Mostrar registro simples

dc.creatorSchmidt, Raquel Petry Brondani
dc.date.accessioned2023-05-29T14:33:10Z
dc.date.available2023-05-29T14:33:10Z
dc.date.issued2023-02-24
dc.identifier.urihttp://repositorio.ufsm.br/handle/1/29236
dc.description.abstractBedding mortars are important components for predicting the performance of structural masonry. In fire situations, bedding mortars can be severely damaged. The effects of high temperature exposure, cooling regimes and post-fire curing length on the properties of masonry bedding mortars were investigated in multiple studies. Three factory-made mortars with nominal compressive strengths of 4 MPa, 12 MPa and 20 MPa were tested. The specimens were exposed to high temperatures ranging from 100 °C to 900 °C, cooled in air, water and air followed by water immersion (air-water) regimes and post-fire cured in air for 1 day, 28 days and 91 days. The first study evaluated the influence of high temperatures on the macrostructural and microstructural properties of masonry bedding mortars produced with dolomitic aggregates. According to the results, physical properties (hard bulk density, ultrasonic pulse velocity and fundamental transverse resonance frequency) and mechanical properties (dynamic elastic modulus, flexural strength and compressive strength) were significantly affected as temperature increased. Mineralogical and thermal analyses showed expressive phase transformations due to the thermal treatment. Regarding mechanical properties, the dynamic elastic modulus was the most heat sensitive property and the compressive strength was the least one. The second study investigated the effect of cooling regimes on the physical-mechanical behavior of masonry bedding mortars exposed to high temperatures. Mortars were cooled in air, water and air-water cooling regimes. It was concluded that compressive strength, hard bulk density and moisture content were responsive to the different cooling regimes at 1 day and 28 days post-fire curing in most analyses. The lowest mortar residual compressive strength was already reached at 1 day post-fire curing in most analyses. At 1 day post-fire curing, water cooling showed the highest compressive strength loss among the three cooling regimes. At 28 days post-fire curing, air-water cooling resulted in the highest residual compressive strength and water cooling resulted in the highest compressive strength recovery in most analyses. The third study assessed the influence of post-fire air curing length on mechanical, mineralogical and thermal behavior of masonry bedding mortars exposed to high temperatures. The mortars were tested after 1 day and 91 days post-fire air curing. Results indicated that the dynamic elastic modulus and compressive strength of mortars could be partially or totally recovered by increasing the post-fire curing length from 1 day to 91 days in most analyses. Water cooling resulted in the highest recovery of dynamic elastic modulus and compressive strength, mainly after exposure to the highest temperatures. Mineralogical and thermal analyses explained the residual mechanical properties of the mortar specimens post-fire cured. Under an integrating analysis among the three studies, it was concluded that the lower the nominal compressive strength, the higher the limit exposure temperature for mortars heated, cooled in air and post-fire cured for 1 day. Residual compressive strength results were always lower than nominal values for mortars heated, cooled in water and post-fire cured for 1 day. The limit exposure temperatures increased more expressively during post-fire curing when the mortars were cooled in water.eng
dc.languageporpor
dc.publisherUniversidade Federal de Santa Mariapor
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArgamassa de assentamentopor
dc.subjectAlvenaria estruturalpor
dc.subjectElevadas temperaturaspor
dc.subjectResfriamentopor
dc.subjectReidrataçãopor
dc.subjectBedding mortareng
dc.subjectStructural masonryeng
dc.subjectHigh temperatureeng
dc.subjectCoolingeng
dc.subjectPost-fire curingeng
dc.titleEfeito de elevadas temperaturas, resfriamento e reidratação nas propriedades de argamassas para assentamento de alvenaria estruturalpor
dc.title.alternativeEffect of high temperature exposure, cooling and post-fire curing on the properties of masonry bedding mortarseng
dc.typeTesepor
dc.description.resumoAs argamassas para assentamento constituem importantes componentes na predição do comportamento das paredes de alvenaria estrutural. Em situação de incêndio, as argamassas podem ser severamente degradadas. O objetivo da presente pesquisa foi avaliar o efeito das elevadas temperaturas, dos métodos de resfriamento e dos períodos de reidratação nas propriedades de argamassas para assentamento de alvenaria estrutural. Para isso, foram desenvolvidos três artigos científicos. Foram empregadas argamassas industrializadas de resistências à compressão nominais de 4 MPa, 12 MPa e 20 MPa. As argamassas foram expostas às temperaturas de 100 °C a 900 °C, resfriadas em ar, água e ar com imersão em água (ar-água) e reidratadas ao ar por 1 dia, 28 dias e 91 dias. O primeiro artigo avaliou a influência das elevadas temperaturas nas propriedades macroestruturais e microestruturais de argamassas com agregados dolomíticos. De acordo com os resultados obtidos, as propriedades físicas (densidade de massa aparente, velocidade de propagação de pulso ultrassônico e frequência de ressonância fundamental transversal) e as propriedades mecânicas (módulo de elasticidade dinâmico, resistência à tração na flexão e resistência à compressão) foram significativamente reduzidas com o aumento da temperatura. As análises mineralógicas e térmicas constataram expressivas transformações de fases devido ao aquecimento das argamassas. Em relação às propriedades mecânicas, o módulo de elasticidade dinâmico foi a propriedade mais sensível e a resistência à compressão foi a propriedade menos sensível ao aquecimento. O segundo artigo investigou o efeito dos métodos de resfriamento no comportamento físico-mecânico das argamassas expostas às elevadas temperaturas. Os resfriamentos foram conduzidos em ar, água e ar-água. Concluiu-se que a resistência à compressão, a densidade de massa aparente e o teor de umidade das argamassas foram responsivos aos diferentes métodos de resfriamento em 1 dia e 28 dias de reidratação na maioria das análises. As menores resistências à compressão já foram atingidas em 1 dia de reidratação na maioria das análises. Em 1 dia de reidratação, o resfriamento em água resultou nas maiores perdas de resistência à compressão. Aos 28 dias de reidratação, o resfriamento em ar-água resultou nas maiores resistências à compressão residuais e o resfriamento em água nas maiores recuperações de resistência à compressão na maioria das análises. O terceiro artigo analisou as implicações dos períodos de reidratação ao ar de 1 dia e 91 dias no comportamento mecânico, mineralógico e térmico das argamassas após a exposição às elevadas temperaturas. Os resultados indicaram que o transcurso da reidratação de 1 dia para 91 dias auxiliou a recuperação parcial ou total do módulo de elasticidade dinâmico e da resistência à compressão das argamassas na maioria das análises. As maiores recuperações do módulo de elasticidade dinâmico e da resistência à compressão ocorreram no resfriamento em água, em especial após a exposição às maiores temperaturas. As análises mineralógicas e térmicas explicaram as propriedades mecânicas residuais das argamassas reidratadas. A partir da análise integrada dos artigos, concluiu-se que as menores resistências à compressão nominais estiveram associadas aos maiores limites de temperatura de exposição nas argamassas aquecidas, resfriadas ao ar e reidratadas por 1 dia. A resistência à compressão residual das argamassas foi sempre menor que a resistência nominal nas argamassas aquecidas, resfriadas em água e reidratadas por 1 dia. Os limites de temperatura de exposição aumentaram de forma mais expressiva com o decorrer da reidratação nas argamassas resfriadas em água.por
dc.contributor.advisor1Mohamad, Gihad
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5446970753192990por
dc.contributor.referee1Moreno Junior, Armando Lopes
dc.contributor.referee2Silva Filho, Luiz Carlos Pinto da
dc.contributor.referee3Antoniazzi, Juliana Pippi
dc.contributor.referee4Kirchhof, Larissa Degliuomini
dc.creator.Latteshttp://lattes.cnpq.br/8971163797462699por
dc.publisher.countryBrasilpor
dc.publisher.departmentEngenharia Civilpor
dc.publisher.initialsUFSMpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Civilpor
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA CIVILpor
dc.publisher.unidadeCentro de Tecnologiapor


Arquivos deste item

Thumbnail
Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Attribution-NonCommercial-NoDerivatives 4.0 International
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International