Mostrar registro simples

dc.creatorMeyer, Alexandre Robison
dc.date.accessioned2018-06-13T19:02:15Z
dc.date.available2018-06-13T19:02:15Z
dc.date.issued2017-03-28
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/13391
dc.description.abstractThis work presents the study of intermolecular interactions involved in the formation of molecular crystals and supramolecular gels. The compounds 3-amino-4-halo-5-methylisoxazoles and 1,3,5-Tris(pirazolyl)benzenes were synthesized and used as molecular models in the study of crystal packing. For the study of supramolecular gels were synthesized N-phenilestearamides. The crystal packing was evaluated by several tools including, X-ray diffraction, theoretical calculations, molecular electrostatic potential maps and quantum theory of atoms in molecules. The interaction energy of the central molecule and theirs neighbors in the supramolecular cluster was determined. This determination was realized by theoretical calculations at the MP2/cc-pVTZ level of theory for the interactions present in the crystal packing of 3-amino-4-halo-5-methylisoxazoles and ωB97X-D/cc-pVDZ for the interactions of 1,3,5-Tris(pirazolyl)benzenes. These interactions were hierarchized according to its energy and crystallization mechanisms were proposed. The gelation properties of the N-phenilestearamides were evaluated in several organic solvents. The supramolecular gels were characterized by rheology. Nuclear magnetic resonance experiments were employed to evaluate the interactions involved in the gelation process. The crystal packing analyses of the 3-amino-4-halo-5-methylisoxazoles showed that the change of the halogen atom changes deeply the crystal packing. In these compounds firstly occurs the formation of supramolecular dimers connected by NH∙∙∙N hydrogen bonds that are connected by π∙∙∙π interactions forming 1D chains. In the connection between the chains occurs a competition between a second π∙∙∙π interaction and CH∙∙∙π interactions. This competition is the great responsible for the changes in the supramolecular structure of these compounds. The halogen insertion also affects the molecular and supramolecular structure of the 1,3,5-Tris(pirazolyl)benzenes. Two molecular conformations were adopted by these compounds, a first in a calyx form and a second twisted. This adopted conformation affects deeply the crystal packing. So on, in the first molecular association the molecules in the calyx form associate forming 1D chains, already the molecules in the twisted form forms supramolecular dimers. These changes are propagated along the next associations forming totally different supramolecular structures. A second factor that influences in the crystal packing of these compounds is the interactions that govern the first molecular association. This generally occurs between the sites with the greatest electrostatic potential. The CH∙∙∙N interaction is the strongest for the majority of the compounds. Being overpowered only by I∙∙∙N interactions, when the molecule is iodated, or by π∙∙∙π interactions, when there are rings with great difference in the electrostatic potential. In relation to the supramolecular gels, the substituents of the phenyl in the N-phenilestearamides (H, methyl, acethyl) did not cause great changes in the gelation of these compounds. Being gelled both polar and non-polar solvents. However the compound with H substituent showed the minor values of critical gelation concentration, and may be considered a supergelator in some cases. The rheological data proves the gel behavior. And the nuclear magnetic resonance showed that the hydrogen bonds together with van der Waals interactions are responsible by the gelation of the solvents.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectInterações intermolecularespor
dc.subjectCristais molecularespor
dc.subjectGéis supramolecularespor
dc.subjectIntermolecular interactionseng
dc.subjectMolecular crystalseng
dc.subjectSupramolecular geleng
dc.titleQuímica supramolecular: uma jornada através da cristalização de 1,3,5-tris(pirazolil)benzenos e aminoisoxazóis e gelificação de n-fenilestearamidaspor
dc.title.alternativeSupramolecular chemistry: a journey through the crystallization of 1,3,5-tris(pirazolyl)benzenes, aminoisoxazoles and gelation of n-phenilestearamideseng
dc.typeTesepor
dc.description.resumoEste trabalho apresenta o estudo das interações intermoleculares envolvidas na formação de cristais moleculares e géis supramoleculares. Os compostos 3-amino-4-halo-5-metilisoxazóis e 1,3,5-Tris(pirazolil)benzenos foram sintetizados e utilizados como modelos moleculares no estudo do empacotamento cristalino. Para o estudo dos géis supramoleculares foram sintetizadas as N-fenilestearamidas. O empacotamento cristalino foi analisado através de diversas ferramentas incluindo, difração de Raio X, cálculos teóricos, mapas de potencial eletrostático molecular e teoria quântica dos átomos em moléculas. Foram determinadas as energias de interação entre a molécula central e todas as suas vizinhas pertencentes ao cluster supramolecular. Esta determinação foi realizada a partir de cálculos teóricos no nível de teoria MP2/cc-pVTZ para as interações presentes no empacotamento cristalino dos 3-amino-4-halo-5-metilisoxazóis e ωB97X-D/cc-pVDZ para as interações dos 1,3,5-Tris(pirazolil)benzenos. Estas interações foram hierarquizadas de acordo com a sua energia e foram propostos mecanismos de cristalização. As propriedades de gelificação das N-fenilestaramidas foram avaliadas em diversos solventes orgânicos. Os géis supramoleculares formados foram caracterizados através da reologia. Experimentos de ressonância magnética nuclear foram empregados para avaliar as interações envolvidas no processo de gelificação. A análise do empacotamento cristalino dos 3-amino-4-halo-5-metilisoxazóis demonstrou que a alteração do átomo de halogênio afeta profundamente o empacotamento cristalino. Nestes compostos inicialmente ocorre a formação de dímeros via ligações hidrogênio NH∙∙∙N, que são conectados por interações π∙∙∙π formando fitas 1D. Na conexão entre estas fitas ocorre uma competição entre uma segunda interação π∙∙∙π e interações CH∙∙∙π. Esta competição é a grande responsável pelas alterações na estrutura supramolecular destes compostos. A inserção de halogênios também afeta a estrutura molecular e supramolecular dos 1,3,5-Tris(pirazolil)benzenos. Duas conformações moleculares foram observadas para estes compostos, uma primeira na forma de cálice e uma segunda na forma torcida. Esta conformação adotada afeta profundamente o empacotamento cristalino. Sendo que, na primeira associação molecular as moléculas em forma de cálice se associam formando fitas 1D, já as moléculas na forma torcida formam dímeros supramoleculares. Estas diferenças são propagadas ao longo das demais associações formando estruturas supramoleculares totalmente diferentes. Um segundo fator que influencia no empacotamento cristalino deste composto são as interações que governam a primeira associação molecular. Estas geralmente ocorrem entre os sítios com maior potencial eletrostático. Sendo a interação CH∙∙∙N a mais forte para a maioria dos compostos. Sendo sobrepujada somente por interações I∙∙∙N, quando a molécula for iodada, ou por interações π∙∙∙π, quando existem anéis com grande diferença de potencial eletrostático. Em relação aos géis supramoleculares, os substituintes na fenila das N-feniletearamidas (H, metil, acetil) não provocaram grandes mudanças nas propriedades de gelificação destes compostos. Sendo gelificados tanto solventes polares como apolares. Contudo o composto com substituinte H apresentou os menores valores de concentração de gelificação crítica, podendo em alguns casos ser considerado um supergelificador. Os dados de reologia comprovaram o caráter de gel. E os estudos de ressonância magnética nuclear demonstraram que, ligações de hidrogênio juntamente com interações de van der Waals, são responsáveis pela gelificação dos solventes.por
dc.contributor.advisor1Martins, Marcos Antonio Pinto
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6457412713967642por
dc.contributor.referee1Merlo, Aloir Antonio
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7385210507816401por
dc.contributor.referee2Ducati, Lucas Colucci
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1605430966535142por
dc.contributor.referee3Hörner, Manfredo
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8922528250830998por
dc.contributor.referee4Villetti, Marcos Antonio
dc.contributor.referee4Latteshttp://lattes.cnpq.br/8504489050993642por
dc.creator.Latteshttp://lattes.cnpq.br/5028033620704356por
dc.publisher.countryBrasilpor
dc.publisher.departmentQuímicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICApor
dc.publisher.unidadeCentro de Ciências Naturais e Exataspor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International