Mostrar registro simples

dc.creatorRodrigues, Leticia Valvassori
dc.date.accessioned2018-08-29T20:12:17Z
dc.date.available2018-08-29T20:12:17Z
dc.date.issued2017-07-26
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/14125
dc.description.abstractThis work presents the study of intramolecular and intermolecular interactions in tetraalkylsuccinamide[2]rotaxanes. These compounds have two submolecular components interlocked being obtained through a supramolecular self-arrangement. The submolecular components are: a thread, equipped with succinamide stations (R1R2NC(O)CH2CH2C(O)NR1R2) and different stoppers (R1R2: Pr, Bu, i-Bu and CH2Cy/CH2Ph); and a macrocyclic component derived from tetralactam. The molecular environment study of these compounds was analyzed in the solid state by data obtained by X-ray diffraction and in the liquid state by variable temperatures NMR experiments. The solid state study was carried out through several tools including maps of molecular electrostatic potential, calculations of quantum mechanics and Quantum Theory of Atoms in Molecules. In the liquid state the [2]rotaxanes behave as Molecular Machines because of the ability of the macrocyclic component to rotate around the thread. For the pirouetting movement the intramolecular interactions is broking. The data of the intramolecular interactions in solid state were correlated with the kinetic data for the pirouetting process of the macrocycle around the thread. The partitioning of the intramolecular interactions energy through the analysis of the Quantum Theory of Atoms in Molecules allied to the DFT calculations made it possible to identify the energy contribution of each fragment of the thread in the intramolecular interactions and in the Molecular Machine movements. The analysis of the molecular environment has shown that the variation of the stoppers in the thread affects the rates for the pirouetting movement since it modifies the intramolecular interactions between thread and macrocycle. The electrostatic potential maps demonstrated the electrostatic complementarity between the two interlocked submolecular components. For the study of the supramolecular environment, the supramolecular cluster was determined through the appropriate methodology. All the dimers were analyzed by calculations of quantum mechanics and data of the Quantum Theory of Atoms in Molecules. The partitioning of the energies of the interactions (by the Quantum Theory of Atoms in Molecules together with the DFT calculations) made it possible to analyze which of the submolecular components influences more effectively the crystal packing of these compounds. Intermolecular interactions were hierarchized according to their energies and crystallization mechanisms were proposed. The proposed mechanism of crystallization for the study compounds shows the differences between the [2]rotaxanes with Z '> 1 (solvates and confomers). The structure of the individual macrocyclic component was used in this study to compare with [2]rotaxane evidencing the effect of the thread in the crystal packing and crystallization mechanism. In the proposed mechanism of crystallization all the consequence dimers were considered. As an alternative method the crystalline retrosynthesis was proposed for a study compound model based on the principle of the supramolecular cluster decomposition according to the energy required to "break" the crystal along one direction. The energies of intramolecular and intermolecular interactions were obtained using the ωB97X-D/cc-pVDZ method with BSSE to reduce the overlapping error of the base set.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject[2]rotaxanospor
dc.subjectMáquinas molecularespor
dc.subjectCluster supramolecularpor
dc.subject[2]rotaxaneseng
dc.subjectMolecular machineeng
dc.subjectSupramolecular clustereng
dc.titleMáquinas moleculares sintéticas: tetraalquil[2]rotaxanos como modelo no estudo de interações intramoleculares e intermolecularespor
dc.title.alternativeSynthetic molecular machines: tetraalkyl[2]rotaxanes as a model in the study of intramolecular and intermolecular interactionseng
dc.typeTesepor
dc.description.resumoO presente trabalho apresenta o estudo das interações intra e intermoleculares em tetraalquilsuccinamida[2]rotaxanos. Esses compostos possuem dois componentes submoleculares interligados, obtidos através de um auto arranjo supramolecular. Os componentes submoleculares são: um eixo molecular, equipado com estações succinamida (R1R2NC(O)CH2CH2C(O)NR1R2) e diferentes grupamentos terminais volumosos (R1R2: Pr, Bu, i-Bu e CH2Cy/CH2Ph); e um componente macrocíclico derivado de tetralactama. O estudo do ambiente molecular desses compostos foi analisado no estado sólido através de dados obtidos por difração de raios X e no estado líquido através de experimentos de RMN a temperaturas variáveis. O estudo no estado sólido utilizou diversas ferramentas teóricas e experimentais, incluindo mapas de potencial eletrostático molecular, cálculos de mecânica quântica e Teoria Quântica dos Átomos em Moléculas. No estado líquido, os [2]rotaxanos se comportam como Máquinas Moleculares devido a capacidade do componente macrocíclico girar em torno do eixo molecular, através do rompimento das interações intramoleculares. Os dados das interações intramoleculares no estado sólido foram correlacionados com os dados cinéticos para o movimento de rotação do macrociclo em torno do eixo molecular. O particionamento da energia das interações intramoleculares, através da análise da Teoria Quântica dos Átomos em Moléculas aliada aos cálculos DFT, possibilitou identificar a contribuição energética de cada fragmento do eixo molecular nas interações intramoleculares e nos movimentos das Máquinas Moleculares. A análise do ambiente molecular demonstrou que a variação dos grupamentos terminais volumosos nos eixos moleculares afeta as taxas para o movimento de rotação do macrociclo, pois modifica as interações intramoleculares entre eixo molecular e macrociclo. Os mapas de potencial eletrostático demonstraram a complementaridade eletrostática entre os dois componentes submoleculares interligados. Para o estudo do ambiente supramolecular, foi determinado o cluster supramolecular através da metodologia apropriada, e todos os dímeros foram analisados por cálculos de mecânica quântica e dados da Teoria Quântica dos Átomos em Moléculas. O particionamento das energias das interações (pela Teoria Quântica dos Átomos em Moléculas aliado aos cálculos DFT) possibilitou analisar qual dos componentes submoleculares influencia de forma mais efetiva no empacotamento cristalino desses compostos. As interações intermoleculares foram hierarquizadas de acordo com a suas energias e foram propostos mecanismos de cristalização. O mecanismo de cristalização proposto para os compostos de estudo evidencia as diferenças entre as moléculas de [2]rotaxanos com Z' > 1 (solvatos e confôrmeros). A estrutura do componente macrocíclico individual foi utilizada nesse estudo para efeitos de comparação com as moléculas de [2]rotaxanos, evidenciando o efeito dos eixos moleculares no empacotamento cristalino e no mecanismo de cristalização. Na proposta de mecanismo de cristalização, foram considerados todos os dímeros de consequência. Como método alternativo, foi proposto o mecanismo de retrossíntese cristalina para um modelo de composto de estudo, baseando-se no princípio da decomposição do cluster supramolecular de acordo com a energia necessária para "romper" o cristal ao longo de uma direção. As energias de interações intrae intermoleculares foram obtidas utilizando o método ωB97X-D/cc-pVDZ com BSSE para reduzir o erro de sobreposição do conjunto de bases.por
dc.contributor.advisor1Bonacorso, Helio Gauze
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7275608974248322por
dc.contributor.referee1Ducati, Lucas Colucci
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1605430966535142por
dc.contributor.referee2Fiss, Gabriela Fehn
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8012904041393217por
dc.contributor.referee3Horner, Manfredo
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8922528250830998por
dc.contributor.referee4Rodrigues, Oscar Endrigo Dorneles
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6536519955416085por
dc.creator.Latteshttp://lattes.cnpq.br/4151633690622408por
dc.publisher.countryBrasilpor
dc.publisher.departmentQuímicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICApor
dc.publisher.unidadeCentro de Ciências Naturais e Exataspor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International