Mostrar registro simples

dc.creatorSchott, Karen Lilian
dc.date.accessioned2019-11-19T21:23:44Z
dc.date.available2019-11-19T21:23:44Z
dc.date.issued2017-08-01
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/18976
dc.description.abstractIntroduction: The coupled enzymatic reactions between the manganese-dependent superoxide dismutase (MnSOD/SOD2) and selenoenzyme glutathione peroxidase-1 (GPx-1) selenoenzyme are essential for mitochondrial redox balance in aerobic cells. SOD2 dismutates the superoxide anion (O2 ) to hydrogen peroxide (H2O2) which is reduced to water by GPx-1. At low concentrations, reactive oxygen species (EROs) O2 and H2O2 are essential for the maintenance of the body's homeostasis. However, in the single nucleotide polymorphism (SNP) in the gene that codes for SOD2 (Val16Ala-SOD2) the AA genotype is 30-40% more efficient than the wild VV causing a superoxide (S)-hydrogen peroxide (HP) imbalance, associated to development of chronic noncommunicable diseases. The VV genotype was associated with cardiometabolic diseases and metastatic breast cancer. Whereas, AA genotype have been related to an increased risk of breast, prostate and colorectal cancer, suggesting that the excess of H2O2 generated could be higher than the antioxidant capacity of GPx-1. In addition, a previous study showed that the risk of breast cancer decreased in an expressive manner in women carriers of AA genotype who reported a diet rich in fruits and vegetables. However, the potential benefic effect of Brazil nut, rich in seleno-L-methionine (SeMet) and antioxidant phytochemicals, on the regulation of cellular oxidative metabolism had not yet been investigated. To test this hypothesis, we aimed to perform a literature review work about brazil nuts and, in parallel, to evaluate the influence of the genetic and chemically induced S-HP imbalance on the in vitro effect of the purified SeMet and that contained in the Brazil nut aqueous extract (BNAE), through the analysis of antioxidant enzymes modulation and other variables. Methods: In the Protocol 1, peripheral blood mononuclear cells (PBMC) were genotyped for the Val16Ala-SOD2 polymorphism and treated with purified SeMet for 24 h in RPMI cell culture medium. In the Protocol 2, HFF-1 fibroblasts were S-HP chemically imbalanced with MnTBAP (AA-SOD2-like) and Paraquat (VV-SOD2-like) and after treated with Brazil nut aqueous extract (BNAE) for 24 h in DMEM 15% medium. In the both protocols, cellular growth and ROS production were evaluated using concentration-effect curves in PBMC (SeMet (0; 1; 3; 10; 30; 100; 300 e 1000 nM)) and in HFF-1 fibroblasts (MnTBAP and Paraquat (0, 0.01; 0.03; 0.1; 0.3; 0.9 μM), and Se in the BNAE (0; 1.25; 2.5; 25; 50; 75; 100; 125 ng Se/ mL BNAE)). The effective concentration was used to evaluate gene expression of antioxidant enzymes CuZnSOD (SOD1), SOD2, GPx-1, thioredoxin reductase (TrxR) and catalase (CAT), and oxidative metabolism parameters in both. Evaluation of the activity of antioxidant enzymes, 8-hydroxy-2’-deoxyguanosine (8-OHdG) and apoptosis was performed only in Protocol 1. Results: Effective concentrations of SeMet, MnTBAP and / or Paraquat and Se in the BNAE were 1 nM; 0.9 μM and 75 ng Se / mL, respectively. The regulation of gene expression was differential between protocols 1 and 2, whereas general oxidative parameters decreased in both protocols. In the Protocol 1, relative to negative control, CMSP treated with 1 nM purified SeMet decreased apoptosis, 8-OHdG and CAT expression in all genotypes, but CAT activity decreased only in AA genotype. In the AA-PBMC, SOD expression and activity increased. Gene expression of GPx-1 unchanged and TrxR-1 decreased expressively while GPx-1 and TrxR-1 activities were modulated positively. In the VV-PBMC, the expression of all enzymes decreased, except for TrxR-1. Positive activity modulation was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, BNAE- treated fibroblasts AA and VV-SOD2-like increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Positive modulation of activity was observed for GPx-1, TrxR-1 and CAT but negative for SOD. In the Protocol 2, AA and VV-SOD2-like fibroblasts treated with BNAE increased CAT gene expression following SOD2 standard. SOD1 and GPx-1 decreased while TrxR-1 and CAT increased in AA-SOD2-like. Diversely, in BNAE- treated VV-SOD2-like, expression of SOD1, GPx, and CAT increased, whereas TrxR-1 unchanged. In general, results showed a compensatory and nutrigenetic effects in the PBMC treated with purified SeMet, while imbalanced S-HP fibroblasts treated with SeMet associated to the chemical matrix of BNAE showed synergistic and nutrigenomic effects.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPolimorfismo Val16Ala-MnSODpor
dc.subjectSelêniopor
dc.subjectGPx-1por
dc.subjectTrxRpor
dc.subjectNutrigenômicapor
dc.subjectNutrigenéticapor
dc.subjectVal16Ala-SOD2 polymorphismeng
dc.subjectSelenimeng
dc.subjectNutrigenomicseng
dc.subjectNutrigeneticseng
dc.titleDesbalanço superóxido-peróxido de hidrogênio versus seleno-L-metionina e castanha-do-Brasil: regulação diferencial in vitro de (seleno)enzimaspor
dc.title.alternativeSuperoxide-hydrogen peroxide imbalance: in vitro modulation on seleno-L-methionine and Brazil nut effecteng
dc.typeTesepor
dc.description.resumoAs reações enzimáticas acopladas entre as enzimas superóxido dismutase dependente de manganês (MnSOD/SOD2) e a selenoenzima glutationa peroxidase-1 (GPx-1) são essenciais para o equilíbrio redox mitocondrial em células aeróbias. A SOD2 dismuta o superóxido (O2 ), oriundo da respiração celular, à peróxido de hidrogênio (H2O2) que é reduzido à água e oxigênio molecular pela GPx-1. O2 e H2O2 são espécies reativas de oxigênio (EROs), em baixas concentrações, são sinalizadores endógenos essenciais para a manutenção da homeostasia do organismo. No entanto, no polimorfismo de núcleotídeo único (SNP) do gene codificador da SOD2 (Val16Ala-SOD2), a enzima SOD2 é 30-40% mais eficiente no genótipo AA em relação ao VV selvagem, o que resulta em desbalanço superóxido (S)-peróxido de hidrogênio (PH) associado ao desenvolvimento de doenças crônicas não transmissíveis. O genótipo o VV tem sido associado às doenças cardiometabólicas e ao câncer de mama metastático e o genótipo AA tem sido relacionado ao aumento do risco de câncer de mama, próstata e colorretal, sugerindo que o excesso de H2O2 produzido suplanta a capacidade antioxidante da GPx-1. Adicionalmente, estudo prévio mostrou que o risco de câncer de mama diminuiu expressivamente em mulheres portadoras do genótipo AA que relataram dieta rica em frutas e vegetais. Contudo, o potencial efeito benéfico da castanha-do-brasil, rica em SeMet e fitoquímicos antioxidantes, na regulação do metabolismo oxidativo ainda não havia sido investigado. Para testar esta hipótese, objetivamos realizar um trabalho de revisão na literatura sobre a castanha-do-brasil e, em paralelo, avaliar a influência do desbalanço S-PH, genético e induzido quimicamente, no efeito in vitro da SeMet, purificada e a contida no extrato aquoso da castanha-do-brasil (EACB), via análise da modulação das enzimas antioxidantes. Métodos: Protocolo 1, células mononucleares do sangue periférico (CMSP) foram genotipadas para o polimorfismo Val16Ala-SOD2 e tratadas com SeMet purificada por 24 h em meio de cultura RPMI. No segundo protocolo, fibroblastos HFF-1 foram quimicamente S-PH desbalanceados com a porfirina MnTBAP (AA-SOD2-like) ou Paraquat (VV-SOD2-like) e tratados com EACB por 24 h em meio DMEM 15%. Foram avaliados crescimento celular e produção de EROs usando curvas de concentração-efeito em CMSP (SeMet (0; 1; 3; 10; 30; 100; 300 e 1000 nM)) e em fibroblastos HFF-1 (MnTBAP e Paraquat (0, 0,01; 0,03; 0,1; 0,3; 0,9 μM), e Se no EACB (0; 1,25; 2,5; 25; 50; 75; 100; 125 ng Se/ mL)). A concentração efetiva foi utilizada para avaliar os parâmetros do metabolismo oxidativo e a expressão gênica das enzimas antioxidantes CuZnSOD (SOD1), SOD2, GPx-1, tioredoxina redutase (TrxR-1) e catalase (CAT). A avaliação da atividade das enzimas antioxidantes, 8-hidroxi-2-deoxiguanosina (8-OHdG) e apoptose foi realizada somente no Protocolo 1. As concentrações efetivas de SeMet, MnTBAP e/ou Paraquat e Se no EACB foram 1 nM; 0,9 μM e 75 ng Se/ mL, respectivamente. A regulação da expressão gênica foi diferencial entre os protocolos 1 e 2, mas o estresse oxidativo diminuiu em ambos. No Protocolo 1, relativo ao controle negativo, apoptose, 8-OHdG e a expressão da CAT diminuíram em todos os genótipos, mas a atividade CAT diminuiu somente no AA. Nas AA-CMSP, expressão e atividade SOD aumentaram; a expressão da GPx-1 não alterou e da TrxR-1 baixou expressivamente, mas a atividade de ambas foi modulada positivamente. Nas VV-CMSP, a expressão de todas as enzimas diminuiu, exceto TrxR-1, com modulação positiva da atividade da GPx-1, TrxR-1 e CAT, mas negativa para SOD. No Protocolo 2, nos fibroblastos AA e VV-SOD2-like tratados com EACB, a expressão gênica da CAT seguiu o padrão SOD2 em AA e VV-SOD2-like. Porém, a expressão da SOD1 e GPx-1 diminuíram enquanto que TrxR-1 e CAT aumentaram em AA-SOD2-like. Em VV-SOD2-like, a expressão da SOD1, GPx-1 e CAT aumentaram e TrxR-1 não alterou. A relação GPx-1 e TrxR-1 ocorreu de maneira compensatória com efeito nutrigenético nas CMSP tratadas com SeMet purificada, mas de maneira sinérgica com um maior efeito nutrigenômico nos fibroblastos S-PH desbalanceados tratados com SeMet associada à matriz química do EACB.por
dc.contributor.advisor1Cruz, Ivana Beatrice Mânica da
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3426369324110716por
dc.contributor.referee1Bica, Claudia Giuliano
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4488122519766245por
dc.contributor.referee2Dalla Corte, Cristiane Lenz
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5296284169605317por
dc.contributor.referee3Chitolina, Maria Rosa
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4401319386725357por
dc.contributor.referee4Sagrillo, Michele Rorato
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2566285176244747por
dc.creator.Latteshttp://lattes.cnpq.br/1374401185065010por
dc.publisher.countryBrasilpor
dc.publisher.departmentBioquímicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológicapor
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICApor
dc.publisher.unidadeCentro de Ciências Naturais e Exataspor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International