61850-9-2, which allows the analysis of SV signals in a more accurate and robust way for applications such as the power substations protection. In this sense, this work aims to analyze and compare different resampling schemes, to validate and explore the feasibility of their use. For this, schemes proposed by the literature and using conventional methods implemented in simulation are used. The comparison of these schemes, together with validation of the resampling technique, are performed in simulations with different SV signals and different implementations, considering implementations of the signal directly on the network or the signal as a whole, and evaluating effects such as jitter and random packets loss. To this end, analyzes are carried out in the time and frequency domains (by FFT) and measurements such as RMS and computational time. In these analyses, it was observed that resampling allows to reduce the spectral leakage of SV signals by keeping the relationship between the signal frequency and sampling frequency constant. This also allows a significant reduction in the RMS error, from the order of 10−2A without resampling to the order of 10−7A in some schemes, the most stable in this analysis being the method of “Cubic Spline”. When analyzing the signal effects, it was observed that jitter and random packet loss do not represent significant effects in resampling. Considering the implementation of the SV directly on the network, again the “Cubic Spline” obtained the best performance in the RMS error, and all schemes provided greater stability in the FFT peak and in the RMS, although it results in a phase delay in the fundamental component of the signal. Another analysis developed is computational efficiency, comparing the time of each scheme, in which the best performance was with conventional methods and the worst with “Modified Sinc”. The last simulation carried out was a case study evaluating resampling schemes in SV signals captured by MUs from four manufacturers, in which it was verified that the benefits of resampling are more impactful in manufacturers 1 and 4, being reduced in other cases, and maintaining a phase delay in all situations. With these analyzes it is verified that resampling results in greater precision and robustness of SV signals but adds a processing and phase delay. Among the schemes analyzed, the one that performed best was the “Cubic Spline”, making resampling an attractive technique in some SV applications.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectReamostragempor
dc.subjectSampled valueseng
dc.subjectSimulaçãopor
dc.subjectProcessamento digital de sinaispor
dc.subjectIEC 61850-9-2por
dc.subjectResamplingeng
dc.subjectSimulationeng
dc.subjectDigital signal processingeng
dc.titleAnálise e simulação da reamostragem de sinais: uma abordagem baseada na IEC 61850-9-2por
dc.title.alternativeAnalysis and simulation of signal resampling: an approach based on IEC 61850-9-2eng
dc.typeDissertaçãopor
dc.description.resumoA reamostragem de sinais é uma técnica de processamento digital de sinais com diversas aplicações, entre elas, aprimorar a qualidade de sinais Sampled Values (SV), definidos pela norma IEC 61850-9-2, o que permite a análise dos sinais SV de forma mais precisa e robusta para aplicações como a proteção de subestações de energia. Neste sentido, esta pesquisa tem como objetivo analisar e comparar diferentes esquemas de reamostragem para validar e explorar a viabilidade de sua utilização. Para isso são utilizados esquemas propostos pela literatura e com métodos convencionais de interpolação implementados em simulação. A comparação desses esquemas, juntamente com a validação da técnica de reamostragem, são realizadas em simulações com diferentes sinais SV e diferentes implementações, considerando implementações do sinal diretamente na rede ou o sinal como um todo, e avaliando efeitos, como o jitter e a perda de pacotes aleatória. Para isso são realizadas análises no domínio do tempo e da frequência (pela FFT) e de grandezas como o valor RMS e o tempo computacional. Nessas análises, observou-se que a reamostragem permite reduzir o vazamento espectral dos sinais SV por manter a relação entre a frequência do sinal e da amostragem constante. Isso também possibilita uma significativa redução no erro RMS, da ordem de 10−2A sem reamostragem para ordem de 10−7A em alguns esquemas, sendo o mais estável nessa análise o método da “Cubic Spline”. Na análise dos efeitos do sinal observou-se que o jitter e a perda de pacotes aleatória não representam efeitos significativos na reamostragem. Considerando a implementação do SV diretamente na rede, novamente a “Cubic Spline” obteve o melhor desempenho no erro RMS, e todos os esquemas proporcionaram uma maior estabilidade no pico da FFT e no RMS, embora resulte em um atraso de fase na componente fundamental do sinal. Outra análise desenvolvida é da eficiência computacional, comparando o tempo de cada esquema, no qual o melhor desempenho foi com os métodos convencionais e o pior pela “Modified Sinc”. A última simulação realizada foi de um estudo de caso avaliando os esquemas de reamostragem em sinais SV capturados por Merging Units (MUs) de quatro fabricantes, no qual é verificado que os benefícios da reamostragem são mais impactantes nos fabricantes 1 e 4, sendo reduzidos em outros casos, e mantendo um atraso de fase em todas as situações. Com essas análises verifica-se que a reamostragem resulta em uma maior precisão e robustez dos sinais SV mas adiciona um atraso de processamento e de fase. Dentre os esquemas analisados, o que obteve melhor desempenho foi o “Cubic Spline”, fazendo a reamostragem uma técnica atraente em algumas aplicações dos SV.por
dc.contributor.advisor1Barriquello, Carlos Henrique
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4127396473202565por
dc.contributor.referee1Rutzig, Mateus Beck
dc.contributor.referee2Chemin Netto, Ulisses
dc.creator.Latteshttp://lattes.cnpq.br/6410423388236758por
dc.publisher.countryBrasilpor
dc.publisher.departmentEngenharia Elétricapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétricapor
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApor
dc.publisher.unidadeCentro de Tecnologiapor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International