Mostrar registro simples

dc.creatorWancura, João Henrique Cabral
dc.date.accessioned2021-12-06T16:36:30Z
dc.date.available2021-12-06T16:36:30Z
dc.date.issued2021-02-19
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/23167
dc.description.abstractThe report “State of the Climate” released by the World Meteorological Organization at 25th Climate Changes Conference highlights that 2019 ends an alarming decade regarding the historical increase in the average temperature of the planet and record rise in sea level. Such environmental problems were enhanced by the emission of greenhouse gases expelled mainly from the burning of fossil fuels in internal combustion engines. In this context, biodiesel (methyl or ethyl esters of long chain fatty acids) has consolidated itself in the global energy matrix as an alternative to its similar derivative from petroleum, becoming an indispensable component to be mixed with diesel for commercialization purposes. Among the distinct ways of synthesizing biodiesel, the application of lipases in liquid formulation as reaction catalyst has the potential to make the process more economical, competitive and sustainable compared to the use of immobilized enzymes. However, despite the benefits, the long reaction times required to achieve satisfactory yields as well as the denaturing effect of methanol (the main reaction reagent) on the enzyme are still drawbacks of the process. Before the exposed, this thesis aimed to evaluate the process of obtaining biodiesel via enzymatic hydroesterification mediated by two soluble enzymes: Eversa® Transform and the recently launched thermostable lipase Eversa® Transform 2.0 (also named as NS 40116), both obtained from the Thermomyces lanuginosus microorganism and supplied by Novozymes A/K. For this, different feedstocks were employed: degummed soybean oil (the main raw material used industrially for biodiesel production), beef tallow and waste cooking oil with high acidity. Preliminary tests using the lipase Eversa® Transform demonstrated that different feeding strategies of inputs (enzyme and alcohol) to the reaction significantly impact on the reaction yield. At 35 °C, a methanol to substrate (tallow) molar ratio of 4.5:1, with alcohol feeding at constant flow of 3.0 g∙h-1, 1.0 wt% of lipase, 6.0 wt % of water and 8 h of reaction, 85.08% of FAME yield was obtained, an interesting value but below that required by regulatory standards. Thus, improvements in the process were necessary. For this, a proposal of reaction configuration in two stages showed to be effective in elevating the process productivity: using 0.70 wt% of lipase NS 40116, 35 °C, a total methanol to substrate molar ratio of 6.3:1 and 8 wt% of water, 97.1% FAME yield was achieved in 8 h of reaction. Such yield is similar to that obtained by similar researches that required up to 24 h of reaction in a single reaction stage, demonstrating that the proposed configuration is an attractive option for the process. Then, with the reaction parameters for the process in two stages optimized via experimental design, was started to assess the biotechnological route on a superior scale than the lab. Using a pilot unit with 60 L of production capacity, waste oil used as raw material and with the reaction conditions found previously in the laboratory, 96.2 % of FAME yield was achieved. Still with these results, a pseudo-first order model was proposed to adjust the experimental data, where an apparent reaction rate (kApp) of 0.373·h-1 was obtained. Moreover, an economic analysis indicated the feasibility of the system through a positive net return and an operating cost of US$ 0.50∙kg-1 of biofuel. This information served to conclude that enzymatic hydroesterification catalyzed by liquid lipases has the necessary tools to be implemented in the industrial production of biodiesel.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiodieselpor
dc.subjectFAMEpor
dc.subjectLipase solúvelpor
dc.subjectNS 40116por
dc.subjectEversa® Transformpor
dc.subjectHidroesterificaçãopor
dc.subjectSoluble lipaseeng
dc.subjectHidroesterificationeng
dc.titleProdução de biodiesel em escala piloto via hidroesterificação enzimáticapor
dc.title.alternativeBiodiesel production in pilot scale via enzymatic hydrosterificationeng
dc.typeTesepor
dc.description.resumoO relatório “State of the Climate” divulgado pela Organização Meteorológica Mundial na 25ª Conferência Sobre Mudanças Climáticas destaca que 2019 encerra uma alarmante década em relação ao aumento histórico da temperatura média do planeta e recorde na elevação do nível do mar. Tais problemas ambientais foram potencializados pela emissão de gases de efeito estufa expelidos principalmente da queima de combustíveis de origem fóssil em motores à combustão interna. Neste contexto, o biodiesel (ésteres metílicos ou etílicos de ácidos graxos de cadeia longa) se consolidou na matriz energética mundial como uma alternativa ao seu similar derivado do petróleo, tornando-se um componente indispensável à ser misturado com o diesel para fins de comercialização. Dentre as distintas formas de sintetizar biodiesel, a aplicação de lipases em formulação líquida como catalisador da reação possui potencial para tornar o processo mais econômico, competitivo e sustentável em comparação ao uso da enzima imobilizada. No entanto, apesar dos benefícios, os longos tempos de reação necessários para atingir satisfatórios rendimentos bem como o efeito desnaturante do metanol (principal reagente da reação) sobre a enzima ainda são desvantagens do processo. Diante do exposto, esta tese teve por objetivo avaliar o processo de obtenção de biodiesel via hidroesterificação enzimática mediada por duas enzimas solúveis: Eversa® Transform e a recentemente lançada lipase termoestável Eversa® Transform 2.0 (também conhecida como NS 40116), ambas obtidas do microrganismo Thermomyces lanuginosus e fornecidas pela Novozymes A/K. Para isto, diferentes matérias-primas foram empregadas: óleo de soja degomado (principal matéria-prima utilizada industrialmente para produção de biodiesel), sebo de carne e óleo de cozinha usado de elevada acidez. Ensaios preliminares utilizando a lipase Eversa® Transform demonstraram que diferentes estratégias de alimentação dos insumos (enzima e álcool) à reação impactam consideravelmente no rendimento. A 35 °C, razão molar entre metanol e substrato (sebo) de 4,5:1, com alimentação do álcool à fluxo constante de 3,0 g∙h-1, 1,0 m% de lipase, 6,0 m% de água e 8 h de reação, 85,08 % de rendimento de FAME foi obtido, um valor interessante mas aquém do exigido por normas regulamentadoras. Assim, melhorias no processo se fizeram necessárias. Para isto, uma proposta de configuração em dois estágios reacionais mostrou-se efetiva em alavancar a produtividade do processo: utilizando-se 0,70 m% da lipase NS 40116, 35 °C, relação molar total entre metanol e substrato de 6,3:1 e 8,0 m% de água, 97,1 % de rendimento de FAME foi alcançado em 8 h de reação. Tal rendimento é similar ao obtido por pesquisas similares que necessitaram de até 24 h de reação em um estágio reacional único, demonstrando que a configuração proposta é uma opção atraente para o processo. Assim, com os parâmetros reacionais para o processo em dois estágios otimizados via planejamento experimental, partiu-se para avaliação da rota biotecnológica em escala superior à laboratorial. Utilizando-se de uma unidade piloto com 60 L de capacidade de produção, óleo de cozinha usado como matéria-prima e com as condições reacionais encontradas previamente em laboratório, 96,2 % de rendimento de FAME foi alcançado. Ainda com estes resultados, foi proposto um modelo de pseudo-primeira ordem para ajuste dos dados experimentais, onde uma taxa reacional aparente (kApp) de 0,373·h-1 foi obtida. Além disso, uma análise econômica indicou a viabilidade do sistema por meio de um retorno líquido positivo e custo operacional de US$ 0,50∙kg-1 de biocombustível. Estas informações serviram para concluir que a hidroesterificação enzimática catalisada por lipases líquidas possui as ferramentas necessárias para ser implementada na produção industrial de biodiesel.por
dc.contributor.advisor1Jahn, Sérgio Luiz
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7735147410610776por
dc.contributor.advisor-co1Tres, Marcus Vinicius
dc.contributor.referee1Mazutti, Marcio Antonio
dc.contributor.referee2Zabot, Giovani Leone
dc.contributor.referee3Ketzer, Felipe
dc.contributor.referee4Oliveira, José Vladimir de
dc.creator.Latteshttp://lattes.cnpq.br/5365468750776504por
dc.publisher.countryBrasilpor
dc.publisher.departmentEngenharia Químicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA QUIMICApor
dc.publisher.unidadeCentro de Tecnologiapor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International