Show simple item record

dc.creatorDessbesell, Gustavo Fernando
dc.date.accessioned2017-05-26
dc.date.available2017-05-26
dc.date.issued2008-03-07
dc.identifier.citationDESSBESELL, Gustavo Fernando. Extraction and recognition of optical characters based on hardware and software co-design over reconfigurable platform. 2008. 167 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2008.por
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/8448
dc.description.abstractThis work presents the implementation and analysis of a system devoted to the extraction and recognition of optical characters which is based on the hardware and software co-design methodology and built over a reconfigurable platform. Since vision is a very important sense, the research in the field of artificial vision systems has been carried out since the very beginning of the digital era, in the early 60 s. Taking into account the recent evolution experienced by the configurable computing area, a new tendency of research and development of heterogeneous artificial vision systems emerges. Among the main benefits provided by the so called systems on chip are the reduction of power dissipation, financial costs and physical area. In this sense, taking a License Plate Recognition System (LPRS) as a case study, the focus of this work is the implementation of the character localization and recognition steps, while the partitioning of hardware and software resources is based in costbenefit heuristics. Initially, a software-only version of the system is build over an x86 platform. More than to allow the evaluation of several character localization related methods, this software-only version is also intended to be used as parameter of comparison for the embedded version of the system. Regarding the character recognition step, it is performed by the means of an Artificial Neural Network. Based on the results provided by the software-only evaluation system, the implementation of the embedded version is performed, considering an FPGA as platform. In this embedded version, the character localization step consists of a dedicated hardware block, while the character recognition step comprises a piece of software executed in a microprocessor that is physically implemented inside the FPGA. Taking into account a 10 times higher frequency of operation for the processor of the x86 platform, as well as the fact that most of the embedded hardware block employs a clock frequency smaller or equal to 25 MHz, the most noticeable result is the 2.25 times faster speed of processing achieved by the embedded version. Regarding the plate recognition capability, both systems have the same performance, being able to successfully recognize plates in 51.62 % of the cases (considering the best case). Beyond LPRSs, the system developed here could also be employed to build other applications that require optical character recognition features, such as automatic traffic signs recognition and serial number reading of items in a production line.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAcesso Abertopor
dc.subjectVisão computacionalpor
dc.subjectCo-projeto de software e hardwarepor
dc.subjectFPGApor
dc.subjectRedes neurais artificiaispor
dc.subjectSistemas embarcadospor
dc.subjectComputer visioneng
dc.subjectHardware and software co-designeng
dc.subjectFPGAeng
dc.subjectArtificial neural networkseng
dc.subjectEmbedded systemseng
dc.titleExtração e reconhecimento de caracteres ópticos a partir do co-projeto de hardware e software sobre plataforma reconfigurávelpor
dc.title.alternativeExtraction and recognition of optical characters based on hardware and software co-design over reconfigurable platformeng
dc.typeDissertaçãopor
dc.description.resumoEste trabalho apresenta a implementação e análise de um sistema voltado à extração e reconhecimento de caracteres ópticos a partir do co-projeto de hardware e software sobre uma plataforma reconfigurável. Por conta da importância atribuída ao sentido da visão, sistemas artificiais capazes de emular as tarefas envolvidas neste processo biológico têm sido alvo de pesquisas desde o surgimento dos primeiros computadores digitais, na década de 60. Tendo em vista a recente evolução experimentada na área da computação configurável, surge uma tendência natural à pesquisa e desenvolvimento de sistemas heterogêneos (compostos por uma combinação de blocos de hardware e software) de visão artificial baseados em tal plataforma. Dentre os principais benefícios proporcionados por sistemas em chip podem ser citados a redução no consumo de potência, custos financeiros e área física. Neste sentido, tomando como estudo de caso um Sistema de Reconhecimento de Placas de Licenciamento Veicular (SRPLV), o foco do trabalho está situado na implementação das etapas de localização e reconhecimento de caracteres, sendo o particionamento dos blocos de hardware e software baseado em heurísticas de custo-benefício. Inicialmente é realizada a implementação de uma versão totalmente em software do sistema aqui proposto, sobre plataforma x86, no intuito de avaliar os diversos métodos passíveis de implementação, bem como o de possibilitar um parâmetro de comparação com a versão embarcada do sistema. Os métodos avaliados dizem respeito à etapa de localização de caracteres, haja vista a definição à priori do emprego de Redes Neurais Artificiais no reconhecimento dos mesmos. A partir dos resultados obtidos por esta avaliação é realizada a implementação da versão embarcada do sistema, tendo como plataforma um FPGA. Nesta versão, a etapa de localização de caracteres é implementada como um bloco dedicado de hardware, enquanto a de reconhecimento constitui-se num software executado sobre um microprocessador fisicamente embutido no interior do FPGA. Considerando uma freqüência de operação 10 vezes superior para o processador da plataforma x86, bem como o fato da maior parte do hardware embarcado utilizar um clock menor ou igual a 25 MHz, o principal resultado consiste no ganho de 2,25 vezes no tempo de execução obtido na segunda versão do sistema. No tocante à capacidade de reconhecimento de placas, os sistemas são equivalentes, sendo capazes de reconhecê-las corretamente em 51,62% das vezes, no melhor caso. Além de SRPLVs, o sistema aqui desenvolvido pode ser empregado na criação de outras aplicações que envolvam a problemática do reconhecimento de caracteres óticos, como reconhecimento automático de placas de trânsito e do número de série de itens numa linha de produção.por
dc.contributor.advisor1Martins, João Baptista dos Santos
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3158303689784382por
dc.contributor.advisor-co1Molz, Rolf Fredi
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5738153832159932por
dc.contributor.referee1Baratto, Giovani
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9054887406340022por
dc.contributor.referee2Ribas, Renato Perez
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1149542159006335por
dc.creator.Latteshttp://lattes.cnpq.br/8204712636273627por
dc.publisher.countryBRpor
dc.publisher.departmentEngenharia Elétricapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétricapor
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


O Manancial - Repositório Digital da UFSM utiliza a versão 6.3 do software DSpace.
Av. Roraima, 1000. Cidade Universitária "Prof. José Mariano da Rocha Filho".
Bairro Camobi. CEP: 97.105-900. Santa Maria, RS, Brasil.