Show simple item record

dc.creatorAnversa, Jonas
dc.date.accessioned2017-05-08
dc.date.available2017-05-08
dc.date.issued2014-12-15
dc.identifier.citationANVERSA, Jonas. First principle calculations in topological insulators: HgTe/CdTe. 2014. 134 f. Tese (Doutorado em Física) - Universidade Federal de Santa Maria, Santa Maria, 2014.por
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/3927
dc.description.abstractThe observation of the quantum spin Hall effect in the HgTe/CdTe heterostructure triggered the study of materials exhibiting a spin polarized electronic current at their surfaces/ interfaces. These states are topologically protected against perturbations preserving time reversal symmetry and presenting a linear dispersion, forming a Dirac cone. However, non-magnetic perturbations (that preserve time reversal symmetry) will certainly affect these surface/interface states. In this work we user the density functional theory to characterize the topologically protected states of the (001) HgTe/CdTe heterostructure. We observed that for a correct description of the HgTe band structure we use a GGA+U method. The topological states showed a Rashba-like in-plane spin texture. We analyzed the effects of external pressures and electric fields in the HgTe/CdTe heterostructures. We show that these perturbations modify the energetics and dispersion of the protected states, although not destroying the topological phase. Also, we study defects like antisite, vacancy and a Fe magnetic impurity at the interface of the (001) HgTe/CdTe heterostructure. We show that the antisite and the vacancy do not affect the spin polarization nor the energy dispersion of the protected states. On the other hand, the magnetic impurity significantly affects the topological states, degrading the spin polarization for the states close to the magnetic impurity and inducing out-of-plane spin components. Further, we study the (001) HgTe surface for different thicknesses of the HgTe sample, and with different terminations (Hg and Te). To the (001) HgTe samples with a thickness of 38 Å , the spin polarized states do not show a linear dispersion, however, when the thickness is increased we observe the formation of spin-polarized surface states with linear dispersion, characterizing the formation of a Dirac cone. Also, we show that biaxial pressures modify the energy dispersion of the spin polarized states. Finally, we study materials that turn topological insulators under external pressures as the anti-perovskite structures Sr3BiN and Ca3BiN, using the self-consistent GW method. We show that these materials present an inversion of the Bi-pz and Bi-s band edge states when subjected to biaxial tensile stress. We conclude that these materials can be characterized Topological Insulators under pressure.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAcesso Abertopor
dc.subjectTeoria do funcional da densidadepor
dc.subjectIsolantes topológicospor
dc.subjectPressões e impureza magnéticapor
dc.subjectDensity functional theoryeng
dc.subjectTopological insulatorseng
dc.subjectPressure and magnetic impurityeng
dc.titleCálculos de primeiros princípios em isolantes topológicos: HgTe/CdTepor
dc.title.alternativeFirst principle calculations in topological insulators: HgTe/CdTeeng
dc.typeTesepor
dc.description.resumoA observação do efeito Spin Hall Quântico na heteroestrutura HgTe/CdTe motivou o estudo de materiais que exibem uma corrente eletrônica spin-polarizada nas suas interfaces/ superfícies. Estes estados são topologicamente protegidos frente a perturbações que preservam a simetria de reversão temporal e apresentam uma dispersão linear formando um Cone de Dirac. Entretanto, perturbações não-magnéticas (que preservam a reversão temporal) irão certamente afetar estes estados de interface/superfície. Neste trabalho, usamos a Teoria do Funcional da Densidade (DFT), para caracterizar os estados topologicamente protegidos da heteroestrutura HgTe/CdTe (001), que é um Isolante Topológico (IT) 2D. Para uma descrição mais correta das posições dos níveis na estrutura de bandas do HgTe, nós usamos o método GGA+U. Na heteroestrutura, a caracterização dos estados topologicamente protegidos mostrou uma textura de spin no plano da interface, do tipo Rashba. Analisamos os efeitos de perturbações externas na heteroestrutura HgTe/CdTe (001), como pressões e campo elétrico. Mostramos que ambas perturbações modificam a energia do ponto de cruzamento e a dispersão dos estados protegidos, mas não destroem a fase topológica. Estudamos também a presença de defeitos na interface HgTe/CdTe (001), como um anti-sítio, uma vacância e uma impureza magnética de Fe. A presença de um anti-sítio e de uma vacância não afetam a polarização de spin dos estados protegidos e nem sua dispersão. Por outro lado, a presença de uma impureza magnética afeta significantemente estes estados, degradando a polarização de spin para os estados próximos a impureza magnética e fazendo que o sistema apresente componentes de spin fora do plano da interface/superfície. Além disso, estudamos a superfície de HgTe com diferentes espessuras (38, 64, e 129 Å ) e terminações (Hg e Te). Para as estruturas com uma espessura de 38 Å , os estados com polarização de spin não apresentam uma dispersão linear, entretanto, quando aumentamos a espessura do material, observamos a formação dos estados de superfície com uma dispersão linear e polarização de spin, caracterizando a formação do cone de Dirac. Mostramos também, que pressões biaxiais modificam a dispersão dos estados com polarização de spin. Realizamos um estudo de materiais que são Isolantes Topológicos quando submetidos a pressões externas. Neste caso estudamos as estruturas antiperovsquitas Sr3BiN e Ca3BiN, usando método GW auto-consistente. Mostramos que esses materiais apresentam uma inversão dos níveis de energia Bi-pz e Bi-s quando sujeitos a pressão externa biaxial distensiva. Concluímos que estes materiais podem ser caracterizados como Isolantes Topológicos sob pressão.por
dc.contributor.advisor1Piquini, Paulo Cesar
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782185U1por
dc.contributor.referee1Fazzio, Adalberto
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787782H0&dataRevisao=nullpor
dc.contributor.referee2Baierle, Rogério José
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782775Y3por
dc.contributor.referee3Dalpian, Gustavo Martini
dc.contributor.referee3Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4706334J2por
dc.contributor.referee4Dorneles, Lucio Strazzabosco
dc.contributor.referee4Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4795059E0por
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4223999T5por
dc.publisher.countryBRpor
dc.publisher.departmentFísicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Físicapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::FISICApor


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


O Manancial - Repositório Digital da UFSM utiliza a versão 4.1 do software DSpace.
Av. Roraima, 1000. Cidade Universitária "Prof. José Mariano da Rocha Filho".
Bairro Camobi. CEP: 97.105-900. Santa Maria, RS, Brasil.