Mostrar registro simples

dc.creatorPuntel, Robson Luiz
dc.date.accessioned2017-04-26
dc.date.available2017-04-26
dc.date.issued2008-05-02
dc.identifier.citationPUNTEL, Robson Luiz. Effect of Krebs cycle intermediates on oxidative changes induced by different oxidant agents. 2008. 114 f. Tese (Doutorado em Bioquímica) - Universidade Federal de Santa Maria, Santa Maria, 2008.por
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/4400
dc.description.abstractPrevious data from the literature have shown that some Krebs cycle intermediates could act as antioxidant in several models, both in vitro and in vivo. However, the mechanism(s) involved in the antioxidant effect of Krebs cycle intermediates are not fully understood. Additionally, there are scarce data in the literature taking into account the in vitro effect of Krebs cycle intermediates during oxidative stress conditions. Thus, the aim of this study was to determine the effect of some Krebs cycle intermediates on lipid peroxidation induced in vitro by different pro-oxidant agents, and the mechanism(s) by which they act. Furthermore, it was necessary elucidate the mechanisms by which the different pro-oxidants acts under in vitro conditions. The present results showed that the malonate-induced TBARS production was not changed by potassium cyanide or MK-801. However, the pro-oxidant effect of quinolinic acid was significantly prevented by MK-801. In addition we found that both malonate and oxalate were able to form complexes with iron ions (Fe2+). Based on the presented results, we conclude that malonate pro-oxidant activity in vitro seems to be independent of the secondary excitotoxicity via indirect NMDA receptors activation. Additionally, we suggest that both the malonate and oxalate effect, in these experimental conditions, is due to its ability to form complexes with iron ions, thus modulating an adequate ratio Fe2+/Fe3+ that could cause an increase in free radicals generation. In contrast, the quinolinic acid effect seems to be dependent of the NMDA receptors activation. However, we can not rule out the involvement of iron ions in quinolinic acid toxicity under our assay conditions. Another objective of this study was to investigate the effect of some Krebs cycle intermediates against either basal or induced TBARS production, using rat brain S1 preparations and the mechanism(s) by which they act. The results showed that oxaloacetate, citrate, succinate, and malate were able to significantly prevent both basal and quinolinic acid-, iron- or malonate-induced TBARS production. On the other hand, fumarate prevented only malonate-induced TBARS production, without effect under basal conditions. However, α-ketoglutarate induced per se a significant increase in basal TBARS production. The antioxidant activity of fumarate and succinate were completely abolished when S1 was submitted to heat-treatment at 100ºC during 10 min. Likewise, potassium cyanide completely abolished the antioxidant effect of succinate. The effect of other Krebs cycle intermediates studied was unchanged with respect to heat-treatment, or cyanide. Except for succinate and fumarate, all intermediates used in this study were able to form complexes with iron (Fe2+) ions, however only oxaloacetate and α-ketoglutarate significantly prevented deoxyribose degradation induced by hydrogen peroxide. Based on the results presented, we concluded that oxaloacetate, malate, succinate, fumarate and citrate could act as antioxidants under such conditions, whereas α-ketoglutarate acts as a pro-oxidant agent per se. The mechanism(s) by which citrate, malate, and oxaloacetate acts seems to be related to their ability to form complexes with iron (Fe2+) ions, thus modulating the iron redox cycle. In contrast, the succinate and fumarate antioxidant effect seems to be dependent of the some enzymatic system.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAcesso Abertopor
dc.subjectIntermediários do ciclo de Krebspor
dc.subjectMalonatopor
dc.subjectÁcido quinolínicopor
dc.subjectFerropor
dc.subjectOxalato e peroxidação lipídicapor
dc.subjectKrebs cycle intermediateseng
dc.subjectMalonateeng
dc.subjectQuinolinic acideng
dc.subjectIroneng
dc.subjectOxalate and lipid peroxidationeng
dc.titleCaracterização da atividade pró-oxidante de diferentes agentes e estudo do potencial antioxidante de intermediários do ciclo de Krebs sobre alterações oxidativas induzidas in vitropor
dc.title.alternativeEffect of Krebs cycle intermediates on oxidative changes induced by different oxidant agentseng
dc.typeTesepor
dc.description.resumoDados prévios da literatura têm mostrado que alguns intermediários do ciclo de Krebs podem agir como antioxidantes em diversos modelos, tanto in vitro, quanto in vivo. Porém, o(s) mecanismo(s) através dos qual(is) esses intermediários exercem suas atividades antioxidantes não são completamente entendidas. Considerando a escassez de dados na literatura a respeito do efeito dos intermediários do ciclo de Krebs durante situações de estresse oxidativo, o presente trabalho teve por objetivo determinar o efeito desses sob a peroxidação lipídica induzida por diferentes agentes pró-oxidantes in vitro, bem como investigar o(s) mecanismo(s) de ação dos mesmos. Além disso, faz-se necessário caracterizar o(s) mecanismos(s) pelo(s) qual(is) os diferentes pró-oxidantes agem nos sistemas in vitro. Os resultados dessa tese mostraram que a atividade pró-oxidante in vitro do malonato não foi modificada pela adição de cianeto de potássio, nem pelo MK-801. Por outro lado, o efeito pró-oxidante do ácido quinolínico foi significativamente prevenido pelo MK-801. Observamos ainda que o malonato, e também o oxalato foram capazes de formar complexos com íons ferrosos. Portanto, com base nos resultados encontrados, concluímos que o efeito pró-oxidante do malonato in vitro parece ser independente da excitotoxicidade secundária, conseqüência da ativação indireta dos receptores NMDA. Os resultados sugerem que o efeito do malonato e do oxalato nessas condições experimentais deve-se principalmente a sua capacidade de interagir com íons ferro, modulando uma razão Fe2+/Fe3+ que favorece a geração de radicais livres. Por outro lado, o efeito do ácido quinolínico parece ser devido à ativação dos receptores NMDA. Porém, não podemos excluir a participação dos íons ferro para a toxicidade do mesmo nessas condições. Outro foco deste estudo foi investigar o efeito de alguns intermediários do ciclo de Krebs na produção de TBARS basal ou induzida por diferentes pró-oxidantes em S1 de cérebro de ratos in vitro, bem como investigar o(s) mecanismo(s) de ação dos mesmos. Os resultados mostraram que o oxaloacetato, o citrato, o sucinato e o malato foram capazes de reduzir significativamente a produção de TBARS basal, bem como a induzida por ácido quinolínico, ferro ou malonato. O fumarato, por sua vez, teve efeito antioxidante somente sobre a produção de TBARS induzida. Por outro lado, o α-cetoglutarato foi capaz de induzir per se um significativo aumento na produção de TBARS. O efeito antioxidante do fumarato e do sucinato foi completamente abolido quando o S1 foi submetido a um prétratamento por 10 min a 100ºC, enquanto que o efeito dos demais intermediários permaneceu inalterado. Da mesma forma, a adição de cianeto de potássio aboliu completamente o efeito antioxidante do sucinato sem interferir significativamente no efeito dos demais intermediários estudados. Todos os intermediários estudados, exceto o sucinato e o fumarato, foram capazes de quelar íons ferro, porém somente o oxaloacetato e o α- cetoglutarato foram capazes de prevenir a degradação da desoxirribose induzida por peróxido de hidrogênio. Com base nos resultados obtidos, podemos concluir que o oxaloacetato, o malato, o sucinato, o fumarato e o citrato agem como antioxidantes sob determinadas condições, enquanto que o α-cetoglutarato age como um agente pró-oxidante per se. O mecanismo pelo qual o citrato, o malato e o oxaloacetato exercem seus efeitos antioxidantes parece ser devido à capacidade desses em interagir com íons ferro modulando o ciclo redox desse. Por outro lado, o efeito do sucinato e do fumarato parece ser devido a alguma atividade enzimática.por
dc.contributor.advisor1Nogueira, Cristina Wayne
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2877042401245169por
dc.contributor.advisor-co1Rocha, João Batista Teixeira da
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3935055744673018por
dc.contributor.referee1Bianchini, Adalto
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6478091924064864por
dc.contributor.referee2Soares, Félix Alexandre Antunes
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8752453650114092por
dc.contributor.referee3Monserrat, José María
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8106459529828166por
dc.contributor.referee4Barbosa, Nilda Berenice de Vargas
dc.contributor.referee4Latteshttp://lattes.cnpq.br/5901511067144019por
dc.creator.Latteshttp://lattes.cnpq.br/1134532326779900por
dc.publisher.countryBRpor
dc.publisher.departmentBioquímicapor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológicapor
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICApor


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples