Show simple item record

dc.creatorRosso, Eduardo Fuzer
dc.date.accessioned2017-05-05
dc.date.available2017-05-05
dc.date.issued2014-10-24
dc.identifier.citationROSSO, Eduardo Fuzer. First principles study about stability and functionalization of surfaces and nanoribbons of silicon carbide. 2014. 183 f. Tese (Doutorado em Física) - Universidade Federal de Santa Maria, Santa Maria, 2014.por
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/3926
dc.description.abstractWe use first principles calculations based upon the density functional theory to investigate the stability, geometry, electronic and magnetic properties of cibic silicon carbide (SiC) surfaces aligned along the (001) direction (β−SiC(001)) and nanoribbons (SiCNRs). The β−SiC(001) can be terminated in C or Si. For both terminations a great number of possible reconstruction are studied. To study the stability of the β−SiC(001) surface the formation energy is calculated, which shows that the two terminations (C or Si) have similar stability. Surfaces states are find in the bandgap for the two possible terminations. These surfaces states rule the electronic properties of the β−SiC(001) surface, which present metallic or semiconductor characteristics depending on the surface reconstruction. Aiming to saturate the dangling bonds and functionalize the C terminated β− SiC(001) surface, H atoms are adsorbed in the most stable configuration: the β− SiC(001) in the c(2x2) reconstruction where there are C dimers aligned in row and column. First we observe that the H adsorption is exothermic, indicating to a greater stability of the β−SiC(001) surface. Increasing the number of adsorbed H atoms (up to the third layer) we observe the formation of a nanotunnel structure. There tunnels are stable and small cavities present in the subsurface of the β−SiC(001). The semiconductor character of the β−SiC(001) in the presence of nanotunnels is preserved. The top of the valence band and of the boton of the band are surface states localized in hydrogenated C dimers near to the nanotunnel. Adsorbing Fe atoms on the β−SiC(001) surface we observe that the electronic and magnetic properties of the β−SiC(001) surface are strongly modified. There is a strong magnetic moment localized in Fe atoms adsorbed on the β−SiC(001) surface, which can present metallic or half metallic characteristics. The antiferromagnetic (AFM) interaction between the magnetic moments is favorable when compared to the ferromagnetic (FM) interaction. The electronic and magnetic properties of SiCNRs depend on the border structure. The SiCNRs terminated by H atoms and with armchair borders are semiconductor and no magnetic. Whereas the electronic and magnetic properties of SiCNRs terminated by H atoms and with zigzag border depend on the ribbon width and can be metallic or semiconductor. For pristine zigzag SiCNRs, the ferrimagnetic interaction between the borders is the ground state. The adsorption of Fe (atom and dimer) on a SiC sheet give rise to new electronic levels inside the bandgap and lead the SiC sheet to shows magnetic properties. The magnetic moment for Fe adsorbed on a SiC sheet is 2 μB and 6 μB, for a Fe atom or dimer adsorbed, respectively. The adsorption of Fe structures (atoms and dimers) on the SiCNRs is more stable near the borders of the ribbon. Depending on the Fe coverage and the magnetic interactions we can obtain, metallic, half-metallic, semiconductor or even a spin gapless semiconductor (SGS). These results show that functionalized SiC nanostructures are important materials for nanodevices.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAcesso Abertopor
dc.subjectTeoria do funcional da densidadepor
dc.subjectSuperfícies de SiCpor
dc.subjectNanoestruturaspor
dc.subjectNanofios de SiCpor
dc.subjectDensity functional theoryeng
dc.subjectSiC surfaceeng
dc.subjectNanostructureseng
dc.subjectSiC nanoribbonseng
dc.titleEstudo de primeiros princípios da estabilidade e funcionalização da superfície e nanofitas de carbeto de silíciopor
dc.title.alternativeFirst principles study about stability and functionalization of surfaces and nanoribbons of silicon carbideeng
dc.typeTesepor
dc.description.resumoUtilizando cálculos de primeiro princípios dentro do formalismo da teoria do funcional da densidade (DFT) realizou-se um estudo da estabilidade, geometria, propriedades eletrônicas e magnéticas de superfícies de carbeto de silício (SiC) cúbica alinhada ao longo da direção (001) (β−SiC(001)) e nanofitas de SiC. A superfície β−SiC(001) apresenta dois tipos de terminação: terminação em C ou em Si. Para cada terminação (C ou Si) foi estudado um grande número de reconstruções possíveis. No estudo da estabilidade da superfície β−SiC(001) calculamos a energia de superfície, que mostrou que as duas terminações (C ou Si) apresentam similar estabilidade. Para as duas terminações a análise das propriedades eletrônicas mostra que estados de superfície estão presentes no gap. Estes estados de superfície regem as propriedades eletrônicas da β−SiC(001) que apresentam comportamento metálico ou semicondutor, dependendo da reconstrução. Com o objetivo de saturar as ligações pendentes na superfície e ao mesmo tempo funcionalizar a superfície, efetuamos o estudo da hidrogenação da superfície β−SiC(001) terminada em C e na reconstrução mais estável que é a c(2x2), onde linhas e colunas de dímeros de C estão presentes. Inicialmente observamos que a adsorção de H é exotérmica indicando uma maior estabilidade da superfície β−SiC(001) hidrogenada. Aumentando o número de H adsorvido (hidrogenação até a terceira camada) foi possível mostrar a formação de nanotúnel na superfície. Os nanotúneis são pequenas cavidades presentes na subsuperfície da β−SiC(001). Na presença dos nanotúneis o carácter semicondutor é preservado. Com adsorção de átomos de Fe na β−SiC(001) as propriedades eletrônicas e magnéticas são fortemente influenciadas. Existe a presença de um forte momento magnético localizados nos átomos de Fe adsorvidos na β−SiC(001), que pode apresentar características metálicas ou meio-metálicas. A interação entre os momentos magnéticos favorece a uma interação do tipo antiferromagnética (AFM) se comparada com a interação do tipo ferromagnética (FM). As propriedades eletrônicas e magnéticas das nanofitas de SiC (SiCNFTs) são dependentes das bordas. As SiCNFTs terminadas em H e com bordas armchair são semicondutoras não magnéticas. No entanto, as propriedades eletrônicas e magnéticas das SiCNFTs terminadas em H e com bordas zigzag dependem da largura da fita e podem ser metálicas ou semicondutoras. Para as SiCNFTs na forma pristina, o estado fundamental ocorre quando há uma interação do tipo ferrimagnética entre as bordas. A adsorção de Fe (átomo e dímero) em uma folha de SiC faz com que novos níveis eletrônicos estejam presentes no gap e a folha de SiC apresenta propriedades magnéticas. O momento magnético para o átomo de Fe adsorvido sobre a folha de SiC é de 2 μB e para um dímero de Fe adsorvido este momento magnético é de 6 μB. A adsorção de Fe (átomo ou dímero) sobre as SiCNFTs é mais estável nas bordas das fitas. Dependendo da cobertura de Fe e das interações magnéticas podemos obter metais, meio-metais, semicondutores ou mesmo semicondutores com polarização de spin e gap nulo (SGS). Estes resultados mostram que nanoestruturas de SiC funcionalizadas são importantes materiais para nanodispositivos.por
dc.contributor.advisor1Baierle, Rogério José
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782775Y3por
dc.contributor.referee1Mota, Fernando de Brito
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6888892134532265por
dc.contributor.referee2Schelp, Luiz Fernando
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782843Y8por
dc.contributor.referee3Villetti, Marcos Antonio
dc.contributor.referee3Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727951T2por
dc.contributor.referee4Miwa, Roberto Hiroki
dc.contributor.referee4Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4727058P6por
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4215628A9por
dc.publisher.countryBRpor
dc.publisher.departmentFísicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Físicapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::FISICApor


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


O Manancial - Repositório Digital da UFSM utiliza a versão 4.1 do software DSpace.
Av. Roraima, 1000. Cidade Universitária "Prof. José Mariano da Rocha Filho".
Bairro Camobi. CEP: 97.105-900. Santa Maria, RS, Brasil.