dc.creator | Dessbesell, Gustavo Fernando | |
dc.date.accessioned | 2017-05-26 | |
dc.date.available | 2017-05-26 | |
dc.date.issued | 2008-03-07 | |
dc.identifier.citation | DESSBESELL, Gustavo Fernando. Extraction and recognition of optical characters based on hardware and software co-design over reconfigurable platform. 2008. 167 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2008. | por |
dc.identifier.uri | http://repositorio.ufsm.br/handle/1/8448 | |
dc.description.abstract | This work presents the implementation and analysis of a system devoted to the extraction and recognition of optical characters which is based on the hardware and software co-design methodology and built over a reconfigurable platform. Since vision is a very important sense, the research in the field of artificial vision systems has been carried out since the very beginning of the digital era, in the early 60 s. Taking into account the recent evolution experienced by the configurable computing area, a new tendency of research and
development of heterogeneous artificial vision systems emerges. Among the main benefits provided by the so called systems on chip are the reduction of power dissipation, financial costs and physical area. In this sense, taking a License Plate Recognition System (LPRS) as a case study, the focus of this work is the implementation of the character localization and recognition steps, while the partitioning of hardware and software resources is based in costbenefit heuristics. Initially, a software-only version of the system is build over an x86 platform. More than to allow the evaluation of several character localization related methods, this software-only version is also intended to be used as parameter of comparison for the embedded version of the system. Regarding the character recognition step, it is performed by the means of an Artificial Neural Network. Based on the results provided by the software-only evaluation system, the implementation of the embedded version is performed, considering an FPGA as platform. In this embedded version, the character localization step consists of a
dedicated hardware block, while the character recognition step comprises a piece of software executed in a microprocessor that is physically implemented inside the FPGA. Taking into account a 10 times higher frequency of operation for the processor of the x86 platform, as
well as the fact that most of the embedded hardware block employs a clock frequency smaller or equal to 25 MHz, the most noticeable result is the 2.25 times faster speed of processing achieved by the embedded version. Regarding the plate recognition capability, both systems have the same performance, being able to successfully recognize plates in 51.62 % of the cases (considering the best case). Beyond LPRSs, the system developed here could also be
employed to build other applications that require optical character recognition features, such as automatic traffic signs recognition and serial number reading of items in a production line. | eng |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico | |
dc.format | application/pdf | por |
dc.language | por | por |
dc.publisher | Universidade Federal de Santa Maria | por |
dc.rights | Acesso Aberto | por |
dc.subject | Visão computacional | por |
dc.subject | Co-projeto de software e hardware | por |
dc.subject | FPGA | por |
dc.subject | Redes neurais artificiais | por |
dc.subject | Sistemas embarcados | por |
dc.subject | Computer vision | eng |
dc.subject | Hardware and software co-design | eng |
dc.subject | FPGA | eng |
dc.subject | Artificial neural networks | eng |
dc.subject | Embedded systems | eng |
dc.title | Extração e reconhecimento de caracteres ópticos a partir do co-projeto de hardware e software sobre plataforma reconfigurável | por |
dc.title.alternative | Extraction and recognition of optical characters based on hardware and software co-design over reconfigurable platform | eng |
dc.type | Dissertação | por |
dc.description.resumo | Este trabalho apresenta a implementação e análise de um sistema voltado à extração e reconhecimento de caracteres ópticos a partir do co-projeto de hardware e software sobre uma plataforma reconfigurável. Por conta da importância atribuída ao sentido da visão, sistemas artificiais capazes de emular as tarefas envolvidas neste processo biológico têm sido alvo de pesquisas desde o surgimento dos primeiros computadores digitais, na década de 60. Tendo em vista a recente evolução experimentada na área da computação configurável, surge uma tendência natural à pesquisa e desenvolvimento de sistemas heterogêneos (compostos por uma combinação de blocos de hardware e software) de visão artificial baseados em tal plataforma. Dentre os principais benefícios proporcionados por sistemas em chip podem ser citados a redução no consumo de potência, custos financeiros e área física. Neste sentido, tomando
como estudo de caso um Sistema de Reconhecimento de Placas de Licenciamento Veicular (SRPLV), o foco do trabalho está situado na implementação das etapas de localização e
reconhecimento de caracteres, sendo o particionamento dos blocos de hardware e software baseado em heurísticas de custo-benefício. Inicialmente é realizada a implementação de uma versão totalmente em software do sistema aqui proposto, sobre plataforma x86, no intuito de avaliar os diversos métodos passíveis de implementação, bem como o de possibilitar um parâmetro de comparação com a versão embarcada do sistema. Os métodos avaliados dizem
respeito à etapa de localização de caracteres, haja vista a definição à priori do emprego de Redes Neurais Artificiais no reconhecimento dos mesmos. A partir dos resultados obtidos por esta avaliação é realizada a implementação da versão embarcada do sistema, tendo como plataforma um FPGA. Nesta versão, a etapa de localização de caracteres é implementada como um bloco dedicado de hardware, enquanto a de reconhecimento constitui-se num
software executado sobre um microprocessador fisicamente embutido no interior do FPGA. Considerando uma freqüência de operação 10 vezes superior para o processador da
plataforma x86, bem como o fato da maior parte do hardware embarcado utilizar um clock menor ou igual a 25 MHz, o principal resultado consiste no ganho de 2,25 vezes no tempo de execução obtido na segunda versão do sistema. No tocante à capacidade de reconhecimento de placas, os sistemas são equivalentes, sendo capazes de reconhecê-las corretamente em 51,62% das vezes, no melhor caso. Além de SRPLVs, o sistema aqui desenvolvido pode ser empregado na criação de outras aplicações que envolvam a problemática do reconhecimento de caracteres óticos, como reconhecimento automático de placas de trânsito e do número de série de itens numa linha de produção. | por |
dc.contributor.advisor1 | Martins, João Baptista dos Santos | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3158303689784382 | por |
dc.contributor.advisor-co1 | Molz, Rolf Fredi | |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5738153832159932 | por |
dc.contributor.referee1 | Baratto, Giovani | |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/9054887406340022 | por |
dc.contributor.referee2 | Ribas, Renato Perez | |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/1149542159006335 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8204712636273627 | por |
dc.publisher.country | BR | por |
dc.publisher.department | Engenharia Elétrica | por |
dc.publisher.initials | UFSM | por |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Elétrica | por |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA | por |