Mostrar registro simples

dc.creatorVieira, Jean Carlos Bauer
dc.date.accessioned2024-06-04T10:59:13Z
dc.date.available2024-06-04T10:59:13Z
dc.date.issued2024-04-19
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/31958
dc.description.abstractThis work presents the synthesis and characterization of chitosan derivatives containing imidazolium groups in their structure. The characterization was carried out using nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) techniques. The derivatives obtained were called Polymer A and Polymer B. Hydrogels were obtained from both compounds, varying the preparation method. These hydrogels were characterized through rheological analyses, measuring the storage (G’) and loss (G’’) moduli, in addition to viscosity. Scanning electron microscopy (SEM) images of the hydrogels were also obtained. The results indicated the occurrence of hydrogel formation, since G’ > G’’ was observed in the frequency range used. Viscosity analysis demonstrated the pseudoplastic behavior of the hydrogels. It is assumed that the formation of hydrogels occurred through the physical cross-linking of polymer chains. The results also indicated that the hydrogels formed can be classified as weak according to the G' values and the profile of the curves, especially in the case of the Polymer B hydrogel. Furthermore, Polymer B was used in the adsorption of the dye Acid Orange 7 (AO7) from aqueous solutions. Due to the solubility of Polymer B in water, it was cross-linked with chitosan and glutaraldehyde (Quit-PolB). AO7 adsorption tests were carried out using three other compounds for comparison: pure chitosan (Quit), chitosan cross-linked with tripolyphosphate (Quit-TPP) and chitosan cross-linked with a poly(ionic liquid) forming a semi-interpenetrating polymer network (sIPN). These adsorbents were characterized using the techniques mentioned above, in addition to analysis using BET isotherms, mercury intrusion porosimetry and SEM. Several parameters were varied in the adsorption experiments, measuring the efficiency and adsorption capacity (q) values. The adsorption capacity of adsorbents containing groups derived from ionic liquids (Quit-PolB and sIPN) proved to be resistant to pH changes. The Quit-PolB adsorbent demonstrated less impact with variation in the ionic strength of the medium. The same adsorbent presented a qmax of 292 mg g-1, being the highest value among the adsorbents used and a high value compared to the literature. Kinetic analyzes demonstrated that most adsorbents follow a pseudo-first order profile. It is assumed that the main adsorption mechanism involves the electrostatic interaction between the positively charged polymer and the anionic dye, with the Quit-PolB adsorbent showing additional interactions. Studies on dye desorption from adsorbents and reuse of adsorbents in new dye capture and release cycles were carried out.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpor
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGSpor
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo - FAPESPpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectQuitosanapor
dc.subjectLíquidos iônicospor
dc.subjectAdsorçãopor
dc.subjectGelificaçãopor
dc.subjectChitosaneng
dc.subjectIonic liquidseng
dc.subjectAdsorptioneng
dc.subjectGelationeng
dc.titleQuitosana funcionalizada com líquidos iônicos para adsorção de corantespor
dc.title.alternativeChitosan functionalized with ionic liquids for dye adsorptioneng
dc.typeTesepor
dc.description.resumoEste trabalho apresenta a síntese e caracterização de derivados da quitosana contendo grupos imidazólio em sua estrutura. A caracterização foi realizada por meio das técnicas de ressonância magnética nuclear (RMN), espectroscopia de infravermelho (FTIR) e análise termogravimétrica (TGA). Os derivados obtidos foram chamados de Polímero A e Polímero B. Foram obtidos hidrogéis de ambos os compostos, variando-se o método de preparação. Esses hidrogéis foram caracterizados por meio de análises reológicas, medindo-se os módulos de armazenamento (G’) e perda (G’’), além da viscosidade. Obtiveram-se também imagens de microscopia eletrônica de varredura (MEV) dos hidrogéis. Os resultados indicaram a ocorrência da formação dos hidrogéis, uma vez que se observou G’ > G’’ no intervalo de frequência utilizado. A análise de viscosidade demonstrou o comportamento pseudoplástico dos hidrogéis. Supõe-se que a formação dos hidrogéis se deu pela reticulação física das cadeias poliméricas. Os resultados também indicaram que os hidrogéis formados podem ser classificados como fracos de acordo com os valores de G’ e pelo perfil das curvas, principalmente no caso do hidrogel do Polímero B. Ademais, o Polímero B foi utilizado na adsorção do corante Acid Orange 7 (AO7) a partir de soluções aquosas. Devido à solubilidade do Polímero B em água, este foi reticulado com quitosana e glutaraldeído (Quit-PolB). Os testes de adsorção de AO7 foram feitos utilizando outros três compostos para comparação: quitosana pura (Quit), quitosana reticulada com tripolifosfato (Quit-TPP) e quitosana reticulada com um poli(líquido iônico) formando um semi-interpenetrating polymer network (sIPN). Esses adsorventes foram caracterizados por meio das técnicas citadas acima, além de análise por isotermas BET, porosimetria por intrusão de mercúrio e MEV. Vários parâmetros foram variados nos experimentos de adsorção, medindo-se os valores de eficiência e capacidade de adsorção (q). A capacidade de adsorção dos adsorventes contendo grupos derivados de líquidos iônicos (Quit-PolB e sIPN) se mostrou resistente a mudanças de pH. O adsorvente Quit-PolB demonstrou sofrer menor impacto com a variação da força iônica do meio. O mesmo adsorvente apresentou um qmax de 292 mg g-1, sendo o maior valor dentre os adsorventes utilizados e um valor alto em comparação com a literatura. As análises cinéticas demonstraram que a maioria dos adsorventes segue um perfil de pseudo-primeira ordem. Supõe-se que o mecanismo principal de adsorção envolve a interação eletrostática entre o polímero carregado positivamente e o corante aniônico, com o adsorvente Quit-PolB apresentando interações adicionais. Foram realizados estudos de dessorção do corante a partir dos adsorventes e de reutilização dos adsorventes em novos ciclos de captura e liberação do corante.por
dc.contributor.advisor1Frizzo, Clarissa Piccinin
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0029279904716491por
dc.contributor.advisor-co1Villetti, Marcos Antônio
dc.contributor.referee1Pereira, Jorge Fernando Brandão
dc.contributor.referee2Soares, Rosane Michele Duarte
dc.contributor.referee3Bender, Caroline Raquel
dc.contributor.referee4Lopes, Poliana Pollizello
dc.creator.Latteshttp://lattes.cnpq.br/8219963144747335por
dc.publisher.countryBrasilpor
dc.publisher.departmentQuímicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICApor
dc.publisher.unidadeCentro de Ciências Naturais e Exataspor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International